A hierarchical classification method for automatic sleep scoring using multiscale entropy features and proportion information of sleep architecture
Sleep scoring is a critical step in medical researches and clinical applications. Traditional visual scoring method is based on the processing of physiological signals, such as electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG), which is a time consuming and subjective proce...
Saved in:
Published in | Biocybernetics and biomedical engineering Vol. 37; no. 2; pp. 263 - 271 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0208-5216 |
DOI | 10.1016/j.bbe.2017.01.005 |
Cover
Loading…
Abstract | Sleep scoring is a critical step in medical researches and clinical applications. Traditional visual scoring method is based on the processing of physiological signals, such as electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG), which is a time consuming and subjective procedure. It is an urgent task to develop an effective method for automatic sleep scoring.
This paper presents a hierarchical classification method for automatic sleep scoring by combining multiscale entropy features with the proportion information of the sleep architecture. Based on a three-layer classification scheme, sleep is categorized into five stages (Awake, S1, S2, SWS and REM). Specifically, the first layer is a standard SVM which performs classification between Awake and Sleep, while the second and third layers are implemented by combining probabilistic output SVM with proportion-based clustering. Multiscale entropy (MSE) from electroencephalogram (EEG) is extracted to represent signal characteristics in multiple temporal scales.
The proposed method is evaluated with 20 sleep recordings, including 10 subjects with mild difficulty falling asleep and 10 healthy subjects. The overall accuracy of the proposed method is 91.4%. Compared with traditional methods, the classification accuracy of the proposed method is more balanced and the global performance is much better. The dataset includes both healthy subjects and subjects with sleep disorders, which means the presented method has good generalization capacity. Experimental results demonstrate the feasibility of the attempt to introduce proportion information into automatic sleep scoring. |
---|---|
AbstractList | Sleep scoring is a critical step in medical researches and clinical applications. Traditional visual scoring method is based on the processing of physiological signals, such as electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG), which is a time consuming and subjective procedure. It is an urgent task to develop an effective method for automatic sleep scoring.
This paper presents a hierarchical classification method for automatic sleep scoring by combining multiscale entropy features with the proportion information of the sleep architecture. Based on a three-layer classification scheme, sleep is categorized into five stages (Awake, S1, S2, SWS and REM). Specifically, the first layer is a standard SVM which performs classification between Awake and Sleep, while the second and third layers are implemented by combining probabilistic output SVM with proportion-based clustering. Multiscale entropy (MSE) from electroencephalogram (EEG) is extracted to represent signal characteristics in multiple temporal scales.
The proposed method is evaluated with 20 sleep recordings, including 10 subjects with mild difficulty falling asleep and 10 healthy subjects. The overall accuracy of the proposed method is 91.4%. Compared with traditional methods, the classification accuracy of the proposed method is more balanced and the global performance is much better. The dataset includes both healthy subjects and subjects with sleep disorders, which means the presented method has good generalization capacity. Experimental results demonstrate the feasibility of the attempt to introduce proportion information into automatic sleep scoring. Abstract Background Sleep scoring is a critical step in medical researches and clinical applications. Traditional visual scoring method is based on the processing of physiological signals, such as electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG), which is a time consuming and subjective procedure. It is an urgent task to develop an effective method for automatic sleep scoring. Method This paper presents a hierarchical classification method for automatic sleep scoring by combining multiscale entropy features with the proportion information of the sleep architecture. Based on a three-layer classification scheme, sleep is categorized into five stages (Awake, S1, S2, SWS and REM). Specifically, the first layer is a standard SVM which performs classification between Awake and Sleep, while the second and third layers are implemented by combining probabilistic output SVM with proportion-based clustering. Multiscale entropy (MSE) from electroencephalogram (EEG) is extracted to represent signal characteristics in multiple temporal scales. Results The proposed method is evaluated with 20 sleep recordings, including 10 subjects with mild difficulty falling asleep and 10 healthy subjects. The overall accuracy of the proposed method is 91.4%. Compared with traditional methods, the classification accuracy of the proposed method is more balanced and the global performance is much better. The dataset includes both healthy subjects and subjects with sleep disorders, which means the presented method has good generalization capacity. Experimental results demonstrate the feasibility of the attempt to introduce proportion information into automatic sleep scoring. |
Author | Ye, Xian Che, Datian Qi, Jin Ding, Ying Peng, Yinghong Hu, Jie Tian, Pan |
Author_xml | – sequence: 1 givenname: Pan surname: Tian fullname: Tian, Pan organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 2 givenname: Jie surname: Hu fullname: Hu, Jie email: hujie@sjtu.edu.cn organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 3 givenname: Jin surname: Qi fullname: Qi, Jin organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 4 givenname: Xian surname: Ye fullname: Ye, Xian organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 5 givenname: Datian surname: Che fullname: Che, Datian organization: Shanghai Children's Hospital, Children's Hospital of Shanghai Jiaotong University, Shanghai, China – sequence: 6 givenname: Ying surname: Ding fullname: Ding, Ying organization: Shanghai Children's Hospital, Children's Hospital of Shanghai Jiaotong University, Shanghai, China – sequence: 7 givenname: Yinghong surname: Peng fullname: Peng, Yinghong organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China |
BookMark | eNqFkc-KHCEQhz1sIJvNPkBuvsB0Sp22pwkEliX_YCGHJGexq8uMk24d1A7Mc-SFY8_saSEbDyoF36f1q1fsKsRAjL0R0AgQ-u2hGQZqJIiuAdEAtFfsGiTsNq0U-iW7zfkAdWnRaqWu2Z87vveUbMK9RztxnGzO3tV78THwmco-jtzFxO1S4lyryPNEdOQZY_LhJ1_yus_LVHyuBuIUSorHE3dky5IocxtGfqylmM5OH6puvvije7SdP1AIV-I1e-HslOn28bxhPz5--H7_efPw9dOX-7uHDW5Blo3tUXYwaA07K0nRTksaBLhui64flQJnRa-d65RqrRxQW9rR0COqvnfKOXXDxMWLKeacyJlj8rNNJyPArGGag6lhmjVMA8LUMCvTPWHQl3MvJVk_PUu-u5BUW_pdMzcZPQWk0afatxmjf5Z-_4TGyYd1ZL_oRPkQlxRqVkaYLA2Yb-vI14kLrUBu21XQ_1vwn8f_AkEawAM |
CitedBy_id | crossref_primary_10_3390_e21121149 crossref_primary_10_2139_ssrn_4064793 crossref_primary_10_1109_TNSRE_2017_2776149 crossref_primary_10_1002_int_22344 crossref_primary_10_1016_j_bbe_2022_12_007 crossref_primary_10_4028_p_svwo5k crossref_primary_10_1001_jamanetworkopen_2020_23654 crossref_primary_10_3390_e22030347 crossref_primary_10_1007_s42979_021_00528_5 crossref_primary_10_1016_j_bbe_2020_02_002 crossref_primary_10_1016_j_bbe_2021_08_003 crossref_primary_10_1016_j_bbe_2024_06_004 crossref_primary_10_1016_j_knosys_2019_105367 crossref_primary_10_1016_j_bspc_2022_103486 crossref_primary_10_3389_fphys_2021_628502 crossref_primary_10_1142_S0218001423560190 crossref_primary_10_1007_s12204_024_2734_z crossref_primary_10_36306_konjes_1073932 crossref_primary_10_1007_s00500_021_06218_x crossref_primary_10_1016_j_bbe_2020_05_008 crossref_primary_10_1177_09544119231195177 crossref_primary_10_1016_j_brainresbull_2025_111281 crossref_primary_10_1016_j_cmpb_2019_04_004 |
Cites_doi | 10.1007/s10527-007-0006-5 10.1016/j.jneumeth.2015.01.022 10.1515/REVNEURO.2004.15.1.33 10.1103/PhysRevE.71.021906 10.1001/archpsyc.1969.01740140118016 10.1103/PhysRevLett.89.068102 10.1007/s10916-009-9286-5 10.1007/s00521-012-1065-4 10.1142/S0129065710002589 10.1161/01.CIR.101.23.e215 10.1016/j.compbiomed.2015.01.017 10.1109/TBME.2014.2375292 10.1016/j.eswa.2013.06.023 10.1109/10.966600 10.1016/j.artmed.2004.04.004 10.1016/j.eswa.2011.08.022 10.1016/j.cmpb.2011.11.005 10.3390/e16126573 10.1145/1961189.1961199 10.1016/j.neucom.2012.11.003 10.1016/j.smrv.2011.06.003 10.1016/0013-4694(87)90214-8 10.1109/10.867928 10.1142/S0129065713500123 10.1109/JBHI.2014.2303991 10.5664/jcsm.26814 10.1109/TIM.2015.2433652 10.1109/TIM.2012.2187242 10.1177/155005940503600106 10.1016/j.cmpb.2013.07.006 10.1093/sleep/23.7.1e |
ContentType | Journal Article |
Copyright | 2017 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences |
Copyright_xml | – notice: 2017 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences – notice: Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bbe.2017.01.005 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 271 |
ExternalDocumentID | 10_1016_j_bbe_2017_01_005 S0208521616302455 1_s2_0_S0208521616302455 |
GroupedDBID | --M .1- .FO .~1 0R~ 1P~ 1~. 23N 4.4 457 4G. 53G 5GY 7-5 8P~ AABXZ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABAOU ABJNI ABMAC ABMXE ABUDA ABXDB ABXRA ACDAQ ACGFS ACNNM ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGHFR AGUBO AGWIK AHJVU AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ARUGR AXJTR BAWUL BJAXD BKOJK BLXMC DIK EBS EFJIC EFKBS EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JJJVA KOM M41 MAGPM MHUIS MO0 MOBAO O9- O9. OAUVE OK~ P-8 P-9 PC. ROL SPC SPCBC SSG SSM SSN SST SSU SSW SSZ T5K Y2W Z5R ~G- AACTN AFKWA AJOXV AMFUW RIG AADPK AAIAV ABYKQ ACAZW AJBFU EFLBG AAYXX AGRNS BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c402t-a9c270b6608a2e3e862eb10f74cf9d330fa196ff7335a2bc6ae8eb9cc399f3ff3 |
IEDL.DBID | AIKHN |
ISSN | 0208-5216 |
IngestDate | Thu Apr 24 23:02:44 EDT 2025 Tue Jul 01 02:14:27 EDT 2025 Fri Feb 23 02:23:44 EST 2024 Tue Feb 25 19:53:34 EST 2025 Tue Aug 26 16:46:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Polysomnographic Multiscale entropy Sleep scoring Proportion information Hierarchical classification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-a9c270b6608a2e3e862eb10f74cf9d330fa196ff7335a2bc6ae8eb9cc399f3ff3 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1016_j_bbe_2017_01_005 crossref_citationtrail_10_1016_j_bbe_2017_01_005 elsevier_sciencedirect_doi_10_1016_j_bbe_2017_01_005 elsevier_clinicalkeyesjournals_1_s2_0_S0208521616302455 elsevier_clinicalkey_doi_10_1016_j_bbe_2017_01_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017 2017-00-00 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationTitle | Biocybernetics and biomedical engineering |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Liang, Kuo, Lee, Lin, Liu, Chen (bib0250) 2015; 64 Voss (bib0290) 2004; 15 Sousa, Cruz, Khalighi, Pires, Nunes (bib0285) 2015; 59 Hsu, Yang, Wang, Hsu (bib0255) 2013; 104 Lajnef, Chaibi, Ruby, Aguera, Eichenlaub, Samet (bib0280) 2015; 250 Burioka, Miyata, Cornélissen, Halberg, Takeshima, Kaplan (bib0315) 2005; 36 Ronzhina, Janoušek, Kolářová, Nováková, Honzík, Provazník (bib0330) 2012; 16 Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark (bib0300) 2000; 101 Norman, Pal, Stewart, Walsleben, Rapoport (bib0195) 2000; 23 Flexer, Gruber, Dorffner (bib0260) 2005; 33 Kemp, Zwinderman, Tuk, Kamphuisen, Oberye (bib0295) 2000; 47 Bajaj, Pachori (bib0230) 2013; 112 Adnane, Jiang, Yan (bib0270) 2012; 39 Wu, Talmon, Lo (bib0275) 2015; 62 Khalighi, Sousa, Pires, Nunes (bib0210) 2013; 40 Silber, Ancoli-Israel, Bonnet, Chokroverty, Grigg-Damberger, Hirshkowitz (bib0185) 2007; 3 Tagluk, Sezgin, Akin (bib0205) 2010; 34 Özşen (bib0215) 2013; 23 Holland, Dement, Raynal (bib0175) 1974 Hassan, Bashar, Bhuiyan (bib0340) 2015 Fraiwan, Lweesy, Khasawneh, Wenz, Dickhaus (bib0220) 2012; 108 Rodríguez-Sotelo, Osorio-Forero, Jiménez-Rodríguez, Cuesta-Frau, Cirugeda-Roldán, Peluffo (bib0240) 2014; 16 Agarwal, Gotman (bib0200) 2001; 48 Costa, Goldberger, Peng (bib0305) 2002; 89 Wolpert (bib0180) 1969; 20 Stanus, Lacroix, Kerkhofs, Mendlewicz (bib0190) 1987; 66 Costa, Goldberger, Peng (bib0310) 2005; 71 Zhu, Li, Wen (bib0335) 2014; 18 Herrera, Fernandes, Mora, Migotina, Largo, Guillén (bib0235) 2013; 23 Vapnik (bib0320) 2013 Liang, Kuo, Hu, Pan, Wang (bib0245) 2012; 61 Acharya, Chua, Chua, Min, Tamura (bib0225) 2010; 20 Doroshenkov, Konyshev, Selishchev (bib0265) 2007; 41 Chang, Lin (bib0325) 2011; 2 Holland (10.1016/j.bbe.2017.01.005_bib0175) 1974 Chang (10.1016/j.bbe.2017.01.005_bib0325) 2011; 2 Tagluk (10.1016/j.bbe.2017.01.005_bib0205) 2010; 34 Fraiwan (10.1016/j.bbe.2017.01.005_bib0220) 2012; 108 Stanus (10.1016/j.bbe.2017.01.005_bib0190) 1987; 66 Adnane (10.1016/j.bbe.2017.01.005_bib0270) 2012; 39 Bajaj (10.1016/j.bbe.2017.01.005_bib0230) 2013; 112 Voss (10.1016/j.bbe.2017.01.005_bib0290) 2004; 15 Silber (10.1016/j.bbe.2017.01.005_bib0185) 2007; 3 Costa (10.1016/j.bbe.2017.01.005_bib0310) 2005; 71 Burioka (10.1016/j.bbe.2017.01.005_bib0315) 2005; 36 Khalighi (10.1016/j.bbe.2017.01.005_bib0210) 2013; 40 Doroshenkov (10.1016/j.bbe.2017.01.005_bib0265) 2007; 41 Özşen (10.1016/j.bbe.2017.01.005_bib0215) 2013; 23 Wu (10.1016/j.bbe.2017.01.005_bib0275) 2015; 62 Ronzhina (10.1016/j.bbe.2017.01.005_bib0330) 2012; 16 Norman (10.1016/j.bbe.2017.01.005_bib0195) 2000; 23 Flexer (10.1016/j.bbe.2017.01.005_bib0260) 2005; 33 Kemp (10.1016/j.bbe.2017.01.005_bib0295) 2000; 47 Agarwal (10.1016/j.bbe.2017.01.005_bib0200) 2001; 48 Herrera (10.1016/j.bbe.2017.01.005_bib0235) 2013; 23 Liang (10.1016/j.bbe.2017.01.005_bib0250) 2015; 64 Costa (10.1016/j.bbe.2017.01.005_bib0305) 2002; 89 Vapnik (10.1016/j.bbe.2017.01.005_bib0320) 2013 Zhu (10.1016/j.bbe.2017.01.005_bib0335) 2014; 18 Lajnef (10.1016/j.bbe.2017.01.005_bib0280) 2015; 250 Sousa (10.1016/j.bbe.2017.01.005_bib0285) 2015; 59 Goldberger (10.1016/j.bbe.2017.01.005_bib0300) 2000; 101 Liang (10.1016/j.bbe.2017.01.005_bib0245) 2012; 61 Wolpert (10.1016/j.bbe.2017.01.005_bib0180) 1969; 20 Hassan (10.1016/j.bbe.2017.01.005_bib0340) 2015 Hsu (10.1016/j.bbe.2017.01.005_bib0255) 2013; 104 Rodríguez-Sotelo (10.1016/j.bbe.2017.01.005_bib0240) 2014; 16 Acharya (10.1016/j.bbe.2017.01.005_bib0225) 2010; 20 |
References_xml | – volume: 41 start-page: 25 year: 2007 end-page: 28 ident: bib0265 article-title: Classification of human sleep stages based on EEG processing using hidden Markov models publication-title: Biomed Eng – volume: 39 start-page: 1401 year: 2012 end-page: 1413 ident: bib0270 article-title: Sleep–wake stages classification and sleep efficiency estimation using single-lead electrocardiogram publication-title: Expert Syst Appl – volume: 108 start-page: 10 year: 2012 end-page: 19 ident: bib0220 article-title: Automated sleep stage identification system based on time–frequency analysis of a single EEG channel and random forest classifier publication-title: Comput Methods Programs Biomed – volume: 18 start-page: 1813 year: 2014 end-page: 1821 ident: bib0335 article-title: Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG signal publication-title: IEEE J Biomed Health Inform – volume: 34 start-page: 717 year: 2010 end-page: 725 ident: bib0205 article-title: Estimation of sleep stages by an artificial neural network employing EEG, EMG and EOG publication-title: J Med Syst – start-page: 121 year: 1974 ident: bib0175 article-title: Polysomnography: a response to a need for improved communication publication-title: Association for the Psychophysiological Study of Sleep – volume: 40 start-page: 7046 year: 2013 end-page: 7059 ident: bib0210 article-title: Automatic sleep staging: a computer assisted approach for optimal combination of features and polysomnographic channels publication-title: Expert Syst Appl – volume: 250 start-page: 94 year: 2015 end-page: 105 ident: bib0280 article-title: Learning machines and sleeping brains: automatic sleep stage classification using decision-tree multi-class support vector machines publication-title: J Neurosci Methods – volume: 48 start-page: 1412 year: 2001 end-page: 1423 ident: bib0200 article-title: Computer-assisted sleep staging publication-title: IEEE Trans Biomed Eng – volume: 112 start-page: 320 year: 2013 end-page: 328 ident: bib0230 article-title: Automatic classification of sleep stages based on the time–frequency image of EEG signals publication-title: Comput Methods Programs Biomed – volume: 59 start-page: 42 year: 2015 end-page: 53 ident: bib0285 article-title: A two-step automatic sleep stage classification method with dubious range detection publication-title: Comput Biol Med – volume: 16 start-page: 251 year: 2012 end-page: 263 ident: bib0330 article-title: Sleep scoring using artificial neural networks publication-title: Sleep Med Rev – volume: 62 start-page: 1159 year: 2015 end-page: 1168 ident: bib0275 article-title: Assess sleep stage by modern signal processing techniques publication-title: IEEE Trans Biomed Eng – volume: 47 start-page: 1185 year: 2000 end-page: 1194 ident: bib0295 article-title: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG publication-title: IEEE Trans Biomed Eng – volume: 66 start-page: 448 year: 1987 end-page: 456 ident: bib0190 article-title: Automated sleep scoring: a comparative reliability study of two algorithms publication-title: Electroencephalogr Clin Neurophysiol – volume: 33 start-page: 199 year: 2005 end-page: 207 ident: bib0260 article-title: A reliable probabilistic sleep stager based on a single EEG signal publication-title: Artif Intell Med – volume: 2 start-page: 27 year: 2011 ident: bib0325 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans Intell Syst Technol – volume: 20 start-page: 246 year: 1969 ident: bib0180 article-title: A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects publication-title: Arch Gen Psychiatry – volume: 101 start-page: e215 year: 2000 end-page: e220 ident: bib0300 article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation – volume: 23 start-page: 1239 year: 2013 end-page: 1250 ident: bib0215 article-title: Classification of sleep stages using class-dependent sequential feature selection and artificial neural network publication-title: Neural Comput Appl – volume: 89 start-page: 068102 year: 2002 ident: bib0305 article-title: Multiscale entropy analysis of complex physiologic time series publication-title: Phys Rev Lett – volume: 71 start-page: 021906 year: 2005 ident: bib0310 article-title: Multiscale entropy analysis of biological signals publication-title: Phys Rev E – volume: 16 start-page: 6573 year: 2014 end-page: 6589 ident: bib0240 article-title: Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques publication-title: Entropy – volume: 15 start-page: 33 year: 2004 end-page: 46 ident: bib0290 article-title: Functions of sleep architecture and the concept of protective fields publication-title: Rev Neurosci – volume: 3 start-page: 121 year: 2007 end-page: 131 ident: bib0185 article-title: The visual scoring of sleep in adults publication-title: J Clin Sleep Med – volume: 23 start-page: 901 year: 2000 end-page: 908 ident: bib0195 article-title: Interobserver agreement among sleep scorers from different centers in a large dataset publication-title: Sleep – volume: 104 start-page: 105 year: 2013 end-page: 114 ident: bib0255 article-title: Automatic sleep stage recurrent neural classifier using energy features of EEG signals publication-title: Neurocomputing – volume: 23 start-page: 1350012 year: 2013 ident: bib0235 article-title: Combination of heterogeneous EEG feature extraction methods and stacked sequential learning for sleep stage classification publication-title: Int J Neural Syst – volume: 36 start-page: 21 year: 2005 end-page: 24 ident: bib0315 article-title: Approximate entropy in the electroencephalogram during wake and sleep publication-title: Clin EEG Neurosci – volume: 61 start-page: 1649 year: 2012 end-page: 1657 ident: bib0245 article-title: Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models publication-title: IEEE Trans Instrum Meas – year: 2013 ident: bib0320 article-title: The nature of statistical learning theory – volume: 64 start-page: 2977 year: 2015 end-page: 2985 ident: bib0250 article-title: Development of an EOG-based automatic sleep-monitoring eye mask publication-title: IEEE Trans Instrum Meas – volume: 20 start-page: 509 year: 2010 end-page: 521 ident: bib0225 article-title: Analysis and automatic identification of sleep stages using higher order spectra publication-title: Int J Neural Syst – start-page: 2238 year: 2015 end-page: 2243 ident: bib0340 article-title: On the classification of sleep states by means of statistical and spectral features from single channel electroencephalogram publication-title: 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI) – volume: 41 start-page: 25 issue: 1 year: 2007 ident: 10.1016/j.bbe.2017.01.005_bib0265 article-title: Classification of human sleep stages based on EEG processing using hidden Markov models publication-title: Biomed Eng doi: 10.1007/s10527-007-0006-5 – volume: 250 start-page: 94 year: 2015 ident: 10.1016/j.bbe.2017.01.005_bib0280 article-title: Learning machines and sleeping brains: automatic sleep stage classification using decision-tree multi-class support vector machines publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2015.01.022 – volume: 15 start-page: 33 issue: 1 year: 2004 ident: 10.1016/j.bbe.2017.01.005_bib0290 article-title: Functions of sleep architecture and the concept of protective fields publication-title: Rev Neurosci doi: 10.1515/REVNEURO.2004.15.1.33 – volume: 71 start-page: 021906 issue: 2 year: 2005 ident: 10.1016/j.bbe.2017.01.005_bib0310 article-title: Multiscale entropy analysis of biological signals publication-title: Phys Rev E doi: 10.1103/PhysRevE.71.021906 – volume: 20 start-page: 246 issue: 2 year: 1969 ident: 10.1016/j.bbe.2017.01.005_bib0180 article-title: A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.1969.01740140118016 – volume: 89 start-page: 068102 issue: 6 year: 2002 ident: 10.1016/j.bbe.2017.01.005_bib0305 article-title: Multiscale entropy analysis of complex physiologic time series publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.89.068102 – volume: 34 start-page: 717 issue: 4 year: 2010 ident: 10.1016/j.bbe.2017.01.005_bib0205 article-title: Estimation of sleep stages by an artificial neural network employing EEG, EMG and EOG publication-title: J Med Syst doi: 10.1007/s10916-009-9286-5 – volume: 23 start-page: 1239 issue: 5 year: 2013 ident: 10.1016/j.bbe.2017.01.005_bib0215 article-title: Classification of sleep stages using class-dependent sequential feature selection and artificial neural network publication-title: Neural Comput Appl doi: 10.1007/s00521-012-1065-4 – volume: 20 start-page: 509 issue: 6 year: 2010 ident: 10.1016/j.bbe.2017.01.005_bib0225 article-title: Analysis and automatic identification of sleep stages using higher order spectra publication-title: Int J Neural Syst doi: 10.1142/S0129065710002589 – volume: 101 start-page: e215 issue: 23 year: 2000 ident: 10.1016/j.bbe.2017.01.005_bib0300 article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 59 start-page: 42 year: 2015 ident: 10.1016/j.bbe.2017.01.005_bib0285 article-title: A two-step automatic sleep stage classification method with dubious range detection publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2015.01.017 – year: 2013 ident: 10.1016/j.bbe.2017.01.005_bib0320 – volume: 62 start-page: 1159 issue: 4 year: 2015 ident: 10.1016/j.bbe.2017.01.005_bib0275 article-title: Assess sleep stage by modern signal processing techniques publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2375292 – volume: 40 start-page: 7046 issue: 17 year: 2013 ident: 10.1016/j.bbe.2017.01.005_bib0210 article-title: Automatic sleep staging: a computer assisted approach for optimal combination of features and polysomnographic channels publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.06.023 – volume: 48 start-page: 1412 issue: 12 year: 2001 ident: 10.1016/j.bbe.2017.01.005_bib0200 article-title: Computer-assisted sleep staging publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.966600 – volume: 33 start-page: 199 issue: 3 year: 2005 ident: 10.1016/j.bbe.2017.01.005_bib0260 article-title: A reliable probabilistic sleep stager based on a single EEG signal publication-title: Artif Intell Med doi: 10.1016/j.artmed.2004.04.004 – volume: 39 start-page: 1401 issue: 1 year: 2012 ident: 10.1016/j.bbe.2017.01.005_bib0270 article-title: Sleep–wake stages classification and sleep efficiency estimation using single-lead electrocardiogram publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.08.022 – start-page: 2238 year: 2015 ident: 10.1016/j.bbe.2017.01.005_bib0340 article-title: On the classification of sleep states by means of statistical and spectral features from single channel electroencephalogram – volume: 108 start-page: 10 issue: 1 year: 2012 ident: 10.1016/j.bbe.2017.01.005_bib0220 article-title: Automated sleep stage identification system based on time–frequency analysis of a single EEG channel and random forest classifier publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2011.11.005 – volume: 16 start-page: 6573 issue: 12 year: 2014 ident: 10.1016/j.bbe.2017.01.005_bib0240 article-title: Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques publication-title: Entropy doi: 10.3390/e16126573 – volume: 2 start-page: 27 issue: 3 year: 2011 ident: 10.1016/j.bbe.2017.01.005_bib0325 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans Intell Syst Technol doi: 10.1145/1961189.1961199 – volume: 104 start-page: 105 year: 2013 ident: 10.1016/j.bbe.2017.01.005_bib0255 article-title: Automatic sleep stage recurrent neural classifier using energy features of EEG signals publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.11.003 – volume: 16 start-page: 251 issue: 3 year: 2012 ident: 10.1016/j.bbe.2017.01.005_bib0330 article-title: Sleep scoring using artificial neural networks publication-title: Sleep Med Rev doi: 10.1016/j.smrv.2011.06.003 – volume: 66 start-page: 448 issue: 4 year: 1987 ident: 10.1016/j.bbe.2017.01.005_bib0190 article-title: Automated sleep scoring: a comparative reliability study of two algorithms publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(87)90214-8 – volume: 47 start-page: 1185 issue: 9 year: 2000 ident: 10.1016/j.bbe.2017.01.005_bib0295 article-title: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.867928 – volume: 23 start-page: 1350012 issue: 3 year: 2013 ident: 10.1016/j.bbe.2017.01.005_bib0235 article-title: Combination of heterogeneous EEG feature extraction methods and stacked sequential learning for sleep stage classification publication-title: Int J Neural Syst doi: 10.1142/S0129065713500123 – volume: 18 start-page: 1813 issue: 6 year: 2014 ident: 10.1016/j.bbe.2017.01.005_bib0335 article-title: Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG signal publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2014.2303991 – volume: 3 start-page: 121 issue: 2 year: 2007 ident: 10.1016/j.bbe.2017.01.005_bib0185 article-title: The visual scoring of sleep in adults publication-title: J Clin Sleep Med doi: 10.5664/jcsm.26814 – volume: 64 start-page: 2977 issue: 11 year: 2015 ident: 10.1016/j.bbe.2017.01.005_bib0250 article-title: Development of an EOG-based automatic sleep-monitoring eye mask publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2015.2433652 – volume: 61 start-page: 1649 issue: 6 year: 2012 ident: 10.1016/j.bbe.2017.01.005_bib0245 article-title: Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2012.2187242 – start-page: 121 year: 1974 ident: 10.1016/j.bbe.2017.01.005_bib0175 article-title: Polysomnography: a response to a need for improved communication – volume: 36 start-page: 21 issue: 1 year: 2005 ident: 10.1016/j.bbe.2017.01.005_bib0315 article-title: Approximate entropy in the electroencephalogram during wake and sleep publication-title: Clin EEG Neurosci doi: 10.1177/155005940503600106 – volume: 112 start-page: 320 issue: 3 year: 2013 ident: 10.1016/j.bbe.2017.01.005_bib0230 article-title: Automatic classification of sleep stages based on the time–frequency image of EEG signals publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2013.07.006 – volume: 23 start-page: 901 issue: 7 year: 2000 ident: 10.1016/j.bbe.2017.01.005_bib0195 article-title: Interobserver agreement among sleep scorers from different centers in a large dataset publication-title: Sleep doi: 10.1093/sleep/23.7.1e |
SSID | ssj0000615633 |
Score | 2.168852 |
Snippet | Sleep scoring is a critical step in medical researches and clinical applications. Traditional visual scoring method is based on the processing of physiological... Abstract Background Sleep scoring is a critical step in medical researches and clinical applications. Traditional visual scoring method is based on the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 263 |
SubjectTerms | Advanced Basic Science Hierarchical classification Internal Medicine Multiscale entropy Polysomnographic Proportion information Sleep scoring |
Title | A hierarchical classification method for automatic sleep scoring using multiscale entropy features and proportion information of sleep architecture |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0208521616302455 https://www.clinicalkey.es/playcontent/1-s2.0-S0208521616302455 https://dx.doi.org/10.1016/j.bbe.2017.01.005 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BcmkPFfShbqHIB06V0nXi2NkcV6hoAcGlReJm2Y5dUaHdiCwHLv0T_cPMOM5qq6I99JZEGSeasefhGc8HcNKUopGyspmzngIUm2fW8SprhCgxam5MGcEmrq7V_Ka8uJW3O3A6nIWhssqk-3udHrV1ejJJ3Jy0d3eT7xFeskCPRQnKH8pd2CtEreQI9mbnl_Pr9VYLWW3Vg8ojSUY0Q34zVnpZS_0y8yr27yQcu5cs1IbVOduHN8ldZLP-jw5gxy_ewuuNJoLv4M-MEZ51zAggw5kjf5gKgCLPWQ8RzdA3ZeZxtYwdWll3733LOher7xjVvv9ksbSwwxE8ox3fZfvEgo9tPztmFg1rCU_hIY6Zuq3G62VIo22mJN7Dzdm3H6fzLEEtZA4DyFVmaldU3CrFp6bwwmOcg0qch6p0oUa58WBwqYZQCSFNYZ0yfupt7Rz6N0GEID7AaLFc-I_AvPQ5N0FMeVAlrXApDDo5MjQOiWo1Bj6wV7vUh5zgMO71UHD2S6NENElE81yjRMbwZU3S9k04tr1cDDLTw-lS1IcaTcQ2ouolIt-lFd3pXHeF5vqfWTeGck3518Td_sFP_0d2CK_ort8DOoLR6uHRf0avaGWPYffr7_w4zf1nrgkOjw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOBQOFbRUXcrDh56QwjpxnOweEQItzwsgcbNsx66o0G5ElgOX_on-YWYcZ7UItAduUZJxohl7Hp7xfAC_q1xUUpYmscZRgGLSxFheJpUQOUbNlc4D2MTVdTG6y8_v5f0SHHdnYaisMur-VqcHbR3v9CM3-_XDQ_8mwEtm6LEUgvKHchlWcylKqus7_JfONlrIZhctpDwSJETRZTdDnZcx1C0zLUP3TkKx-8g-zdmc0w34Gp1FdtT-zyYsufE3WJ9rIfgd_h8xQrMO-QBkN7PkDVP5T-A4awGiGXqmTD9PJ6E_K2senatZY0PtHaPK9z8sFBY2OIJjtN87qV-Yd6HpZ8P0uGI1oSk8hTFjr9VwPfFxtPmExBbcnZ7cHo-SCLSQWAwfp4ke2qzkpij4QGdOOIxyUIVzX-bWD1Fq3GtcqN6XQkidGVtoN3BmaC16N154L37Ayngydj-BOelSrr0YcF_ktL6l0OjiSF9ZJBoWPeAde5WNXcgJDONRdeVmfxVKRJFEFE8VSqQHBzOSum3BsejlrJOZ6s6WojZUaCAWEZUfEbkmrudGparJFFfv5lwP8hnlm2m7-IPbnyPbhy-j26tLdXl2ffEL1uhJuxu0AyvTp2e3i_7R1OyF-f8KAAkPWg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hierarchical+classification+method+for+automatic+sleep+scoring+using+multiscale+entropy+features+and+proportion+information+of+sleep+architecture&rft.jtitle=Biocybernetics+and+biomedical+engineering&rft.au=Tian%2C+Pan&rft.au=Hu%2C+Jie&rft.au=Qi%2C+Jin&rft.au=Ye%2C+Xian&rft.date=2017&rft.issn=0208-5216&rft.volume=37&rft.issue=2&rft.spage=263&rft.epage=271&rft_id=info:doi/10.1016%2Fj.bbe.2017.01.005&rft.externalDBID=ECK1-s2.0-S0208521616302455&rft.externalDocID=1_s2_0_S0208521616302455 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F02085216%2Fcov200h.gif |