Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine
Epilepsy is a common neurological condition which affects the central nerve system that causes people to have a seizure and can be assessed by electroencephalogram (EEG). A wavelet based fuzzy approximate entropy (fApEn) method is presented for the classification of electroencephalogram (EEG) signal...
Saved in:
Published in | Neurocomputing (Amsterdam) Vol. 133; pp. 271 - 279 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
10.06.2014
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0925-2312 1872-8286 |
DOI | 10.1016/j.neucom.2013.11.009 |
Cover
Loading…
Abstract | Epilepsy is a common neurological condition which affects the central nerve system that causes people to have a seizure and can be assessed by electroencephalogram (EEG). A wavelet based fuzzy approximate entropy (fApEn) method is presented for the classification of electroencephalogram (EEG) signals into healthy/interictal versus ictal EEGs. Discrete wavelet transform is used to decompose the EEG signals into different sub-bands. The fuzzy approximate entropy of different sub-bands is employed to measure the chaotic dynamics of the EEG signals. In this work it is observed that the quantitative value of fuzzy approximate entropy drops during the ictal period which proves that the epileptic EEG signal is more ordered than the EEG signal of a normal subject. The fApEn values of different sub-bands of all the data sets are used to form feature vectors and these vectors are used as inputs to classifiers. The classification accuracies of radial basis function based support vector machine (SVMRBF) and linear basis function based support vector machine (SVML) are compared. The fApEn feature of different sub-bands (D1–D5, A5) and classifiers is desired to correctly discriminate between three types of EEGs. It is revealed that the highest classification accuracy (100%) for normal subject data versus epileptic data is obtained by SVMRBF; however, the corresponding accuracy between normal subject data and epileptic data using SVML is obtained as 99.3% and 99.65% for the eyes open and eyes closed conditions, respectively. The similar accuracies, while comparing the interictal and ictal data, are obtained as 99.6% and 95.85% using the SVMRBF and SVML classifiers, respectively. These accuracies are not 100%; however, these are quite higher than earlier results published. The results are discussed quite in detail towards the last section of the present paper.
•The use of fuzzy approximate entropy for automated seizure detection is investigated.•Seizure EEG is characterized by lower fuzzy approximate entropy values compared to normal EEG.•Normal, pre-ictal, and ictal EEG signals are used to classify.•Classification accuracy greater than 95% is obtained for discriminating seizure versus normal EEG. |
---|---|
AbstractList | Epilepsy is a common neurological condition which affects the central nerve system that causes people to have a seizure and can be assessed by electroencephalogram (EEG). A wavelet based fuzzy approximate entropy (fApEn) method is presented for the classification of electroencephalogram (EEG) signals into healthy/interictal versus ictal EEGs. Discrete wavelet transform is used to decompose the EEG signals into different sub-bands. The fuzzy approximate entropy of different sub-bands is employed to measure the chaotic dynamics of the EEG signals. In this work it is observed that the quantitative value of fuzzy approximate entropy drops during the ictal period which proves that the epileptic EEG signal is more ordered than the EEG signal of a normal subject. The fApEn values of different sub-bands of all the data sets are used to form feature vectors and these vectors are used as inputs to classifiers. The classification accuracies of radial basis function based support vector machine (SVMRBF) and linear basis function based support vector machine (SVML) are compared. The fApEn feature of different sub-bands (D1-D5, A5) and classifiers is desired to correctly discriminate between three types of EEGs. It is revealed that the highest classification accuracy (100%) for normal subject data versus epileptic data is obtained by SVMRBF; however, the corresponding accuracy between normal subject data and epileptic data using SVML is obtained as 99.3% and 99.65% for the eyes open and eyes closed conditions, respectively. The similar accuracies, while comparing the interictal and ictal data, are obtained as 99.6% and 95.85% using the SVMRBF and SVML classifiers, respectively. These accuracies are not 100%; however, these are quite higher than earlier results published. The results are discussed quite in detail towards the last section of the present paper. Epilepsy is a common neurological condition which affects the central nerve system that causes people to have a seizure and can be assessed by electroencephalogram (EEG). A wavelet based fuzzy approximate entropy (fApEn) method is presented for the classification of electroencephalogram (EEG) signals into healthy/interictal versus ictal EEGs. Discrete wavelet transform is used to decompose the EEG signals into different sub-bands. The fuzzy approximate entropy of different sub-bands is employed to measure the chaotic dynamics of the EEG signals. In this work it is observed that the quantitative value of fuzzy approximate entropy drops during the ictal period which proves that the epileptic EEG signal is more ordered than the EEG signal of a normal subject. The fApEn values of different sub-bands of all the data sets are used to form feature vectors and these vectors are used as inputs to classifiers. The classification accuracies of radial basis function based support vector machine (SVMRBF) and linear basis function based support vector machine (SVML) are compared. The fApEn feature of different sub-bands (D1–D5, A5) and classifiers is desired to correctly discriminate between three types of EEGs. It is revealed that the highest classification accuracy (100%) for normal subject data versus epileptic data is obtained by SVMRBF; however, the corresponding accuracy between normal subject data and epileptic data using SVML is obtained as 99.3% and 99.65% for the eyes open and eyes closed conditions, respectively. The similar accuracies, while comparing the interictal and ictal data, are obtained as 99.6% and 95.85% using the SVMRBF and SVML classifiers, respectively. These accuracies are not 100%; however, these are quite higher than earlier results published. The results are discussed quite in detail towards the last section of the present paper. •The use of fuzzy approximate entropy for automated seizure detection is investigated.•Seizure EEG is characterized by lower fuzzy approximate entropy values compared to normal EEG.•Normal, pre-ictal, and ictal EEG signals are used to classify.•Classification accuracy greater than 95% is obtained for discriminating seizure versus normal EEG. |
Author | Anand, R.S. Kumar, Yatindra Dewal, M.L. |
Author_xml | – sequence: 1 givenname: Yatindra surname: Kumar fullname: Kumar, Yatindra email: ykr01dee@iitr.ernet.in – sequence: 2 givenname: M.L. surname: Dewal fullname: Dewal, M.L. – sequence: 3 givenname: R.S. surname: Anand fullname: Anand, R.S. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28293615$$DView record in Pascal Francis |
BookMark | eNqFkT1vFDEQhi0UJC4H_4DCDRLNLh57PymQUBIIUiSaIErjnZ0Fn_bsxfZG5H49Pl1EkYJUlkbP82o87zk7c94RY69BlCCgebcrHa3o96UUoEqAUoj-GdtA18qik11zxjail3UhFcgX7DzGnRDQguw37MfVYmdakkUeyR7WQHykRJisd3yN1v3kl99v-WAijXxaD4d7bpYl-D92bxJxcin4Jc_cyOO6LD4kfpdtH_je4C_r6CV7Ppk50quHd8u-fbq6vbgubr5-_nLx8abASshU9NhCRdXUqUG02EHd4tTCMNV9K7AZB4OowBjRyGGoxQjYVEpWoLBRohsmVFv29pSbl_u9Ukx6byPSPBtHfo0amjaHik6pp9FagZCiE01G3zygJqKZp2Ac2qiXkL8f7rXsZK-azG9ZdeIw-BgDTf8QEPrYkd7pU0f62JEG0LmjrL1_pKFN5nj7FIydn5I_nGTKZ72zFHRESw5ptCFXoEdv_x_wF2DMsoA |
CitedBy_id | crossref_primary_10_3233_THC_171343 crossref_primary_10_1038_s41598_017_17414_x crossref_primary_10_4218_etrij_2018_0118 crossref_primary_10_1016_j_bspc_2019_101787 crossref_primary_10_1002_dac_4095 crossref_primary_10_7555_JBR_33_20190009 crossref_primary_10_1016_j_chaos_2022_112528 crossref_primary_10_1016_j_neucom_2017_02_053 crossref_primary_10_1142_S0129065723500314 crossref_primary_10_1016_j_bspc_2017_05_002 crossref_primary_10_1007_s13246_017_0610_y crossref_primary_10_1016_j_bspc_2021_103450 crossref_primary_10_1016_j_mehy_2019_109519 crossref_primary_10_1109_ACCESS_2021_3126065 crossref_primary_10_1088_1741_2552_ac2ca0 crossref_primary_10_1155_2022_8724536 crossref_primary_10_3390_brainsci9050115 crossref_primary_10_1016_j_bbe_2017_08_003 crossref_primary_10_1016_j_knosys_2018_10_029 crossref_primary_10_1002_ima_22199 crossref_primary_10_1007_s11042_023_15052_2 crossref_primary_10_1016_j_bspc_2018_03_004 crossref_primary_10_1016_j_patrec_2017_05_007 crossref_primary_10_1016_j_neucom_2015_06_076 crossref_primary_10_1016_j_bspc_2017_01_005 crossref_primary_10_3233_KES_230059 crossref_primary_10_1016_j_bspc_2021_102827 crossref_primary_10_1142_S0219519419400050 crossref_primary_10_1088_1742_6596_943_1_012030 crossref_primary_10_1007_s10470_019_01545_4 crossref_primary_10_1016_j_compbiomed_2022_105397 crossref_primary_10_1016_j_neucom_2020_04_144 crossref_primary_10_1063_1_4929148 crossref_primary_10_3390_e22020140 crossref_primary_10_1016_j_neucom_2016_01_062 crossref_primary_10_1016_j_neucom_2014_07_062 crossref_primary_10_1016_j_physleta_2017_11_022 crossref_primary_10_1515_bmt_2017_0233 crossref_primary_10_1109_TBME_2019_2957392 crossref_primary_10_1016_j_engappai_2021_104426 crossref_primary_10_1109_ACCESS_2019_2956865 crossref_primary_10_1007_s10548_015_0462_2 crossref_primary_10_3171_2019_2_JNS182260 crossref_primary_10_1109_ACCESS_2023_3338853 crossref_primary_10_1016_j_bspc_2020_102293 crossref_primary_10_1016_j_bspc_2021_103417 crossref_primary_10_3233_THC_218049 crossref_primary_10_1016_j_compbiomed_2021_104250 crossref_primary_10_1080_03091902_2017_1394390 crossref_primary_10_1093_cercor_bhad105 crossref_primary_10_1088_1742_6596_1626_1_012085 crossref_primary_10_1016_j_jocs_2018_02_002 crossref_primary_10_1016_j_eplepsyres_2021_106818 crossref_primary_10_1109_ACCESS_2019_2944531 crossref_primary_10_1016_j_asoc_2016_12_009 crossref_primary_10_3390_app9235215 crossref_primary_10_1109_JBHI_2024_3366341 crossref_primary_10_3390_e22111234 crossref_primary_10_3390_s20164639 crossref_primary_10_3390_diagnostics12112879 crossref_primary_10_1016_j_bspc_2017_01_010 crossref_primary_10_1016_j_compbiomed_2019_103549 crossref_primary_10_1016_j_bspc_2021_102562 crossref_primary_10_1016_j_bspc_2022_103820 crossref_primary_10_1007_s13042_017_0716_2 crossref_primary_10_3934_mbe_2024245 crossref_primary_10_1080_03772063_2019_1568206 crossref_primary_10_1007_s12652_020_02837_8 crossref_primary_10_1007_s40009_018_0629_y crossref_primary_10_1142_S0218126619501603 crossref_primary_10_1007_s11063_016_9530_1 crossref_primary_10_1016_j_bspc_2019_101569 crossref_primary_10_1109_ACCESS_2024_3409581 crossref_primary_10_1016_j_bspc_2017_05_015 crossref_primary_10_1016_j_bspc_2020_102268 crossref_primary_10_1016_j_engstruct_2019_109396 crossref_primary_10_1080_10255842_2023_2271603 crossref_primary_10_1109_JBHI_2014_2387795 crossref_primary_10_1016_j_neucom_2024_128644 crossref_primary_10_1007_s10044_017_0642_7 crossref_primary_10_1109_JTEHM_2021_3050925 crossref_primary_10_1016_j_chaos_2022_111886 crossref_primary_10_1080_03091902_2017_1394389 crossref_primary_10_1186_s13634_019_0606_8 crossref_primary_10_3390_e18010007 crossref_primary_10_1016_j_neucom_2016_01_029 crossref_primary_10_1111_cns_14751 crossref_primary_10_1016_j_bbe_2016_07_004 crossref_primary_10_1007_s11042_021_10882_4 crossref_primary_10_1016_j_cogsys_2018_08_018 crossref_primary_10_1016_j_knosys_2015_08_004 crossref_primary_10_1016_j_seizure_2017_05_018 crossref_primary_10_3389_fnins_2024_1436619 crossref_primary_10_1016_j_ifacol_2024_11_063 crossref_primary_10_1007_s11042_020_09135_7 crossref_primary_10_1016_j_chaos_2020_110639 crossref_primary_10_3233_JIFS_237293 crossref_primary_10_1007_s11045_018_0628_7 crossref_primary_10_1016_j_bbe_2016_12_005 crossref_primary_10_1016_j_mehy_2019_109464 crossref_primary_10_1109_ACCESS_2023_3294473 crossref_primary_10_3389_fninf_2023_1205529 crossref_primary_10_1007_s00521_016_2230_y crossref_primary_10_1016_j_bspc_2020_102006 crossref_primary_10_3390_app8091528 crossref_primary_10_1016_j_bspc_2021_102520 crossref_primary_10_1016_j_neucom_2016_06_067 crossref_primary_10_1371_journal_pone_0193691 crossref_primary_10_13005_bpj_3013 crossref_primary_10_1155_2017_7949507 crossref_primary_10_1109_ACCESS_2016_2585661 crossref_primary_10_1109_TNSRE_2021_3055276 crossref_primary_10_1038_s41598_024_61338_2 crossref_primary_10_1016_j_bbe_2019_10_006 crossref_primary_10_1109_ACCESS_2024_3401568 crossref_primary_10_1109_ACCESS_2024_3415716 crossref_primary_10_3389_fnins_2020_00606 crossref_primary_10_1007_s11277_020_07742_z crossref_primary_10_1016_j_bbe_2015_10_006 crossref_primary_10_1155_2020_5128729 crossref_primary_10_3390_s17061212 crossref_primary_10_1088_1674_1056_acdfbf crossref_primary_10_1016_j_neucom_2016_06_056 crossref_primary_10_1016_j_neucom_2023_126513 crossref_primary_10_1007_s00521_020_05588_x crossref_primary_10_1016_j_eswa_2021_116414 crossref_primary_10_1007_s11042_019_7174_7 crossref_primary_10_1007_s40846_017_0286_5 crossref_primary_10_1007_s11042_021_11035_3 crossref_primary_10_1142_S0129065718500107 crossref_primary_10_1109_TNSRE_2022_3156931 crossref_primary_10_1142_S0129065719500217 crossref_primary_10_4015_S1016237218500370 crossref_primary_10_1007_s12553_019_00363_y crossref_primary_10_48084_etasr_2031 crossref_primary_10_1142_S0217979218500868 crossref_primary_10_1109_ACCESS_2020_3046851 crossref_primary_10_1142_S0219519419400104 crossref_primary_10_1088_1741_2552_aae131 crossref_primary_10_1177_1550059420905724 crossref_primary_10_3390_e23121669 crossref_primary_10_1007_s10462_019_09755_y crossref_primary_10_1016_j_heliyon_2023_e22208 crossref_primary_10_1016_j_neucom_2021_06_048 crossref_primary_10_7498_aps_65_218701 crossref_primary_10_1109_JSEN_2020_2976519 crossref_primary_10_1016_j_bbe_2022_02_004 crossref_primary_10_1515_sjecr_2017_0043 crossref_primary_10_2174_0118722121256663231019061211 crossref_primary_10_1016_j_compbiomed_2021_104969 crossref_primary_10_1016_j_bspc_2017_12_005 crossref_primary_10_1016_j_neucom_2016_03_056 crossref_primary_10_1016_j_medengphy_2015_09_001 crossref_primary_10_1049_cds2_12077 crossref_primary_10_1016_j_irbm_2018_12_002 crossref_primary_10_1080_03091902_2018_1513576 crossref_primary_10_3389_fphys_2016_00136 crossref_primary_10_1016_j_bbe_2019_11_002 crossref_primary_10_1155_2019_5173589 crossref_primary_10_1016_j_jneumeth_2016_03_024 crossref_primary_10_1016_j_jneumeth_2015_01_015 crossref_primary_10_1007_s12652_022_03737_9 crossref_primary_10_1007_s13042_019_00921_w crossref_primary_10_1016_j_bspc_2017_08_013 crossref_primary_10_1016_j_neucom_2015_10_070 crossref_primary_10_1109_ACCESS_2016_2612242 crossref_primary_10_1016_j_engappai_2023_107826 crossref_primary_10_3390_diagnostics13061058 crossref_primary_10_1049_iet_smt_2018_5358 crossref_primary_10_1016_j_bspc_2020_101927 crossref_primary_10_1016_j_neuroscience_2021_11_017 crossref_primary_10_1080_02522667_2018_1453671 crossref_primary_10_1109_ACCESS_2022_3165815 crossref_primary_10_1016_j_bspc_2016_12_007 crossref_primary_10_1016_j_bbe_2018_03_007 crossref_primary_10_1007_s11045_016_0419_y crossref_primary_10_1080_10255842_2024_2356634 crossref_primary_10_1016_j_bspc_2021_103281 crossref_primary_10_1007_s00034_022_02281_3 crossref_primary_10_1007_s00034_018_0829_1 crossref_primary_10_1007_s12652_020_02185_7 crossref_primary_10_4015_S1016237223500394 crossref_primary_10_1155_2020_4625218 crossref_primary_10_1109_TII_2021_3084352 crossref_primary_10_1088_1741_2552_ab2409 crossref_primary_10_1007_s11042_023_14671_z crossref_primary_10_1109_ACCESS_2020_3031447 crossref_primary_10_1142_S0129065723500612 crossref_primary_10_1108_ILT_03_2018_0101 crossref_primary_10_3390_brainsci12060778 crossref_primary_10_1016_j_bspc_2021_103031 crossref_primary_10_1007_s11517_019_01951_w crossref_primary_10_1016_j_compeleceng_2024_109925 crossref_primary_10_1016_j_bspc_2019_101708 crossref_primary_10_2174_1389201020666190618112715 crossref_primary_10_1007_s13246_018_0697_9 crossref_primary_10_17776_csj_682734 crossref_primary_10_1016_j_bspc_2019_101707 crossref_primary_10_1142_S012906571850003X crossref_primary_10_1145_3552512 crossref_primary_10_1080_03091902_2019_1572236 |
Cites_doi | 10.1016/S0378-4371(99)00368-4 10.1179/016164104773026534 10.1016/j.cmpb.2005.06.012 10.1016/S0165-0270(02)00340-0 10.1016/j.eswa.2009.05.012 10.1016/j.jneumeth.2010.08.030 10.1016/j.clinph.2010.06.034 10.1103/PhysRevE.64.061907 10.1016/j.eswa.2010.06.065 10.1016/j.amc.2006.09.022 10.1109/TBME.2007.891945 10.1016/S0165-1684(03)00054-9 10.1016/j.bspc.2011.07.007 10.1016/j.eswa.2011.02.118 10.1016/j.eswa.2011.07.008 10.1016/j.eswa.2011.02.110 10.1073/pnas.88.6.2297 10.1007/s10278-012-9537-8 10.1016/j.eswa.2010.09.058 10.1016/j.eplepsyres.2011.04.013 10.1109/TBME.2006.886855 10.1016/j.compbiomed.2010.08.005 10.1007/s10916-005-6133-1 10.1016/j.eswa.2007.12.065 10.1016/j.eswa.2005.04.007 10.1016/S0013-4694(97)00003-9 10.1073/pnas.102102699 10.1016/j.eswa.2011.04.149 10.1109/51.677174 10.1109/TITB.2006.884369 10.1016/j.medengphy.2008.04.005 10.1145/1543834.1543860 10.1109/34.192463 10.1016/j.neucom.2011.04.029 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2014 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7QO 8FD FR3 P64 7SC 7TB 7U5 JQ2 L7M L~C L~D |
DOI | 10.1016/j.neucom.2013.11.009 |
DatabaseName | CrossRef Pascal-Francis Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database Engineering Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Applied Sciences |
EISSN | 1872-8286 |
EndPage | 279 |
ExternalDocumentID | 28293615 10_1016_j_neucom_2013_11_009 S0925231214000058 |
GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW SSH WUQ XPP IQODW 7QO 8FD FR3 P64 7SC 7TB 7U5 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c402t-9c714e4f83b07c8157cf71bf5970c6dbacc31aa062bb50d1c6432413c6308bfc3 |
IEDL.DBID | .~1 |
ISSN | 0925-2312 |
IngestDate | Fri Jul 11 13:08:00 EDT 2025 Fri Jul 11 07:53:54 EDT 2025 Wed Apr 02 07:21:52 EDT 2025 Thu Apr 24 22:56:19 EDT 2025 Tue Jul 01 03:05:25 EDT 2025 Fri Feb 23 02:27:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Discrete wavelet transform (DWT) Support vector machines (SVMs) Electroencephalogram (EEG) Fuzzy approximate entropy (fApEn) Chaos Subband decomposition Epilepsy Electroencephalography Entropy Discrete wavelet transforms Modeling Complex variable method Radial basis function Fuzzy logic Wavelet transformation Vector support machine Mental disorder |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-9c714e4f83b07c8157cf71bf5970c6dbacc31aa062bb50d1c6432413c6308bfc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1531020806 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1671570833 proquest_miscellaneous_1531020806 pascalfrancis_primary_28293615 crossref_primary_10_1016_j_neucom_2013_11_009 crossref_citationtrail_10_1016_j_neucom_2013_11_009 elsevier_sciencedirect_doi_10_1016_j_neucom_2013_11_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-06-10 |
PublicationDateYYYYMMDD | 2014-06-10 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Neurocomputing (Amsterdam) |
PublicationYear | 2014 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Rosso, Blanco, Rabinowicz (bib6) 2003; 83 Wang, Miao, Xie (bib41) 2011; 38 NINDS. Seizure and Epilepsy: Hope Through Research. National Institute of Neurological Disorders Available from Mallat (bib24) 1989; 11 Polat, Günes (bib34) 2007; 187 Iscan, Dokur, Demiralap (bib23) 2011; 38 Srinivasan, Eswaran, Sriraam (bib17) 2005; 29 Subasi, Gursoy (bib37) 2010; 37 Ocak (bib15) 2009; 36 L. Guo, D. Rivero, J. Dorado, C. R. Munteanu, A. Pazos, Automatic feature extraction using genetic programming: an application to epileptic EEG classification. Expert Syst. Appl. 38 (2011) 10425–10436. Gotman, Flanagah, Zhang, Rosenblatt (bib5) 1997; 103 Acharya, Molinari, Sree, Chattopadhyay (bib21) 2012; 7 Pincus (bib10) 1991; 88 Burges (bib25) 1998; 120 Vapnik (bib26) 1995 Dastidar, Adeli, Dadmehr (bib3) 2007; 54 EEG Time Series Data (Department of Epileptology University of Bonn, Germany) Xie, Gao, Liu (bib14) 2011; 38 Virmani, Kumar, Kalra., Khandelwal (bib29) 2013; 26 Tzallas, Tsipouras, Fotiadis (bib35) 2007; 13 (accessed 2013). Andrzejak, Lehnertz, Rieke (bib7) 2001; 64 Temko, Thomas, Marnane, Lightbody, Boylan (bib27) 2011; 122 Chen, Zhuang, Yu, Wang (bib13) 2009; 31 Subasi (bib31) 2005; 29 Gandhi, Panigrahi, Anand (bib28) 2011; 74 Radhakrishnan, Gangadhar (bib11) 1998; 17 Diambra, Figueiredo, Malta (bib12) 1999; 273 WHO. Media Centre, Epilepsy, Fact Sheet. Nigam, Graupe (bib32) 2004; 26 Kannathal, Choo, Acharya, Sadasivan (bib33) 2005; 80 L. Guo, D. Rivero, J. Seoane, A. Pazos, Classification of EEG signals using relative wavelet energy and artificial neural networks. In: Proceedings of the First ACM/SIGEVO, Summit on Genetic and Evolutionary Computation (GEC’09), Shanghai, China, 12–14 June 2009, pp. 177–184. Srinivasan, Eswaran, Sriraam (bib18) 2007; 11 C, McLachlan (bib30) 2002; 99 Guo, Rivero, Dorado, Rabunal, Pazos (bib38) 2010; 19 Orhan, Hekim, Ozer (bib39) 2011; 38 Adeli, Zhou, Dadmehr (bib4) 2003; 123 Adeli, Dastidar, Dadmehr (bib8) 2007; 54 Guo, Riveer, Pazaos (bib16) 2010; 193 Nicolaou, Georgiou (bib20) 2012; 39 Hsu, Yu (bib9) 2010; 40 Ubeyli (bib22) 2010; 37 Yuan, Zhou, Li, Cai (bib19) 2011; 96 Virmani (10.1016/j.neucom.2013.11.009_bib29) 2013; 26 Guo (10.1016/j.neucom.2013.11.009_bib38) 2010; 19 Hsu (10.1016/j.neucom.2013.11.009_bib9) 2010; 40 Chen (10.1016/j.neucom.2013.11.009_bib13) 2009; 31 Iscan (10.1016/j.neucom.2013.11.009_bib23) 2011; 38 Ocak (10.1016/j.neucom.2013.11.009_bib15) 2009; 36 Polat (10.1016/j.neucom.2013.11.009_bib34) 2007; 187 Guo (10.1016/j.neucom.2013.11.009_bib16) 2010; 193 Srinivasan (10.1016/j.neucom.2013.11.009_bib17) 2005; 29 Pincus (10.1016/j.neucom.2013.11.009_bib10) 1991; 88 Vapnik (10.1016/j.neucom.2013.11.009_bib26) 1995 Tzallas (10.1016/j.neucom.2013.11.009_bib35) 2007; 13 10.1016/j.neucom.2013.11.009_bib36 Gandhi (10.1016/j.neucom.2013.11.009_bib28) 2011; 74 Yuan (10.1016/j.neucom.2013.11.009_bib19) 2011; 96 Adeli (10.1016/j.neucom.2013.11.009_bib8) 2007; 54 C (10.1016/j.neucom.2013.11.009_bib30) 2002; 99 Burges (10.1016/j.neucom.2013.11.009_bib25) 1998; 120 Mallat (10.1016/j.neucom.2013.11.009_bib24) 1989; 11 Orhan (10.1016/j.neucom.2013.11.009_bib39) 2011; 38 Temko (10.1016/j.neucom.2013.11.009_bib27) 2011; 122 Kannathal (10.1016/j.neucom.2013.11.009_bib33) 2005; 80 Rosso (10.1016/j.neucom.2013.11.009_bib6) 2003; 83 Adeli (10.1016/j.neucom.2013.11.009_bib4) 2003; 123 Nicolaou (10.1016/j.neucom.2013.11.009_bib20) 2012; 39 Gotman (10.1016/j.neucom.2013.11.009_bib5) 1997; 103 Xie (10.1016/j.neucom.2013.11.009_bib14) 2011; 38 Ubeyli (10.1016/j.neucom.2013.11.009_bib22) 2010; 37 Diambra (10.1016/j.neucom.2013.11.009_bib12) 1999; 273 Nigam (10.1016/j.neucom.2013.11.009_bib32) 2004; 26 Wang (10.1016/j.neucom.2013.11.009_bib41) 2011; 38 Srinivasan (10.1016/j.neucom.2013.11.009_bib18) 2007; 11 Dastidar (10.1016/j.neucom.2013.11.009_bib3) 2007; 54 10.1016/j.neucom.2013.11.009_bib2 Radhakrishnan (10.1016/j.neucom.2013.11.009_bib11) 1998; 17 10.1016/j.neucom.2013.11.009_bib42 Subasi (10.1016/j.neucom.2013.11.009_bib37) 2010; 37 10.1016/j.neucom.2013.11.009_bib1 10.1016/j.neucom.2013.11.009_bib40 Acharya (10.1016/j.neucom.2013.11.009_bib21) 2012; 7 Andrzejak (10.1016/j.neucom.2013.11.009_bib7) 2001; 64 Subasi (10.1016/j.neucom.2013.11.009_bib31) 2005; 29 |
References_xml | – volume: 29 start-page: 343 year: 2005 end-page: 355 ident: bib31 article-title: Epileptic seizure detection using dynamic wavelet network publication-title: Expert Syst. Appl. – volume: 80 start-page: 187 year: 2005 end-page: 194 ident: bib33 article-title: Entropies for detection of epilepsy in EEG publication-title: Comput. Methods Prog. Biomed. – volume: 123 start-page: 69 year: 2003 end-page: 87 ident: bib4 article-title: Analysis of EEG records in an epileptic patient using wavelet transform publication-title: J. Neurosci. Method – volume: 38 start-page: 3973 year: 2011 end-page: 3981 ident: bib14 article-title: Classification of ventricular tachycardia and fibrillation using fuzzy similarity based approximate entropy publication-title: Expert Syst. Appl. – volume: 193 start-page: 156 year: 2010 end-page: 163 ident: bib16 article-title: Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks publication-title: J. Neurosci. Methods – volume: 187 start-page: 1017 year: 2007 end-page: 1026 ident: bib34 article-title: Classification of epileptic form EEG using a hybrid system based on decision tree classifier and fast Fourier transform publication-title: Appl. Math. Comput. – volume: 11 start-page: 288 year: 2007 end-page: 295 ident: bib18 article-title: Approximate entropy based epileptic EEG detection using artificial neural networks publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 37 start-page: 233 year: 2010 end-page: 239 ident: bib22 article-title: Least square support vector machine employing model-based methods coefficients for analysis of EEG signals publication-title: Expert Syst. Appl. – volume: 26 start-page: 530 year: 2013 end-page: 543 ident: bib29 article-title: SVM-based characterization of liver ultrasound images using wavelet packet texture descriptors publication-title: J. Digital Imaging – year: 1995 ident: bib26 article-title: The Nature of Statistical Learning Theory – volume: 54 start-page: 1545 year: 2007 end-page: 1551 ident: bib3 article-title: Mixed band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection publication-title: IEEE Trans. Biomed. Eng. – reference: NINDS. Seizure and Epilepsy: Hope Through Research. National Institute of Neurological Disorders Available from: – volume: 273 start-page: 495 year: 1999 end-page: 505 ident: bib12 article-title: Epileptic activity recognition in EEG recording publication-title: Phys. A: Stat. Mech. Appl. – volume: 38 start-page: 10499 year: 2011 end-page: 10505 ident: bib23 article-title: Classification of electroencephalogram signals with combined time and frequency features publication-title: Expert Syst. Appl. – volume: 96 start-page: 29 year: 2011 end-page: 38 ident: bib19 article-title: Epileptic EEG classification based on extreme learning machine and nonlinear features publication-title: Epilepsy Res. – volume: 39 start-page: 202 year: 2012 end-page: 209 ident: bib20 article-title: Detection of epileptic electroencephalogram based on permutation entropy and support vector machine publication-title: Expert Syst. Appl. – volume: 74 start-page: 3051 year: 2011 end-page: 3057 ident: bib28 article-title: A comparative study of wavelet families for EEG signals classification publication-title: Neurocomputing – volume: 38 start-page: 13475 year: 2011 end-page: 13481 ident: bib39 article-title: EEG signals classification using the publication-title: Expert Syst. Appl. – reference: (accessed 2013). – volume: 64 start-page: 061907 year: 2001 ident: bib7 article-title: Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state publication-title: Phys. Rev. E – volume: 120 start-page: 121 year: 1998 end-page: 167 ident: bib25 article-title: Tutorial on Support Vector Machine for Pattern Recognition. Data Mining and Knowledge Discovery – reference: L. Guo, D. Rivero, J. Seoane, A. Pazos, Classification of EEG signals using relative wavelet energy and artificial neural networks. In: Proceedings of the First ACM/SIGEVO, Summit on Genetic and Evolutionary Computation (GEC’09), Shanghai, China, 12–14 June 2009, pp. 177–184. – volume: 122 start-page: 464 year: 2011 end-page: 473 ident: bib27 article-title: EEG-based neonatal seizure detection with support vector machines publication-title: Clin. Neurophysiol. – volume: 103 start-page: 356 year: 1997 end-page: 362 ident: bib5 article-title: Automatic seizure detection in the newborn: methods and initial evaluation publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 38 start-page: 14314 year: 2011 end-page: 14320 ident: bib41 article-title: Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection publication-title: Expert Syst. Appl. – volume: 37 start-page: 8659 year: 2010 end-page: 8666 ident: bib37 article-title: EEG signal classification using PCA, ICA, LDA and support vector machine publication-title: Expert Syst. Appl. – reference: WHO. Media Centre, Epilepsy, Fact Sheet. – volume: 31 start-page: 61 year: 2009 end-page: 68 ident: bib13 article-title: Measuring complexity using FuzzyEn, ApEn and SampEN publication-title: Med. Eng. Phys. – reference: L. Guo, D. Rivero, J. Dorado, C. R. Munteanu, A. Pazos, Automatic feature extraction using genetic programming: an application to epileptic EEG classification. Expert Syst. Appl. 38 (2011) 10425–10436. – volume: 17 start-page: 89 year: 1998 end-page: 94 ident: bib11 article-title: Estimating regularity in epileptic seizure time-series data: a complexity-measure approach publication-title: IEEE Eng. Med. Biol. – volume: 36 start-page: 2027 year: 2009 end-page: 2036 ident: bib15 article-title: Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy publication-title: Expert Syst. Appl. – volume: 26 start-page: 55 year: 2004 end-page: 60 ident: bib32 article-title: A neural-network-based detection of epilepsy publication-title: Neurol. Res. – volume: 83 start-page: 1275 year: 2003 end-page: 1289 ident: bib6 article-title: Wavelet analysis of generalized tonic–clonic epileptic seizures publication-title: Signal Process. – volume: 19 start-page: 1101 year: 2010 end-page: 1109 ident: bib38 article-title: Automatic epileptic seizure detection in EEG based on line length feature and artificial neural network publication-title: J. Neurosci. Methods – volume: 40 start-page: 823 year: 2010 end-page: 830 ident: bib9 article-title: Detection of seizures in EEG using sub-band nonlinear parameters and genetic algorithm publication-title: Comput. Biol. Med. – volume: 7 start-page: 401 year: 2012 end-page: 408 ident: bib21 article-title: Automatic diagnosis of epileptic EEG using entropies publication-title: Biomed. Signal Process. Control – volume: 54 start-page: 205 year: 2007 end-page: 211 ident: bib8 article-title: A wavelet-chaos methodology for analysis of EEGs and EEG sub-bands to detect seizure and epilepsy publication-title: IEEE Trans. Biomed. Eng. – reference: EEG Time Series Data (Department of Epileptology University of Bonn, Germany) – volume: 88 start-page: 2297 year: 1991 end-page: 2301 ident: bib10 article-title: Approximate entropy as a measure of system complexity publication-title: Proc. Natl. Acad. Sci. USA – volume: 29 start-page: 647 year: 2005 end-page: 660 ident: bib17 article-title: Artificial neural network based epileptic detection using time-domain and frequency-domain features publication-title: J. Med. Syst. – reference: . (accessed 2013). – volume: 99 start-page: 6562 year: 2002 end-page: 6566 ident: bib30 article-title: Selection bias in gene extraction on the basis of microarray gene expression data publication-title: Proc. Natl. Acad. USA – volume: 11 start-page: 674 year: 1989 end-page: 693 ident: bib24 article-title: A theory for multi-resolution signal decomposition: the wavelet representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 13 year: 2007 ident: bib35 article-title: Automatic seizure detection based on time–frequency analysis and artificial neural networks publication-title: Comput. Intell. Neurosci. – volume: 273 start-page: 495 issue: 3 and 4 year: 1999 ident: 10.1016/j.neucom.2013.11.009_bib12 article-title: Epileptic activity recognition in EEG recording publication-title: Phys. A: Stat. Mech. Appl. doi: 10.1016/S0378-4371(99)00368-4 – volume: 26 start-page: 55 issue: 1 year: 2004 ident: 10.1016/j.neucom.2013.11.009_bib32 article-title: A neural-network-based detection of epilepsy publication-title: Neurol. Res. doi: 10.1179/016164104773026534 – ident: 10.1016/j.neucom.2013.11.009_bib42 – ident: 10.1016/j.neucom.2013.11.009_bib2 – volume: 80 start-page: 187 issue: 3 year: 2005 ident: 10.1016/j.neucom.2013.11.009_bib33 article-title: Entropies for detection of epilepsy in EEG publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2005.06.012 – volume: 123 start-page: 69 issue: 1 year: 2003 ident: 10.1016/j.neucom.2013.11.009_bib4 article-title: Analysis of EEG records in an epileptic patient using wavelet transform publication-title: J. Neurosci. Method doi: 10.1016/S0165-0270(02)00340-0 – year: 1995 ident: 10.1016/j.neucom.2013.11.009_bib26 – volume: 37 start-page: 233 year: 2010 ident: 10.1016/j.neucom.2013.11.009_bib22 article-title: Least square support vector machine employing model-based methods coefficients for analysis of EEG signals publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.05.012 – volume: 193 start-page: 156 year: 2010 ident: 10.1016/j.neucom.2013.11.009_bib16 article-title: Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2010.08.030 – volume: 122 start-page: 464 year: 2011 ident: 10.1016/j.neucom.2013.11.009_bib27 article-title: EEG-based neonatal seizure detection with support vector machines publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2010.06.034 – volume: 64 start-page: 061907 issue: 6 year: 2001 ident: 10.1016/j.neucom.2013.11.009_bib7 article-title: Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.64.061907 – volume: 37 start-page: 8659 year: 2010 ident: 10.1016/j.neucom.2013.11.009_bib37 article-title: EEG signal classification using PCA, ICA, LDA and support vector machine publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.06.065 – volume: 120 start-page: 121 year: 1998 ident: 10.1016/j.neucom.2013.11.009_bib25 – volume: 187 start-page: 1017 issue: 2 year: 2007 ident: 10.1016/j.neucom.2013.11.009_bib34 article-title: Classification of epileptic form EEG using a hybrid system based on decision tree classifier and fast Fourier transform publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2006.09.022 – volume: 54 start-page: 1545 issue: 9 year: 2007 ident: 10.1016/j.neucom.2013.11.009_bib3 article-title: Mixed band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.891945 – volume: 83 start-page: 1275 year: 2003 ident: 10.1016/j.neucom.2013.11.009_bib6 article-title: Wavelet analysis of generalized tonic–clonic epileptic seizures publication-title: Signal Process. doi: 10.1016/S0165-1684(03)00054-9 – volume: 7 start-page: 401 issue: 4 year: 2012 ident: 10.1016/j.neucom.2013.11.009_bib21 article-title: Automatic diagnosis of epileptic EEG using entropies publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2011.07.007 – volume: 38 start-page: 14314 year: 2011 ident: 10.1016/j.neucom.2013.11.009_bib41 article-title: Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection publication-title: Expert Syst. Appl. – ident: 10.1016/j.neucom.2013.11.009_bib40 doi: 10.1016/j.eswa.2011.02.118 – volume: 39 start-page: 202 year: 2012 ident: 10.1016/j.neucom.2013.11.009_bib20 article-title: Detection of epileptic electroencephalogram based on permutation entropy and support vector machine publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.07.008 – volume: 38 start-page: 10499 year: 2011 ident: 10.1016/j.neucom.2013.11.009_bib23 article-title: Classification of electroencephalogram signals with combined time and frequency features publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.02.110 – volume: 88 start-page: 2297 year: 1991 ident: 10.1016/j.neucom.2013.11.009_bib10 article-title: Approximate entropy as a measure of system complexity publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.88.6.2297 – ident: 10.1016/j.neucom.2013.11.009_bib1 – volume: 26 start-page: 530 issue: 3 year: 2013 ident: 10.1016/j.neucom.2013.11.009_bib29 article-title: SVM-based characterization of liver ultrasound images using wavelet packet texture descriptors publication-title: J. Digital Imaging doi: 10.1007/s10278-012-9537-8 – volume: 38 start-page: 3973 year: 2011 ident: 10.1016/j.neucom.2013.11.009_bib14 article-title: Classification of ventricular tachycardia and fibrillation using fuzzy similarity based approximate entropy publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.09.058 – volume: 96 start-page: 29 year: 2011 ident: 10.1016/j.neucom.2013.11.009_bib19 article-title: Epileptic EEG classification based on extreme learning machine and nonlinear features publication-title: Epilepsy Res. doi: 10.1016/j.eplepsyres.2011.04.013 – volume: 54 start-page: 205 issue: 2 year: 2007 ident: 10.1016/j.neucom.2013.11.009_bib8 article-title: A wavelet-chaos methodology for analysis of EEGs and EEG sub-bands to detect seizure and epilepsy publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.886855 – volume: 40 start-page: 823 year: 2010 ident: 10.1016/j.neucom.2013.11.009_bib9 article-title: Detection of seizures in EEG using sub-band nonlinear parameters and genetic algorithm publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2010.08.005 – volume: 13 year: 2007 ident: 10.1016/j.neucom.2013.11.009_bib35 article-title: Automatic seizure detection based on time–frequency analysis and artificial neural networks publication-title: Comput. Intell. Neurosci. – volume: 29 start-page: 647 issue: 6 year: 2005 ident: 10.1016/j.neucom.2013.11.009_bib17 article-title: Artificial neural network based epileptic detection using time-domain and frequency-domain features publication-title: J. Med. Syst. doi: 10.1007/s10916-005-6133-1 – volume: 36 start-page: 2027 issue: 5 year: 2009 ident: 10.1016/j.neucom.2013.11.009_bib15 article-title: Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.12.065 – volume: 29 start-page: 343 issue: 2 year: 2005 ident: 10.1016/j.neucom.2013.11.009_bib31 article-title: Epileptic seizure detection using dynamic wavelet network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2005.04.007 – volume: 103 start-page: 356 year: 1997 ident: 10.1016/j.neucom.2013.11.009_bib5 article-title: Automatic seizure detection in the newborn: methods and initial evaluation publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/S0013-4694(97)00003-9 – volume: 99 start-page: 6562 issue: 10 year: 2002 ident: 10.1016/j.neucom.2013.11.009_bib30 article-title: Selection bias in gene extraction on the basis of microarray gene expression data publication-title: Proc. Natl. Acad. USA doi: 10.1073/pnas.102102699 – volume: 38 start-page: 13475 year: 2011 ident: 10.1016/j.neucom.2013.11.009_bib39 article-title: EEG signals classification using the K means clustering and a multilayer perceptron neural network model publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.04.149 – volume: 17 start-page: 89 issue: 3 year: 1998 ident: 10.1016/j.neucom.2013.11.009_bib11 article-title: Estimating regularity in epileptic seizure time-series data: a complexity-measure approach publication-title: IEEE Eng. Med. Biol. doi: 10.1109/51.677174 – volume: 11 start-page: 288 issue: 3 year: 2007 ident: 10.1016/j.neucom.2013.11.009_bib18 article-title: Approximate entropy based epileptic EEG detection using artificial neural networks publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2006.884369 – volume: 19 start-page: 1101 year: 2010 ident: 10.1016/j.neucom.2013.11.009_bib38 article-title: Automatic epileptic seizure detection in EEG based on line length feature and artificial neural network publication-title: J. Neurosci. Methods – volume: 31 start-page: 61 year: 2009 ident: 10.1016/j.neucom.2013.11.009_bib13 article-title: Measuring complexity using FuzzyEn, ApEn and SampEN publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2008.04.005 – ident: 10.1016/j.neucom.2013.11.009_bib36 doi: 10.1145/1543834.1543860 – volume: 11 start-page: 674 issue: 7 year: 1989 ident: 10.1016/j.neucom.2013.11.009_bib24 article-title: A theory for multi-resolution signal decomposition: the wavelet representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.192463 – volume: 74 start-page: 3051 year: 2011 ident: 10.1016/j.neucom.2013.11.009_bib28 article-title: A comparative study of wavelet families for EEG signals classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.04.029 |
SSID | ssj0017129 |
Score | 2.5407515 |
Snippet | Epilepsy is a common neurological condition which affects the central nerve system that causes people to have a seizure and can be assessed by... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 271 |
SubjectTerms | Applied sciences Approximation Biological and medical sciences Classification Computer science; control theory; systems Data processing. List processing. Character string processing Discrete wavelet transform (DWT) Electrodiagnosis. Electric activity recording Electroencephalogram (EEG) Electroencephalography Entropy Exact sciences and technology Fuzzy Fuzzy approximate entropy (fApEn) Fuzzy logic Fuzzy set theory Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy Investigative techniques, diagnostic techniques (general aspects) Medical sciences Memory organisation. Data processing Nervous system Nervous system (semeiology, syndromes) Neurology Software Support vector machines Support vector machines (SVMs) |
Title | Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine |
URI | https://dx.doi.org/10.1016/j.neucom.2013.11.009 https://www.proquest.com/docview/1531020806 https://www.proquest.com/docview/1671570833 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQXJBQoRTUBboyEtewduw42SPioW0ruAAqNxO_qkVtNmI3CPbAb2cmj5UQqEi9JZatRDP2zDf25xlCDgSAbmusiowwLpJCcXiyIRpCeBFc5lUWcGvg_EKNruWPm-RmiRx3d2GQVtna_sam19a6bRm00hyU4_Hgkg1jiKJ4DCECIg-88IvZ62BOHz4vaB485XGTby9OIuzdXZ-rOV6Fr5AzAk5QHGIuT6Qlvu-e1sp8CkILTbWLN4a79kZnG-RTCyPpUfOnn8mSLzbJeleigbYr9gu5PS1h2YNZsHTqx_Pq3lPnZzX9qqDIef9NT35dUfRljoZqPn-idZbxxzEgWU9x63dSQlvh6LQqEavTh3qfn_6tWZh-i1yfnV4dj6K2qEJkIVScRUObcullyIRhqc14gnmJuAkQWDCrnMmtFTzPmYqNSZjjVmHOPi6sEiwzwYptslxMCv-VUCudzIMEQAUxnXPSqGBkElLmHaBKYXpEdLLUts04joUv_uiOWnanGw1o1AAEIxo00CPRYlTZZNz4oH_aqUm_mjkanMIHI_uvtLr4HJ4uw6xNemS_U7OGVYdHKXnhJ9VUg5_gWN6UqX_0USlIFyCu2PnvX9wlq_AmkZvG2R5Znt1X_hugoJnp19O8T1aOvv8cXbwAa2QJZg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-N7gEkNL61MhhG4jU0jh0nfZzGpo5tfaETezPxFypiabQ2iPWv310-Kk0gJvEWObYS3dl3v7N_vgP4IBB0W2NVZIRxkRSK45MN0RjDi-Byr_JAWwPnUzW5kJ8v08stOOzvwhCtsrP9rU1vrHXXMuqkOarm89GXeJxgFMUTDBEIeeQPYJuyU8kBbB-cnE6mm8OEjCdtyr0kjWhAf4OuoXmVvibaCPpB8ZHSeRIz8e8e6nFVLFFuoS148YftbhzS8VPY6ZAkO2h_9hls-fI5POmrNLBu0b6Ab0cVrny0DJYt_XxdX3vm_KphYJWMaO_f2aevM0buzLFQr9c3rEk0_nuOYNYz2v1dVNhWOrasK4Lr7Fez1c-uGiKmfwkXx0ezw0nU1VWILEaLq2hsMy69DLkwcWZznlJqIm4CxhaxVc4U1gpeFLFKjEljx62itH1cWCXi3AQrXsGgXJR-F5iVThZBIqbCsM45aVQwMg1Z7B0CS2GGIHpZatslHafaFz91zy77oVsNaNIAxiMaNTCEaDOqapNu3NM_69Wk70wejX7hnpH7d7S6-RwdMOPETYfwvlezxoVHpylF6Rf1UqOr4FThNFb_6KMylC6iXPH6v3_xHTyczM7P9NnJ9HQPHuEbSVQ1Hr-Bweq69m8RFK3MfjfpbwF0OwwX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epileptic+seizure+detection+using+DWT+based+fuzzy+approximate+entropy+and+support+vector+machine&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Kumar%2C+Yatindra&rft.au=Dewal%2C+M+L&rft.au=Anand%2C+R+S&rft.date=2014-06-10&rft.issn=0925-2312&rft.volume=133&rft.spage=271&rft.epage=279&rft_id=info:doi/10.1016%2Fj.neucom.2013.11.009&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |