A hierarchical classification method for automatic sleep scoring using multiscale entropy features and proportion information of sleep architecture

Sleep scoring is a critical step in medical researches and clinical applications. Traditional visual scoring method is based on the processing of physiological signals, such as electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG), which is a time consuming and subjective proce...

Full description

Saved in:
Bibliographic Details
Published inBiocybernetics and biomedical engineering Vol. 37; no. 2; pp. 263 - 271
Main Authors Tian, Pan, Hu, Jie, Qi, Jin, Ye, Xian, Che, Datian, Ding, Ying, Peng, Yinghong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2017
Subjects
Online AccessGet full text
ISSN0208-5216
DOI10.1016/j.bbe.2017.01.005

Cover

Loading…
Abstract Sleep scoring is a critical step in medical researches and clinical applications. Traditional visual scoring method is based on the processing of physiological signals, such as electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG), which is a time consuming and subjective procedure. It is an urgent task to develop an effective method for automatic sleep scoring. This paper presents a hierarchical classification method for automatic sleep scoring by combining multiscale entropy features with the proportion information of the sleep architecture. Based on a three-layer classification scheme, sleep is categorized into five stages (Awake, S1, S2, SWS and REM). Specifically, the first layer is a standard SVM which performs classification between Awake and Sleep, while the second and third layers are implemented by combining probabilistic output SVM with proportion-based clustering. Multiscale entropy (MSE) from electroencephalogram (EEG) is extracted to represent signal characteristics in multiple temporal scales. The proposed method is evaluated with 20 sleep recordings, including 10 subjects with mild difficulty falling asleep and 10 healthy subjects. The overall accuracy of the proposed method is 91.4%. Compared with traditional methods, the classification accuracy of the proposed method is more balanced and the global performance is much better. The dataset includes both healthy subjects and subjects with sleep disorders, which means the presented method has good generalization capacity. Experimental results demonstrate the feasibility of the attempt to introduce proportion information into automatic sleep scoring.
AbstractList Sleep scoring is a critical step in medical researches and clinical applications. Traditional visual scoring method is based on the processing of physiological signals, such as electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG), which is a time consuming and subjective procedure. It is an urgent task to develop an effective method for automatic sleep scoring. This paper presents a hierarchical classification method for automatic sleep scoring by combining multiscale entropy features with the proportion information of the sleep architecture. Based on a three-layer classification scheme, sleep is categorized into five stages (Awake, S1, S2, SWS and REM). Specifically, the first layer is a standard SVM which performs classification between Awake and Sleep, while the second and third layers are implemented by combining probabilistic output SVM with proportion-based clustering. Multiscale entropy (MSE) from electroencephalogram (EEG) is extracted to represent signal characteristics in multiple temporal scales. The proposed method is evaluated with 20 sleep recordings, including 10 subjects with mild difficulty falling asleep and 10 healthy subjects. The overall accuracy of the proposed method is 91.4%. Compared with traditional methods, the classification accuracy of the proposed method is more balanced and the global performance is much better. The dataset includes both healthy subjects and subjects with sleep disorders, which means the presented method has good generalization capacity. Experimental results demonstrate the feasibility of the attempt to introduce proportion information into automatic sleep scoring.
Abstract Background Sleep scoring is a critical step in medical researches and clinical applications. Traditional visual scoring method is based on the processing of physiological signals, such as electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG), which is a time consuming and subjective procedure. It is an urgent task to develop an effective method for automatic sleep scoring. Method This paper presents a hierarchical classification method for automatic sleep scoring by combining multiscale entropy features with the proportion information of the sleep architecture. Based on a three-layer classification scheme, sleep is categorized into five stages (Awake, S1, S2, SWS and REM). Specifically, the first layer is a standard SVM which performs classification between Awake and Sleep, while the second and third layers are implemented by combining probabilistic output SVM with proportion-based clustering. Multiscale entropy (MSE) from electroencephalogram (EEG) is extracted to represent signal characteristics in multiple temporal scales. Results The proposed method is evaluated with 20 sleep recordings, including 10 subjects with mild difficulty falling asleep and 10 healthy subjects. The overall accuracy of the proposed method is 91.4%. Compared with traditional methods, the classification accuracy of the proposed method is more balanced and the global performance is much better. The dataset includes both healthy subjects and subjects with sleep disorders, which means the presented method has good generalization capacity. Experimental results demonstrate the feasibility of the attempt to introduce proportion information into automatic sleep scoring.
Author Ye, Xian
Che, Datian
Qi, Jin
Ding, Ying
Peng, Yinghong
Hu, Jie
Tian, Pan
Author_xml – sequence: 1
  givenname: Pan
  surname: Tian
  fullname: Tian, Pan
  organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 2
  givenname: Jie
  surname: Hu
  fullname: Hu, Jie
  email: hujie@sjtu.edu.cn
  organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 3
  givenname: Jin
  surname: Qi
  fullname: Qi, Jin
  organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 4
  givenname: Xian
  surname: Ye
  fullname: Ye, Xian
  organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 5
  givenname: Datian
  surname: Che
  fullname: Che, Datian
  organization: Shanghai Children's Hospital, Children's Hospital of Shanghai Jiaotong University, Shanghai, China
– sequence: 6
  givenname: Ying
  surname: Ding
  fullname: Ding, Ying
  organization: Shanghai Children's Hospital, Children's Hospital of Shanghai Jiaotong University, Shanghai, China
– sequence: 7
  givenname: Yinghong
  surname: Peng
  fullname: Peng, Yinghong
  organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
BookMark eNqFkc-KHCEQhz1sIJvNPkBuvsB0Sp22pwkEliX_YCGHJGexq8uMk24d1A7Mc-SFY8_saSEbDyoF36f1q1fsKsRAjL0R0AgQ-u2hGQZqJIiuAdEAtFfsGiTsNq0U-iW7zfkAdWnRaqWu2Z87vveUbMK9RztxnGzO3tV78THwmco-jtzFxO1S4lyryPNEdOQZY_LhJ1_yus_LVHyuBuIUSorHE3dky5IocxtGfqylmM5OH6puvvije7SdP1AIV-I1e-HslOn28bxhPz5--H7_efPw9dOX-7uHDW5Blo3tUXYwaA07K0nRTksaBLhui64flQJnRa-d65RqrRxQW9rR0COqvnfKOXXDxMWLKeacyJlj8rNNJyPArGGag6lhmjVMA8LUMCvTPWHQl3MvJVk_PUu-u5BUW_pdMzcZPQWk0afatxmjf5Z-_4TGyYd1ZL_oRPkQlxRqVkaYLA2Yb-vI14kLrUBu21XQ_1vwn8f_AkEawAM
CitedBy_id crossref_primary_10_3390_e21121149
crossref_primary_10_2139_ssrn_4064793
crossref_primary_10_1109_TNSRE_2017_2776149
crossref_primary_10_1002_int_22344
crossref_primary_10_1016_j_bbe_2022_12_007
crossref_primary_10_4028_p_svwo5k
crossref_primary_10_1001_jamanetworkopen_2020_23654
crossref_primary_10_3390_e22030347
crossref_primary_10_1007_s42979_021_00528_5
crossref_primary_10_1016_j_bbe_2020_02_002
crossref_primary_10_1016_j_bbe_2021_08_003
crossref_primary_10_1016_j_bbe_2024_06_004
crossref_primary_10_1016_j_knosys_2019_105367
crossref_primary_10_1016_j_bspc_2022_103486
crossref_primary_10_3389_fphys_2021_628502
crossref_primary_10_1142_S0218001423560190
crossref_primary_10_1007_s12204_024_2734_z
crossref_primary_10_36306_konjes_1073932
crossref_primary_10_1007_s00500_021_06218_x
crossref_primary_10_1016_j_bbe_2020_05_008
crossref_primary_10_1177_09544119231195177
crossref_primary_10_1016_j_brainresbull_2025_111281
crossref_primary_10_1016_j_cmpb_2019_04_004
Cites_doi 10.1007/s10527-007-0006-5
10.1016/j.jneumeth.2015.01.022
10.1515/REVNEURO.2004.15.1.33
10.1103/PhysRevE.71.021906
10.1001/archpsyc.1969.01740140118016
10.1103/PhysRevLett.89.068102
10.1007/s10916-009-9286-5
10.1007/s00521-012-1065-4
10.1142/S0129065710002589
10.1161/01.CIR.101.23.e215
10.1016/j.compbiomed.2015.01.017
10.1109/TBME.2014.2375292
10.1016/j.eswa.2013.06.023
10.1109/10.966600
10.1016/j.artmed.2004.04.004
10.1016/j.eswa.2011.08.022
10.1016/j.cmpb.2011.11.005
10.3390/e16126573
10.1145/1961189.1961199
10.1016/j.neucom.2012.11.003
10.1016/j.smrv.2011.06.003
10.1016/0013-4694(87)90214-8
10.1109/10.867928
10.1142/S0129065713500123
10.1109/JBHI.2014.2303991
10.5664/jcsm.26814
10.1109/TIM.2015.2433652
10.1109/TIM.2012.2187242
10.1177/155005940503600106
10.1016/j.cmpb.2013.07.006
10.1093/sleep/23.7.1e
ContentType Journal Article
Copyright 2017 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences
Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences
Copyright_xml – notice: 2017 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences
– notice: Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences
DBID AAYXX
CITATION
DOI 10.1016/j.bbe.2017.01.005
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 271
ExternalDocumentID 10_1016_j_bbe_2017_01_005
S0208521616302455
1_s2_0_S0208521616302455
GroupedDBID --M
.1-
.FO
.~1
0R~
1P~
1~.
23N
4.4
457
4G.
53G
5GY
7-5
8P~
AABXZ
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABAOU
ABJNI
ABMAC
ABMXE
ABUDA
ABXDB
ABXRA
ACDAQ
ACGFS
ACNNM
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGWIK
AHJVU
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ARUGR
AXJTR
BAWUL
BJAXD
BKOJK
BLXMC
DIK
EBS
EFJIC
EFKBS
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JJJVA
KOM
M41
MAGPM
MHUIS
MO0
MOBAO
O9-
O9.
OAUVE
OK~
P-8
P-9
PC.
ROL
SPC
SPCBC
SSG
SSM
SSN
SST
SSU
SSW
SSZ
T5K
Y2W
Z5R
~G-
AACTN
AFKWA
AJOXV
AMFUW
RIG
AADPK
AAIAV
ABYKQ
ACAZW
AJBFU
EFLBG
AAYXX
AGRNS
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c402t-a9c270b6608a2e3e862eb10f74cf9d330fa196ff7335a2bc6ae8eb9cc399f3ff3
IEDL.DBID AIKHN
ISSN 0208-5216
IngestDate Thu Apr 24 23:02:44 EDT 2025
Tue Jul 01 02:14:27 EDT 2025
Fri Feb 23 02:23:44 EST 2024
Tue Feb 25 19:53:34 EST 2025
Tue Aug 26 16:46:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Polysomnographic
Multiscale entropy
Sleep scoring
Proportion information
Hierarchical classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-a9c270b6608a2e3e862eb10f74cf9d330fa196ff7335a2bc6ae8eb9cc399f3ff3
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_bbe_2017_01_005
crossref_citationtrail_10_1016_j_bbe_2017_01_005
elsevier_sciencedirect_doi_10_1016_j_bbe_2017_01_005
elsevier_clinicalkeyesjournals_1_s2_0_S0208521616302455
elsevier_clinicalkey_doi_10_1016_j_bbe_2017_01_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017
2017-00-00
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle Biocybernetics and biomedical engineering
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Liang, Kuo, Lee, Lin, Liu, Chen (bib0250) 2015; 64
Voss (bib0290) 2004; 15
Sousa, Cruz, Khalighi, Pires, Nunes (bib0285) 2015; 59
Hsu, Yang, Wang, Hsu (bib0255) 2013; 104
Lajnef, Chaibi, Ruby, Aguera, Eichenlaub, Samet (bib0280) 2015; 250
Burioka, Miyata, Cornélissen, Halberg, Takeshima, Kaplan (bib0315) 2005; 36
Ronzhina, Janoušek, Kolářová, Nováková, Honzík, Provazník (bib0330) 2012; 16
Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark (bib0300) 2000; 101
Norman, Pal, Stewart, Walsleben, Rapoport (bib0195) 2000; 23
Flexer, Gruber, Dorffner (bib0260) 2005; 33
Kemp, Zwinderman, Tuk, Kamphuisen, Oberye (bib0295) 2000; 47
Bajaj, Pachori (bib0230) 2013; 112
Adnane, Jiang, Yan (bib0270) 2012; 39
Wu, Talmon, Lo (bib0275) 2015; 62
Khalighi, Sousa, Pires, Nunes (bib0210) 2013; 40
Silber, Ancoli-Israel, Bonnet, Chokroverty, Grigg-Damberger, Hirshkowitz (bib0185) 2007; 3
Tagluk, Sezgin, Akin (bib0205) 2010; 34
Özşen (bib0215) 2013; 23
Holland, Dement, Raynal (bib0175) 1974
Hassan, Bashar, Bhuiyan (bib0340) 2015
Fraiwan, Lweesy, Khasawneh, Wenz, Dickhaus (bib0220) 2012; 108
Rodríguez-Sotelo, Osorio-Forero, Jiménez-Rodríguez, Cuesta-Frau, Cirugeda-Roldán, Peluffo (bib0240) 2014; 16
Agarwal, Gotman (bib0200) 2001; 48
Costa, Goldberger, Peng (bib0305) 2002; 89
Wolpert (bib0180) 1969; 20
Stanus, Lacroix, Kerkhofs, Mendlewicz (bib0190) 1987; 66
Costa, Goldberger, Peng (bib0310) 2005; 71
Zhu, Li, Wen (bib0335) 2014; 18
Herrera, Fernandes, Mora, Migotina, Largo, Guillén (bib0235) 2013; 23
Vapnik (bib0320) 2013
Liang, Kuo, Hu, Pan, Wang (bib0245) 2012; 61
Acharya, Chua, Chua, Min, Tamura (bib0225) 2010; 20
Doroshenkov, Konyshev, Selishchev (bib0265) 2007; 41
Chang, Lin (bib0325) 2011; 2
Holland (10.1016/j.bbe.2017.01.005_bib0175) 1974
Chang (10.1016/j.bbe.2017.01.005_bib0325) 2011; 2
Tagluk (10.1016/j.bbe.2017.01.005_bib0205) 2010; 34
Fraiwan (10.1016/j.bbe.2017.01.005_bib0220) 2012; 108
Stanus (10.1016/j.bbe.2017.01.005_bib0190) 1987; 66
Adnane (10.1016/j.bbe.2017.01.005_bib0270) 2012; 39
Bajaj (10.1016/j.bbe.2017.01.005_bib0230) 2013; 112
Voss (10.1016/j.bbe.2017.01.005_bib0290) 2004; 15
Silber (10.1016/j.bbe.2017.01.005_bib0185) 2007; 3
Costa (10.1016/j.bbe.2017.01.005_bib0310) 2005; 71
Burioka (10.1016/j.bbe.2017.01.005_bib0315) 2005; 36
Khalighi (10.1016/j.bbe.2017.01.005_bib0210) 2013; 40
Doroshenkov (10.1016/j.bbe.2017.01.005_bib0265) 2007; 41
Özşen (10.1016/j.bbe.2017.01.005_bib0215) 2013; 23
Wu (10.1016/j.bbe.2017.01.005_bib0275) 2015; 62
Ronzhina (10.1016/j.bbe.2017.01.005_bib0330) 2012; 16
Norman (10.1016/j.bbe.2017.01.005_bib0195) 2000; 23
Flexer (10.1016/j.bbe.2017.01.005_bib0260) 2005; 33
Kemp (10.1016/j.bbe.2017.01.005_bib0295) 2000; 47
Agarwal (10.1016/j.bbe.2017.01.005_bib0200) 2001; 48
Herrera (10.1016/j.bbe.2017.01.005_bib0235) 2013; 23
Liang (10.1016/j.bbe.2017.01.005_bib0250) 2015; 64
Costa (10.1016/j.bbe.2017.01.005_bib0305) 2002; 89
Vapnik (10.1016/j.bbe.2017.01.005_bib0320) 2013
Zhu (10.1016/j.bbe.2017.01.005_bib0335) 2014; 18
Lajnef (10.1016/j.bbe.2017.01.005_bib0280) 2015; 250
Sousa (10.1016/j.bbe.2017.01.005_bib0285) 2015; 59
Goldberger (10.1016/j.bbe.2017.01.005_bib0300) 2000; 101
Liang (10.1016/j.bbe.2017.01.005_bib0245) 2012; 61
Wolpert (10.1016/j.bbe.2017.01.005_bib0180) 1969; 20
Hassan (10.1016/j.bbe.2017.01.005_bib0340) 2015
Hsu (10.1016/j.bbe.2017.01.005_bib0255) 2013; 104
Rodríguez-Sotelo (10.1016/j.bbe.2017.01.005_bib0240) 2014; 16
Acharya (10.1016/j.bbe.2017.01.005_bib0225) 2010; 20
References_xml – volume: 41
  start-page: 25
  year: 2007
  end-page: 28
  ident: bib0265
  article-title: Classification of human sleep stages based on EEG processing using hidden Markov models
  publication-title: Biomed Eng
– volume: 39
  start-page: 1401
  year: 2012
  end-page: 1413
  ident: bib0270
  article-title: Sleep–wake stages classification and sleep efficiency estimation using single-lead electrocardiogram
  publication-title: Expert Syst Appl
– volume: 108
  start-page: 10
  year: 2012
  end-page: 19
  ident: bib0220
  article-title: Automated sleep stage identification system based on time–frequency analysis of a single EEG channel and random forest classifier
  publication-title: Comput Methods Programs Biomed
– volume: 18
  start-page: 1813
  year: 2014
  end-page: 1821
  ident: bib0335
  article-title: Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG signal
  publication-title: IEEE J Biomed Health Inform
– volume: 34
  start-page: 717
  year: 2010
  end-page: 725
  ident: bib0205
  article-title: Estimation of sleep stages by an artificial neural network employing EEG, EMG and EOG
  publication-title: J Med Syst
– start-page: 121
  year: 1974
  ident: bib0175
  article-title: Polysomnography: a response to a need for improved communication
  publication-title: Association for the Psychophysiological Study of Sleep
– volume: 40
  start-page: 7046
  year: 2013
  end-page: 7059
  ident: bib0210
  article-title: Automatic sleep staging: a computer assisted approach for optimal combination of features and polysomnographic channels
  publication-title: Expert Syst Appl
– volume: 250
  start-page: 94
  year: 2015
  end-page: 105
  ident: bib0280
  article-title: Learning machines and sleeping brains: automatic sleep stage classification using decision-tree multi-class support vector machines
  publication-title: J Neurosci Methods
– volume: 48
  start-page: 1412
  year: 2001
  end-page: 1423
  ident: bib0200
  article-title: Computer-assisted sleep staging
  publication-title: IEEE Trans Biomed Eng
– volume: 112
  start-page: 320
  year: 2013
  end-page: 328
  ident: bib0230
  article-title: Automatic classification of sleep stages based on the time–frequency image of EEG signals
  publication-title: Comput Methods Programs Biomed
– volume: 59
  start-page: 42
  year: 2015
  end-page: 53
  ident: bib0285
  article-title: A two-step automatic sleep stage classification method with dubious range detection
  publication-title: Comput Biol Med
– volume: 16
  start-page: 251
  year: 2012
  end-page: 263
  ident: bib0330
  article-title: Sleep scoring using artificial neural networks
  publication-title: Sleep Med Rev
– volume: 62
  start-page: 1159
  year: 2015
  end-page: 1168
  ident: bib0275
  article-title: Assess sleep stage by modern signal processing techniques
  publication-title: IEEE Trans Biomed Eng
– volume: 47
  start-page: 1185
  year: 2000
  end-page: 1194
  ident: bib0295
  article-title: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG
  publication-title: IEEE Trans Biomed Eng
– volume: 66
  start-page: 448
  year: 1987
  end-page: 456
  ident: bib0190
  article-title: Automated sleep scoring: a comparative reliability study of two algorithms
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 33
  start-page: 199
  year: 2005
  end-page: 207
  ident: bib0260
  article-title: A reliable probabilistic sleep stager based on a single EEG signal
  publication-title: Artif Intell Med
– volume: 2
  start-page: 27
  year: 2011
  ident: bib0325
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans Intell Syst Technol
– volume: 20
  start-page: 246
  year: 1969
  ident: bib0180
  article-title: A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects
  publication-title: Arch Gen Psychiatry
– volume: 101
  start-page: e215
  year: 2000
  end-page: e220
  ident: bib0300
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
– volume: 23
  start-page: 1239
  year: 2013
  end-page: 1250
  ident: bib0215
  article-title: Classification of sleep stages using class-dependent sequential feature selection and artificial neural network
  publication-title: Neural Comput Appl
– volume: 89
  start-page: 068102
  year: 2002
  ident: bib0305
  article-title: Multiscale entropy analysis of complex physiologic time series
  publication-title: Phys Rev Lett
– volume: 71
  start-page: 021906
  year: 2005
  ident: bib0310
  article-title: Multiscale entropy analysis of biological signals
  publication-title: Phys Rev E
– volume: 16
  start-page: 6573
  year: 2014
  end-page: 6589
  ident: bib0240
  article-title: Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques
  publication-title: Entropy
– volume: 15
  start-page: 33
  year: 2004
  end-page: 46
  ident: bib0290
  article-title: Functions of sleep architecture and the concept of protective fields
  publication-title: Rev Neurosci
– volume: 3
  start-page: 121
  year: 2007
  end-page: 131
  ident: bib0185
  article-title: The visual scoring of sleep in adults
  publication-title: J Clin Sleep Med
– volume: 23
  start-page: 901
  year: 2000
  end-page: 908
  ident: bib0195
  article-title: Interobserver agreement among sleep scorers from different centers in a large dataset
  publication-title: Sleep
– volume: 104
  start-page: 105
  year: 2013
  end-page: 114
  ident: bib0255
  article-title: Automatic sleep stage recurrent neural classifier using energy features of EEG signals
  publication-title: Neurocomputing
– volume: 23
  start-page: 1350012
  year: 2013
  ident: bib0235
  article-title: Combination of heterogeneous EEG feature extraction methods and stacked sequential learning for sleep stage classification
  publication-title: Int J Neural Syst
– volume: 36
  start-page: 21
  year: 2005
  end-page: 24
  ident: bib0315
  article-title: Approximate entropy in the electroencephalogram during wake and sleep
  publication-title: Clin EEG Neurosci
– volume: 61
  start-page: 1649
  year: 2012
  end-page: 1657
  ident: bib0245
  article-title: Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models
  publication-title: IEEE Trans Instrum Meas
– year: 2013
  ident: bib0320
  article-title: The nature of statistical learning theory
– volume: 64
  start-page: 2977
  year: 2015
  end-page: 2985
  ident: bib0250
  article-title: Development of an EOG-based automatic sleep-monitoring eye mask
  publication-title: IEEE Trans Instrum Meas
– volume: 20
  start-page: 509
  year: 2010
  end-page: 521
  ident: bib0225
  article-title: Analysis and automatic identification of sleep stages using higher order spectra
  publication-title: Int J Neural Syst
– start-page: 2238
  year: 2015
  end-page: 2243
  ident: bib0340
  article-title: On the classification of sleep states by means of statistical and spectral features from single channel electroencephalogram
  publication-title: 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI)
– volume: 41
  start-page: 25
  issue: 1
  year: 2007
  ident: 10.1016/j.bbe.2017.01.005_bib0265
  article-title: Classification of human sleep stages based on EEG processing using hidden Markov models
  publication-title: Biomed Eng
  doi: 10.1007/s10527-007-0006-5
– volume: 250
  start-page: 94
  year: 2015
  ident: 10.1016/j.bbe.2017.01.005_bib0280
  article-title: Learning machines and sleeping brains: automatic sleep stage classification using decision-tree multi-class support vector machines
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2015.01.022
– volume: 15
  start-page: 33
  issue: 1
  year: 2004
  ident: 10.1016/j.bbe.2017.01.005_bib0290
  article-title: Functions of sleep architecture and the concept of protective fields
  publication-title: Rev Neurosci
  doi: 10.1515/REVNEURO.2004.15.1.33
– volume: 71
  start-page: 021906
  issue: 2
  year: 2005
  ident: 10.1016/j.bbe.2017.01.005_bib0310
  article-title: Multiscale entropy analysis of biological signals
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.71.021906
– volume: 20
  start-page: 246
  issue: 2
  year: 1969
  ident: 10.1016/j.bbe.2017.01.005_bib0180
  article-title: A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.1969.01740140118016
– volume: 89
  start-page: 068102
  issue: 6
  year: 2002
  ident: 10.1016/j.bbe.2017.01.005_bib0305
  article-title: Multiscale entropy analysis of complex physiologic time series
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.89.068102
– volume: 34
  start-page: 717
  issue: 4
  year: 2010
  ident: 10.1016/j.bbe.2017.01.005_bib0205
  article-title: Estimation of sleep stages by an artificial neural network employing EEG, EMG and EOG
  publication-title: J Med Syst
  doi: 10.1007/s10916-009-9286-5
– volume: 23
  start-page: 1239
  issue: 5
  year: 2013
  ident: 10.1016/j.bbe.2017.01.005_bib0215
  article-title: Classification of sleep stages using class-dependent sequential feature selection and artificial neural network
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-1065-4
– volume: 20
  start-page: 509
  issue: 6
  year: 2010
  ident: 10.1016/j.bbe.2017.01.005_bib0225
  article-title: Analysis and automatic identification of sleep stages using higher order spectra
  publication-title: Int J Neural Syst
  doi: 10.1142/S0129065710002589
– volume: 101
  start-page: e215
  issue: 23
  year: 2000
  ident: 10.1016/j.bbe.2017.01.005_bib0300
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 59
  start-page: 42
  year: 2015
  ident: 10.1016/j.bbe.2017.01.005_bib0285
  article-title: A two-step automatic sleep stage classification method with dubious range detection
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2015.01.017
– year: 2013
  ident: 10.1016/j.bbe.2017.01.005_bib0320
– volume: 62
  start-page: 1159
  issue: 4
  year: 2015
  ident: 10.1016/j.bbe.2017.01.005_bib0275
  article-title: Assess sleep stage by modern signal processing techniques
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2375292
– volume: 40
  start-page: 7046
  issue: 17
  year: 2013
  ident: 10.1016/j.bbe.2017.01.005_bib0210
  article-title: Automatic sleep staging: a computer assisted approach for optimal combination of features and polysomnographic channels
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.06.023
– volume: 48
  start-page: 1412
  issue: 12
  year: 2001
  ident: 10.1016/j.bbe.2017.01.005_bib0200
  article-title: Computer-assisted sleep staging
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.966600
– volume: 33
  start-page: 199
  issue: 3
  year: 2005
  ident: 10.1016/j.bbe.2017.01.005_bib0260
  article-title: A reliable probabilistic sleep stager based on a single EEG signal
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2004.04.004
– volume: 39
  start-page: 1401
  issue: 1
  year: 2012
  ident: 10.1016/j.bbe.2017.01.005_bib0270
  article-title: Sleep–wake stages classification and sleep efficiency estimation using single-lead electrocardiogram
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.08.022
– start-page: 2238
  year: 2015
  ident: 10.1016/j.bbe.2017.01.005_bib0340
  article-title: On the classification of sleep states by means of statistical and spectral features from single channel electroencephalogram
– volume: 108
  start-page: 10
  issue: 1
  year: 2012
  ident: 10.1016/j.bbe.2017.01.005_bib0220
  article-title: Automated sleep stage identification system based on time–frequency analysis of a single EEG channel and random forest classifier
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2011.11.005
– volume: 16
  start-page: 6573
  issue: 12
  year: 2014
  ident: 10.1016/j.bbe.2017.01.005_bib0240
  article-title: Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques
  publication-title: Entropy
  doi: 10.3390/e16126573
– volume: 2
  start-page: 27
  issue: 3
  year: 2011
  ident: 10.1016/j.bbe.2017.01.005_bib0325
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/1961189.1961199
– volume: 104
  start-page: 105
  year: 2013
  ident: 10.1016/j.bbe.2017.01.005_bib0255
  article-title: Automatic sleep stage recurrent neural classifier using energy features of EEG signals
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.11.003
– volume: 16
  start-page: 251
  issue: 3
  year: 2012
  ident: 10.1016/j.bbe.2017.01.005_bib0330
  article-title: Sleep scoring using artificial neural networks
  publication-title: Sleep Med Rev
  doi: 10.1016/j.smrv.2011.06.003
– volume: 66
  start-page: 448
  issue: 4
  year: 1987
  ident: 10.1016/j.bbe.2017.01.005_bib0190
  article-title: Automated sleep scoring: a comparative reliability study of two algorithms
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(87)90214-8
– volume: 47
  start-page: 1185
  issue: 9
  year: 2000
  ident: 10.1016/j.bbe.2017.01.005_bib0295
  article-title: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.867928
– volume: 23
  start-page: 1350012
  issue: 3
  year: 2013
  ident: 10.1016/j.bbe.2017.01.005_bib0235
  article-title: Combination of heterogeneous EEG feature extraction methods and stacked sequential learning for sleep stage classification
  publication-title: Int J Neural Syst
  doi: 10.1142/S0129065713500123
– volume: 18
  start-page: 1813
  issue: 6
  year: 2014
  ident: 10.1016/j.bbe.2017.01.005_bib0335
  article-title: Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG signal
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2014.2303991
– volume: 3
  start-page: 121
  issue: 2
  year: 2007
  ident: 10.1016/j.bbe.2017.01.005_bib0185
  article-title: The visual scoring of sleep in adults
  publication-title: J Clin Sleep Med
  doi: 10.5664/jcsm.26814
– volume: 64
  start-page: 2977
  issue: 11
  year: 2015
  ident: 10.1016/j.bbe.2017.01.005_bib0250
  article-title: Development of an EOG-based automatic sleep-monitoring eye mask
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2015.2433652
– volume: 61
  start-page: 1649
  issue: 6
  year: 2012
  ident: 10.1016/j.bbe.2017.01.005_bib0245
  article-title: Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2012.2187242
– start-page: 121
  year: 1974
  ident: 10.1016/j.bbe.2017.01.005_bib0175
  article-title: Polysomnography: a response to a need for improved communication
– volume: 36
  start-page: 21
  issue: 1
  year: 2005
  ident: 10.1016/j.bbe.2017.01.005_bib0315
  article-title: Approximate entropy in the electroencephalogram during wake and sleep
  publication-title: Clin EEG Neurosci
  doi: 10.1177/155005940503600106
– volume: 112
  start-page: 320
  issue: 3
  year: 2013
  ident: 10.1016/j.bbe.2017.01.005_bib0230
  article-title: Automatic classification of sleep stages based on the time–frequency image of EEG signals
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2013.07.006
– volume: 23
  start-page: 901
  issue: 7
  year: 2000
  ident: 10.1016/j.bbe.2017.01.005_bib0195
  article-title: Interobserver agreement among sleep scorers from different centers in a large dataset
  publication-title: Sleep
  doi: 10.1093/sleep/23.7.1e
SSID ssj0000615633
Score 2.168852
Snippet Sleep scoring is a critical step in medical researches and clinical applications. Traditional visual scoring method is based on the processing of physiological...
Abstract Background Sleep scoring is a critical step in medical researches and clinical applications. Traditional visual scoring method is based on the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 263
SubjectTerms Advanced Basic Science
Hierarchical classification
Internal Medicine
Multiscale entropy
Polysomnographic
Proportion information
Sleep scoring
Title A hierarchical classification method for automatic sleep scoring using multiscale entropy features and proportion information of sleep architecture
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0208521616302455
https://www.clinicalkey.es/playcontent/1-s2.0-S0208521616302455
https://dx.doi.org/10.1016/j.bbe.2017.01.005
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BcmkPFfShbqHIB06V0nXi2NkcV6hoAcGlReJm2Y5dUaHdiCwHLv0T_cPMOM5qq6I99JZEGSeasefhGc8HcNKUopGyspmzngIUm2fW8SprhCgxam5MGcEmrq7V_Ka8uJW3O3A6nIWhssqk-3udHrV1ejJJ3Jy0d3eT7xFeskCPRQnKH8pd2CtEreQI9mbnl_Pr9VYLWW3Vg8ojSUY0Q34zVnpZS_0y8yr27yQcu5cs1IbVOduHN8ldZLP-jw5gxy_ewuuNJoLv4M-MEZ51zAggw5kjf5gKgCLPWQ8RzdA3ZeZxtYwdWll3733LOher7xjVvv9ksbSwwxE8ox3fZfvEgo9tPztmFg1rCU_hIY6Zuq3G62VIo22mJN7Dzdm3H6fzLEEtZA4DyFVmaldU3CrFp6bwwmOcg0qch6p0oUa58WBwqYZQCSFNYZ0yfupt7Rz6N0GEID7AaLFc-I_AvPQ5N0FMeVAlrXApDDo5MjQOiWo1Bj6wV7vUh5zgMO71UHD2S6NENElE81yjRMbwZU3S9k04tr1cDDLTw-lS1IcaTcQ2ouolIt-lFd3pXHeF5vqfWTeGck3518Td_sFP_0d2CK_ort8DOoLR6uHRf0avaGWPYffr7_w4zf1nrgkOjw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOBQOFbRUXcrDh56QwjpxnOweEQItzwsgcbNsx66o0G5ElgOX_on-YWYcZ7UItAduUZJxohl7Hp7xfAC_q1xUUpYmscZRgGLSxFheJpUQOUbNlc4D2MTVdTG6y8_v5f0SHHdnYaisMur-VqcHbR3v9CM3-_XDQ_8mwEtm6LEUgvKHchlWcylKqus7_JfONlrIZhctpDwSJETRZTdDnZcx1C0zLUP3TkKx-8g-zdmc0w34Gp1FdtT-zyYsufE3WJ9rIfgd_h8xQrMO-QBkN7PkDVP5T-A4awGiGXqmTD9PJ6E_K2senatZY0PtHaPK9z8sFBY2OIJjtN87qV-Yd6HpZ8P0uGI1oSk8hTFjr9VwPfFxtPmExBbcnZ7cHo-SCLSQWAwfp4ke2qzkpij4QGdOOIxyUIVzX-bWD1Fq3GtcqN6XQkidGVtoN3BmaC16N154L37Ayngydj-BOelSrr0YcF_ktL6l0OjiSF9ZJBoWPeAde5WNXcgJDONRdeVmfxVKRJFEFE8VSqQHBzOSum3BsejlrJOZ6s6WojZUaCAWEZUfEbkmrudGparJFFfv5lwP8hnlm2m7-IPbnyPbhy-j26tLdXl2ffEL1uhJuxu0AyvTp2e3i_7R1OyF-f8KAAkPWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hierarchical+classification+method+for+automatic+sleep+scoring+using+multiscale+entropy+features+and+proportion+information+of+sleep+architecture&rft.jtitle=Biocybernetics+and+biomedical+engineering&rft.au=Tian%2C+Pan&rft.au=Hu%2C+Jie&rft.au=Qi%2C+Jin&rft.au=Ye%2C+Xian&rft.date=2017&rft.issn=0208-5216&rft.volume=37&rft.issue=2&rft.spage=263&rft.epage=271&rft_id=info:doi/10.1016%2Fj.bbe.2017.01.005&rft.externalDBID=ECK1-s2.0-S0208521616302455&rft.externalDocID=1_s2_0_S0208521616302455
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F02085216%2Fcov200h.gif