Exceptional Model Mining Supervised descriptive local pattern mining with complex target concepts
Finding subsets of a dataset that somehow deviate from the norm, i.e. where something interesting is going on, is a classical Data Mining task. In traditional local pattern mining methods, such deviations are measured in terms of a relatively high occurrence (frequent itemset mining), or an unusual...
Saved in:
Published in | Data mining and knowledge discovery Vol. 30; no. 1; pp. 47 - 98 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Finding subsets of a dataset that somehow deviate from the norm, i.e. where something interesting is going on, is a classical Data Mining task. In traditional local pattern mining methods, such deviations are measured in terms of a relatively high occurrence (frequent itemset mining), or an unusual distribution for one designated target attribute (common use of subgroup discovery). These, however, do not encompass all forms of “interesting”. To capture a more general notion of interestingness in subsets of a dataset, we develop Exceptional Model Mining (EMM). This is a supervised local pattern mining framework, where several target attributes are selected, and a model over these targets is chosen to be the target concept. Then, we strive to find subgroups: subsets of the dataset that can be described by a few conditions on single attributes. Such subgroups are deemed interesting when the model over the targets on the subgroup is substantially different from the model on the whole dataset. For instance, we can find subgroups where two target attributes have an unusual correlation, a classifier has a deviating predictive performance, or a Bayesian network fitted on several target attributes has an exceptional structure. We give an algorithmic solution for the EMM framework, and analyze its computational complexity. We also discuss some illustrative applications of EMM instances, including using the Bayesian network model to identify meteorological conditions under which food chains are displaced, and using a regression model to find the subset of households in the Chinese province of Hunan that do not follow the general economic law of demand. |
---|---|
AbstractList | Finding subsets of a dataset that somehow deviate from the norm, i.e. where something interesting is going on, is a classical Data Mining task. In traditional local pattern mining methods, such deviations are measured in terms of a relatively high occurrence (frequent itemset mining), or an unusual distribution for one designated target attribute (common use of subgroup discovery). These, however, do not encompass all forms of “interesting”. To capture a more general notion of interestingness in subsets of a dataset, we develop Exceptional Model Mining (EMM). This is a supervised local pattern mining framework, where several target attributes are selected, and a model over these targets is chosen to be the target concept. Then, we strive to find subgroups: subsets of the dataset that can be described by a few conditions on single attributes. Such subgroups are deemed interesting when the model over the targets on the subgroup is substantially different from the model on the whole dataset. For instance, we can find subgroups where two target attributes have an unusual correlation, a classifier has a deviating predictive performance, or a Bayesian network fitted on several target attributes has an exceptional structure. We give an algorithmic solution for the EMM framework, and analyze its computational complexity. We also discuss some illustrative applications of EMM instances, including using the Bayesian network model to identify meteorological conditions under which food chains are displaced, and using a regression model to find the subset of households in the Chinese province of Hunan that do not follow the general economic law of demand. |
Author | Duivesteijn, Wouter Knobbe, Arno Feelders, Ad J. |
Author_xml | – sequence: 1 givenname: Wouter surname: Duivesteijn fullname: Duivesteijn, Wouter email: wouter.duivesteijn@tu-dortmund.de organization: Fakultät für Informatik, LS VIII, Technische Universität Dortmund – sequence: 2 givenname: Ad J. surname: Feelders fullname: Feelders, Ad J. organization: ICS, Utrecht University – sequence: 3 givenname: Arno surname: Knobbe fullname: Knobbe, Arno organization: LIACS, Leiden University |
BookMark | eNp9kEtLAzEURoNUsK3udSe4cRO9eU0ySyn1ARU3Cu5CJpMpKdNMTaag_94M40IKusnN4px7P74ZmoQuOIQuCNwQAHmbCBREYSACAweG-RGaEiEZlqJ4n-Q_UxwLReAEzVLaAICgDKbofPlp3a73XTDt5XNXu_z64MP6FB03pk3u7GfO0dv98nXxiFcvD0-LuxW2HGiPDbFC2soVNRe0Kl1dNQUIwZllDlRT2IrVijIlZFUCY0bKmgnDXZENaEjJ5uh63LuL3cfepV5vfbKubU1w3T5pIktG6ZA8o1cH6Kbbxxx8oATnSlEiM0VGysYupegavYt-a-KXJqCHrvTYlc5d6aErzbMjDxzrezO00kfj239NOpopXwlrF39l-lP6BvelfIg |
CitedBy_id | crossref_primary_10_1007_s41237_024_00251_4 crossref_primary_10_1007_s10489_020_01651_1 crossref_primary_10_1007_s10618_017_0547_5 crossref_primary_10_1016_j_neucom_2020_08_003 crossref_primary_10_1007_s10618_017_0520_3 crossref_primary_10_1007_s10115_017_1109_2 crossref_primary_10_1109_ACCESS_2019_2933247 crossref_primary_10_1016_j_rineng_2025_104137 crossref_primary_10_3390_computers10030032 crossref_primary_10_1007_s10618_019_00665_9 crossref_primary_10_3233_SJI_230028 crossref_primary_10_1007_s10618_020_00674_z crossref_primary_10_1007_s10618_020_00677_w crossref_primary_10_1145_3384473 crossref_primary_10_1155_2021_6047798 crossref_primary_10_1007_s10115_016_0979_z crossref_primary_10_1007_s10994_016_5598_0 crossref_primary_10_1027_2151_2604_a000512 crossref_primary_10_1088_1742_6596_1648_4_042056 crossref_primary_10_1007_s10994_019_05856_5 crossref_primary_10_1088_1367_2630_aa57c2 crossref_primary_10_1016_j_patcog_2023_109590 crossref_primary_10_1109_TKDE_2019_2931340 crossref_primary_10_1007_s10844_019_00555_y crossref_primary_10_1007_s10994_018_5743_z crossref_primary_10_7717_peerj_cs_512 crossref_primary_10_1109_ACCESS_2020_3034885 crossref_primary_10_1371_journal_pone_0296684 crossref_primary_10_1007_s10115_020_01523_7 crossref_primary_10_1007_s10618_021_00808_x crossref_primary_10_1016_j_ins_2024_121549 crossref_primary_10_1016_j_foodqual_2021_104181 |
Cites_doi | 10.1109/ICDM.2003.1250952 10.1007/3-540-59286-5_57 10.1007/3-540-48751-4_17 10.1080/00401706.1977.10489493 10.1257/aer.98.4.1553 10.1007/3-540-45728-3 10.1002/9780470316672 10.1007/s10618-012-0273-y 10.1023/A:1011429418057 10.1137/1.9781611972788.30 10.1007/11504245_11 10.3233/IDA-2011-0481 10.1596/0-8213-5080-3 10.1007/s10115-010-0356-2 10.1007/s10618-009-0136-3 10.1002/jae.828 10.1007/3-540-63223-9_108 10.1109/ICDM.2007.32 10.1080/01621459.1970.10481076 10.4065/84.10.864 10.1109/ICDM.2010.53 10.1109/TFUZZ.2006.890662 10.1023/A:1008894516817 10.1007/978-3-642-33486-3_18 10.1007/BFb0095086 10.1016/S0933-3657(97)00384-9 10.1109/ICDM.2012.117 10.1007/s10994-009-5121-y 10.1089/106652700750050961 10.1002/sam.11145 10.1007/978-3-642-04180-8_29 10.1007/978-3-642-23241-1_9 10.1109/TFUZZ.2010.2060200 10.1093/lpr/2.2.69 10.1007/978-3-540-87481-2_1 10.1002/(SICI)1099-1255(199611)11:6<633::AID-JAE414>3.0.CO;2-T 10.1007/11504245_7 10.1016/j.patcog.2012.09.023 10.1016/j.ipm.2004.03.001 10.1145/312129.312191 10.1111/j.1539-6924.2005.00641.x 10.1007/978-1-4612-1166-2 10.1145/2339530.2339668 10.1007/s10618-010-0187-5 10.2307/2529428 10.1007/978-3-642-34156-4_12 10.1111/j.1365-2699.2006.01664.x 10.1086/282400 10.1007/978-3-642-23808-6_30 10.1007/978-3-642-04125-9_7 10.1007/11871637_26 10.1080/00401706.1980.10486199 10.1007/3-540-69115-4_1 10.1002/jae.1036 10.1002/jae.1094 10.1109/ICDM.2012.21 |
ContentType | Journal Article |
Copyright | The Author(s) 2015 The Author(s) 2016 |
Copyright_xml | – notice: The Author(s) 2015 – notice: The Author(s) 2016 |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s10618-015-0403-4 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | Computer and Information Systems Abstracts ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science Economics |
EISSN | 1573-756X |
EndPage | 98 |
ExternalDocumentID | 3914610791 10_1007_s10618_015_0403_4 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c402t-a1c57cbe6d452b9edbf605543c3e08f6cb3d823857b9033a77d35a4e6e6d0f193 |
IEDL.DBID | U2A |
ISSN | 1384-5810 |
IngestDate | Fri Jul 11 05:50:47 EDT 2025 Sat Aug 23 14:35:01 EDT 2025 Thu Apr 24 23:06:41 EDT 2025 Tue Jul 01 04:50:59 EDT 2025 Fri Feb 21 02:33:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Bayesian Networks H.2.8: Data mining Regression Subgroup Discovery Exceptional Model Mining Supervised Local Pattern Mining |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-a1c57cbe6d452b9edbf605543c3e08f6cb3d823857b9033a77d35a4e6e6d0f193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1754488217 |
PQPubID | 43030 |
PageCount | 52 |
ParticipantIDs | proquest_miscellaneous_1793225810 proquest_journals_1754488217 crossref_primary_10_1007_s10618_015_0403_4 crossref_citationtrail_10_1007_s10618_015_0403_4 springer_journals_10_1007_s10618_015_0403_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160100 2016-1-00 20160101 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 1 year: 2016 text: 20160100 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Data mining and knowledge discovery |
PublicationTitleAbbrev | Data Min Knowl Disc |
PublicationYear | 2016 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Garriga GC, Heikinheimo H, Seppänen JK (2007) Cross-mining binary and numerical attributes. In: Proceedings of ICDM, pp 481–486 CookRDDetection of influential observation in linear regressionTechnometrics197719115180371.62096436478 Mampaey M, Nijssen S, Feelders A, Knobbe AJ (2012) Efficient algorithms for finding richer subgroup descriptions in numeric and nominal data. In: Proceedings of ICDM, pp 499–508 del JesúsMJGonzálezPHerreraFMesoneroMEvolutionary fuzzy rule induction process for subgroup discovery: a case study in marketingIEEE Trans Fuzzy Syst200715457859210.1109/TFUZZ.2006.890662 DoughertyCIntroduction to econometrics20114OxfordOxford University Press de CamposLMFernández-LunaJMHueteJFBayesian networks and information retrieval: an introduction to the special issueInf Process Manag200440572773310.1016/j.ipm.2004.03.001 JensenRTMillerNHGiffen behavior and subsistence consumptionAm Econ Rev20089841553157710.1257/aer.98.4.1553 Boley M, Grosskreutz H (2009) Non-redundant subgroup discovery using a closure system. In: Proceedings of ECML/PKDD, vol 1, pp 179–194 DavisGABayesian reconstruction of traffic accidentsLaw Probab Risk20032698910.1093/lpr/2.2.69 HeikinheimoHForteliusMEronenJMannilaHBiogeography of European land mammals shows environmentally distinct and spatially coherent clustersJ Biogeogr20073461053106410.1111/j.1365-2699.2006.01664.x HeckermanDGeigerDChickeringDMLearning Bayesian networks: the combination of knowledge and statistical dataMach Learn1995201972430831.68096 Verma T, Pearl J (1990) Equivalence and synthesis of causal models. In: Proceedings of UAI, pp 255–270 Meeng M, Knobbe AJ (2011) Flexible enrichment with Cortana—Software Demo. In: Proceedings of Benelearn, pp 117–119 HerreraFCarmonaCJGonzálezPdel JesusMJAn overview on subgroup discovery: foundations and applicationsKnowl Inf Syst201129349552510.1007/s10115-010-0356-2 Kohavi R (1995) The power of decision tables. In: Proceedings of ECML, pp 174–189 CarmonaCJGonzálezPdel JesusMJHerreraFNMEEF-SD: non-dominated multiobjective evolutionary algorithm for extracting fuzzy rules in subgroup discoveryIEEE Trans Fuzzy Syst201018595897010.1109/TFUZZ.2010.2060200 CookRDWeisbergSCharacterizations of an empirical influence function for detecting influential cases in regressionTechnometrics19802244955080453.6205159679310.1080/00401706.1980.10486199 Scholz M (2005) Knowledge-based sampling for subgroup discovery. In: Morik K, Boulicaut JF, Siebes A (eds) Local pattern detection. Lecture notes in computer science, vol 3539, Springer, Heidelberg, pp 171–189 Klösgen W (1996) Explora: a multipattern and multistrategy discovery assistant. In: Advances in knowledge discovery and data mining. pp 249–271 GrosskreutzHRüpingSOn subgroup discovery in numerical domainsData Min Knowl Discov2009192210226253421410.1007/s10618-009-0136-3 Mitchell-JonesTThe atlas of European mammals. Poyser natural history1999LondonPoyser Blockeel H, De Raedt L, Ramon J (1998) Top-down induction of clustering trees. In: Procedings of ICML, pp 55–63 Ramakrishnan N, Kumar D, Mishra B, Potts M, Helm RF (1995) Turning CARTwheels: an alternating algorithm for mining redescriptions. In: Proceedings of KDD, pp 837–844 BaySDPazzaniMJDetecting group differences: mining contrast setsData Min Knowl Discov2001532132460982.6804810.1023/A:1011429418057 GalbrunEMiettinenPFrom black and white to full color: extending redescription mining outside the Boolean worldStat Anal Data Min201254284303295815410.1002/sam.11145 GentlemanJFWilkMBDetecting outliers II: supplementing the direct analysis of residualsBiometrics1975313874100322.6208410.2307/2529428 StengosTZachariasEIntertemporal pricing and price discrimination: a semiparametric hedonic analysis of the personal computer marketJ Appl Econ200621371386222423910.1002/jae.828 Klösgen W (1999) Applications and research problems of subgroup mining. In: Proceedings of ISMIS, pp 1–15 KnuthDEThe art of computer programming, vol. 3: sorting and searching19982ReadingAddison-Wesley Duivesteijn W, Knobbe AJ, Feelders A, van Leeuwen M (2010) Subgroup discovery meets Bayesian networks—an exceptional model mining approach. In: Proceedings of ICDM, pp 158–167 Dong G, Li J (1999) Efficient mining of emerging patterns: discovering trends and differences. In: Proceedings of KDD, pp 43–52 Knobbe AJ, Feelders A, Leman D (2012) Exceptional model mining. In: Data mining: foundations and intelligent paradigms, intelligent systems reference library, vol 24, pp 183–198 Yang G, Le Cam L (2000) Asymptotics in statistics: some basic concepts. Springer, Berlin ChaoCVelicerCSlezakJMJacobsenSJCorrelates for completion of 3-dose regimen of HPV vaccine in female members of a managed care organizationMayo Clin Proc2009841086487010.4065/84.10.864 Trohidis K, Tsoumakas G, Kalliris G, Vlahavas IP (2008) Multi-label classification of music into emotions. In: Proceedings of 9th international conference on music information retrieval, pp 325–330 Leman D, Feelders A, Knobbe AJ (2008) Exceptional model mining. In: Proceedings of ECML/PKDD, vol 2, pp 1–16 van LeeuwenMMaximal exceptions with minimal descriptionsData Min Knowl Discov2010212259276272050610.1007/s10618-010-0187-5 WhittakerJGraphical models in applied multivariate statistics1990New YorkWiley0732.62056 Duivesteijn W, Feelders A, Knobbe AJ (2012) Different slopes for different folks—mining for exceptional regression models with Cook’s distance. In: Proceedings of KDD, pp 868–876 FriedmanJFisherNBump-hunting in high-dimensional dataStat Comput19999212314310.1023/A:1008894516817 HochbergYTamhaneAMultiple comparison procedures1987New YorkWiley0731.6212510.1002/9780470316672 Jorge AM, Azevedo PJ, Pereira F (2006) Distribution rules with numeric attributes of interest. In: Proceedings of PKDD, pp 247–258 ZimmermannADe RaedtLCluster-grouping: from subgroup discovery to clusteringMach Learn200977112515910.1007/s10994-009-5121-y MooreDMcCabeGIntroduction to the practice of statistics1993New YorkWH Freeman and Company Atzmüller M, Lemmerich F (2009) Fast subgroup discovery for continuous target concepts. In: Proceedings of ISMIS, pp 35–44 NeilMFentonNTailorMUsing Bayesian networks to model expected and unexpected operational lossesRisk Anal200525496397210.1111/j.1539-6924.2005.00641.x Lemmerich F, Becker M, Atzmüller M (2012) Generic pattern trees for exhaustive exceptional model mining. In: Proceedings of ECML/PKDD, vol 2, pp 277–292 Kriegel H-P, Kröger P, Schubert E, Zimek A (2012) Outlier detection in arbitrarily oriented subspaces. In: Proceedings of ICDM, pp 379–388 MarshallAPrinciples of economics1895New YorkMacMillan and co GoodmanLAThe multivariate analysis of qualitative data: interaction among multiple classificationsJ Am Stat Assoc19706522625610.1080/01621459.1970.10481076 CostanigroMMittelhammerRCMcCluskeyJJEstimating class-specific parametric models under class uncertainty: local polynomial regression clustering in an hedonic analysis of wine marketsJ Appl Econ20092411171135275028110.1002/jae.1094 Wrobel S (1997) An algorithm for multi-relational discovery of subgroups. In: Proceedings of PKDD, pp 78–87 DíezFJMiraJIturraldeEZubillagaSDIAVAL, a Bayesian expert system for echocardiographyArtif Intell Med199710597310.1016/S0933-3657(97)00384-9 Kralj NovakPLavračNWebbGISupervised descriptive rule discovery: a unifying survey of contrast set, emerging pattern and subgroup miningJ Mach Learn Res2009103774031235.68178 PaineRTFood web complexity and species diversityAm Nat1966100910657510.1086/282400 Zhang B (2003) Regression clustering. In: Proceedings of ICDM, pp 451–458 Duivesteijn W, Loza Mencía E, Fürnkranz J, Knobbe AJ (2012) Multi-label LeGo—enhancing multi-label classifiers with local patterns. In: Proceedings of IDA, pp 114–125 van de Koppel E, Slavkov I, Astrahantseff K, Schramm A, Schulte J, Vandesompele J, de Jong E, Dzeroski S, Knobbe AJ (2007) Knowledge discovery in neuroblastoma-related biological data. In: Data mining in functional genomics and proteomics workshop at PKDD 2007, Warsaw, Poland, pp 45–56 NeterJKutnerMNachtsheimCJWassermanWApplied linear statistical models1966BostonWCB McGraw-Hill AidtTTzannatosZUnions and collective bargaining2002Washington, DCThe World Bank10.1596/0-8213-5080-3 Siebes A (1995) Data surveying: foundations of an inductive query language. In: Proceedings of KDD, pp 269–274 LavračNKavšekBFlachPATodorovskiLSubgroup discovery with CN2-SDJ Mach Learn Res20045153188 AnglinPMGençayRSemiparametric estimation of a hedonic price functionJ Appl Econ199611663364810.1002/(SICI)1099-1255(199611)11:6<633::AID-JAE414>3.0.CO;2-T FriedmanNLinialMNachmanIPe’erDUsing Bayesian networks to analyze expression dataJ Comput Biol200073/460162010.1089/106652700750050961 UmekLZupanBSubgroup discovery in data sets with multi-dimensional responsesIntell Data Anal2011154533549 HandDJAdamsNMBoltonRJPattern detection and discovery2002Springer, BerlinLecture notes in computer science1007.68737 van LeeuwenMKnobbeAJDiverse subgroup set discoveryData Min Knowl Discov2012252208242295103610.1007/s10618-012-0273-y BreimanLFriedmanJHOlshenRAStoneCJClassification and regression trees1984MontereyWadsworth & Brooks/Cole Advanced Books & Software0541.62042 Klösgen W (2002) Subgroup discovery. In: Handbook of data mining and knowledge discovery, chap. 16.3. Oxford University Press, New York KocevDVensCStruyfJDžeroskiSTree ensembles for predicting structured outputsPattern Recogn201346381783310.1016/j.patcog.2012.09.023 Lavrač N, Flach P, Zupan B (1999) Rule evaluation measures: a unifying view. In: Proceedings of the ninth international workshop on inductive logic programming. Lecture notes in artificial intelligence, vol 1634, pp 174–185 CookRDWeisbergSResiduals and influence in regression1982LondonChapman & Hall0564.62054 Klösgen W (1998) Deviation and association patterns for subgroup mining in temporal, spatial, and textual data bases. In: Rough sets and current trends in computing. Springer, pp 1–18 Gallo A, Miettinen P, Mannila H (2008) Finding subgroups having several descriptions: algorithms 403_CR7 D Kocev (403_CR45) 2013; 46 PM Anglin (403_CR3) 1996; 11 RD Cook (403_CR14) 1982 M Leeuwen van (403_CR52) 2010; 21 N Lavrač (403_CR51) 2004; 5 D Moore (403_CR61) 1993 403_CR57 403_CR56 403_CR59 403_CR18 A Zimmermann (403_CR79) 2009; 77 403_CR50 T Aidt (403_CR2) 2002 403_CR53 403_CR55 C Chao (403_CR11) 2009; 84 H Heikinheimo (403_CR33) 2007; 34 E Galbrun (403_CR25) 2012; 5 C Dougherty (403_CR19) 2011 FJ Díez (403_CR17) 1997; 10 403_CR68 403_CR26 403_CR69 GA Davis (403_CR16) 2003; 2 403_CR27 Y Hochberg (403_CR35) 1987 N Friedman (403_CR24) 2000; 7 403_CR6 LM Campos de (403_CR9) 2004; 40 T Stengos (403_CR71) 2006; 21 403_CR4 403_CR62 SD Bay (403_CR5) 2001; 5 LA Goodman (403_CR29) 1970; 65 403_CR20 403_CR1 403_CR22 403_CR66 403_CR21 A Marshall (403_CR58) 1895 M Costanigro (403_CR15) 2009; 24 RD Cook (403_CR13) 1980; 22 F Herrera (403_CR34) 2011; 29 MJ Jesús del (403_CR37) 2007; 15 P Kralj Novak (403_CR48) 2009; 10 J Whittaker (403_CR75) 1990 DJ Hand (403_CR31) 2002 T Mitchell-Jones (403_CR60) 1999 J Friedman (403_CR23) 1999; 9 L Breiman (403_CR8) 1984 403_CR78 CJ Carmona (403_CR10) 2010; 18 403_CR39 403_CR38 M Leeuwen van (403_CR54) 2012; 25 L Rezende (403_CR67) 2008; 23 J Neter (403_CR64) 1966 403_CR70 403_CR72 M Neil (403_CR63) 2005; 25 403_CR74 403_CR77 403_CR76 D Heckerman (403_CR32) 1995; 20 JF Gentleman (403_CR28) 1975; 31 H Grosskreutz (403_CR30) 2009; 19 DE Knuth (403_CR44) 1998 RT Jensen (403_CR36) 2008; 98 403_CR46 403_CR47 403_CR49 RD Cook (403_CR12) 1977; 19 L Umek (403_CR73) 2011; 15 403_CR40 RT Paine (403_CR65) 1966; 100 403_CR42 403_CR41 403_CR43 |
References_xml | – reference: ChaoCVelicerCSlezakJMJacobsenSJCorrelates for completion of 3-dose regimen of HPV vaccine in female members of a managed care organizationMayo Clin Proc2009841086487010.4065/84.10.864 – reference: CookRDWeisbergSResiduals and influence in regression1982LondonChapman & Hall0564.62054 – reference: KocevDVensCStruyfJDžeroskiSTree ensembles for predicting structured outputsPattern Recogn201346381783310.1016/j.patcog.2012.09.023 – reference: Scholz M (2005) Knowledge-based sampling for subgroup discovery. In: Morik K, Boulicaut JF, Siebes A (eds) Local pattern detection. Lecture notes in computer science, vol 3539, Springer, Heidelberg, pp 171–189 – reference: CostanigroMMittelhammerRCMcCluskeyJJEstimating class-specific parametric models under class uncertainty: local polynomial regression clustering in an hedonic analysis of wine marketsJ Appl Econ20092411171135275028110.1002/jae.1094 – reference: JensenRTMillerNHGiffen behavior and subsistence consumptionAm Econ Rev20089841553157710.1257/aer.98.4.1553 – reference: KnuthDEThe art of computer programming, vol. 3: sorting and searching19982ReadingAddison-Wesley – reference: Ramakrishnan N, Kumar D, Mishra B, Potts M, Helm RF (1995) Turning CARTwheels: an alternating algorithm for mining redescriptions. In: Proceedings of KDD, pp 837–844 – reference: ZimmermannADe RaedtLCluster-grouping: from subgroup discovery to clusteringMach Learn200977112515910.1007/s10994-009-5121-y – reference: Kohavi R (1995) The power of decision tables. In: Proceedings of ECML, pp 174–189 – reference: Mitchell-JonesTThe atlas of European mammals. Poyser natural history1999LondonPoyser – reference: AidtTTzannatosZUnions and collective bargaining2002Washington, DCThe World Bank10.1596/0-8213-5080-3 – reference: Agresti A (1990) Categorical data analysis. Wiley, New York – reference: Knobbe AJ, Feelders A, Leman D (2012) Exceptional model mining. In: Data mining: foundations and intelligent paradigms, intelligent systems reference library, vol 24, pp 183–198 – reference: WhittakerJGraphical models in applied multivariate statistics1990New YorkWiley0732.62056 – reference: Trohidis K, Tsoumakas G, Kalliris G, Vlahavas IP (2008) Multi-label classification of music into emotions. In: Proceedings of 9th international conference on music information retrieval, pp 325–330 – reference: Wrobel S (1997) An algorithm for multi-relational discovery of subgroups. In: Proceedings of PKDD, pp 78–87 – reference: CarmonaCJGonzálezPdel JesusMJHerreraFNMEEF-SD: non-dominated multiobjective evolutionary algorithm for extracting fuzzy rules in subgroup discoveryIEEE Trans Fuzzy Syst201018595897010.1109/TFUZZ.2010.2060200 – reference: Kralj NovakPLavračNWebbGISupervised descriptive rule discovery: a unifying survey of contrast set, emerging pattern and subgroup miningJ Mach Learn Res2009103774031235.68178 – reference: Atzmüller M, Lemmerich F (2009) Fast subgroup discovery for continuous target concepts. In: Proceedings of ISMIS, pp 35–44 – reference: CookRDWeisbergSCharacterizations of an empirical influence function for detecting influential cases in regressionTechnometrics19802244955080453.6205159679310.1080/00401706.1980.10486199 – reference: Yang G, Le Cam L (2000) Asymptotics in statistics: some basic concepts. Springer, Berlin – reference: Klösgen W (1999) Applications and research problems of subgroup mining. In: Proceedings of ISMIS, pp 1–15 – reference: van LeeuwenMMaximal exceptions with minimal descriptionsData Min Knowl Discov2010212259276272050610.1007/s10618-010-0187-5 – reference: NeterJKutnerMNachtsheimCJWassermanWApplied linear statistical models1966BostonWCB McGraw-Hill – reference: Verma T, Pearl J (1990) Equivalence and synthesis of causal models. In: Proceedings of UAI, pp 255–270 – reference: UmekLZupanBSubgroup discovery in data sets with multi-dimensional responsesIntell Data Anal2011154533549 – reference: Mampaey M, Nijssen S, Feelders A, Knobbe AJ (2012) Efficient algorithms for finding richer subgroup descriptions in numeric and nominal data. In: Proceedings of ICDM, pp 499–508 – reference: Lavrač N, Flach P, Zupan B (1999) Rule evaluation measures: a unifying view. In: Proceedings of the ninth international workshop on inductive logic programming. Lecture notes in artificial intelligence, vol 1634, pp 174–185 – reference: Leman D, Feelders A, Knobbe AJ (2008) Exceptional model mining. In: Proceedings of ECML/PKDD, vol 2, pp 1–16 – reference: HeikinheimoHForteliusMEronenJMannilaHBiogeography of European land mammals shows environmentally distinct and spatially coherent clustersJ Biogeogr20073461053106410.1111/j.1365-2699.2006.01664.x – reference: DíezFJMiraJIturraldeEZubillagaSDIAVAL, a Bayesian expert system for echocardiographyArtif Intell Med199710597310.1016/S0933-3657(97)00384-9 – reference: Schubert E, Wolfe J, Tarnopolsky A (2004) Spectral centroid and timbre in complex, multiple instrumental textures. In: Proceedings of 8th international conference on music perception & cognition, pp 654–657 – reference: van de Koppel E, Slavkov I, Astrahantseff K, Schramm A, Schulte J, Vandesompele J, de Jong E, Dzeroski S, Knobbe AJ (2007) Knowledge discovery in neuroblastoma-related biological data. In: Data mining in functional genomics and proteomics workshop at PKDD 2007, Warsaw, Poland, pp 45–56 – reference: AnglinPMGençayRSemiparametric estimation of a hedonic price functionJ Appl Econ199611663364810.1002/(SICI)1099-1255(199611)11:6<633::AID-JAE414>3.0.CO;2-T – reference: GalbrunEMiettinenPFrom black and white to full color: extending redescription mining outside the Boolean worldStat Anal Data Min201254284303295815410.1002/sam.11145 – reference: NeilMFentonNTailorMUsing Bayesian networks to model expected and unexpected operational lossesRisk Anal200525496397210.1111/j.1539-6924.2005.00641.x – reference: HeckermanDGeigerDChickeringDMLearning Bayesian networks: the combination of knowledge and statistical dataMach Learn1995201972430831.68096 – reference: Kriegel H-P, Kröger P, Schubert E, Zimek A (2012) Outlier detection in arbitrarily oriented subspaces. In: Proceedings of ICDM, pp 379–388 – reference: del JesúsMJGonzálezPHerreraFMesoneroMEvolutionary fuzzy rule induction process for subgroup discovery: a case study in marketingIEEE Trans Fuzzy Syst200715457859210.1109/TFUZZ.2006.890662 – reference: Jorge AM, Azevedo PJ, Pereira F (2006) Distribution rules with numeric attributes of interest. In: Proceedings of PKDD, pp 247–258 – reference: MooreDMcCabeGIntroduction to the practice of statistics1993New YorkWH Freeman and Company – reference: Dong G, Li J (1999) Efficient mining of emerging patterns: discovering trends and differences. In: Proceedings of KDD, pp 43–52 – reference: FriedmanNLinialMNachmanIPe’erDUsing Bayesian networks to analyze expression dataJ Comput Biol200073/460162010.1089/106652700750050961 – reference: LavračNKavšekBFlachPATodorovskiLSubgroup discovery with CN2-SDJ Mach Learn Res20045153188 – reference: RezendeLEconometrics of auctions by least squaresJ Appl Econ200823925948264906010.1002/jae.1036 – reference: Zhang B (2003) Regression clustering. In: Proceedings of ICDM, pp 451–458 – reference: CookRDDetection of influential observation in linear regressionTechnometrics197719115180371.62096436478 – reference: BreimanLFriedmanJHOlshenRAStoneCJClassification and regression trees1984MontereyWadsworth & Brooks/Cole Advanced Books & Software0541.62042 – reference: BaySDPazzaniMJDetecting group differences: mining contrast setsData Min Knowl Discov2001532132460982.6804810.1023/A:1011429418057 – reference: Blockeel H, De Raedt L, Ramon J (1998) Top-down induction of clustering trees. In: Procedings of ICML, pp 55–63 – reference: MarshallAPrinciples of economics1895New YorkMacMillan and co – reference: StengosTZachariasEIntertemporal pricing and price discrimination: a semiparametric hedonic analysis of the personal computer marketJ Appl Econ200621371386222423910.1002/jae.828 – reference: HochbergYTamhaneAMultiple comparison procedures1987New YorkWiley0731.6212510.1002/9780470316672 – reference: van LeeuwenMKnobbeAJDiverse subgroup set discoveryData Min Knowl Discov2012252208242295103610.1007/s10618-012-0273-y – reference: GrosskreutzHRüpingSOn subgroup discovery in numerical domainsData Min Knowl Discov2009192210226253421410.1007/s10618-009-0136-3 – reference: de CamposLMFernández-LunaJMHueteJFBayesian networks and information retrieval: an introduction to the special issueInf Process Manag200440572773310.1016/j.ipm.2004.03.001 – reference: Morik K, Boulicaut JF, Siebes A (2005) Local pattern detection. Lecture notes in computer science, vol 3539, Springer, Heidelberg – reference: Boley M, Grosskreutz H (2009) Non-redundant subgroup discovery using a closure system. In: Proceedings of ECML/PKDD, vol 1, pp 179–194 – reference: Duivesteijn W, Feelders A, Knobbe AJ (2012) Different slopes for different folks—mining for exceptional regression models with Cook’s distance. In: Proceedings of KDD, pp 868–876 – reference: HandDJAdamsNMBoltonRJPattern detection and discovery2002Springer, BerlinLecture notes in computer science1007.68737 – reference: Klösgen W (1996) Explora: a multipattern and multistrategy discovery assistant. In: Advances in knowledge discovery and data mining. pp 249–271 – reference: Duivesteijn W, Knobbe AJ, Feelders A, van Leeuwen M (2010) Subgroup discovery meets Bayesian networks—an exceptional model mining approach. In: Proceedings of ICDM, pp 158–167 – reference: PaineRTFood web complexity and species diversityAm Nat1966100910657510.1086/282400 – reference: Duivesteijn W, Loza Mencía E, Fürnkranz J, Knobbe AJ (2012) Multi-label LeGo—enhancing multi-label classifiers with local patterns. In: Proceedings of IDA, pp 114–125 – reference: GentlemanJFWilkMBDetecting outliers II: supplementing the direct analysis of residualsBiometrics1975313874100322.6208410.2307/2529428 – reference: Garriga GC, Heikinheimo H, Seppänen JK (2007) Cross-mining binary and numerical attributes. In: Proceedings of ICDM, pp 481–486 – reference: Siebes A (1995) Data surveying: foundations of an inductive query language. In: Proceedings of KDD, pp 269–274 – reference: van Leeuwen M, Knobbe AJ (2011) Non-redundant subgroup discovery in large and complex data. In: Proceedings of ECML/PKDD, vol 3, pp 459–474 – reference: Klösgen W (1998) Deviation and association patterns for subgroup mining in temporal, spatial, and textual data bases. In: Rough sets and current trends in computing. Springer, pp 1–18 – reference: GoodmanLAThe multivariate analysis of qualitative data: interaction among multiple classificationsJ Am Stat Assoc19706522625610.1080/01621459.1970.10481076 – reference: Lemmerich F, Becker M, Atzmüller M (2012) Generic pattern trees for exhaustive exceptional model mining. In: Proceedings of ECML/PKDD, vol 2, pp 277–292 – reference: DoughertyCIntroduction to econometrics20114OxfordOxford University Press – reference: HerreraFCarmonaCJGonzálezPdel JesusMJAn overview on subgroup discovery: foundations and applicationsKnowl Inf Syst201129349552510.1007/s10115-010-0356-2 – reference: FriedmanJFisherNBump-hunting in high-dimensional dataStat Comput19999212314310.1023/A:1008894516817 – reference: Meeng M, Knobbe AJ (2011) Flexible enrichment with Cortana—Software Demo. In: Proceedings of Benelearn, pp 117–119 – reference: Gallo A, Miettinen P, Mannila H (2008) Finding subgroups having several descriptions: algorithms for redescription mining. In: Proceedings of SDM, pp 334–345 – reference: Klösgen W (2002) Subgroup discovery. In: Handbook of data mining and knowledge discovery, chap. 16.3. Oxford University Press, New York – reference: DavisGABayesian reconstruction of traffic accidentsLaw Probab Risk20032698910.1093/lpr/2.2.69 – ident: 403_CR42 – ident: 403_CR78 doi: 10.1109/ICDM.2003.1250952 – ident: 403_CR46 doi: 10.1007/3-540-59286-5_57 – ident: 403_CR50 doi: 10.1007/3-540-48751-4_17 – volume: 19 start-page: 15 issue: 1 year: 1977 ident: 403_CR12 publication-title: Technometrics doi: 10.1080/00401706.1977.10489493 – volume: 98 start-page: 1553 issue: 4 year: 2008 ident: 403_CR36 publication-title: Am Econ Rev doi: 10.1257/aer.98.4.1553 – volume-title: Pattern detection and discovery year: 2002 ident: 403_CR31 doi: 10.1007/3-540-45728-3 – volume-title: Multiple comparison procedures year: 1987 ident: 403_CR35 doi: 10.1002/9780470316672 – ident: 403_CR69 – volume: 25 start-page: 208 issue: 2 year: 2012 ident: 403_CR54 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-012-0273-y – volume-title: The art of computer programming, vol. 3: sorting and searching year: 1998 ident: 403_CR44 – volume: 5 start-page: 213 issue: 3 year: 2001 ident: 403_CR5 publication-title: Data Min Knowl Discov doi: 10.1023/A:1011429418057 – volume-title: Residuals and influence in regression year: 1982 ident: 403_CR14 – ident: 403_CR27 doi: 10.1137/1.9781611972788.30 – ident: 403_CR6 – ident: 403_CR68 doi: 10.1007/11504245_11 – volume-title: Introduction to the practice of statistics year: 1993 ident: 403_CR61 – volume: 15 start-page: 533 issue: 4 year: 2011 ident: 403_CR73 publication-title: Intell Data Anal doi: 10.3233/IDA-2011-0481 – ident: 403_CR74 – volume-title: Unions and collective bargaining year: 2002 ident: 403_CR2 doi: 10.1596/0-8213-5080-3 – ident: 403_CR59 – volume: 5 start-page: 153 year: 2004 ident: 403_CR51 publication-title: J Mach Learn Res – volume: 29 start-page: 495 issue: 3 year: 2011 ident: 403_CR34 publication-title: Knowl Inf Syst doi: 10.1007/s10115-010-0356-2 – ident: 403_CR70 – volume: 19 start-page: 210 issue: 2 year: 2009 ident: 403_CR30 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-009-0136-3 – ident: 403_CR66 – volume: 21 start-page: 371 year: 2006 ident: 403_CR71 publication-title: J Appl Econ doi: 10.1002/jae.828 – ident: 403_CR76 doi: 10.1007/3-540-63223-9_108 – volume-title: Applied linear statistical models year: 1966 ident: 403_CR64 – ident: 403_CR26 doi: 10.1109/ICDM.2007.32 – volume: 65 start-page: 226 year: 1970 ident: 403_CR29 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1970.10481076 – volume: 84 start-page: 864 issue: 10 year: 2009 ident: 403_CR11 publication-title: Mayo Clin Proc doi: 10.4065/84.10.864 – ident: 403_CR21 doi: 10.1109/ICDM.2010.53 – volume: 15 start-page: 578 issue: 4 year: 2007 ident: 403_CR37 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2006.890662 – volume: 9 start-page: 123 issue: 2 year: 1999 ident: 403_CR23 publication-title: Stat Comput doi: 10.1023/A:1008894516817 – ident: 403_CR56 doi: 10.1007/978-3-642-33486-3_18 – ident: 403_CR41 doi: 10.1007/BFb0095086 – volume: 10 start-page: 59 year: 1997 ident: 403_CR17 publication-title: Artif Intell Med doi: 10.1016/S0933-3657(97)00384-9 – ident: 403_CR57 doi: 10.1109/ICDM.2012.117 – volume: 77 start-page: 125 issue: 1 year: 2009 ident: 403_CR79 publication-title: Mach Learn doi: 10.1007/s10994-009-5121-y – ident: 403_CR39 – volume-title: Graphical models in applied multivariate statistics year: 1990 ident: 403_CR75 – volume-title: Classification and regression trees year: 1984 ident: 403_CR8 – volume: 7 start-page: 601 issue: 3/4 year: 2000 ident: 403_CR24 publication-title: J Comput Biol doi: 10.1089/106652700750050961 – volume: 5 start-page: 284 issue: 4 year: 2012 ident: 403_CR25 publication-title: Stat Anal Data Min doi: 10.1002/sam.11145 – ident: 403_CR7 doi: 10.1007/978-3-642-04180-8_29 – ident: 403_CR43 doi: 10.1007/978-3-642-23241-1_9 – volume: 18 start-page: 958 issue: 5 year: 2010 ident: 403_CR10 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2010.2060200 – volume: 2 start-page: 69 year: 2003 ident: 403_CR16 publication-title: Law Probab Risk doi: 10.1093/lpr/2.2.69 – ident: 403_CR55 doi: 10.1007/978-3-540-87481-2_1 – volume: 11 start-page: 633 issue: 6 year: 1996 ident: 403_CR3 publication-title: J Appl Econ doi: 10.1002/(SICI)1099-1255(199611)11:6<633::AID-JAE414>3.0.CO;2-T – ident: 403_CR62 doi: 10.1007/11504245_7 – volume: 46 start-page: 817 issue: 3 year: 2013 ident: 403_CR45 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2012.09.023 – ident: 403_CR72 – volume: 20 start-page: 197 year: 1995 ident: 403_CR32 publication-title: Mach Learn – volume-title: Introduction to econometrics year: 2011 ident: 403_CR19 – volume: 40 start-page: 727 issue: 5 year: 2004 ident: 403_CR9 publication-title: Inf Process Manag doi: 10.1016/j.ipm.2004.03.001 – ident: 403_CR18 doi: 10.1145/312129.312191 – volume: 25 start-page: 963 issue: 4 year: 2005 ident: 403_CR63 publication-title: Risk Anal doi: 10.1111/j.1539-6924.2005.00641.x – ident: 403_CR77 doi: 10.1007/978-1-4612-1166-2 – ident: 403_CR20 doi: 10.1145/2339530.2339668 – volume: 21 start-page: 259 issue: 2 year: 2010 ident: 403_CR52 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-010-0187-5 – volume: 31 start-page: 387 year: 1975 ident: 403_CR28 publication-title: Biometrics doi: 10.2307/2529428 – ident: 403_CR22 doi: 10.1007/978-3-642-34156-4_12 – volume: 10 start-page: 377 year: 2009 ident: 403_CR48 publication-title: J Mach Learn Res – ident: 403_CR47 – volume-title: The atlas of European mammals. Poyser natural history year: 1999 ident: 403_CR60 – volume: 34 start-page: 1053 issue: 6 year: 2007 ident: 403_CR33 publication-title: J Biogeogr doi: 10.1111/j.1365-2699.2006.01664.x – volume: 100 start-page: 65 issue: 910 year: 1966 ident: 403_CR65 publication-title: Am Nat doi: 10.1086/282400 – ident: 403_CR53 doi: 10.1007/978-3-642-23808-6_30 – ident: 403_CR4 doi: 10.1007/978-3-642-04125-9_7 – ident: 403_CR38 doi: 10.1007/11871637_26 – volume-title: Principles of economics year: 1895 ident: 403_CR58 – volume: 22 start-page: 495 issue: 4 year: 1980 ident: 403_CR13 publication-title: Technometrics doi: 10.1080/00401706.1980.10486199 – ident: 403_CR1 – ident: 403_CR40 doi: 10.1007/3-540-69115-4_1 – volume: 23 start-page: 925 year: 2008 ident: 403_CR67 publication-title: J Appl Econ doi: 10.1002/jae.1036 – volume: 24 start-page: 1117 year: 2009 ident: 403_CR15 publication-title: J Appl Econ doi: 10.1002/jae.1094 – ident: 403_CR49 doi: 10.1109/ICDM.2012.21 |
SSID | ssj0005230 |
Score | 2.4670265 |
Snippet | Finding subsets of a dataset that somehow deviate from the norm, i.e. where something interesting is going on, is a classical Data Mining task. In traditional... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 47 |
SubjectTerms | Algorithms Artificial Intelligence Bayesian analysis Chemistry and Earth Sciences Computer Science Data mining Data Mining and Knowledge Discovery Datasets Deviation Economics Information Storage and Retrieval Lung cancer Mathematical models Pattern analysis Physics Statistics for Engineering Subgroups |
Subtitle | Supervised descriptive local pattern mining with complex target concepts |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFH9RuHjx2zBFg4knTeNK23U7GTUQ4oEYIwm3Ze26kwEUSPzzfW_rAE3kssvadX2vfX1ffT-AG5uITOeZZErIgkndFcyE3YxpmyipDVU8K7MthtFgJF_GauwdbnOfVlnLxFJQ51NLPvJ7TpXaUB3k-mH2yQg1iqKrHkJjF5oogmM0vppPveHr20aSh6juCcf4NzFfxTWry3MRp0QuxXAhCyZ_n0xrdfNPhLQ8ePqHsO81xs5jxeIj2HGTYzio0Rg6fnOeQKv37VNUsDVBnOGzRH84hVG_9_48YB73gFm05hYs41Zpa1yUS9U1ictNgUaHksIKF8ZFZI3IYzxqlTZJKJDWOhcqky7CHmGBGtkZNCbTiWtBBw1QSy4LynaRXJo4inkR8VwIRbX7igDCes6p9UXBCZviI12XMyYypUimlMiUygBuV11mVUWMbY3bNSFTvznm6ZqVAVyvXuOyplhFNnHTJbVJSNQgywK4qxmw8Yn_BjzfPuAF7KHG430obWgsvpbuErWKhbnyS-cH_c7Dkg priority: 102 providerName: ProQuest |
Title | Exceptional Model Mining |
URI | https://link.springer.com/article/10.1007/s10618-015-0403-4 https://www.proquest.com/docview/1754488217 https://www.proquest.com/docview/1793225810 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_chuCLH1NZdY4JPimBpkma9nFKt6EwRBzMp9Kk6ZNs4jbwz_fSpdsUFXxpH3pJ28slucv97g7gSscsk3nGiWC8IFwGjCg_yIjUseBS2YxnJdpiFA7H_H4iJi6Oe16h3SuXZLlSbwW7hdQCrwRBwWOE16AhrOmOQjwOelu4DrYKDY7wAyK6dmX-1MXXzWijYX5zipZ7Tf8Q9p2S2O2tRvUIdsy0CQdVAYaum49N2C3xm3p-DK3kw-FTsJ2tb4bXsvTDCYz7yfPdkLiiB0SjKbcgGdVCamXCnItAxSZXBVocgjPNjB8VoVYsj3CfFVLFPkNGy5yJjJsQW_gFqmOnUJ_OpqYFXbQ-tT2vsFAXTrmKwogWIc0ZEzZxX-GBX_19ql1GcFuY4jXd5DK2DEuRYallWMo9uF43eVulw_iLuF2xNHUzY55Sm3EP1XoqPbhcP0aZto6KbGpmS0sT23UGB8-Dm2ootrr47YVn_6I-hz3Uftx5Shvqi_eluUANY6E6UIv6gw40eoOXhwTvt8no8alTytknlzHFpA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6hMsDCG7U8iwQLyCKO7TwGhBC0FApMrdQtxI4zobbQIuBP8Ru5y6MtSLCxZImdyOe789l3_j6AQxOK2E9iyZSQKZO-K5h23Jj5JlTS14R4llVbPHitrrztqd4cfJZ3YaissvSJmaNOBobOyE85IbVhOMj98-EzI9Yoyq6WFBq5WrTtxxtu2UZnN1c4v0eu22x0LlusYBVgBvdKYxZzo3yjrZdI5erQJjrFkF5JYYR1gtQzWiQBLmTK16EjcCR-IlQsrYc9nJQT-BK6_HkpREgWFTSvZ0pKRH4rOcCxB3ySRc2v6nmcysYUQ7MRTH5fB6fB7Y98bLbMNVdgqYhP6xe5Qq3CnO2vwXLJ_VAvXME6VBvvRUEMtiZCNXxmXBMb0P0XeWxCpT_o2yrUcbtr6ICEamsklzrwAp56PBFCEVJgWgOnHHNkCghyYsJ4iqbgySSmCMUUkZgiWYPjSZdhjr_xV-OdUpBRYYqjaKo4NTiYvEYjosxI3LeDV2oTkmPDKavBSTkBM5_47Ydbf_9wHxZanfu76O7mob0NixhrFac3O1AZv7zaXYxnxnovU6I6PP631n4B-lL_Ng |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB5kBfHiW1yfK-hFCTZN0rQHER-7-GIRUfBWmzQ9ye6qK-pf89c5s013VdCbl16aNHQymcxkvswHsGUTkek8k0wJWTCpQ8FMEGZM20RJbaji2QBt0Y5Ob-X5nbobg4_qLgzBKiubODDUedfSGfkep0pt6A5yvVd4WMTVSeug98iIQYoyrRWdRqkiF-79FcO35_2zE5zr7TBsNW-OT5lnGGAW46Y-y7hV2hoX5VKFJnG5KdC9V1JY4YK4iKwReYybmtImCQT-lc6FyqSLsEdQcCrEhOZ_XGNUFNRg_KjZvrr-AjAR5R3lGCUR82FOtby4F3ECkSmGi0gw-X1XHLm6P7Kzg02vNQNT3lttHJbqNQtjrjMH0xUTRMMbhnlYar55eAy2Jno1fA6YJxbg9l8ksgi1TrfjlqCBwa-l4xJC2kguTRzFvIh4LoSiuoFFHYLqn1PrC5ITL8ZDOiqlTGJKUUwpiSmVddgZdumV1Tj-arxaCTL1C_M5HalRHTaHr3FJUZ4k67juC7VJyMzhlNVht5qAL5_4bcDlvwfcgAnU2PTyrH2xApPoePmjnFWo9Z9e3Bo6N32z7rWoAff_rbifc5IE1w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exceptional+Model+Mining&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Duivesteijn%2C+Wouter&rft.au=Feelders%2C+Ad+J.&rft.au=Knobbe%2C+Arno&rft.date=2016-01-01&rft.pub=Springer+US&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=30&rft.issue=1&rft.spage=47&rft.epage=98&rft_id=info:doi/10.1007%2Fs10618-015-0403-4&rft.externalDocID=10_1007_s10618_015_0403_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |