Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine

Epilepsy is a common neurological condition which affects the central nerve system that causes people to have a seizure and can be assessed by electroencephalogram (EEG). A wavelet based fuzzy approximate entropy (fApEn) method is presented for the classification of electroencephalogram (EEG) signal...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 133; pp. 271 - 279
Main Authors Kumar, Yatindra, Dewal, M.L., Anand, R.S.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 10.06.2014
Elsevier
Subjects
Online AccessGet full text
ISSN0925-2312
1872-8286
DOI10.1016/j.neucom.2013.11.009

Cover

Loading…
Abstract Epilepsy is a common neurological condition which affects the central nerve system that causes people to have a seizure and can be assessed by electroencephalogram (EEG). A wavelet based fuzzy approximate entropy (fApEn) method is presented for the classification of electroencephalogram (EEG) signals into healthy/interictal versus ictal EEGs. Discrete wavelet transform is used to decompose the EEG signals into different sub-bands. The fuzzy approximate entropy of different sub-bands is employed to measure the chaotic dynamics of the EEG signals. In this work it is observed that the quantitative value of fuzzy approximate entropy drops during the ictal period which proves that the epileptic EEG signal is more ordered than the EEG signal of a normal subject. The fApEn values of different sub-bands of all the data sets are used to form feature vectors and these vectors are used as inputs to classifiers. The classification accuracies of radial basis function based support vector machine (SVMRBF) and linear basis function based support vector machine (SVML) are compared. The fApEn feature of different sub-bands (D1–D5, A5) and classifiers is desired to correctly discriminate between three types of EEGs. It is revealed that the highest classification accuracy (100%) for normal subject data versus epileptic data is obtained by SVMRBF; however, the corresponding accuracy between normal subject data and epileptic data using SVML is obtained as 99.3% and 99.65% for the eyes open and eyes closed conditions, respectively. The similar accuracies, while comparing the interictal and ictal data, are obtained as 99.6% and 95.85% using the SVMRBF and SVML classifiers, respectively. These accuracies are not 100%; however, these are quite higher than earlier results published. The results are discussed quite in detail towards the last section of the present paper. •The use of fuzzy approximate entropy for automated seizure detection is investigated.•Seizure EEG is characterized by lower fuzzy approximate entropy values compared to normal EEG.•Normal, pre-ictal, and ictal EEG signals are used to classify.•Classification accuracy greater than 95% is obtained for discriminating seizure versus normal EEG.
AbstractList Epilepsy is a common neurological condition which affects the central nerve system that causes people to have a seizure and can be assessed by electroencephalogram (EEG). A wavelet based fuzzy approximate entropy (fApEn) method is presented for the classification of electroencephalogram (EEG) signals into healthy/interictal versus ictal EEGs. Discrete wavelet transform is used to decompose the EEG signals into different sub-bands. The fuzzy approximate entropy of different sub-bands is employed to measure the chaotic dynamics of the EEG signals. In this work it is observed that the quantitative value of fuzzy approximate entropy drops during the ictal period which proves that the epileptic EEG signal is more ordered than the EEG signal of a normal subject. The fApEn values of different sub-bands of all the data sets are used to form feature vectors and these vectors are used as inputs to classifiers. The classification accuracies of radial basis function based support vector machine (SVMRBF) and linear basis function based support vector machine (SVML) are compared. The fApEn feature of different sub-bands (D1-D5, A5) and classifiers is desired to correctly discriminate between three types of EEGs. It is revealed that the highest classification accuracy (100%) for normal subject data versus epileptic data is obtained by SVMRBF; however, the corresponding accuracy between normal subject data and epileptic data using SVML is obtained as 99.3% and 99.65% for the eyes open and eyes closed conditions, respectively. The similar accuracies, while comparing the interictal and ictal data, are obtained as 99.6% and 95.85% using the SVMRBF and SVML classifiers, respectively. These accuracies are not 100%; however, these are quite higher than earlier results published. The results are discussed quite in detail towards the last section of the present paper.
Epilepsy is a common neurological condition which affects the central nerve system that causes people to have a seizure and can be assessed by electroencephalogram (EEG). A wavelet based fuzzy approximate entropy (fApEn) method is presented for the classification of electroencephalogram (EEG) signals into healthy/interictal versus ictal EEGs. Discrete wavelet transform is used to decompose the EEG signals into different sub-bands. The fuzzy approximate entropy of different sub-bands is employed to measure the chaotic dynamics of the EEG signals. In this work it is observed that the quantitative value of fuzzy approximate entropy drops during the ictal period which proves that the epileptic EEG signal is more ordered than the EEG signal of a normal subject. The fApEn values of different sub-bands of all the data sets are used to form feature vectors and these vectors are used as inputs to classifiers. The classification accuracies of radial basis function based support vector machine (SVMRBF) and linear basis function based support vector machine (SVML) are compared. The fApEn feature of different sub-bands (D1–D5, A5) and classifiers is desired to correctly discriminate between three types of EEGs. It is revealed that the highest classification accuracy (100%) for normal subject data versus epileptic data is obtained by SVMRBF; however, the corresponding accuracy between normal subject data and epileptic data using SVML is obtained as 99.3% and 99.65% for the eyes open and eyes closed conditions, respectively. The similar accuracies, while comparing the interictal and ictal data, are obtained as 99.6% and 95.85% using the SVMRBF and SVML classifiers, respectively. These accuracies are not 100%; however, these are quite higher than earlier results published. The results are discussed quite in detail towards the last section of the present paper. •The use of fuzzy approximate entropy for automated seizure detection is investigated.•Seizure EEG is characterized by lower fuzzy approximate entropy values compared to normal EEG.•Normal, pre-ictal, and ictal EEG signals are used to classify.•Classification accuracy greater than 95% is obtained for discriminating seizure versus normal EEG.
Author Anand, R.S.
Kumar, Yatindra
Dewal, M.L.
Author_xml – sequence: 1
  givenname: Yatindra
  surname: Kumar
  fullname: Kumar, Yatindra
  email: ykr01dee@iitr.ernet.in
– sequence: 2
  givenname: M.L.
  surname: Dewal
  fullname: Dewal, M.L.
– sequence: 3
  givenname: R.S.
  surname: Anand
  fullname: Anand, R.S.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28293615$$DView record in Pascal Francis
BookMark eNqFkT1vFDEQhi0UJC4H_4DCDRLNLh57PymQUBIIUiSaIErjnZ0Fn_bsxfZG5H49Pl1EkYJUlkbP82o87zk7c94RY69BlCCgebcrHa3o96UUoEqAUoj-GdtA18qik11zxjail3UhFcgX7DzGnRDQguw37MfVYmdakkUeyR7WQHykRJisd3yN1v3kl99v-WAijXxaD4d7bpYl-D92bxJxcin4Jc_cyOO6LD4kfpdtH_je4C_r6CV7Ppk50quHd8u-fbq6vbgubr5-_nLx8abASshU9NhCRdXUqUG02EHd4tTCMNV9K7AZB4OowBjRyGGoxQjYVEpWoLBRohsmVFv29pSbl_u9Ukx6byPSPBtHfo0amjaHik6pp9FagZCiE01G3zygJqKZp2Ac2qiXkL8f7rXsZK-azG9ZdeIw-BgDTf8QEPrYkd7pU0f62JEG0LmjrL1_pKFN5nj7FIydn5I_nGTKZ72zFHRESw5ptCFXoEdv_x_wF2DMsoA
CitedBy_id crossref_primary_10_3233_THC_171343
crossref_primary_10_1038_s41598_017_17414_x
crossref_primary_10_4218_etrij_2018_0118
crossref_primary_10_1016_j_bspc_2019_101787
crossref_primary_10_1002_dac_4095
crossref_primary_10_7555_JBR_33_20190009
crossref_primary_10_1016_j_chaos_2022_112528
crossref_primary_10_1016_j_neucom_2017_02_053
crossref_primary_10_1142_S0129065723500314
crossref_primary_10_1016_j_bspc_2017_05_002
crossref_primary_10_1007_s13246_017_0610_y
crossref_primary_10_1016_j_bspc_2021_103450
crossref_primary_10_1016_j_mehy_2019_109519
crossref_primary_10_1109_ACCESS_2021_3126065
crossref_primary_10_1088_1741_2552_ac2ca0
crossref_primary_10_1155_2022_8724536
crossref_primary_10_3390_brainsci9050115
crossref_primary_10_1016_j_bbe_2017_08_003
crossref_primary_10_1016_j_knosys_2018_10_029
crossref_primary_10_1002_ima_22199
crossref_primary_10_1007_s11042_023_15052_2
crossref_primary_10_1016_j_bspc_2018_03_004
crossref_primary_10_1016_j_patrec_2017_05_007
crossref_primary_10_1016_j_neucom_2015_06_076
crossref_primary_10_1016_j_bspc_2017_01_005
crossref_primary_10_3233_KES_230059
crossref_primary_10_1016_j_bspc_2021_102827
crossref_primary_10_1142_S0219519419400050
crossref_primary_10_1088_1742_6596_943_1_012030
crossref_primary_10_1007_s10470_019_01545_4
crossref_primary_10_1016_j_compbiomed_2022_105397
crossref_primary_10_1016_j_neucom_2020_04_144
crossref_primary_10_1063_1_4929148
crossref_primary_10_3390_e22020140
crossref_primary_10_1016_j_neucom_2016_01_062
crossref_primary_10_1016_j_neucom_2014_07_062
crossref_primary_10_1016_j_physleta_2017_11_022
crossref_primary_10_1515_bmt_2017_0233
crossref_primary_10_1109_TBME_2019_2957392
crossref_primary_10_1016_j_engappai_2021_104426
crossref_primary_10_1109_ACCESS_2019_2956865
crossref_primary_10_1007_s10548_015_0462_2
crossref_primary_10_3171_2019_2_JNS182260
crossref_primary_10_1109_ACCESS_2023_3338853
crossref_primary_10_1016_j_bspc_2020_102293
crossref_primary_10_1016_j_bspc_2021_103417
crossref_primary_10_3233_THC_218049
crossref_primary_10_1016_j_compbiomed_2021_104250
crossref_primary_10_1080_03091902_2017_1394390
crossref_primary_10_1093_cercor_bhad105
crossref_primary_10_1088_1742_6596_1626_1_012085
crossref_primary_10_1016_j_jocs_2018_02_002
crossref_primary_10_1016_j_eplepsyres_2021_106818
crossref_primary_10_1109_ACCESS_2019_2944531
crossref_primary_10_1016_j_asoc_2016_12_009
crossref_primary_10_3390_app9235215
crossref_primary_10_1109_JBHI_2024_3366341
crossref_primary_10_3390_e22111234
crossref_primary_10_3390_s20164639
crossref_primary_10_3390_diagnostics12112879
crossref_primary_10_1016_j_bspc_2017_01_010
crossref_primary_10_1016_j_compbiomed_2019_103549
crossref_primary_10_1016_j_bspc_2021_102562
crossref_primary_10_1016_j_bspc_2022_103820
crossref_primary_10_1007_s13042_017_0716_2
crossref_primary_10_3934_mbe_2024245
crossref_primary_10_1080_03772063_2019_1568206
crossref_primary_10_1007_s12652_020_02837_8
crossref_primary_10_1007_s40009_018_0629_y
crossref_primary_10_1142_S0218126619501603
crossref_primary_10_1007_s11063_016_9530_1
crossref_primary_10_1016_j_bspc_2019_101569
crossref_primary_10_1109_ACCESS_2024_3409581
crossref_primary_10_1016_j_bspc_2017_05_015
crossref_primary_10_1016_j_bspc_2020_102268
crossref_primary_10_1016_j_engstruct_2019_109396
crossref_primary_10_1080_10255842_2023_2271603
crossref_primary_10_1109_JBHI_2014_2387795
crossref_primary_10_1016_j_neucom_2024_128644
crossref_primary_10_1007_s10044_017_0642_7
crossref_primary_10_1109_JTEHM_2021_3050925
crossref_primary_10_1016_j_chaos_2022_111886
crossref_primary_10_1080_03091902_2017_1394389
crossref_primary_10_1186_s13634_019_0606_8
crossref_primary_10_3390_e18010007
crossref_primary_10_1016_j_neucom_2016_01_029
crossref_primary_10_1111_cns_14751
crossref_primary_10_1016_j_bbe_2016_07_004
crossref_primary_10_1007_s11042_021_10882_4
crossref_primary_10_1016_j_cogsys_2018_08_018
crossref_primary_10_1016_j_knosys_2015_08_004
crossref_primary_10_1016_j_seizure_2017_05_018
crossref_primary_10_3389_fnins_2024_1436619
crossref_primary_10_1016_j_ifacol_2024_11_063
crossref_primary_10_1007_s11042_020_09135_7
crossref_primary_10_1016_j_chaos_2020_110639
crossref_primary_10_3233_JIFS_237293
crossref_primary_10_1007_s11045_018_0628_7
crossref_primary_10_1016_j_bbe_2016_12_005
crossref_primary_10_1016_j_mehy_2019_109464
crossref_primary_10_1109_ACCESS_2023_3294473
crossref_primary_10_3389_fninf_2023_1205529
crossref_primary_10_1007_s00521_016_2230_y
crossref_primary_10_1016_j_bspc_2020_102006
crossref_primary_10_3390_app8091528
crossref_primary_10_1016_j_bspc_2021_102520
crossref_primary_10_1016_j_neucom_2016_06_067
crossref_primary_10_1371_journal_pone_0193691
crossref_primary_10_13005_bpj_3013
crossref_primary_10_1155_2017_7949507
crossref_primary_10_1109_ACCESS_2016_2585661
crossref_primary_10_1109_TNSRE_2021_3055276
crossref_primary_10_1038_s41598_024_61338_2
crossref_primary_10_1016_j_bbe_2019_10_006
crossref_primary_10_1109_ACCESS_2024_3401568
crossref_primary_10_1109_ACCESS_2024_3415716
crossref_primary_10_3389_fnins_2020_00606
crossref_primary_10_1007_s11277_020_07742_z
crossref_primary_10_1016_j_bbe_2015_10_006
crossref_primary_10_1155_2020_5128729
crossref_primary_10_3390_s17061212
crossref_primary_10_1088_1674_1056_acdfbf
crossref_primary_10_1016_j_neucom_2016_06_056
crossref_primary_10_1016_j_neucom_2023_126513
crossref_primary_10_1007_s00521_020_05588_x
crossref_primary_10_1016_j_eswa_2021_116414
crossref_primary_10_1007_s11042_019_7174_7
crossref_primary_10_1007_s40846_017_0286_5
crossref_primary_10_1007_s11042_021_11035_3
crossref_primary_10_1142_S0129065718500107
crossref_primary_10_1109_TNSRE_2022_3156931
crossref_primary_10_1142_S0129065719500217
crossref_primary_10_4015_S1016237218500370
crossref_primary_10_1007_s12553_019_00363_y
crossref_primary_10_48084_etasr_2031
crossref_primary_10_1142_S0217979218500868
crossref_primary_10_1109_ACCESS_2020_3046851
crossref_primary_10_1142_S0219519419400104
crossref_primary_10_1088_1741_2552_aae131
crossref_primary_10_1177_1550059420905724
crossref_primary_10_3390_e23121669
crossref_primary_10_1007_s10462_019_09755_y
crossref_primary_10_1016_j_heliyon_2023_e22208
crossref_primary_10_1016_j_neucom_2021_06_048
crossref_primary_10_7498_aps_65_218701
crossref_primary_10_1109_JSEN_2020_2976519
crossref_primary_10_1016_j_bbe_2022_02_004
crossref_primary_10_1515_sjecr_2017_0043
crossref_primary_10_2174_0118722121256663231019061211
crossref_primary_10_1016_j_compbiomed_2021_104969
crossref_primary_10_1016_j_bspc_2017_12_005
crossref_primary_10_1016_j_neucom_2016_03_056
crossref_primary_10_1016_j_medengphy_2015_09_001
crossref_primary_10_1049_cds2_12077
crossref_primary_10_1016_j_irbm_2018_12_002
crossref_primary_10_1080_03091902_2018_1513576
crossref_primary_10_3389_fphys_2016_00136
crossref_primary_10_1016_j_bbe_2019_11_002
crossref_primary_10_1155_2019_5173589
crossref_primary_10_1016_j_jneumeth_2016_03_024
crossref_primary_10_1016_j_jneumeth_2015_01_015
crossref_primary_10_1007_s12652_022_03737_9
crossref_primary_10_1007_s13042_019_00921_w
crossref_primary_10_1016_j_bspc_2017_08_013
crossref_primary_10_1016_j_neucom_2015_10_070
crossref_primary_10_1109_ACCESS_2016_2612242
crossref_primary_10_1016_j_engappai_2023_107826
crossref_primary_10_3390_diagnostics13061058
crossref_primary_10_1049_iet_smt_2018_5358
crossref_primary_10_1016_j_bspc_2020_101927
crossref_primary_10_1016_j_neuroscience_2021_11_017
crossref_primary_10_1080_02522667_2018_1453671
crossref_primary_10_1109_ACCESS_2022_3165815
crossref_primary_10_1016_j_bspc_2016_12_007
crossref_primary_10_1016_j_bbe_2018_03_007
crossref_primary_10_1007_s11045_016_0419_y
crossref_primary_10_1080_10255842_2024_2356634
crossref_primary_10_1016_j_bspc_2021_103281
crossref_primary_10_1007_s00034_022_02281_3
crossref_primary_10_1007_s00034_018_0829_1
crossref_primary_10_1007_s12652_020_02185_7
crossref_primary_10_4015_S1016237223500394
crossref_primary_10_1155_2020_4625218
crossref_primary_10_1109_TII_2021_3084352
crossref_primary_10_1088_1741_2552_ab2409
crossref_primary_10_1007_s11042_023_14671_z
crossref_primary_10_1109_ACCESS_2020_3031447
crossref_primary_10_1142_S0129065723500612
crossref_primary_10_1108_ILT_03_2018_0101
crossref_primary_10_3390_brainsci12060778
crossref_primary_10_1016_j_bspc_2021_103031
crossref_primary_10_1007_s11517_019_01951_w
crossref_primary_10_1016_j_compeleceng_2024_109925
crossref_primary_10_1016_j_bspc_2019_101708
crossref_primary_10_2174_1389201020666190618112715
crossref_primary_10_1007_s13246_018_0697_9
crossref_primary_10_17776_csj_682734
crossref_primary_10_1016_j_bspc_2019_101707
crossref_primary_10_1142_S012906571850003X
crossref_primary_10_1145_3552512
crossref_primary_10_1080_03091902_2019_1572236
Cites_doi 10.1016/S0378-4371(99)00368-4
10.1179/016164104773026534
10.1016/j.cmpb.2005.06.012
10.1016/S0165-0270(02)00340-0
10.1016/j.eswa.2009.05.012
10.1016/j.jneumeth.2010.08.030
10.1016/j.clinph.2010.06.034
10.1103/PhysRevE.64.061907
10.1016/j.eswa.2010.06.065
10.1016/j.amc.2006.09.022
10.1109/TBME.2007.891945
10.1016/S0165-1684(03)00054-9
10.1016/j.bspc.2011.07.007
10.1016/j.eswa.2011.02.118
10.1016/j.eswa.2011.07.008
10.1016/j.eswa.2011.02.110
10.1073/pnas.88.6.2297
10.1007/s10278-012-9537-8
10.1016/j.eswa.2010.09.058
10.1016/j.eplepsyres.2011.04.013
10.1109/TBME.2006.886855
10.1016/j.compbiomed.2010.08.005
10.1007/s10916-005-6133-1
10.1016/j.eswa.2007.12.065
10.1016/j.eswa.2005.04.007
10.1016/S0013-4694(97)00003-9
10.1073/pnas.102102699
10.1016/j.eswa.2011.04.149
10.1109/51.677174
10.1109/TITB.2006.884369
10.1016/j.medengphy.2008.04.005
10.1145/1543834.1543860
10.1109/34.192463
10.1016/j.neucom.2011.04.029
ContentType Journal Article
Copyright 2014 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7QO
8FD
FR3
P64
7SC
7TB
7U5
JQ2
L7M
L~C
L~D
DOI 10.1016/j.neucom.2013.11.009
DatabaseName CrossRef
Pascal-Francis
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Engineering Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1872-8286
EndPage 279
ExternalDocumentID 28293615
10_1016_j_neucom_2013_11_009
S0925231214000058
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
SSH
WUQ
XPP
IQODW
7QO
8FD
FR3
P64
7SC
7TB
7U5
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c402t-9c714e4f83b07c8157cf71bf5970c6dbacc31aa062bb50d1c6432413c6308bfc3
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Fri Jul 11 13:08:00 EDT 2025
Fri Jul 11 07:53:54 EDT 2025
Wed Apr 02 07:21:52 EDT 2025
Thu Apr 24 22:56:19 EDT 2025
Tue Jul 01 03:05:25 EDT 2025
Fri Feb 23 02:27:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Discrete wavelet transform (DWT)
Support vector machines (SVMs)
Electroencephalogram (EEG)
Fuzzy approximate entropy (fApEn)
Chaos
Subband decomposition
Epilepsy
Electroencephalography
Entropy
Discrete wavelet transforms
Modeling
Complex variable method
Radial basis function
Fuzzy logic
Wavelet transformation
Vector support machine
Mental disorder
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-9c714e4f83b07c8157cf71bf5970c6dbacc31aa062bb50d1c6432413c6308bfc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1531020806
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_1671570833
proquest_miscellaneous_1531020806
pascalfrancis_primary_28293615
crossref_primary_10_1016_j_neucom_2013_11_009
crossref_citationtrail_10_1016_j_neucom_2013_11_009
elsevier_sciencedirect_doi_10_1016_j_neucom_2013_11_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-10
PublicationDateYYYYMMDD 2014-06-10
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-10
  day: 10
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2014
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Rosso, Blanco, Rabinowicz (bib6) 2003; 83
Wang, Miao, Xie (bib41) 2011; 38
NINDS. Seizure and Epilepsy: Hope Through Research. National Institute of Neurological Disorders Available from
Mallat (bib24) 1989; 11
Polat, Günes (bib34) 2007; 187
Iscan, Dokur, Demiralap (bib23) 2011; 38
Srinivasan, Eswaran, Sriraam (bib17) 2005; 29
Subasi, Gursoy (bib37) 2010; 37
Ocak (bib15) 2009; 36
L. Guo, D. Rivero, J. Dorado, C. R. Munteanu, A. Pazos, Automatic feature extraction using genetic programming: an application to epileptic EEG classification. Expert Syst. Appl. 38 (2011) 10425–10436.
Gotman, Flanagah, Zhang, Rosenblatt (bib5) 1997; 103
Acharya, Molinari, Sree, Chattopadhyay (bib21) 2012; 7
Pincus (bib10) 1991; 88
Burges (bib25) 1998; 120
Vapnik (bib26) 1995
Dastidar, Adeli, Dadmehr (bib3) 2007; 54
EEG Time Series Data (Department of Epileptology University of Bonn, Germany)
Xie, Gao, Liu (bib14) 2011; 38
Virmani, Kumar, Kalra., Khandelwal (bib29) 2013; 26
Tzallas, Tsipouras, Fotiadis (bib35) 2007; 13
(accessed 2013).
Andrzejak, Lehnertz, Rieke (bib7) 2001; 64
Temko, Thomas, Marnane, Lightbody, Boylan (bib27) 2011; 122
Chen, Zhuang, Yu, Wang (bib13) 2009; 31
Subasi (bib31) 2005; 29
Gandhi, Panigrahi, Anand (bib28) 2011; 74
Radhakrishnan, Gangadhar (bib11) 1998; 17
Diambra, Figueiredo, Malta (bib12) 1999; 273
WHO. Media Centre, Epilepsy, Fact Sheet.
Nigam, Graupe (bib32) 2004; 26
Kannathal, Choo, Acharya, Sadasivan (bib33) 2005; 80
L. Guo, D. Rivero, J. Seoane, A. Pazos, Classification of EEG signals using relative wavelet energy and artificial neural networks. In: Proceedings of the First ACM/SIGEVO, Summit on Genetic and Evolutionary Computation (GEC’09), Shanghai, China, 12–14 June 2009, pp. 177–184.
Srinivasan, Eswaran, Sriraam (bib18) 2007; 11
C, McLachlan (bib30) 2002; 99
Guo, Rivero, Dorado, Rabunal, Pazos (bib38) 2010; 19
Orhan, Hekim, Ozer (bib39) 2011; 38
Adeli, Zhou, Dadmehr (bib4) 2003; 123
Adeli, Dastidar, Dadmehr (bib8) 2007; 54
Guo, Riveer, Pazaos (bib16) 2010; 193
Nicolaou, Georgiou (bib20) 2012; 39
Hsu, Yu (bib9) 2010; 40
Ubeyli (bib22) 2010; 37
Yuan, Zhou, Li, Cai (bib19) 2011; 96
Virmani (10.1016/j.neucom.2013.11.009_bib29) 2013; 26
Guo (10.1016/j.neucom.2013.11.009_bib38) 2010; 19
Hsu (10.1016/j.neucom.2013.11.009_bib9) 2010; 40
Chen (10.1016/j.neucom.2013.11.009_bib13) 2009; 31
Iscan (10.1016/j.neucom.2013.11.009_bib23) 2011; 38
Ocak (10.1016/j.neucom.2013.11.009_bib15) 2009; 36
Polat (10.1016/j.neucom.2013.11.009_bib34) 2007; 187
Guo (10.1016/j.neucom.2013.11.009_bib16) 2010; 193
Srinivasan (10.1016/j.neucom.2013.11.009_bib17) 2005; 29
Pincus (10.1016/j.neucom.2013.11.009_bib10) 1991; 88
Vapnik (10.1016/j.neucom.2013.11.009_bib26) 1995
Tzallas (10.1016/j.neucom.2013.11.009_bib35) 2007; 13
10.1016/j.neucom.2013.11.009_bib36
Gandhi (10.1016/j.neucom.2013.11.009_bib28) 2011; 74
Yuan (10.1016/j.neucom.2013.11.009_bib19) 2011; 96
Adeli (10.1016/j.neucom.2013.11.009_bib8) 2007; 54
C (10.1016/j.neucom.2013.11.009_bib30) 2002; 99
Burges (10.1016/j.neucom.2013.11.009_bib25) 1998; 120
Mallat (10.1016/j.neucom.2013.11.009_bib24) 1989; 11
Orhan (10.1016/j.neucom.2013.11.009_bib39) 2011; 38
Temko (10.1016/j.neucom.2013.11.009_bib27) 2011; 122
Kannathal (10.1016/j.neucom.2013.11.009_bib33) 2005; 80
Rosso (10.1016/j.neucom.2013.11.009_bib6) 2003; 83
Adeli (10.1016/j.neucom.2013.11.009_bib4) 2003; 123
Nicolaou (10.1016/j.neucom.2013.11.009_bib20) 2012; 39
Gotman (10.1016/j.neucom.2013.11.009_bib5) 1997; 103
Xie (10.1016/j.neucom.2013.11.009_bib14) 2011; 38
Ubeyli (10.1016/j.neucom.2013.11.009_bib22) 2010; 37
Diambra (10.1016/j.neucom.2013.11.009_bib12) 1999; 273
Nigam (10.1016/j.neucom.2013.11.009_bib32) 2004; 26
Wang (10.1016/j.neucom.2013.11.009_bib41) 2011; 38
Srinivasan (10.1016/j.neucom.2013.11.009_bib18) 2007; 11
Dastidar (10.1016/j.neucom.2013.11.009_bib3) 2007; 54
10.1016/j.neucom.2013.11.009_bib2
Radhakrishnan (10.1016/j.neucom.2013.11.009_bib11) 1998; 17
10.1016/j.neucom.2013.11.009_bib42
Subasi (10.1016/j.neucom.2013.11.009_bib37) 2010; 37
10.1016/j.neucom.2013.11.009_bib1
10.1016/j.neucom.2013.11.009_bib40
Acharya (10.1016/j.neucom.2013.11.009_bib21) 2012; 7
Andrzejak (10.1016/j.neucom.2013.11.009_bib7) 2001; 64
Subasi (10.1016/j.neucom.2013.11.009_bib31) 2005; 29
References_xml – volume: 29
  start-page: 343
  year: 2005
  end-page: 355
  ident: bib31
  article-title: Epileptic seizure detection using dynamic wavelet network
  publication-title: Expert Syst. Appl.
– volume: 80
  start-page: 187
  year: 2005
  end-page: 194
  ident: bib33
  article-title: Entropies for detection of epilepsy in EEG
  publication-title: Comput. Methods Prog. Biomed.
– volume: 123
  start-page: 69
  year: 2003
  end-page: 87
  ident: bib4
  article-title: Analysis of EEG records in an epileptic patient using wavelet transform
  publication-title: J. Neurosci. Method
– volume: 38
  start-page: 3973
  year: 2011
  end-page: 3981
  ident: bib14
  article-title: Classification of ventricular tachycardia and fibrillation using fuzzy similarity based approximate entropy
  publication-title: Expert Syst. Appl.
– volume: 193
  start-page: 156
  year: 2010
  end-page: 163
  ident: bib16
  article-title: Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks
  publication-title: J. Neurosci. Methods
– volume: 187
  start-page: 1017
  year: 2007
  end-page: 1026
  ident: bib34
  article-title: Classification of epileptic form EEG using a hybrid system based on decision tree classifier and fast Fourier transform
  publication-title: Appl. Math. Comput.
– volume: 11
  start-page: 288
  year: 2007
  end-page: 295
  ident: bib18
  article-title: Approximate entropy based epileptic EEG detection using artificial neural networks
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 37
  start-page: 233
  year: 2010
  end-page: 239
  ident: bib22
  article-title: Least square support vector machine employing model-based methods coefficients for analysis of EEG signals
  publication-title: Expert Syst. Appl.
– volume: 26
  start-page: 530
  year: 2013
  end-page: 543
  ident: bib29
  article-title: SVM-based characterization of liver ultrasound images using wavelet packet texture descriptors
  publication-title: J. Digital Imaging
– year: 1995
  ident: bib26
  article-title: The Nature of Statistical Learning Theory
– volume: 54
  start-page: 1545
  year: 2007
  end-page: 1551
  ident: bib3
  article-title: Mixed band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection
  publication-title: IEEE Trans. Biomed. Eng.
– reference: NINDS. Seizure and Epilepsy: Hope Through Research. National Institute of Neurological Disorders Available from:
– volume: 273
  start-page: 495
  year: 1999
  end-page: 505
  ident: bib12
  article-title: Epileptic activity recognition in EEG recording
  publication-title: Phys. A: Stat. Mech. Appl.
– volume: 38
  start-page: 10499
  year: 2011
  end-page: 10505
  ident: bib23
  article-title: Classification of electroencephalogram signals with combined time and frequency features
  publication-title: Expert Syst. Appl.
– volume: 96
  start-page: 29
  year: 2011
  end-page: 38
  ident: bib19
  article-title: Epileptic EEG classification based on extreme learning machine and nonlinear features
  publication-title: Epilepsy Res.
– volume: 39
  start-page: 202
  year: 2012
  end-page: 209
  ident: bib20
  article-title: Detection of epileptic electroencephalogram based on permutation entropy and support vector machine
  publication-title: Expert Syst. Appl.
– volume: 74
  start-page: 3051
  year: 2011
  end-page: 3057
  ident: bib28
  article-title: A comparative study of wavelet families for EEG signals classification
  publication-title: Neurocomputing
– volume: 38
  start-page: 13475
  year: 2011
  end-page: 13481
  ident: bib39
  article-title: EEG signals classification using the
  publication-title: Expert Syst. Appl.
– reference: (accessed 2013).
– volume: 64
  start-page: 061907
  year: 2001
  ident: bib7
  article-title: Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
  publication-title: Phys. Rev. E
– volume: 120
  start-page: 121
  year: 1998
  end-page: 167
  ident: bib25
  article-title: Tutorial on Support Vector Machine for Pattern Recognition. Data Mining and Knowledge Discovery
– reference: L. Guo, D. Rivero, J. Seoane, A. Pazos, Classification of EEG signals using relative wavelet energy and artificial neural networks. In: Proceedings of the First ACM/SIGEVO, Summit on Genetic and Evolutionary Computation (GEC’09), Shanghai, China, 12–14 June 2009, pp. 177–184.
– volume: 122
  start-page: 464
  year: 2011
  end-page: 473
  ident: bib27
  article-title: EEG-based neonatal seizure detection with support vector machines
  publication-title: Clin. Neurophysiol.
– volume: 103
  start-page: 356
  year: 1997
  end-page: 362
  ident: bib5
  article-title: Automatic seizure detection in the newborn: methods and initial evaluation
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 38
  start-page: 14314
  year: 2011
  end-page: 14320
  ident: bib41
  article-title: Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection
  publication-title: Expert Syst. Appl.
– volume: 37
  start-page: 8659
  year: 2010
  end-page: 8666
  ident: bib37
  article-title: EEG signal classification using PCA, ICA, LDA and support vector machine
  publication-title: Expert Syst. Appl.
– reference: WHO. Media Centre, Epilepsy, Fact Sheet.
– volume: 31
  start-page: 61
  year: 2009
  end-page: 68
  ident: bib13
  article-title: Measuring complexity using FuzzyEn, ApEn and SampEN
  publication-title: Med. Eng. Phys.
– reference: L. Guo, D. Rivero, J. Dorado, C. R. Munteanu, A. Pazos, Automatic feature extraction using genetic programming: an application to epileptic EEG classification. Expert Syst. Appl. 38 (2011) 10425–10436.
– volume: 17
  start-page: 89
  year: 1998
  end-page: 94
  ident: bib11
  article-title: Estimating regularity in epileptic seizure time-series data: a complexity-measure approach
  publication-title: IEEE Eng. Med. Biol.
– volume: 36
  start-page: 2027
  year: 2009
  end-page: 2036
  ident: bib15
  article-title: Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
  publication-title: Expert Syst. Appl.
– volume: 26
  start-page: 55
  year: 2004
  end-page: 60
  ident: bib32
  article-title: A neural-network-based detection of epilepsy
  publication-title: Neurol. Res.
– volume: 83
  start-page: 1275
  year: 2003
  end-page: 1289
  ident: bib6
  article-title: Wavelet analysis of generalized tonic–clonic epileptic seizures
  publication-title: Signal Process.
– volume: 19
  start-page: 1101
  year: 2010
  end-page: 1109
  ident: bib38
  article-title: Automatic epileptic seizure detection in EEG based on line length feature and artificial neural network
  publication-title: J. Neurosci. Methods
– volume: 40
  start-page: 823
  year: 2010
  end-page: 830
  ident: bib9
  article-title: Detection of seizures in EEG using sub-band nonlinear parameters and genetic algorithm
  publication-title: Comput. Biol. Med.
– volume: 7
  start-page: 401
  year: 2012
  end-page: 408
  ident: bib21
  article-title: Automatic diagnosis of epileptic EEG using entropies
  publication-title: Biomed. Signal Process. Control
– volume: 54
  start-page: 205
  year: 2007
  end-page: 211
  ident: bib8
  article-title: A wavelet-chaos methodology for analysis of EEGs and EEG sub-bands to detect seizure and epilepsy
  publication-title: IEEE Trans. Biomed. Eng.
– reference: EEG Time Series Data (Department of Epileptology University of Bonn, Germany)
– volume: 88
  start-page: 2297
  year: 1991
  end-page: 2301
  ident: bib10
  article-title: Approximate entropy as a measure of system complexity
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 29
  start-page: 647
  year: 2005
  end-page: 660
  ident: bib17
  article-title: Artificial neural network based epileptic detection using time-domain and frequency-domain features
  publication-title: J. Med. Syst.
– reference: . (accessed 2013).
– volume: 99
  start-page: 6562
  year: 2002
  end-page: 6566
  ident: bib30
  article-title: Selection bias in gene extraction on the basis of microarray gene expression data
  publication-title: Proc. Natl. Acad. USA
– volume: 11
  start-page: 674
  year: 1989
  end-page: 693
  ident: bib24
  article-title: A theory for multi-resolution signal decomposition: the wavelet representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 13
  year: 2007
  ident: bib35
  article-title: Automatic seizure detection based on time–frequency analysis and artificial neural networks
  publication-title: Comput. Intell. Neurosci.
– volume: 273
  start-page: 495
  issue: 3 and 4
  year: 1999
  ident: 10.1016/j.neucom.2013.11.009_bib12
  article-title: Epileptic activity recognition in EEG recording
  publication-title: Phys. A: Stat. Mech. Appl.
  doi: 10.1016/S0378-4371(99)00368-4
– volume: 26
  start-page: 55
  issue: 1
  year: 2004
  ident: 10.1016/j.neucom.2013.11.009_bib32
  article-title: A neural-network-based detection of epilepsy
  publication-title: Neurol. Res.
  doi: 10.1179/016164104773026534
– ident: 10.1016/j.neucom.2013.11.009_bib42
– ident: 10.1016/j.neucom.2013.11.009_bib2
– volume: 80
  start-page: 187
  issue: 3
  year: 2005
  ident: 10.1016/j.neucom.2013.11.009_bib33
  article-title: Entropies for detection of epilepsy in EEG
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2005.06.012
– volume: 123
  start-page: 69
  issue: 1
  year: 2003
  ident: 10.1016/j.neucom.2013.11.009_bib4
  article-title: Analysis of EEG records in an epileptic patient using wavelet transform
  publication-title: J. Neurosci. Method
  doi: 10.1016/S0165-0270(02)00340-0
– year: 1995
  ident: 10.1016/j.neucom.2013.11.009_bib26
– volume: 37
  start-page: 233
  year: 2010
  ident: 10.1016/j.neucom.2013.11.009_bib22
  article-title: Least square support vector machine employing model-based methods coefficients for analysis of EEG signals
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.05.012
– volume: 193
  start-page: 156
  year: 2010
  ident: 10.1016/j.neucom.2013.11.009_bib16
  article-title: Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2010.08.030
– volume: 122
  start-page: 464
  year: 2011
  ident: 10.1016/j.neucom.2013.11.009_bib27
  article-title: EEG-based neonatal seizure detection with support vector machines
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2010.06.034
– volume: 64
  start-page: 061907
  issue: 6
  year: 2001
  ident: 10.1016/j.neucom.2013.11.009_bib7
  article-title: Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.64.061907
– volume: 37
  start-page: 8659
  year: 2010
  ident: 10.1016/j.neucom.2013.11.009_bib37
  article-title: EEG signal classification using PCA, ICA, LDA and support vector machine
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.06.065
– volume: 120
  start-page: 121
  year: 1998
  ident: 10.1016/j.neucom.2013.11.009_bib25
– volume: 187
  start-page: 1017
  issue: 2
  year: 2007
  ident: 10.1016/j.neucom.2013.11.009_bib34
  article-title: Classification of epileptic form EEG using a hybrid system based on decision tree classifier and fast Fourier transform
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.09.022
– volume: 54
  start-page: 1545
  issue: 9
  year: 2007
  ident: 10.1016/j.neucom.2013.11.009_bib3
  article-title: Mixed band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.891945
– volume: 83
  start-page: 1275
  year: 2003
  ident: 10.1016/j.neucom.2013.11.009_bib6
  article-title: Wavelet analysis of generalized tonic–clonic epileptic seizures
  publication-title: Signal Process.
  doi: 10.1016/S0165-1684(03)00054-9
– volume: 7
  start-page: 401
  issue: 4
  year: 2012
  ident: 10.1016/j.neucom.2013.11.009_bib21
  article-title: Automatic diagnosis of epileptic EEG using entropies
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2011.07.007
– volume: 38
  start-page: 14314
  year: 2011
  ident: 10.1016/j.neucom.2013.11.009_bib41
  article-title: Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection
  publication-title: Expert Syst. Appl.
– ident: 10.1016/j.neucom.2013.11.009_bib40
  doi: 10.1016/j.eswa.2011.02.118
– volume: 39
  start-page: 202
  year: 2012
  ident: 10.1016/j.neucom.2013.11.009_bib20
  article-title: Detection of epileptic electroencephalogram based on permutation entropy and support vector machine
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.07.008
– volume: 38
  start-page: 10499
  year: 2011
  ident: 10.1016/j.neucom.2013.11.009_bib23
  article-title: Classification of electroencephalogram signals with combined time and frequency features
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.02.110
– volume: 88
  start-page: 2297
  year: 1991
  ident: 10.1016/j.neucom.2013.11.009_bib10
  article-title: Approximate entropy as a measure of system complexity
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.88.6.2297
– ident: 10.1016/j.neucom.2013.11.009_bib1
– volume: 26
  start-page: 530
  issue: 3
  year: 2013
  ident: 10.1016/j.neucom.2013.11.009_bib29
  article-title: SVM-based characterization of liver ultrasound images using wavelet packet texture descriptors
  publication-title: J. Digital Imaging
  doi: 10.1007/s10278-012-9537-8
– volume: 38
  start-page: 3973
  year: 2011
  ident: 10.1016/j.neucom.2013.11.009_bib14
  article-title: Classification of ventricular tachycardia and fibrillation using fuzzy similarity based approximate entropy
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.09.058
– volume: 96
  start-page: 29
  year: 2011
  ident: 10.1016/j.neucom.2013.11.009_bib19
  article-title: Epileptic EEG classification based on extreme learning machine and nonlinear features
  publication-title: Epilepsy Res.
  doi: 10.1016/j.eplepsyres.2011.04.013
– volume: 54
  start-page: 205
  issue: 2
  year: 2007
  ident: 10.1016/j.neucom.2013.11.009_bib8
  article-title: A wavelet-chaos methodology for analysis of EEGs and EEG sub-bands to detect seizure and epilepsy
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.886855
– volume: 40
  start-page: 823
  year: 2010
  ident: 10.1016/j.neucom.2013.11.009_bib9
  article-title: Detection of seizures in EEG using sub-band nonlinear parameters and genetic algorithm
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2010.08.005
– volume: 13
  year: 2007
  ident: 10.1016/j.neucom.2013.11.009_bib35
  article-title: Automatic seizure detection based on time–frequency analysis and artificial neural networks
  publication-title: Comput. Intell. Neurosci.
– volume: 29
  start-page: 647
  issue: 6
  year: 2005
  ident: 10.1016/j.neucom.2013.11.009_bib17
  article-title: Artificial neural network based epileptic detection using time-domain and frequency-domain features
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-005-6133-1
– volume: 36
  start-page: 2027
  issue: 5
  year: 2009
  ident: 10.1016/j.neucom.2013.11.009_bib15
  article-title: Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.12.065
– volume: 29
  start-page: 343
  issue: 2
  year: 2005
  ident: 10.1016/j.neucom.2013.11.009_bib31
  article-title: Epileptic seizure detection using dynamic wavelet network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2005.04.007
– volume: 103
  start-page: 356
  year: 1997
  ident: 10.1016/j.neucom.2013.11.009_bib5
  article-title: Automatic seizure detection in the newborn: methods and initial evaluation
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/S0013-4694(97)00003-9
– volume: 99
  start-page: 6562
  issue: 10
  year: 2002
  ident: 10.1016/j.neucom.2013.11.009_bib30
  article-title: Selection bias in gene extraction on the basis of microarray gene expression data
  publication-title: Proc. Natl. Acad. USA
  doi: 10.1073/pnas.102102699
– volume: 38
  start-page: 13475
  year: 2011
  ident: 10.1016/j.neucom.2013.11.009_bib39
  article-title: EEG signals classification using the K means clustering and a multilayer perceptron neural network model
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.04.149
– volume: 17
  start-page: 89
  issue: 3
  year: 1998
  ident: 10.1016/j.neucom.2013.11.009_bib11
  article-title: Estimating regularity in epileptic seizure time-series data: a complexity-measure approach
  publication-title: IEEE Eng. Med. Biol.
  doi: 10.1109/51.677174
– volume: 11
  start-page: 288
  issue: 3
  year: 2007
  ident: 10.1016/j.neucom.2013.11.009_bib18
  article-title: Approximate entropy based epileptic EEG detection using artificial neural networks
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2006.884369
– volume: 19
  start-page: 1101
  year: 2010
  ident: 10.1016/j.neucom.2013.11.009_bib38
  article-title: Automatic epileptic seizure detection in EEG based on line length feature and artificial neural network
  publication-title: J. Neurosci. Methods
– volume: 31
  start-page: 61
  year: 2009
  ident: 10.1016/j.neucom.2013.11.009_bib13
  article-title: Measuring complexity using FuzzyEn, ApEn and SampEN
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2008.04.005
– ident: 10.1016/j.neucom.2013.11.009_bib36
  doi: 10.1145/1543834.1543860
– volume: 11
  start-page: 674
  issue: 7
  year: 1989
  ident: 10.1016/j.neucom.2013.11.009_bib24
  article-title: A theory for multi-resolution signal decomposition: the wavelet representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.192463
– volume: 74
  start-page: 3051
  year: 2011
  ident: 10.1016/j.neucom.2013.11.009_bib28
  article-title: A comparative study of wavelet families for EEG signals classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.04.029
SSID ssj0017129
Score 2.5407515
Snippet Epilepsy is a common neurological condition which affects the central nerve system that causes people to have a seizure and can be assessed by...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 271
SubjectTerms Applied sciences
Approximation
Biological and medical sciences
Classification
Computer science; control theory; systems
Data processing. List processing. Character string processing
Discrete wavelet transform (DWT)
Electrodiagnosis. Electric activity recording
Electroencephalogram (EEG)
Electroencephalography
Entropy
Exact sciences and technology
Fuzzy
Fuzzy approximate entropy (fApEn)
Fuzzy logic
Fuzzy set theory
Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy
Investigative techniques, diagnostic techniques (general aspects)
Medical sciences
Memory organisation. Data processing
Nervous system
Nervous system (semeiology, syndromes)
Neurology
Software
Support vector machines
Support vector machines (SVMs)
Title Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine
URI https://dx.doi.org/10.1016/j.neucom.2013.11.009
https://www.proquest.com/docview/1531020806
https://www.proquest.com/docview/1671570833
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQXJBQoRTUBboyEtewduw42SPioW0ruAAqNxO_qkVtNmI3CPbAb2cmj5UQqEi9JZatRDP2zDf25xlCDgSAbmusiowwLpJCcXiyIRpCeBFc5lUWcGvg_EKNruWPm-RmiRx3d2GQVtna_sam19a6bRm00hyU4_Hgkg1jiKJ4DCECIg-88IvZ62BOHz4vaB485XGTby9OIuzdXZ-rOV6Fr5AzAk5QHGIuT6Qlvu-e1sp8CkILTbWLN4a79kZnG-RTCyPpUfOnn8mSLzbJeleigbYr9gu5PS1h2YNZsHTqx_Pq3lPnZzX9qqDIef9NT35dUfRljoZqPn-idZbxxzEgWU9x63dSQlvh6LQqEavTh3qfn_6tWZh-i1yfnV4dj6K2qEJkIVScRUObcullyIRhqc14gnmJuAkQWDCrnMmtFTzPmYqNSZjjVmHOPi6sEiwzwYptslxMCv-VUCudzIMEQAUxnXPSqGBkElLmHaBKYXpEdLLUts04joUv_uiOWnanGw1o1AAEIxo00CPRYlTZZNz4oH_aqUm_mjkanMIHI_uvtLr4HJ4uw6xNemS_U7OGVYdHKXnhJ9VUg5_gWN6UqX_0USlIFyCu2PnvX9wlq_AmkZvG2R5Znt1X_hugoJnp19O8T1aOvv8cXbwAa2QJZg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-N7gEkNL61MhhG4jU0jh0nfZzGpo5tfaETezPxFypiabQ2iPWv310-Kk0gJvEWObYS3dl3v7N_vgP4IBB0W2NVZIRxkRSK45MN0RjDi-Byr_JAWwPnUzW5kJ8v08stOOzvwhCtsrP9rU1vrHXXMuqkOarm89GXeJxgFMUTDBEIeeQPYJuyU8kBbB-cnE6mm8OEjCdtyr0kjWhAf4OuoXmVvibaCPpB8ZHSeRIz8e8e6nFVLFFuoS148YftbhzS8VPY6ZAkO2h_9hls-fI5POmrNLBu0b6Ab0cVrny0DJYt_XxdX3vm_KphYJWMaO_f2aevM0buzLFQr9c3rEk0_nuOYNYz2v1dVNhWOrasK4Lr7Fez1c-uGiKmfwkXx0ezw0nU1VWILEaLq2hsMy69DLkwcWZznlJqIm4CxhaxVc4U1gpeFLFKjEljx62itH1cWCXi3AQrXsGgXJR-F5iVThZBIqbCsM45aVQwMg1Z7B0CS2GGIHpZatslHafaFz91zy77oVsNaNIAxiMaNTCEaDOqapNu3NM_69Wk70wejX7hnpH7d7S6-RwdMOPETYfwvlezxoVHpylF6Rf1UqOr4FThNFb_6KMylC6iXPH6v3_xHTyczM7P9NnJ9HQPHuEbSVQ1Hr-Bweq69m8RFK3MfjfpbwF0OwwX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epileptic+seizure+detection+using+DWT+based+fuzzy+approximate+entropy+and+support+vector+machine&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Kumar%2C+Yatindra&rft.au=Dewal%2C+M+L&rft.au=Anand%2C+R+S&rft.date=2014-06-10&rft.issn=0925-2312&rft.volume=133&rft.spage=271&rft.epage=279&rft_id=info:doi/10.1016%2Fj.neucom.2013.11.009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon