MTBI Identification From Diffusion MR Images Using Bag of Adversarial Visual Features

In this paper, we propose bag of adversarial features (BAFs) for identifying mild traumatic brain injury (MTBI) patients from their diffusion magnetic resonance images (MRIs) (obtained within one month of injury) by incorporating unsupervised feature learning techniques. MTBI is a growing public hea...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 38; no. 11; pp. 2545 - 2555
Main Authors Minaee, Shervin, Wang, Yao, Aygar, Alp, Chung, Sohae, Wang, Xiuyuan, Lui, Yvonne W., Fieremans, Els, Flanagan, Steven, Rath, Joseph
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose bag of adversarial features (BAFs) for identifying mild traumatic brain injury (MTBI) patients from their diffusion magnetic resonance images (MRIs) (obtained within one month of injury) by incorporating unsupervised feature learning techniques. MTBI is a growing public health problem with an estimated incidence of over 1.7 million people annually in USA. Diagnosis is based on clinical history and symptoms, and accurate, concrete measures of injury are lacking. Unlike most of the previous works, which use hand-crafted features extracted from different parts of brain for MTBI classification, we employ feature learning algorithms to learn more discriminative representation for this task. A major challenge in this field thus far is the relatively small number of subjects available for training. This makes it difficult to use an end-to-end convolutional neural network to directly classify a subject from MRIs. To overcome this challenge, we first apply an adversarial auto-encoder (with convolutional structure) to learn patch-level features, from overlapping image patches extracted from different brain regions. We then aggregate these features through a bag-of-words approach. We perform an extensive experimental study on a dataset of 227 subjects (including 109 MTBI patients, and 118 age and sex-matched healthy controls) and compare the bag-of-deep-features with several previous approaches. Our experimental results show that the BAF significantly outperforms earlier works relying on the mean values of MR metrics in selected brain regions.
AbstractList In this work, we propose bag of adversarial features (BAF) for identifying mild traumatic brain injury (MTBI) patients from their diffusion magnetic resonance images (MRI) (obtained within one month of injury) by incorporating un-supervised feature learning techniques. MTBI is a growing public health problem with an estimated incidence of over 1.7 million people annually in US. Diagnosis is based on clinical history and symptoms, and accurate, concrete measures of injury are lacking. Unlike most of previous works, which use hand-crafted features extracted from different parts of brain for MTBI classification, we employ feature learning algorithms to learn more discriminative representation for this task. A major challenge in this field thus far is the relatively small number of subjects available for training. This makes it difficult to use an end-to-end convolutional neural network to directly classify a subject from MR images. To overcome this challenge, we first apply an adversarial auto-encoder (with convolutional structure) to learn patch-level features, from overlapping image patches extracted from different brain regions. We then aggregate these features through a bag-of-word approach. We perform an extensive experimental study on a dataset of 227 subjects (including 109 MTBI patients, and 118 age and sex matched healthy controls), and compare the bag-of-deep-features with several previous approaches. Our experimental results show that the BAF significantly outperforms earlier works relying on the mean values of MR metrics in selected brain regions.
In this paper, we propose bag of adversarial features (BAFs) for identifying mild traumatic brain injury (MTBI) patients from their diffusion magnetic resonance images (MRIs) (obtained within one month of injury) by incorporating unsupervised feature learning techniques. MTBI is a growing public health problem with an estimated incidence of over 1.7 million people annually in USA. Diagnosis is based on clinical history and symptoms, and accurate, concrete measures of injury are lacking. Unlike most of the previous works, which use hand-crafted features extracted from different parts of brain for MTBI classification, we employ feature learning algorithms to learn more discriminative representation for this task. A major challenge in this field thus far is the relatively small number of subjects available for training. This makes it difficult to use an end-to-end convolutional neural network to directly classify a subject from MRIs. To overcome this challenge, we first apply an adversarial auto-encoder (with convolutional structure) to learn patch-level features, from overlapping image patches extracted from different brain regions. We then aggregate these features through a bag-of-words approach. We perform an extensive experimental study on a dataset of 227 subjects (including 109 MTBI patients, and 118 age and sex-matched healthy controls) and compare the bag-of-deep-features with several previous approaches. Our experimental results show that the BAF significantly outperforms earlier works relying on the mean values of MR metrics in selected brain regions.
In this paper, we propose bag of adversarial features (BAFs) for identifying mild traumatic brain injury (MTBI) patients from their diffusion magnetic resonance images (MRIs) (obtained within one month of injury) by incorporating unsupervised feature learning techniques. MTBI is a growing public health problem with an estimated incidence of over 1.7 million people annually in USA. Diagnosis is based on clinical history and symptoms, and accurate, concrete measures of injury are lacking. Unlike most of the previous works, which use hand-crafted features extracted from different parts of brain for MTBI classification, we employ feature learning algorithms to learn more discriminative representation for this task. A major challenge in this field thus far is the relatively small number of subjects available for training. This makes it difficult to use an end-to-end convolutional neural network to directly classify a subject from MRIs. To overcome this challenge, we first apply an adversarial auto-encoder (with convolutional structure) to learn patch-level features, from overlapping image patches extracted from different brain regions. We then aggregate these features through a bag-of-words approach. We perform an extensive experimental study on a dataset of 227 subjects (including 109 MTBI patients, and 118 age and sex-matched healthy controls) and compare the bag-of-deep-features with several previous approaches. Our experimental results show that the BAF significantly outperforms earlier works relying on the mean values of MR metrics in selected brain regions.In this paper, we propose bag of adversarial features (BAFs) for identifying mild traumatic brain injury (MTBI) patients from their diffusion magnetic resonance images (MRIs) (obtained within one month of injury) by incorporating unsupervised feature learning techniques. MTBI is a growing public health problem with an estimated incidence of over 1.7 million people annually in USA. Diagnosis is based on clinical history and symptoms, and accurate, concrete measures of injury are lacking. Unlike most of the previous works, which use hand-crafted features extracted from different parts of brain for MTBI classification, we employ feature learning algorithms to learn more discriminative representation for this task. A major challenge in this field thus far is the relatively small number of subjects available for training. This makes it difficult to use an end-to-end convolutional neural network to directly classify a subject from MRIs. To overcome this challenge, we first apply an adversarial auto-encoder (with convolutional structure) to learn patch-level features, from overlapping image patches extracted from different brain regions. We then aggregate these features through a bag-of-words approach. We perform an extensive experimental study on a dataset of 227 subjects (including 109 MTBI patients, and 118 age and sex-matched healthy controls) and compare the bag-of-deep-features with several previous approaches. Our experimental results show that the BAF significantly outperforms earlier works relying on the mean values of MR metrics in selected brain regions.
Author Wang, Yao
Rath, Joseph
Minaee, Shervin
Aygar, Alp
Chung, Sohae
Wang, Xiuyuan
Flanagan, Steven
Lui, Yvonne W.
Fieremans, Els
AuthorAffiliation 3 Department of Rehabilitation Medicine, New York University
2 Department of Radiology, New York University
1 Electrical and Computer Engineering Department, New York University
AuthorAffiliation_xml – name: 1 Electrical and Computer Engineering Department, New York University
– name: 3 Department of Rehabilitation Medicine, New York University
– name: 2 Department of Radiology, New York University
Author_xml – sequence: 1
  givenname: Shervin
  orcidid: 0000-0001-6689-9221
  surname: Minaee
  fullname: Minaee, Shervin
  email: shervin.minaee@nyu.edu
  organization: Electrical and Computer Engineering Department, New York University, New York City, NY, USA
– sequence: 2
  givenname: Yao
  orcidid: 0000-0003-3199-3802
  surname: Wang
  fullname: Wang, Yao
  organization: Electrical and Computer Engineering Department, New York University, New York City, NY, USA
– sequence: 3
  givenname: Alp
  orcidid: 0000-0003-1208-5438
  surname: Aygar
  fullname: Aygar, Alp
  organization: Electrical and Computer Engineering Department, New York University, New York City, NY, USA
– sequence: 4
  givenname: Sohae
  orcidid: 0000-0002-1132-900X
  surname: Chung
  fullname: Chung, Sohae
  organization: Department of Radiology, New York University, New York City, NY, USA
– sequence: 5
  givenname: Xiuyuan
  surname: Wang
  fullname: Wang, Xiuyuan
  organization: Department of Radiology, New York University, New York City, NY, USA
– sequence: 6
  givenname: Yvonne W.
  surname: Lui
  fullname: Lui, Yvonne W.
  organization: Department of Radiology, New York University, New York City, NY, USA
– sequence: 7
  givenname: Els
  surname: Fieremans
  fullname: Fieremans, Els
  organization: Department of Radiology, New York University, New York City, NY, USA
– sequence: 8
  givenname: Steven
  orcidid: 0000-0001-9005-5897
  surname: Flanagan
  fullname: Flanagan, Steven
  organization: Department of Rehabilitation Medicine, New York University, New York City, NY, USA
– sequence: 9
  givenname: Joseph
  orcidid: 0000-0003-2933-6299
  surname: Rath
  fullname: Rath, Joseph
  organization: Department of Rehabilitation Medicine, New York University, New York City, NY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30892204$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1rGzEUFCWlcdLeC4Ui6CWXdfS5K10KSVonCzGF4pTehKwPV2F3lUq7gf77yLUT2hxyejzezDBv5ggcDHFwALzHaI4xkqerZTsnCMs5kYhL3LwCM8y5qAhnPw_ADJFGVAjV5BAc5XyLEGYcyTfgkCIhCUFsBm6Wq_MWttYNY_DB6DHEAS5S7OGX4P2Ut-vyO2x7vXEZ3uQwbOC53sDo4Zm9dynrFHQHf4Q8lbFwepySy2_Ba6-77N7t5zFYLb6uLq6q62-X7cXZdWUYImOlGfXarK1k2lvuUC2lb4yxRnDmqKGU1w3nvrYMrxFvjCCNJdTW3HMhOaHH4PNO9m5a986a8kTSnbpLodfpj4o6qP8vQ_ilNvFeFVlcwikCJ3uBFH9PLo-qD9m4rtODi1NWBEvGBZecFeinZ9DbOKWhfKcIxaUNzsTW0cd_HT1ZeQy8AOodwKSYc3JemTD-Tb0YDJ3CSG2bVaVZtW1W7ZstRPSM-Kj9AuXDjhKcc09wUdeiaQR9AGlgrUA
CODEN ITMID4
CitedBy_id crossref_primary_10_1007_s11334_022_00437_7
crossref_primary_10_3390_ijgi8040181
crossref_primary_10_3390_diagnostics13152605
crossref_primary_10_1016_j_neulet_2023_137311
crossref_primary_10_3390_s19235275
crossref_primary_10_1109_TIM_2023_3302935
crossref_primary_10_3390_cancers15072146
crossref_primary_10_1088_1741_2552_ac954e
crossref_primary_10_3233_IDT_230307
crossref_primary_10_3390_app9224898
crossref_primary_10_3390_math8040644
crossref_primary_10_1080_08839514_2024_2423326
crossref_primary_10_1109_ACCESS_2020_3016651
crossref_primary_10_3389_fbioe_2021_587082
crossref_primary_10_3390_s20102837
crossref_primary_10_5507_bp_2023_013
Cites_doi 10.1145/1290082.1290111
10.1023/B:VISI.0000029664.99615.94
10.1109/CVPR.2016.90
10.1148/radiol.16142535
10.1089/neu.2015.3965
10.1016/j.media.2017.01.005
10.1016/S0006-3495(94)80775-1
10.1016/j.sigpro.2014.09.005
10.1093/brain/awm216
10.15620/cdc.5571
10.1109/SPMB.2013.6736783
10.1002/nbm.1518
10.1109/EMBC.2018.8512556
10.1109/CVPR.2014.81
10.1016/j.neuroimage.2011.06.006
10.1145/1869790.1869829
10.1007/BF00994018
10.1089/neu.2017.5257
10.1002/hbm.22930
10.1089/neu.2013.2934
10.1007/s11682-012-9156-5
10.1016/j.compeleceng.2013.11.024
10.1089/neu.2016.4526
10.1089/neu.2017.5320
10.1007/11744023_32
10.1097/RMR.0000000000000062
10.3171/jns.2005.103.2.0298
10.1080/02699052.2016.1229034
10.3109/02699052.2014.947628
10.1089/neu.2011.1763
10.1109/TIP.2010.2044957
10.1097/RMR.0b013e31823e65b8
10.1109/CVPR.2016.503
10.1109/TPAMI.2005.159
10.1212/WNL.0000000000000834
10.1109/SPMB.2017.8257054
10.1080/16501960410023859
10.1212/WNL.0b013e3181d0ccdd
10.1016/j.neuroimage.2016.01.056
10.1080/09638280802532720
10.3174/ajnr.A3358
10.1016/j.cviu.2016.03.013
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
DOI 10.1109/TMI.2019.2905917
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList

Materials Research Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Public Health
EISSN 1558-254X
EndPage 2555
ExternalDocumentID PMC6751027
30892204
10_1109_TMI_2019_2905917
8668778
Genre orig-research
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  grantid: R01 NS039135-11; R21 NS090349
  funderid: 10.13039/100000002
– fundername: National Institute of Neurological Disorders and Stroke
  funderid: 10.13039/100000065
– fundername: Center for Advanced Imaging Innovation and Research (CAI2R)
– fundername: NIBIB Biomedical Technology Resource Center
  grantid: NIH P41 EB017183
– fundername: NINDS NIH HHS
  grantid: R01 NS088040
– fundername: NIBIB NIH HHS
  grantid: P41 EB017183
– fundername: NINDS NIH HHS
  grantid: R01 NS039135
– fundername: NINDS NIH HHS
  grantid: R21 NS090349
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c402t-a43facbd94afd5e0699f7ccdc854e3c3356755f6d41b057c827d23d65f589523
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Thu Aug 21 14:10:33 EDT 2025
Thu Jul 10 17:22:04 EDT 2025
Mon Jun 30 06:18:00 EDT 2025
Mon Jul 21 06:03:06 EDT 2025
Tue Jul 01 03:16:02 EDT 2025
Thu Apr 24 22:58:33 EDT 2025
Wed Aug 27 02:30:47 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-a43facbd94afd5e0699f7ccdc854e3c3356755f6d41b057c827d23d65f589523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2933-6299
0000-0001-6689-9221
0000-0001-9005-5897
0000-0002-1132-900X
0000-0003-3199-3802
0000-0003-1208-5438
PMID 30892204
PQID 2311105482
PQPubID 85460
PageCount 11
ParticipantIDs ieee_primary_8668778
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6751027
proquest_miscellaneous_2194585954
proquest_journals_2311105482
crossref_citationtrail_10_1109_TMI_2019_2905917
crossref_primary_10_1109_TMI_2019_2905917
pubmed_primary_30892204
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref37
ref36
ref14
ref31
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
makhzani (ref38) 2015
guyon (ref44) 2003; 3
minaee (ref15) 2017
guo (ref33) 2010; 19
ref46
ref24
ref45
ref23
ref48
ref26
ref47
ref25
ronneberger (ref35) 2015
ref20
ref42
ref41
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
masci (ref39) 2011
ref40
dalal (ref32) 2005
References_xml – start-page: 886
  year: 2005
  ident: ref32
  article-title: Histograms of oriented gradients for human detection
  publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit (CVPR)
– ident: ref41
  doi: 10.1145/1290082.1290111
– ident: ref30
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: ref36
  doi: 10.1109/CVPR.2016.90
– start-page: 234
  year: 2015
  ident: ref35
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
– ident: ref22
  doi: 10.1148/radiol.16142535
– ident: ref16
  doi: 10.1089/neu.2015.3965
– ident: ref21
  doi: 10.1016/j.media.2017.01.005
– ident: ref28
  doi: 10.1016/S0006-3495(94)80775-1
– ident: ref40
  doi: 10.1016/j.sigpro.2014.09.005
– ident: ref7
  doi: 10.1093/brain/awm216
– ident: ref1
  doi: 10.15620/cdc.5571
– ident: ref14
  doi: 10.1109/SPMB.2013.6736783
– ident: ref29
  doi: 10.1002/nbm.1518
– ident: ref26
  doi: 10.1109/EMBC.2018.8512556
– ident: ref34
  doi: 10.1109/CVPR.2014.81
– ident: ref11
  doi: 10.1016/j.neuroimage.2011.06.006
– ident: ref42
  doi: 10.1145/1869790.1869829
– ident: ref19
  doi: 10.1007/BF00994018
– ident: ref2
  doi: 10.1089/neu.2017.5257
– ident: ref24
  doi: 10.1002/hbm.22930
– ident: ref17
  doi: 10.1089/neu.2013.2934
– ident: ref8
  doi: 10.1007/s11682-012-9156-5
– ident: ref45
  doi: 10.1016/j.compeleceng.2013.11.024
– ident: ref13
  doi: 10.1089/neu.2016.4526
– ident: ref5
  doi: 10.1089/neu.2017.5320
– volume: 3
  start-page: 1157
  year: 2003
  ident: ref44
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– ident: ref31
  doi: 10.1007/11744023_32
– ident: ref23
  doi: 10.1097/RMR.0000000000000062
– ident: ref6
  doi: 10.3171/jns.2005.103.2.0298
– ident: ref47
  doi: 10.1080/02699052.2016.1229034
– ident: ref10
  doi: 10.3109/02699052.2014.947628
– ident: ref48
  doi: 10.1089/neu.2011.1763
– volume: 19
  start-page: 1657
  year: 2010
  ident: ref33
  article-title: A completed modeling of local binary pattern operator for texture classification
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2010.2044957
– ident: ref4
  doi: 10.1097/RMR.0b013e31823e65b8
– year: 2015
  ident: ref38
  publication-title: Adversarial autoencoders
– ident: ref37
  doi: 10.1109/CVPR.2016.503
– ident: ref46
  doi: 10.1109/TPAMI.2005.159
– ident: ref12
  doi: 10.1212/WNL.0000000000000834
– ident: ref25
  doi: 10.1109/SPMB.2017.8257054
– ident: ref18
  doi: 10.1080/16501960410023859
– year: 2017
  ident: ref15
  article-title: A machine learning approach for identifying patients with mild traumatic brain injury using diffusion MRI modeling
  publication-title: Proc 12th Annu Meeting Amer Soc Funct Neuro-Radiol (ASFNR)
– ident: ref27
  doi: 10.1212/WNL.0b013e3181d0ccdd
– start-page: 52
  year: 2011
  ident: ref39
  article-title: Stacked convolutional auto-encoders for hierarchical feature extraction
  publication-title: Proc Int Conf Artif Neural Netw
– ident: ref20
  doi: 10.1016/j.neuroimage.2016.01.056
– ident: ref3
  doi: 10.1080/09638280802532720
– ident: ref9
  doi: 10.3174/ajnr.A3358
– ident: ref43
  doi: 10.1016/j.cviu.2016.03.013
SSID ssj0014509
Score 2.4315944
Snippet In this paper, we propose bag of adversarial features (BAFs) for identifying mild traumatic brain injury (MTBI) patients from their diffusion magnetic...
In this work, we propose bag of adversarial features (BAF) for identifying mild traumatic brain injury (MTBI) patients from their diffusion magnetic resonance...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2545
SubjectTerms Algorithms
Artificial neural networks
Brain
Coders
Concrete
Deep learning
diffusion MRI
Feature extraction
Head injuries
Learning algorithms
Machine learning
Magnetic resonance imaging
Measurement
Medical imaging
MTBI identification
Neural networks
Public health
Traumatic brain injury
Visualization
White matter
Title MTBI Identification From Diffusion MR Images Using Bag of Adversarial Visual Features
URI https://ieeexplore.ieee.org/document/8668778
https://www.ncbi.nlm.nih.gov/pubmed/30892204
https://www.proquest.com/docview/2311105482
https://www.proquest.com/docview/2194585954
https://pubmed.ncbi.nlm.nih.gov/PMC6751027
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSA4UGh5pC3ISFyQyG7it48tsOoihQPaot6ixA9YQRPU3Vz49djOQ21VIU6J5Ille8bxN54XwFulc2Fy51IuBEsp4XlaSS3TytVMckcUjcmeiy_8_IJ-vmSXO_B-ioWx1kbnMzsLr9GWb1rdhauyueRcCiF3Ydcrbn2s1mQxoKx358AhY2zG8WiSzNR8VSyDD5eaYeXBRB7q7pFMKoyH6mzjaRTLq9yHNO86TN44gRb7UIxj7x1Pfs66bT3Tf-6kdfzfyT2BxwMURae97DyFHdscwKMbCQoP4EExmN4P4aJYnS1RH9frhos-tLhur9DHtXNduHRDxVe0vPI_qA2KngjorPqOWodi0edNFUQdfVtvOv8IyLPzmv4zWC0-rT6cp0NNhlR7TXObVpS4StdG0coZZjOulBNaGy0ZtUQTwrwGwhw3NK89FNQSC4OJ4cwxqbzS-xz2mraxLwFltTaOEG24IhQbqWqKa8OCcIR-8gTmI2tKPeQrD2UzfpVRb8lU6flaBr6WA18TeDd98bvP1fEP2sPAgoluWP0ETkbul8Nm3pQeAvs-vGqHE3gzNfttGGwrVWPbztPkYeBMMZrAi15Ypr5HYUtA3BKjiSCk-L7d0qx_xFTffjE9AhRH94_2GB6GOfWhkSewt73u7CuPkbb167g5_gLf9Aq-
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFH4qRWI5sLQsgQJG4oJEZhLvPlJgNANNDyhFvUWJFxhBE9SZXPj12NnUVhXilEh-sWy_5_h7fhvAG6VTYVLnYi4EiynhaVxKLePSVUxyRxTtkj1nx3x5Qj-fstMdeDfFwlhrO-czOwuvnS3fNLoNV2VzybkUQt6Am_7cZ2kfrTXZDCjrHTpwyBmbcDwaJRM1z7NV8OJSM6w8nEhD5T2SSIXxUJ9tPI-6AivXYc2rLpMXzqDFfcjG0feuJz9n7baa6T9XEjv-7_QewL0BjKL3vfQ8hB1b78HdCykK9-BWNhjf9-Ekyw9XqI_sdcNVH1qcN2fo49q5Nly7oewrWp35X9QGdb4I6LD8jhqHurLPmzIIO_q23rT-EbBn63X9R5AvPuUflvFQlSHWXtfcxiUlrtSVUbR0htmEK-WE1kZLRi3RhDCvgzDHDU0rDwa1xMJgYjhzTCqv9j6G3bqp7VNASaWNI0QbrgjFRqqK4sqwIB6hnzSC-ciaQg8Zy0PhjF9Fp7kkqvB8LQJfi4GvEbydvvjdZ-v4B-1-YMFEN6x-BAcj94thO28KD4J9H165wxG8npr9RgzWlbK2Tetp0jBwphiN4EkvLFPfo7BFIC6J0UQQknxfbqnXP7pk334xPQYUz64f7Su4vcyzo-JodfzlOdwJ8-sDJQ9gd3ve2hceMW2rl91G-Qvpqw4H
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MTBI+Identification+From+Diffusion+MR+Images+Using+Bag+of+Adversarial+Visual+Features&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Minaee%2C+Shervin&rft.au=Wang%2C+Yao&rft.au=Aygar%2C+Alp&rft.au=Chung%2C+Sohae&rft.date=2019-11-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=38&rft.issue=11&rft.spage=2545&rft.epage=2555&rft_id=info:doi/10.1109%2FTMI.2019.2905917&rft_id=info%3Apmid%2F30892204&rft.externalDocID=8668778
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon