Exceptional Model Mining Supervised descriptive local pattern mining with complex target concepts

Finding subsets of a dataset that somehow deviate from the norm, i.e. where something interesting is going on, is a classical Data Mining task. In traditional local pattern mining methods, such deviations are measured in terms of a relatively high occurrence (frequent itemset mining), or an unusual...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 30; no. 1; pp. 47 - 98
Main Authors Duivesteijn, Wouter, Feelders, Ad J., Knobbe, Arno
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Finding subsets of a dataset that somehow deviate from the norm, i.e. where something interesting is going on, is a classical Data Mining task. In traditional local pattern mining methods, such deviations are measured in terms of a relatively high occurrence (frequent itemset mining), or an unusual distribution for one designated target attribute (common use of subgroup discovery). These, however, do not encompass all forms of “interesting”. To capture a more general notion of interestingness in subsets of a dataset, we develop Exceptional Model Mining (EMM). This is a supervised local pattern mining framework, where several target attributes are selected, and a model over these targets is chosen to be the target concept. Then, we strive to find subgroups: subsets of the dataset that can be described by a few conditions on single attributes. Such subgroups are deemed interesting when the model over the targets on the subgroup is substantially different from the model on the whole dataset. For instance, we can find subgroups where two target attributes have an unusual correlation, a classifier has a deviating predictive performance, or a Bayesian network fitted on several target attributes has an exceptional structure. We give an algorithmic solution for the EMM framework, and analyze its computational complexity. We also discuss some illustrative applications of EMM instances, including using the Bayesian network model to identify meteorological conditions under which food chains are displaced, and using a regression model to find the subset of households in the Chinese province of Hunan that do not follow the general economic law of demand.
AbstractList Finding subsets of a dataset that somehow deviate from the norm, i.e. where something interesting is going on, is a classical Data Mining task. In traditional local pattern mining methods, such deviations are measured in terms of a relatively high occurrence (frequent itemset mining), or an unusual distribution for one designated target attribute (common use of subgroup discovery). These, however, do not encompass all forms of “interesting”. To capture a more general notion of interestingness in subsets of a dataset, we develop Exceptional Model Mining (EMM). This is a supervised local pattern mining framework, where several target attributes are selected, and a model over these targets is chosen to be the target concept. Then, we strive to find subgroups: subsets of the dataset that can be described by a few conditions on single attributes. Such subgroups are deemed interesting when the model over the targets on the subgroup is substantially different from the model on the whole dataset. For instance, we can find subgroups where two target attributes have an unusual correlation, a classifier has a deviating predictive performance, or a Bayesian network fitted on several target attributes has an exceptional structure. We give an algorithmic solution for the EMM framework, and analyze its computational complexity. We also discuss some illustrative applications of EMM instances, including using the Bayesian network model to identify meteorological conditions under which food chains are displaced, and using a regression model to find the subset of households in the Chinese province of Hunan that do not follow the general economic law of demand.
Author Duivesteijn, Wouter
Knobbe, Arno
Feelders, Ad J.
Author_xml – sequence: 1
  givenname: Wouter
  surname: Duivesteijn
  fullname: Duivesteijn, Wouter
  email: wouter.duivesteijn@tu-dortmund.de
  organization: Fakultät für Informatik, LS VIII, Technische Universität Dortmund
– sequence: 2
  givenname: Ad J.
  surname: Feelders
  fullname: Feelders, Ad J.
  organization: ICS, Utrecht University
– sequence: 3
  givenname: Arno
  surname: Knobbe
  fullname: Knobbe, Arno
  organization: LIACS, Leiden University
BookMark eNp9kEtLAzEURoNUsK3udSe4cRO9eU0ySyn1ARU3Cu5CJpMpKdNMTaag_94M40IKusnN4px7P74ZmoQuOIQuCNwQAHmbCBREYSACAweG-RGaEiEZlqJ4n-Q_UxwLReAEzVLaAICgDKbofPlp3a73XTDt5XNXu_z64MP6FB03pk3u7GfO0dv98nXxiFcvD0-LuxW2HGiPDbFC2soVNRe0Kl1dNQUIwZllDlRT2IrVijIlZFUCY0bKmgnDXZENaEjJ5uh63LuL3cfepV5vfbKubU1w3T5pIktG6ZA8o1cH6Kbbxxx8oATnSlEiM0VGysYupegavYt-a-KXJqCHrvTYlc5d6aErzbMjDxzrezO00kfj239NOpopXwlrF39l-lP6BvelfIg
CitedBy_id crossref_primary_10_1007_s41237_024_00251_4
crossref_primary_10_1007_s10489_020_01651_1
crossref_primary_10_1007_s10618_017_0547_5
crossref_primary_10_1016_j_neucom_2020_08_003
crossref_primary_10_1007_s10618_017_0520_3
crossref_primary_10_1007_s10115_017_1109_2
crossref_primary_10_1109_ACCESS_2019_2933247
crossref_primary_10_1016_j_rineng_2025_104137
crossref_primary_10_3390_computers10030032
crossref_primary_10_1007_s10618_019_00665_9
crossref_primary_10_3233_SJI_230028
crossref_primary_10_1007_s10618_020_00674_z
crossref_primary_10_1007_s10618_020_00677_w
crossref_primary_10_1145_3384473
crossref_primary_10_1155_2021_6047798
crossref_primary_10_1007_s10115_016_0979_z
crossref_primary_10_1007_s10994_016_5598_0
crossref_primary_10_1027_2151_2604_a000512
crossref_primary_10_1088_1742_6596_1648_4_042056
crossref_primary_10_1007_s10994_019_05856_5
crossref_primary_10_1088_1367_2630_aa57c2
crossref_primary_10_1016_j_patcog_2023_109590
crossref_primary_10_1109_TKDE_2019_2931340
crossref_primary_10_1007_s10844_019_00555_y
crossref_primary_10_1007_s10994_018_5743_z
crossref_primary_10_7717_peerj_cs_512
crossref_primary_10_1109_ACCESS_2020_3034885
crossref_primary_10_1371_journal_pone_0296684
crossref_primary_10_1007_s10115_020_01523_7
crossref_primary_10_1007_s10618_021_00808_x
crossref_primary_10_1016_j_ins_2024_121549
crossref_primary_10_1016_j_foodqual_2021_104181
Cites_doi 10.1109/ICDM.2003.1250952
10.1007/3-540-59286-5_57
10.1007/3-540-48751-4_17
10.1080/00401706.1977.10489493
10.1257/aer.98.4.1553
10.1007/3-540-45728-3
10.1002/9780470316672
10.1007/s10618-012-0273-y
10.1023/A:1011429418057
10.1137/1.9781611972788.30
10.1007/11504245_11
10.3233/IDA-2011-0481
10.1596/0-8213-5080-3
10.1007/s10115-010-0356-2
10.1007/s10618-009-0136-3
10.1002/jae.828
10.1007/3-540-63223-9_108
10.1109/ICDM.2007.32
10.1080/01621459.1970.10481076
10.4065/84.10.864
10.1109/ICDM.2010.53
10.1109/TFUZZ.2006.890662
10.1023/A:1008894516817
10.1007/978-3-642-33486-3_18
10.1007/BFb0095086
10.1016/S0933-3657(97)00384-9
10.1109/ICDM.2012.117
10.1007/s10994-009-5121-y
10.1089/106652700750050961
10.1002/sam.11145
10.1007/978-3-642-04180-8_29
10.1007/978-3-642-23241-1_9
10.1109/TFUZZ.2010.2060200
10.1093/lpr/2.2.69
10.1007/978-3-540-87481-2_1
10.1002/(SICI)1099-1255(199611)11:6<633::AID-JAE414>3.0.CO;2-T
10.1007/11504245_7
10.1016/j.patcog.2012.09.023
10.1016/j.ipm.2004.03.001
10.1145/312129.312191
10.1111/j.1539-6924.2005.00641.x
10.1007/978-1-4612-1166-2
10.1145/2339530.2339668
10.1007/s10618-010-0187-5
10.2307/2529428
10.1007/978-3-642-34156-4_12
10.1111/j.1365-2699.2006.01664.x
10.1086/282400
10.1007/978-3-642-23808-6_30
10.1007/978-3-642-04125-9_7
10.1007/11871637_26
10.1080/00401706.1980.10486199
10.1007/3-540-69115-4_1
10.1002/jae.1036
10.1002/jae.1094
10.1109/ICDM.2012.21
ContentType Journal Article
Copyright The Author(s) 2015
The Author(s) 2016
Copyright_xml – notice: The Author(s) 2015
– notice: The Author(s) 2016
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s10618-015-0403-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
Computer and Information Systems Abstracts
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
Economics
EISSN 1573-756X
EndPage 98
ExternalDocumentID 3914610791
10_1007_s10618_015_0403_4
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c402t-a1c57cbe6d452b9edbf605543c3e08f6cb3d823857b9033a77d35a4e6e6d0f193
IEDL.DBID U2A
ISSN 1384-5810
IngestDate Fri Jul 11 05:50:47 EDT 2025
Sat Aug 23 14:35:01 EDT 2025
Thu Apr 24 23:06:41 EDT 2025
Tue Jul 01 04:50:59 EDT 2025
Fri Feb 21 02:33:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Bayesian Networks
H.2.8: Data mining
Regression
Subgroup Discovery
Exceptional Model Mining
Supervised Local Pattern Mining
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-a1c57cbe6d452b9edbf605543c3e08f6cb3d823857b9033a77d35a4e6e6d0f193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1754488217
PQPubID 43030
PageCount 52
ParticipantIDs proquest_miscellaneous_1793225810
proquest_journals_1754488217
crossref_primary_10_1007_s10618_015_0403_4
crossref_citationtrail_10_1007_s10618_015_0403_4
springer_journals_10_1007_s10618_015_0403_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160100
2016-1-00
20160101
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 1
  year: 2016
  text: 20160100
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2016
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Garriga GC, Heikinheimo H, Seppänen JK (2007) Cross-mining binary and numerical attributes. In: Proceedings of ICDM, pp 481–486
CookRDDetection of influential observation in linear regressionTechnometrics197719115180371.62096436478
Mampaey M, Nijssen S, Feelders A, Knobbe AJ (2012) Efficient algorithms for finding richer subgroup descriptions in numeric and nominal data. In: Proceedings of ICDM, pp 499–508
del JesúsMJGonzálezPHerreraFMesoneroMEvolutionary fuzzy rule induction process for subgroup discovery: a case study in marketingIEEE Trans Fuzzy Syst200715457859210.1109/TFUZZ.2006.890662
DoughertyCIntroduction to econometrics20114OxfordOxford University Press
de CamposLMFernández-LunaJMHueteJFBayesian networks and information retrieval: an introduction to the special issueInf Process Manag200440572773310.1016/j.ipm.2004.03.001
JensenRTMillerNHGiffen behavior and subsistence consumptionAm Econ Rev20089841553157710.1257/aer.98.4.1553
Boley M, Grosskreutz H (2009) Non-redundant subgroup discovery using a closure system. In: Proceedings of ECML/PKDD, vol 1, pp 179–194
DavisGABayesian reconstruction of traffic accidentsLaw Probab Risk20032698910.1093/lpr/2.2.69
HeikinheimoHForteliusMEronenJMannilaHBiogeography of European land mammals shows environmentally distinct and spatially coherent clustersJ Biogeogr20073461053106410.1111/j.1365-2699.2006.01664.x
HeckermanDGeigerDChickeringDMLearning Bayesian networks: the combination of knowledge and statistical dataMach Learn1995201972430831.68096
Verma T, Pearl J (1990) Equivalence and synthesis of causal models. In: Proceedings of UAI, pp 255–270
Meeng M, Knobbe AJ (2011) Flexible enrichment with Cortana—Software Demo. In: Proceedings of Benelearn, pp 117–119
HerreraFCarmonaCJGonzálezPdel JesusMJAn overview on subgroup discovery: foundations and applicationsKnowl Inf Syst201129349552510.1007/s10115-010-0356-2
Kohavi R (1995) The power of decision tables. In: Proceedings of ECML, pp 174–189
CarmonaCJGonzálezPdel JesusMJHerreraFNMEEF-SD: non-dominated multiobjective evolutionary algorithm for extracting fuzzy rules in subgroup discoveryIEEE Trans Fuzzy Syst201018595897010.1109/TFUZZ.2010.2060200
CookRDWeisbergSCharacterizations of an empirical influence function for detecting influential cases in regressionTechnometrics19802244955080453.6205159679310.1080/00401706.1980.10486199
Scholz M (2005) Knowledge-based sampling for subgroup discovery. In: Morik K, Boulicaut JF, Siebes A (eds) Local pattern detection. Lecture notes in computer science, vol 3539, Springer, Heidelberg, pp 171–189
Klösgen W (1996) Explora: a multipattern and multistrategy discovery assistant. In: Advances in knowledge discovery and data mining. pp 249–271
GrosskreutzHRüpingSOn subgroup discovery in numerical domainsData Min Knowl Discov2009192210226253421410.1007/s10618-009-0136-3
Mitchell-JonesTThe atlas of European mammals. Poyser natural history1999LondonPoyser
Blockeel H, De Raedt L, Ramon J (1998) Top-down induction of clustering trees. In: Procedings of ICML, pp 55–63
Ramakrishnan N, Kumar D, Mishra B, Potts M, Helm RF (1995) Turning CARTwheels: an alternating algorithm for mining redescriptions. In: Proceedings of KDD, pp 837–844
BaySDPazzaniMJDetecting group differences: mining contrast setsData Min Knowl Discov2001532132460982.6804810.1023/A:1011429418057
GalbrunEMiettinenPFrom black and white to full color: extending redescription mining outside the Boolean worldStat Anal Data Min201254284303295815410.1002/sam.11145
GentlemanJFWilkMBDetecting outliers II: supplementing the direct analysis of residualsBiometrics1975313874100322.6208410.2307/2529428
StengosTZachariasEIntertemporal pricing and price discrimination: a semiparametric hedonic analysis of the personal computer marketJ Appl Econ200621371386222423910.1002/jae.828
Klösgen W (1999) Applications and research problems of subgroup mining. In: Proceedings of ISMIS, pp 1–15
KnuthDEThe art of computer programming, vol. 3: sorting and searching19982ReadingAddison-Wesley
Duivesteijn W, Knobbe AJ, Feelders A, van Leeuwen M (2010) Subgroup discovery meets Bayesian networks—an exceptional model mining approach. In: Proceedings of ICDM, pp 158–167
Dong G, Li J (1999) Efficient mining of emerging patterns: discovering trends and differences. In: Proceedings of KDD, pp 43–52
Knobbe AJ, Feelders A, Leman D (2012) Exceptional model mining. In: Data mining: foundations and intelligent paradigms, intelligent systems reference library, vol 24, pp 183–198
Yang G, Le Cam L (2000) Asymptotics in statistics: some basic concepts. Springer, Berlin
ChaoCVelicerCSlezakJMJacobsenSJCorrelates for completion of 3-dose regimen of HPV vaccine in female members of a managed care organizationMayo Clin Proc2009841086487010.4065/84.10.864
Trohidis K, Tsoumakas G, Kalliris G, Vlahavas IP (2008) Multi-label classification of music into emotions. In: Proceedings of 9th international conference on music information retrieval, pp 325–330
Leman D, Feelders A, Knobbe AJ (2008) Exceptional model mining. In: Proceedings of ECML/PKDD, vol 2, pp 1–16
van LeeuwenMMaximal exceptions with minimal descriptionsData Min Knowl Discov2010212259276272050610.1007/s10618-010-0187-5
WhittakerJGraphical models in applied multivariate statistics1990New YorkWiley0732.62056
Duivesteijn W, Feelders A, Knobbe AJ (2012) Different slopes for different folks—mining for exceptional regression models with Cook’s distance. In: Proceedings of KDD, pp 868–876
FriedmanJFisherNBump-hunting in high-dimensional dataStat Comput19999212314310.1023/A:1008894516817
HochbergYTamhaneAMultiple comparison procedures1987New YorkWiley0731.6212510.1002/9780470316672
Jorge AM, Azevedo PJ, Pereira F (2006) Distribution rules with numeric attributes of interest. In: Proceedings of PKDD, pp 247–258
ZimmermannADe RaedtLCluster-grouping: from subgroup discovery to clusteringMach Learn200977112515910.1007/s10994-009-5121-y
MooreDMcCabeGIntroduction to the practice of statistics1993New YorkWH Freeman and Company
Atzmüller M, Lemmerich F (2009) Fast subgroup discovery for continuous target concepts. In: Proceedings of ISMIS, pp 35–44
NeilMFentonNTailorMUsing Bayesian networks to model expected and unexpected operational lossesRisk Anal200525496397210.1111/j.1539-6924.2005.00641.x
Lemmerich F, Becker M, Atzmüller M (2012) Generic pattern trees for exhaustive exceptional model mining. In: Proceedings of ECML/PKDD, vol 2, pp 277–292
Kriegel H-P, Kröger P, Schubert E, Zimek A (2012) Outlier detection in arbitrarily oriented subspaces. In: Proceedings of ICDM, pp 379–388
MarshallAPrinciples of economics1895New YorkMacMillan and co
GoodmanLAThe multivariate analysis of qualitative data: interaction among multiple classificationsJ Am Stat Assoc19706522625610.1080/01621459.1970.10481076
CostanigroMMittelhammerRCMcCluskeyJJEstimating class-specific parametric models under class uncertainty: local polynomial regression clustering in an hedonic analysis of wine marketsJ Appl Econ20092411171135275028110.1002/jae.1094
Wrobel S (1997) An algorithm for multi-relational discovery of subgroups. In: Proceedings of PKDD, pp 78–87
DíezFJMiraJIturraldeEZubillagaSDIAVAL, a Bayesian expert system for echocardiographyArtif Intell Med199710597310.1016/S0933-3657(97)00384-9
Kralj NovakPLavračNWebbGISupervised descriptive rule discovery: a unifying survey of contrast set, emerging pattern and subgroup miningJ Mach Learn Res2009103774031235.68178
PaineRTFood web complexity and species diversityAm Nat1966100910657510.1086/282400
Zhang B (2003) Regression clustering. In: Proceedings of ICDM, pp 451–458
Duivesteijn W, Loza Mencía E, Fürnkranz J, Knobbe AJ (2012) Multi-label LeGo—enhancing multi-label classifiers with local patterns. In: Proceedings of IDA, pp 114–125
van de Koppel E, Slavkov I, Astrahantseff K, Schramm A, Schulte J, Vandesompele J, de Jong E, Dzeroski S, Knobbe AJ (2007) Knowledge discovery in neuroblastoma-related biological data. In: Data mining in functional genomics and proteomics workshop at PKDD 2007, Warsaw, Poland, pp 45–56
NeterJKutnerMNachtsheimCJWassermanWApplied linear statistical models1966BostonWCB McGraw-Hill
AidtTTzannatosZUnions and collective bargaining2002Washington, DCThe World Bank10.1596/0-8213-5080-3
Siebes A (1995) Data surveying: foundations of an inductive query language. In: Proceedings of KDD, pp 269–274
LavračNKavšekBFlachPATodorovskiLSubgroup discovery with CN2-SDJ Mach Learn Res20045153188
AnglinPMGençayRSemiparametric estimation of a hedonic price functionJ Appl Econ199611663364810.1002/(SICI)1099-1255(199611)11:6<633::AID-JAE414>3.0.CO;2-T
FriedmanNLinialMNachmanIPe’erDUsing Bayesian networks to analyze expression dataJ Comput Biol200073/460162010.1089/106652700750050961
UmekLZupanBSubgroup discovery in data sets with multi-dimensional responsesIntell Data Anal2011154533549
HandDJAdamsNMBoltonRJPattern detection and discovery2002Springer, BerlinLecture notes in computer science1007.68737
van LeeuwenMKnobbeAJDiverse subgroup set discoveryData Min Knowl Discov2012252208242295103610.1007/s10618-012-0273-y
BreimanLFriedmanJHOlshenRAStoneCJClassification and regression trees1984MontereyWadsworth & Brooks/Cole Advanced Books & Software0541.62042
Klösgen W (2002) Subgroup discovery. In: Handbook of data mining and knowledge discovery, chap. 16.3. Oxford University Press, New York
KocevDVensCStruyfJDžeroskiSTree ensembles for predicting structured outputsPattern Recogn201346381783310.1016/j.patcog.2012.09.023
Lavrač N, Flach P, Zupan B (1999) Rule evaluation measures: a unifying view. In: Proceedings of the ninth international workshop on inductive logic programming. Lecture notes in artificial intelligence, vol 1634, pp 174–185
CookRDWeisbergSResiduals and influence in regression1982LondonChapman & Hall0564.62054
Klösgen W (1998) Deviation and association patterns for subgroup mining in temporal, spatial, and textual data bases. In: Rough sets and current trends in computing. Springer, pp 1–18
Gallo A, Miettinen P, Mannila H (2008) Finding subgroups having several descriptions: algorithms
403_CR7
D Kocev (403_CR45) 2013; 46
PM Anglin (403_CR3) 1996; 11
RD Cook (403_CR14) 1982
M Leeuwen van (403_CR52) 2010; 21
N Lavrač (403_CR51) 2004; 5
D Moore (403_CR61) 1993
403_CR57
403_CR56
403_CR59
403_CR18
A Zimmermann (403_CR79) 2009; 77
403_CR50
T Aidt (403_CR2) 2002
403_CR53
403_CR55
C Chao (403_CR11) 2009; 84
H Heikinheimo (403_CR33) 2007; 34
E Galbrun (403_CR25) 2012; 5
C Dougherty (403_CR19) 2011
FJ Díez (403_CR17) 1997; 10
403_CR68
403_CR26
403_CR69
GA Davis (403_CR16) 2003; 2
403_CR27
Y Hochberg (403_CR35) 1987
N Friedman (403_CR24) 2000; 7
403_CR6
LM Campos de (403_CR9) 2004; 40
T Stengos (403_CR71) 2006; 21
403_CR4
403_CR62
SD Bay (403_CR5) 2001; 5
LA Goodman (403_CR29) 1970; 65
403_CR20
403_CR1
403_CR22
403_CR66
403_CR21
A Marshall (403_CR58) 1895
M Costanigro (403_CR15) 2009; 24
RD Cook (403_CR13) 1980; 22
F Herrera (403_CR34) 2011; 29
MJ Jesús del (403_CR37) 2007; 15
P Kralj Novak (403_CR48) 2009; 10
J Whittaker (403_CR75) 1990
DJ Hand (403_CR31) 2002
T Mitchell-Jones (403_CR60) 1999
J Friedman (403_CR23) 1999; 9
L Breiman (403_CR8) 1984
403_CR78
CJ Carmona (403_CR10) 2010; 18
403_CR39
403_CR38
M Leeuwen van (403_CR54) 2012; 25
L Rezende (403_CR67) 2008; 23
J Neter (403_CR64) 1966
403_CR70
403_CR72
M Neil (403_CR63) 2005; 25
403_CR74
403_CR77
403_CR76
D Heckerman (403_CR32) 1995; 20
JF Gentleman (403_CR28) 1975; 31
H Grosskreutz (403_CR30) 2009; 19
DE Knuth (403_CR44) 1998
RT Jensen (403_CR36) 2008; 98
403_CR46
403_CR47
403_CR49
RD Cook (403_CR12) 1977; 19
L Umek (403_CR73) 2011; 15
403_CR40
RT Paine (403_CR65) 1966; 100
403_CR42
403_CR41
403_CR43
References_xml – reference: ChaoCVelicerCSlezakJMJacobsenSJCorrelates for completion of 3-dose regimen of HPV vaccine in female members of a managed care organizationMayo Clin Proc2009841086487010.4065/84.10.864
– reference: CookRDWeisbergSResiduals and influence in regression1982LondonChapman & Hall0564.62054
– reference: KocevDVensCStruyfJDžeroskiSTree ensembles for predicting structured outputsPattern Recogn201346381783310.1016/j.patcog.2012.09.023
– reference: Scholz M (2005) Knowledge-based sampling for subgroup discovery. In: Morik K, Boulicaut JF, Siebes A (eds) Local pattern detection. Lecture notes in computer science, vol 3539, Springer, Heidelberg, pp 171–189
– reference: CostanigroMMittelhammerRCMcCluskeyJJEstimating class-specific parametric models under class uncertainty: local polynomial regression clustering in an hedonic analysis of wine marketsJ Appl Econ20092411171135275028110.1002/jae.1094
– reference: JensenRTMillerNHGiffen behavior and subsistence consumptionAm Econ Rev20089841553157710.1257/aer.98.4.1553
– reference: KnuthDEThe art of computer programming, vol. 3: sorting and searching19982ReadingAddison-Wesley
– reference: Ramakrishnan N, Kumar D, Mishra B, Potts M, Helm RF (1995) Turning CARTwheels: an alternating algorithm for mining redescriptions. In: Proceedings of KDD, pp 837–844
– reference: ZimmermannADe RaedtLCluster-grouping: from subgroup discovery to clusteringMach Learn200977112515910.1007/s10994-009-5121-y
– reference: Kohavi R (1995) The power of decision tables. In: Proceedings of ECML, pp 174–189
– reference: Mitchell-JonesTThe atlas of European mammals. Poyser natural history1999LondonPoyser
– reference: AidtTTzannatosZUnions and collective bargaining2002Washington, DCThe World Bank10.1596/0-8213-5080-3
– reference: Agresti A (1990) Categorical data analysis. Wiley, New York
– reference: Knobbe AJ, Feelders A, Leman D (2012) Exceptional model mining. In: Data mining: foundations and intelligent paradigms, intelligent systems reference library, vol 24, pp 183–198
– reference: WhittakerJGraphical models in applied multivariate statistics1990New YorkWiley0732.62056
– reference: Trohidis K, Tsoumakas G, Kalliris G, Vlahavas IP (2008) Multi-label classification of music into emotions. In: Proceedings of 9th international conference on music information retrieval, pp 325–330
– reference: Wrobel S (1997) An algorithm for multi-relational discovery of subgroups. In: Proceedings of PKDD, pp 78–87
– reference: CarmonaCJGonzálezPdel JesusMJHerreraFNMEEF-SD: non-dominated multiobjective evolutionary algorithm for extracting fuzzy rules in subgroup discoveryIEEE Trans Fuzzy Syst201018595897010.1109/TFUZZ.2010.2060200
– reference: Kralj NovakPLavračNWebbGISupervised descriptive rule discovery: a unifying survey of contrast set, emerging pattern and subgroup miningJ Mach Learn Res2009103774031235.68178
– reference: Atzmüller M, Lemmerich F (2009) Fast subgroup discovery for continuous target concepts. In: Proceedings of ISMIS, pp 35–44
– reference: CookRDWeisbergSCharacterizations of an empirical influence function for detecting influential cases in regressionTechnometrics19802244955080453.6205159679310.1080/00401706.1980.10486199
– reference: Yang G, Le Cam L (2000) Asymptotics in statistics: some basic concepts. Springer, Berlin
– reference: Klösgen W (1999) Applications and research problems of subgroup mining. In: Proceedings of ISMIS, pp 1–15
– reference: van LeeuwenMMaximal exceptions with minimal descriptionsData Min Knowl Discov2010212259276272050610.1007/s10618-010-0187-5
– reference: NeterJKutnerMNachtsheimCJWassermanWApplied linear statistical models1966BostonWCB McGraw-Hill
– reference: Verma T, Pearl J (1990) Equivalence and synthesis of causal models. In: Proceedings of UAI, pp 255–270
– reference: UmekLZupanBSubgroup discovery in data sets with multi-dimensional responsesIntell Data Anal2011154533549
– reference: Mampaey M, Nijssen S, Feelders A, Knobbe AJ (2012) Efficient algorithms for finding richer subgroup descriptions in numeric and nominal data. In: Proceedings of ICDM, pp 499–508
– reference: Lavrač N, Flach P, Zupan B (1999) Rule evaluation measures: a unifying view. In: Proceedings of the ninth international workshop on inductive logic programming. Lecture notes in artificial intelligence, vol 1634, pp 174–185
– reference: Leman D, Feelders A, Knobbe AJ (2008) Exceptional model mining. In: Proceedings of ECML/PKDD, vol 2, pp 1–16
– reference: HeikinheimoHForteliusMEronenJMannilaHBiogeography of European land mammals shows environmentally distinct and spatially coherent clustersJ Biogeogr20073461053106410.1111/j.1365-2699.2006.01664.x
– reference: DíezFJMiraJIturraldeEZubillagaSDIAVAL, a Bayesian expert system for echocardiographyArtif Intell Med199710597310.1016/S0933-3657(97)00384-9
– reference: Schubert E, Wolfe J, Tarnopolsky A (2004) Spectral centroid and timbre in complex, multiple instrumental textures. In: Proceedings of 8th international conference on music perception & cognition, pp 654–657
– reference: van de Koppel E, Slavkov I, Astrahantseff K, Schramm A, Schulte J, Vandesompele J, de Jong E, Dzeroski S, Knobbe AJ (2007) Knowledge discovery in neuroblastoma-related biological data. In: Data mining in functional genomics and proteomics workshop at PKDD 2007, Warsaw, Poland, pp 45–56
– reference: AnglinPMGençayRSemiparametric estimation of a hedonic price functionJ Appl Econ199611663364810.1002/(SICI)1099-1255(199611)11:6<633::AID-JAE414>3.0.CO;2-T
– reference: GalbrunEMiettinenPFrom black and white to full color: extending redescription mining outside the Boolean worldStat Anal Data Min201254284303295815410.1002/sam.11145
– reference: NeilMFentonNTailorMUsing Bayesian networks to model expected and unexpected operational lossesRisk Anal200525496397210.1111/j.1539-6924.2005.00641.x
– reference: HeckermanDGeigerDChickeringDMLearning Bayesian networks: the combination of knowledge and statistical dataMach Learn1995201972430831.68096
– reference: Kriegel H-P, Kröger P, Schubert E, Zimek A (2012) Outlier detection in arbitrarily oriented subspaces. In: Proceedings of ICDM, pp 379–388
– reference: del JesúsMJGonzálezPHerreraFMesoneroMEvolutionary fuzzy rule induction process for subgroup discovery: a case study in marketingIEEE Trans Fuzzy Syst200715457859210.1109/TFUZZ.2006.890662
– reference: Jorge AM, Azevedo PJ, Pereira F (2006) Distribution rules with numeric attributes of interest. In: Proceedings of PKDD, pp 247–258
– reference: MooreDMcCabeGIntroduction to the practice of statistics1993New YorkWH Freeman and Company
– reference: Dong G, Li J (1999) Efficient mining of emerging patterns: discovering trends and differences. In: Proceedings of KDD, pp 43–52
– reference: FriedmanNLinialMNachmanIPe’erDUsing Bayesian networks to analyze expression dataJ Comput Biol200073/460162010.1089/106652700750050961
– reference: LavračNKavšekBFlachPATodorovskiLSubgroup discovery with CN2-SDJ Mach Learn Res20045153188
– reference: RezendeLEconometrics of auctions by least squaresJ Appl Econ200823925948264906010.1002/jae.1036
– reference: Zhang B (2003) Regression clustering. In: Proceedings of ICDM, pp 451–458
– reference: CookRDDetection of influential observation in linear regressionTechnometrics197719115180371.62096436478
– reference: BreimanLFriedmanJHOlshenRAStoneCJClassification and regression trees1984MontereyWadsworth & Brooks/Cole Advanced Books & Software0541.62042
– reference: BaySDPazzaniMJDetecting group differences: mining contrast setsData Min Knowl Discov2001532132460982.6804810.1023/A:1011429418057
– reference: Blockeel H, De Raedt L, Ramon J (1998) Top-down induction of clustering trees. In: Procedings of ICML, pp 55–63
– reference: MarshallAPrinciples of economics1895New YorkMacMillan and co
– reference: StengosTZachariasEIntertemporal pricing and price discrimination: a semiparametric hedonic analysis of the personal computer marketJ Appl Econ200621371386222423910.1002/jae.828
– reference: HochbergYTamhaneAMultiple comparison procedures1987New YorkWiley0731.6212510.1002/9780470316672
– reference: van LeeuwenMKnobbeAJDiverse subgroup set discoveryData Min Knowl Discov2012252208242295103610.1007/s10618-012-0273-y
– reference: GrosskreutzHRüpingSOn subgroup discovery in numerical domainsData Min Knowl Discov2009192210226253421410.1007/s10618-009-0136-3
– reference: de CamposLMFernández-LunaJMHueteJFBayesian networks and information retrieval: an introduction to the special issueInf Process Manag200440572773310.1016/j.ipm.2004.03.001
– reference: Morik K, Boulicaut JF, Siebes A (2005) Local pattern detection. Lecture notes in computer science, vol 3539, Springer, Heidelberg
– reference: Boley M, Grosskreutz H (2009) Non-redundant subgroup discovery using a closure system. In: Proceedings of ECML/PKDD, vol 1, pp 179–194
– reference: Duivesteijn W, Feelders A, Knobbe AJ (2012) Different slopes for different folks—mining for exceptional regression models with Cook’s distance. In: Proceedings of KDD, pp 868–876
– reference: HandDJAdamsNMBoltonRJPattern detection and discovery2002Springer, BerlinLecture notes in computer science1007.68737
– reference: Klösgen W (1996) Explora: a multipattern and multistrategy discovery assistant. In: Advances in knowledge discovery and data mining. pp 249–271
– reference: Duivesteijn W, Knobbe AJ, Feelders A, van Leeuwen M (2010) Subgroup discovery meets Bayesian networks—an exceptional model mining approach. In: Proceedings of ICDM, pp 158–167
– reference: PaineRTFood web complexity and species diversityAm Nat1966100910657510.1086/282400
– reference: Duivesteijn W, Loza Mencía E, Fürnkranz J, Knobbe AJ (2012) Multi-label LeGo—enhancing multi-label classifiers with local patterns. In: Proceedings of IDA, pp 114–125
– reference: GentlemanJFWilkMBDetecting outliers II: supplementing the direct analysis of residualsBiometrics1975313874100322.6208410.2307/2529428
– reference: Garriga GC, Heikinheimo H, Seppänen JK (2007) Cross-mining binary and numerical attributes. In: Proceedings of ICDM, pp 481–486
– reference: Siebes A (1995) Data surveying: foundations of an inductive query language. In: Proceedings of KDD, pp 269–274
– reference: van Leeuwen M, Knobbe AJ (2011) Non-redundant subgroup discovery in large and complex data. In: Proceedings of ECML/PKDD, vol 3, pp 459–474
– reference: Klösgen W (1998) Deviation and association patterns for subgroup mining in temporal, spatial, and textual data bases. In: Rough sets and current trends in computing. Springer, pp 1–18
– reference: GoodmanLAThe multivariate analysis of qualitative data: interaction among multiple classificationsJ Am Stat Assoc19706522625610.1080/01621459.1970.10481076
– reference: Lemmerich F, Becker M, Atzmüller M (2012) Generic pattern trees for exhaustive exceptional model mining. In: Proceedings of ECML/PKDD, vol 2, pp 277–292
– reference: DoughertyCIntroduction to econometrics20114OxfordOxford University Press
– reference: HerreraFCarmonaCJGonzálezPdel JesusMJAn overview on subgroup discovery: foundations and applicationsKnowl Inf Syst201129349552510.1007/s10115-010-0356-2
– reference: FriedmanJFisherNBump-hunting in high-dimensional dataStat Comput19999212314310.1023/A:1008894516817
– reference: Meeng M, Knobbe AJ (2011) Flexible enrichment with Cortana—Software Demo. In: Proceedings of Benelearn, pp 117–119
– reference: Gallo A, Miettinen P, Mannila H (2008) Finding subgroups having several descriptions: algorithms for redescription mining. In: Proceedings of SDM, pp 334–345
– reference: Klösgen W (2002) Subgroup discovery. In: Handbook of data mining and knowledge discovery, chap. 16.3. Oxford University Press, New York
– reference: DavisGABayesian reconstruction of traffic accidentsLaw Probab Risk20032698910.1093/lpr/2.2.69
– ident: 403_CR42
– ident: 403_CR78
  doi: 10.1109/ICDM.2003.1250952
– ident: 403_CR46
  doi: 10.1007/3-540-59286-5_57
– ident: 403_CR50
  doi: 10.1007/3-540-48751-4_17
– volume: 19
  start-page: 15
  issue: 1
  year: 1977
  ident: 403_CR12
  publication-title: Technometrics
  doi: 10.1080/00401706.1977.10489493
– volume: 98
  start-page: 1553
  issue: 4
  year: 2008
  ident: 403_CR36
  publication-title: Am Econ Rev
  doi: 10.1257/aer.98.4.1553
– volume-title: Pattern detection and discovery
  year: 2002
  ident: 403_CR31
  doi: 10.1007/3-540-45728-3
– volume-title: Multiple comparison procedures
  year: 1987
  ident: 403_CR35
  doi: 10.1002/9780470316672
– ident: 403_CR69
– volume: 25
  start-page: 208
  issue: 2
  year: 2012
  ident: 403_CR54
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-012-0273-y
– volume-title: The art of computer programming, vol. 3: sorting and searching
  year: 1998
  ident: 403_CR44
– volume: 5
  start-page: 213
  issue: 3
  year: 2001
  ident: 403_CR5
  publication-title: Data Min Knowl Discov
  doi: 10.1023/A:1011429418057
– volume-title: Residuals and influence in regression
  year: 1982
  ident: 403_CR14
– ident: 403_CR27
  doi: 10.1137/1.9781611972788.30
– ident: 403_CR6
– ident: 403_CR68
  doi: 10.1007/11504245_11
– volume-title: Introduction to the practice of statistics
  year: 1993
  ident: 403_CR61
– volume: 15
  start-page: 533
  issue: 4
  year: 2011
  ident: 403_CR73
  publication-title: Intell Data Anal
  doi: 10.3233/IDA-2011-0481
– ident: 403_CR74
– volume-title: Unions and collective bargaining
  year: 2002
  ident: 403_CR2
  doi: 10.1596/0-8213-5080-3
– ident: 403_CR59
– volume: 5
  start-page: 153
  year: 2004
  ident: 403_CR51
  publication-title: J Mach Learn Res
– volume: 29
  start-page: 495
  issue: 3
  year: 2011
  ident: 403_CR34
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-010-0356-2
– ident: 403_CR70
– volume: 19
  start-page: 210
  issue: 2
  year: 2009
  ident: 403_CR30
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-009-0136-3
– ident: 403_CR66
– volume: 21
  start-page: 371
  year: 2006
  ident: 403_CR71
  publication-title: J Appl Econ
  doi: 10.1002/jae.828
– ident: 403_CR76
  doi: 10.1007/3-540-63223-9_108
– volume-title: Applied linear statistical models
  year: 1966
  ident: 403_CR64
– ident: 403_CR26
  doi: 10.1109/ICDM.2007.32
– volume: 65
  start-page: 226
  year: 1970
  ident: 403_CR29
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1970.10481076
– volume: 84
  start-page: 864
  issue: 10
  year: 2009
  ident: 403_CR11
  publication-title: Mayo Clin Proc
  doi: 10.4065/84.10.864
– ident: 403_CR21
  doi: 10.1109/ICDM.2010.53
– volume: 15
  start-page: 578
  issue: 4
  year: 2007
  ident: 403_CR37
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2006.890662
– volume: 9
  start-page: 123
  issue: 2
  year: 1999
  ident: 403_CR23
  publication-title: Stat Comput
  doi: 10.1023/A:1008894516817
– ident: 403_CR56
  doi: 10.1007/978-3-642-33486-3_18
– ident: 403_CR41
  doi: 10.1007/BFb0095086
– volume: 10
  start-page: 59
  year: 1997
  ident: 403_CR17
  publication-title: Artif Intell Med
  doi: 10.1016/S0933-3657(97)00384-9
– ident: 403_CR57
  doi: 10.1109/ICDM.2012.117
– volume: 77
  start-page: 125
  issue: 1
  year: 2009
  ident: 403_CR79
  publication-title: Mach Learn
  doi: 10.1007/s10994-009-5121-y
– ident: 403_CR39
– volume-title: Graphical models in applied multivariate statistics
  year: 1990
  ident: 403_CR75
– volume-title: Classification and regression trees
  year: 1984
  ident: 403_CR8
– volume: 7
  start-page: 601
  issue: 3/4
  year: 2000
  ident: 403_CR24
  publication-title: J Comput Biol
  doi: 10.1089/106652700750050961
– volume: 5
  start-page: 284
  issue: 4
  year: 2012
  ident: 403_CR25
  publication-title: Stat Anal Data Min
  doi: 10.1002/sam.11145
– ident: 403_CR7
  doi: 10.1007/978-3-642-04180-8_29
– ident: 403_CR43
  doi: 10.1007/978-3-642-23241-1_9
– volume: 18
  start-page: 958
  issue: 5
  year: 2010
  ident: 403_CR10
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2010.2060200
– volume: 2
  start-page: 69
  year: 2003
  ident: 403_CR16
  publication-title: Law Probab Risk
  doi: 10.1093/lpr/2.2.69
– ident: 403_CR55
  doi: 10.1007/978-3-540-87481-2_1
– volume: 11
  start-page: 633
  issue: 6
  year: 1996
  ident: 403_CR3
  publication-title: J Appl Econ
  doi: 10.1002/(SICI)1099-1255(199611)11:6<633::AID-JAE414>3.0.CO;2-T
– ident: 403_CR62
  doi: 10.1007/11504245_7
– volume: 46
  start-page: 817
  issue: 3
  year: 2013
  ident: 403_CR45
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2012.09.023
– ident: 403_CR72
– volume: 20
  start-page: 197
  year: 1995
  ident: 403_CR32
  publication-title: Mach Learn
– volume-title: Introduction to econometrics
  year: 2011
  ident: 403_CR19
– volume: 40
  start-page: 727
  issue: 5
  year: 2004
  ident: 403_CR9
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2004.03.001
– ident: 403_CR18
  doi: 10.1145/312129.312191
– volume: 25
  start-page: 963
  issue: 4
  year: 2005
  ident: 403_CR63
  publication-title: Risk Anal
  doi: 10.1111/j.1539-6924.2005.00641.x
– ident: 403_CR77
  doi: 10.1007/978-1-4612-1166-2
– ident: 403_CR20
  doi: 10.1145/2339530.2339668
– volume: 21
  start-page: 259
  issue: 2
  year: 2010
  ident: 403_CR52
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-010-0187-5
– volume: 31
  start-page: 387
  year: 1975
  ident: 403_CR28
  publication-title: Biometrics
  doi: 10.2307/2529428
– ident: 403_CR22
  doi: 10.1007/978-3-642-34156-4_12
– volume: 10
  start-page: 377
  year: 2009
  ident: 403_CR48
  publication-title: J Mach Learn Res
– ident: 403_CR47
– volume-title: The atlas of European mammals. Poyser natural history
  year: 1999
  ident: 403_CR60
– volume: 34
  start-page: 1053
  issue: 6
  year: 2007
  ident: 403_CR33
  publication-title: J Biogeogr
  doi: 10.1111/j.1365-2699.2006.01664.x
– volume: 100
  start-page: 65
  issue: 910
  year: 1966
  ident: 403_CR65
  publication-title: Am Nat
  doi: 10.1086/282400
– ident: 403_CR53
  doi: 10.1007/978-3-642-23808-6_30
– ident: 403_CR4
  doi: 10.1007/978-3-642-04125-9_7
– ident: 403_CR38
  doi: 10.1007/11871637_26
– volume-title: Principles of economics
  year: 1895
  ident: 403_CR58
– volume: 22
  start-page: 495
  issue: 4
  year: 1980
  ident: 403_CR13
  publication-title: Technometrics
  doi: 10.1080/00401706.1980.10486199
– ident: 403_CR1
– ident: 403_CR40
  doi: 10.1007/3-540-69115-4_1
– volume: 23
  start-page: 925
  year: 2008
  ident: 403_CR67
  publication-title: J Appl Econ
  doi: 10.1002/jae.1036
– volume: 24
  start-page: 1117
  year: 2009
  ident: 403_CR15
  publication-title: J Appl Econ
  doi: 10.1002/jae.1094
– ident: 403_CR49
  doi: 10.1109/ICDM.2012.21
SSID ssj0005230
Score 2.4670265
Snippet Finding subsets of a dataset that somehow deviate from the norm, i.e. where something interesting is going on, is a classical Data Mining task. In traditional...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 47
SubjectTerms Algorithms
Artificial Intelligence
Bayesian analysis
Chemistry and Earth Sciences
Computer Science
Data mining
Data Mining and Knowledge Discovery
Datasets
Deviation
Economics
Information Storage and Retrieval
Lung cancer
Mathematical models
Pattern analysis
Physics
Statistics for Engineering
Subgroups
Subtitle Supervised descriptive local pattern mining with complex target concepts
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFH9RuHjx2zBFg4knTeNK23U7GTUQ4oEYIwm3Ze26kwEUSPzzfW_rAE3kssvadX2vfX1ffT-AG5uITOeZZErIgkndFcyE3YxpmyipDVU8K7MthtFgJF_GauwdbnOfVlnLxFJQ51NLPvJ7TpXaUB3k-mH2yQg1iqKrHkJjF5oogmM0vppPveHr20aSh6juCcf4NzFfxTWry3MRp0QuxXAhCyZ_n0xrdfNPhLQ8ePqHsO81xs5jxeIj2HGTYzio0Rg6fnOeQKv37VNUsDVBnOGzRH84hVG_9_48YB73gFm05hYs41Zpa1yUS9U1ictNgUaHksIKF8ZFZI3IYzxqlTZJKJDWOhcqky7CHmGBGtkZNCbTiWtBBw1QSy4LynaRXJo4inkR8VwIRbX7igDCes6p9UXBCZviI12XMyYypUimlMiUygBuV11mVUWMbY3bNSFTvznm6ZqVAVyvXuOyplhFNnHTJbVJSNQgywK4qxmw8Yn_BjzfPuAF7KHG430obWgsvpbuErWKhbnyS-cH_c7Dkg
  priority: 102
  providerName: ProQuest
Title Exceptional Model Mining
URI https://link.springer.com/article/10.1007/s10618-015-0403-4
https://www.proquest.com/docview/1754488217
https://www.proquest.com/docview/1793225810
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_chuCLH1NZdY4JPimBpkma9nFKt6EwRBzMp9Kk6ZNs4jbwz_fSpdsUFXxpH3pJ28slucv97g7gSscsk3nGiWC8IFwGjCg_yIjUseBS2YxnJdpiFA7H_H4iJi6Oe16h3SuXZLlSbwW7hdQCrwRBwWOE16AhrOmOQjwOelu4DrYKDY7wAyK6dmX-1MXXzWijYX5zipZ7Tf8Q9p2S2O2tRvUIdsy0CQdVAYaum49N2C3xm3p-DK3kw-FTsJ2tb4bXsvTDCYz7yfPdkLiiB0SjKbcgGdVCamXCnItAxSZXBVocgjPNjB8VoVYsj3CfFVLFPkNGy5yJjJsQW_gFqmOnUJ_OpqYFXbQ-tT2vsFAXTrmKwogWIc0ZEzZxX-GBX_19ql1GcFuY4jXd5DK2DEuRYallWMo9uF43eVulw_iLuF2xNHUzY55Sm3EP1XoqPbhcP0aZto6KbGpmS0sT23UGB8-Dm2ootrr47YVn_6I-hz3Uftx5Shvqi_eluUANY6E6UIv6gw40eoOXhwTvt8no8alTytknlzHFpA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6hMsDCG7U8iwQLyCKO7TwGhBC0FApMrdQtxI4zobbQIuBP8Ru5y6MtSLCxZImdyOe789l3_j6AQxOK2E9iyZSQKZO-K5h23Jj5JlTS14R4llVbPHitrrztqd4cfJZ3YaissvSJmaNOBobOyE85IbVhOMj98-EzI9Yoyq6WFBq5WrTtxxtu2UZnN1c4v0eu22x0LlusYBVgBvdKYxZzo3yjrZdI5erQJjrFkF5JYYR1gtQzWiQBLmTK16EjcCR-IlQsrYc9nJQT-BK6_HkpREgWFTSvZ0pKRH4rOcCxB3ySRc2v6nmcysYUQ7MRTH5fB6fB7Y98bLbMNVdgqYhP6xe5Qq3CnO2vwXLJ_VAvXME6VBvvRUEMtiZCNXxmXBMb0P0XeWxCpT_o2yrUcbtr6ICEamsklzrwAp56PBFCEVJgWgOnHHNkCghyYsJ4iqbgySSmCMUUkZgiWYPjSZdhjr_xV-OdUpBRYYqjaKo4NTiYvEYjosxI3LeDV2oTkmPDKavBSTkBM5_47Ydbf_9wHxZanfu76O7mob0NixhrFac3O1AZv7zaXYxnxnovU6I6PP631n4B-lL_Ng
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB5kBfHiW1yfK-hFCTZN0rQHER-7-GIRUfBWmzQ9ye6qK-pf89c5s013VdCbl16aNHQymcxkvswHsGUTkek8k0wJWTCpQ8FMEGZM20RJbaji2QBt0Y5Ob-X5nbobg4_qLgzBKiubODDUedfSGfkep0pt6A5yvVd4WMTVSeug98iIQYoyrRWdRqkiF-79FcO35_2zE5zr7TBsNW-OT5lnGGAW46Y-y7hV2hoX5VKFJnG5KdC9V1JY4YK4iKwReYybmtImCQT-lc6FyqSLsEdQcCrEhOZ_XGNUFNRg_KjZvrr-AjAR5R3lGCUR82FOtby4F3ECkSmGi0gw-X1XHLm6P7Kzg02vNQNT3lttHJbqNQtjrjMH0xUTRMMbhnlYar55eAy2Jno1fA6YJxbg9l8ksgi1TrfjlqCBwa-l4xJC2kguTRzFvIh4LoSiuoFFHYLqn1PrC5ITL8ZDOiqlTGJKUUwpiSmVddgZdumV1Tj-arxaCTL1C_M5HalRHTaHr3FJUZ4k67juC7VJyMzhlNVht5qAL5_4bcDlvwfcgAnU2PTyrH2xApPoePmjnFWo9Z9e3Bo6N32z7rWoAff_rbifc5IE1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exceptional+Model+Mining&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Duivesteijn%2C+Wouter&rft.au=Feelders%2C+Ad+J.&rft.au=Knobbe%2C+Arno&rft.date=2016-01-01&rft.pub=Springer+US&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=30&rft.issue=1&rft.spage=47&rft.epage=98&rft_id=info:doi/10.1007%2Fs10618-015-0403-4&rft.externalDocID=10_1007_s10618_015_0403_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon