Deformation and breakup of a compound droplet in three-dimensional oscillatory shear flow

•A compound droplet under oscillatory shear is studied using a three-phase LBM.•We demonstrate the simple shear is a limiting case of the oscillatory shear.•Inner droplet can counterintuitively rotate in a direction opposite to the outer one.•Inner droplet exhibits multipeaked oscillations at high c...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of multiphase flow Vol. 134; p. 103472
Main Authors Liu, Haihu, Lu, Yang, Li, Sheng, Yu, Yuan, Sahu, Kirti Chandra
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A compound droplet under oscillatory shear is studied using a three-phase LBM.•We demonstrate the simple shear is a limiting case of the oscillatory shear.•Inner droplet can counterintuitively rotate in a direction opposite to the outer one.•Inner droplet exhibits multipeaked oscillations at high capillary numbers.•Critical capillary number for droplet breakup is greatly influenced by confinement. A compound droplet subject to three-dimensional oscillatory shear flow is studied using a three-phase lattice Boltzmann model. Firstly, focusing on low values of capillary number (Ca) where the compound droplet eventually reaches steady-state oscillatory condition, we study the effect of oscillatory period, viscosities of inner and outer fluids of the compound droplet, wall confinement and Ca on the droplet behavior. As the oscillatory period increases, the maximum deformation parameters gradually approach the steady-state values in the corresponding simple shear flow for both inner and outer droplets, and the compound droplet is more synchronous with applied shear. We demonstrate for the first time that due to high pressure near two tips inside the outer droplet the inner droplet may rotate counterintuitively in a direction opposite to the outer one. The compound droplet undergoes larger deformation when either droplet is less viscous, which also decreases the synchronization between inner and outer droplets. Increasing confinement ratio not only promotes the deformations of both constituent droplets, but also makes them more synchronous with applied shear. It is also found that the maximum deformation parameters of both droplets increase linearly with Ca up to Ca=0.35 but deviate from the linearity at higher Ca, where multipeaked oscillations are observed for the deformation of the inner droplet, which can be due to the extensional flow resulting from the rapid contraction of the outer droplet. We then analyze the breakup behavior of compound droplet in the oscillatory shear flow for varying confinement ratios, and compare the findings with those in simple shear flow. The critical capillary number for droplet breakup exhibits a non-monotonic behavior with the confinement ratio in both shear flows, but its value is always higher in oscillatory shear flow than in simple shear flow. As the confinement ratio increases, in the case of oscillatory shear flow, the droplet undergoes a transition from inner ternary breakup to inner binary breakup, distinct from the one observed in the case of simple shear flow. Finally, increasing oscillatory period is found to not only decrease the critical capillary number but also change the mode of droplet breakup.
AbstractList •A compound droplet under oscillatory shear is studied using a three-phase LBM.•We demonstrate the simple shear is a limiting case of the oscillatory shear.•Inner droplet can counterintuitively rotate in a direction opposite to the outer one.•Inner droplet exhibits multipeaked oscillations at high capillary numbers.•Critical capillary number for droplet breakup is greatly influenced by confinement. A compound droplet subject to three-dimensional oscillatory shear flow is studied using a three-phase lattice Boltzmann model. Firstly, focusing on low values of capillary number (Ca) where the compound droplet eventually reaches steady-state oscillatory condition, we study the effect of oscillatory period, viscosities of inner and outer fluids of the compound droplet, wall confinement and Ca on the droplet behavior. As the oscillatory period increases, the maximum deformation parameters gradually approach the steady-state values in the corresponding simple shear flow for both inner and outer droplets, and the compound droplet is more synchronous with applied shear. We demonstrate for the first time that due to high pressure near two tips inside the outer droplet the inner droplet may rotate counterintuitively in a direction opposite to the outer one. The compound droplet undergoes larger deformation when either droplet is less viscous, which also decreases the synchronization between inner and outer droplets. Increasing confinement ratio not only promotes the deformations of both constituent droplets, but also makes them more synchronous with applied shear. It is also found that the maximum deformation parameters of both droplets increase linearly with Ca up to Ca=0.35 but deviate from the linearity at higher Ca, where multipeaked oscillations are observed for the deformation of the inner droplet, which can be due to the extensional flow resulting from the rapid contraction of the outer droplet. We then analyze the breakup behavior of compound droplet in the oscillatory shear flow for varying confinement ratios, and compare the findings with those in simple shear flow. The critical capillary number for droplet breakup exhibits a non-monotonic behavior with the confinement ratio in both shear flows, but its value is always higher in oscillatory shear flow than in simple shear flow. As the confinement ratio increases, in the case of oscillatory shear flow, the droplet undergoes a transition from inner ternary breakup to inner binary breakup, distinct from the one observed in the case of simple shear flow. Finally, increasing oscillatory period is found to not only decrease the critical capillary number but also change the mode of droplet breakup.
ArticleNumber 103472
Author Sahu, Kirti Chandra
Lu, Yang
Liu, Haihu
Li, Sheng
Yu, Yuan
Author_xml – sequence: 1
  givenname: Haihu
  surname: Liu
  fullname: Liu, Haihu
  email: haihu.liu@mail.xjtu.edu.cn
  organization: School of Energy and Power Engineering, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an 710049, China
– sequence: 2
  givenname: Yang
  surname: Lu
  fullname: Lu, Yang
  organization: School of Energy and Power Engineering, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an 710049, China
– sequence: 3
  givenname: Sheng
  surname: Li
  fullname: Li, Sheng
  organization: School of Energy and Power Engineering, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an 710049, China
– sequence: 4
  givenname: Yuan
  surname: Yu
  fullname: Yu, Yuan
  organization: School of Engineering, Sun Yat-Sen University, Guangzhou 510006, China
– sequence: 5
  givenname: Kirti Chandra
  surname: Sahu
  fullname: Sahu, Kirti Chandra
  organization: Department of Chemical Engineering, Indian Institute of Technology Hyderabad Sangareddy, Telangana, 502 285, India
BookMark eNqNkD1PwzAQhi1UJNrCf_DEluKPpEkWJNQCRarEAgOT5dhn1cWJI9sF9d-TUCamTie9p3t07zNDk853gNAtJQtK6PJuv7D79uCS7XcygnH-e8EIG5c8L9kFmtKqrDNecD5BU8IJzWrO2BWaxbgnhBRlzqfoYw3Gh1Ym6zssO42bAPLz0GNvsMTKt70_DKkOvneQsO1w2gWATNsWujgcSYd9VNY5mXw44rgDGfD4zDW6NNJFuPmbc_T-9Pi22mTb1-eX1cM2UzlhKasbXciy4YZVDQejq2WjSUPyQlc0Z7KuKqYpV2bJmyKvC-C8KImsWTEoKKshnqP1iauCjzGAEcqm3z4pSOsEJWLUJfbivy4x6hInXQPm_h-mD7aV4Xg-YHMCwFD2y0IQgxboFGgbQCWhvT0X9QPt-pdm
CitedBy_id crossref_primary_10_1063_5_0077372
crossref_primary_10_1103_PhysRevE_105_025101
crossref_primary_10_1122_8_0000382
crossref_primary_10_1016_j_camwa_2023_02_006
crossref_primary_10_1063_5_0174869
crossref_primary_10_1021_acs_iecr_3c03947
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104559
crossref_primary_10_1063_5_0087738
crossref_primary_10_3390_en16135094
crossref_primary_10_1016_j_fmre_2021_10_011
crossref_primary_10_1063_5_0088946
crossref_primary_10_1016_j_colsurfa_2024_136000
crossref_primary_10_1063_5_0155427
crossref_primary_10_1063_5_0146560
crossref_primary_10_1016_j_ces_2023_118772
crossref_primary_10_1063_5_0251045
crossref_primary_10_1063_5_0114610
crossref_primary_10_1115_1_4063154
crossref_primary_10_1016_j_jgsce_2022_204855
crossref_primary_10_1063_5_0218423
crossref_primary_10_1063_5_0219512
crossref_primary_10_1016_j_elstat_2024_103933
crossref_primary_10_1063_5_0045994
crossref_primary_10_1063_5_0062107
crossref_primary_10_1016_j_ces_2022_118265
crossref_primary_10_1016_j_jcis_2023_09_034
crossref_primary_10_1063_5_0196394
crossref_primary_10_1063_5_0086420
crossref_primary_10_1021_acs_langmuir_2c00742
crossref_primary_10_1063_5_0137904
crossref_primary_10_1017_jfm_2023_344
crossref_primary_10_1007_s12206_022_1220_5
crossref_primary_10_1103_PhysRevFluids_6_094304
crossref_primary_10_1007_s10665_024_10343_5
crossref_primary_10_3390_math10214092
crossref_primary_10_1063_5_0137505
crossref_primary_10_1063_5_0163519
crossref_primary_10_1088_1873_7005_ac3893
crossref_primary_10_1103_PhysRevFluids_7_013703
crossref_primary_10_1063_5_0068759
crossref_primary_10_1063_5_0064564
crossref_primary_10_1063_5_0220905
crossref_primary_10_1029_2022WR033267
crossref_primary_10_1016_j_molliq_2022_119823
crossref_primary_10_1016_j_ijmultiphaseflow_2025_105193
crossref_primary_10_1080_01932691_2021_2013864
crossref_primary_10_1002_fld_5061
crossref_primary_10_1063_5_0187158
crossref_primary_10_1016_j_apm_2022_11_041
crossref_primary_10_1063_5_0187395
crossref_primary_10_1021_acs_energyfuels_1c02587
crossref_primary_10_1063_5_0134587
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103846
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104349
crossref_primary_10_1103_PhysRevFluids_9_064203
crossref_primary_10_1021_acs_langmuir_2c03273
crossref_primary_10_3390_pr12010141
crossref_primary_10_1002_aic_18202
crossref_primary_10_1063_5_0116408
crossref_primary_10_1016_j_ces_2024_119738
crossref_primary_10_1063_5_0232493
crossref_primary_10_1016_j_molliq_2022_118841
Cites_doi 10.1017/S0022112087001459
10.1103/PhysRevLett.110.066001
10.1007/s00162-020-00517-z
10.1017/S0022112095004009
10.1122/1.4984757
10.1063/1.4789865
10.1039/c0sm01100b
10.1103/PhysRevE.99.013308
10.1007/s00397-004-0388-1
10.1016/S1369-7021(08)70053-1
10.1103/PhysRevLett.119.064502
10.1103/PhysRevE.73.056708
10.1063/1.3153304
10.1146/annurev.fluid.30.1.329
10.1016/0021-9797(72)90272-X
10.1039/c1lc20265k
10.1017/S0022112090001525
10.1017/jfm.2017.859
10.1098/rspa.1934.0169
10.1063/1.5008908
10.1122/1.3473924
10.1016/j.ces.2013.04.043
10.1103/PhysRevE.71.056702
10.1017/S0022112085003585
10.1017/jfm.2012.137
10.1103/PhysRevE.89.052302
10.1039/C4LC01231C
10.1063/1.5056765
10.1103/PhysRevE.85.046309
10.1103/PhysRevA.43.4320
10.1103/PhysRevE.65.046308
10.1017/jfm.2011.235
10.1126/science.1109164
10.1122/1.1501960
10.1103/PhysRevE.76.026708
10.1007/s00397-002-0245-z
10.1063/1.4916623
10.1017/jfm.2015.286
10.1017/jfm.2014.649
10.1063/1.3460301
10.1063/1.4770294
10.1063/1.869307
10.1016/j.ijmultiphaseflow.2007.09.002
10.1021/ja205687k
10.1007/s12206-018-0420-5
10.1063/1.4926675
10.1016/j.jcp.2013.03.039
10.1063/1.5134901
10.1016/j.ijheatmasstransfer.2018.11.131
10.1016/j.ijheatfluidflow.2014.05.007
10.1103/PhysRevE.82.066701
10.1017/jfm.2019.137
10.1021/la200473h
10.1103/PhysRevLett.93.204501
10.1063/1.3655673
10.1103/PhysRevE.97.043112
10.1002/adma.200800918
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ijmultiphaseflow.2020.103472
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-3533
ExternalDocumentID 10_1016_j_ijmultiphaseflow_2020_103472
S0301932220305838
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
TN5
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c402t-9bd5a7b3f28b3efd86bd0b045d8142a9882d13cf63b5495e33570a92501678f63
IEDL.DBID .~1
ISSN 0301-9322
IngestDate Tue Jul 01 02:45:08 EDT 2025
Thu Apr 24 23:11:56 EDT 2025
Fri Feb 23 02:46:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Critical capillary number
Deformation and breakup
Compound droplet
Oscillatory shear
Wall confinement
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-9bd5a7b3f28b3efd86bd0b045d8142a9882d13cf63b5495e33570a92501678f63
ParticipantIDs crossref_citationtrail_10_1016_j_ijmultiphaseflow_2020_103472
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103472
elsevier_sciencedirect_doi_10_1016_j_ijmultiphaseflow_2020_103472
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationTitle International journal of multiphase flow
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gao, Feng (bib0014) 2011; 682
Tiribocchi, Montessori, Aime, Milani, Lauricella, Succi, Weitz (bib0046) 2020; 32
Lee, Weitz (bib0028) 2008; 20
Shah, Shum, Rowat, Lee, Agresti, Utada, Chu, Kim, Fernandez-Nieves, Martinez, Weitz (bib0038) 2008; 11
Leclaire, Reggio, Trépanier (bib0027) 2013; 246
Chen, Zhao, Li, Guo, Wan, Weitz, Stone (bib0007) 2011; 11
Wang, Liu, Zhang (bib0053) 2017; 61
Wang, Liu, Han, Guan (bib0052) 2013; 110
Borthakur, Biswas, Bandyopadhyay (bib0003) 2018; 97
Sadhal, Oguz (bib0037) 1985; 160
Taylor (bib0045) 1934; 146
Matsunaga, Imai, Yamaguchi, Ishikawa (bib0033) 2015; 762
Cavallo, Guido, Simeone (bib0004) 2003; 42
Aston (bib0001) 1972; 38
Uijttewaal, Nijhof (bib0047) 1995; 302
Janssen, Vananroye, Puyvelde, Moldenaers, Anderson (bib0023) 2010; 54
Chen, Doolen (bib0008) 1998; 30
Guo, Shu (bib0017) 2013
Smith, Ottino, Olvera de la Cruz (bib0039) 2004; 93
Zou, He (bib0061) 1997; 9
Chen, Li, Shum, Stone, Weitz (bib0006) 2011; 7
Vu, Vu, Bui (bib0050) 2019; 131
Spencer, Halliday, Care (bib0041) 2010; 82
Li, Chen, Stone (bib0029) 2011; 27
Farutin, Misbah (bib0013) 2012; 700
Wannaborworn, Mackley, Renardy (bib0054) 2002; 46
Yu, Liu, Liang, Zhang (bib0056) 2019; 31
Zhu, Gallaire (bib0059) 2017; 119
Oldroyd (bib0035) 1953; 218
Vu, Vu, Pham, Luu (bib0049) 2018; 32
Hua, Shin, Kim (bib0021) 2014; 50
Chen, Liu, Shi (bib0009) 2013; 102
Stone, Leal (bib0042) 1990; 211
Balla, Tripathi, Sahu (bib0002) 2020; 34
Oguz, Sadhal (bib0034) 1987; 179
Latva-Kokko, Rothman (bib0026) 2005; 71
Succi (bib0043) 2001
Yu, Liang, Liu (bib0055) 2019; 99
Wang, Li, Wang, Guan (bib0051) 2014; 89
Qu, Wang (bib0036) 2012; 24
Guido, Grosso, Maffettone (bib0015) 2004; 43
Guo, Zheng, Shi (bib0018) 2002; 65
Krüger, Kusumaatmaja, Kuzmin, Shardt, Silva, Viggen (bib0025) 2017
Liu, Valocchi, Kang (bib0031) 2012; 85
Che, Yap, Wang (bib0005) 2018; 30
Song, Xu, Yang (bib0040) 2010; 22
Tao, Song, Liu, Wang (bib0044) 2013; 97
Zhu, Rabault, Brandt (bib0060) 2015; 27
Deka, Biswas, Sahu, Kulkarni, Dalal (bib0012) 2019; 866
Liu, Ba, Wu, Li, Xi, Zhang (bib0030) 2018; 837
Halliday, Hollis, Care (bib0019) 2007; 76
Chen, Liu, Zhao (bib0011) 2015; 106
Chen, Liu, Zhang, Zhao (bib0010) 2015; 15
Utada, Lorenceau, Link, Kaplan, Stone, Weitz (bib0048) 2005; 308
Zhou, Yue, Feng (bib0058) 2008; 34
Zhao, Bagchi (bib0057) 2011; 23
Kim, Shum, Kim, Cho, Weitz (bib0024) 2011; 133
Luo, He, Bai (bib0032) 2015; 775
Janpaen, Niamlang, Lerdwijitjarud, Sirivat (bib0022) 2009; 21
Halliday, Law, Care, Hollis (bib0020) 2006; 73
Gunstensen, Rothman, Zaleski, Zanetti (bib0016) 1991; 43
Oldroyd (10.1016/j.ijmultiphaseflow.2020.103472_bib0035) 1953; 218
Janpaen (10.1016/j.ijmultiphaseflow.2020.103472_bib0022) 2009; 21
Hua (10.1016/j.ijmultiphaseflow.2020.103472_bib0021) 2014; 50
Zhu (10.1016/j.ijmultiphaseflow.2020.103472_bib0060) 2015; 27
Liu (10.1016/j.ijmultiphaseflow.2020.103472_bib0031) 2012; 85
Yu (10.1016/j.ijmultiphaseflow.2020.103472_bib0055) 2019; 99
Kim (10.1016/j.ijmultiphaseflow.2020.103472_bib0024) 2011; 133
Che (10.1016/j.ijmultiphaseflow.2020.103472_bib0005) 2018; 30
Wang (10.1016/j.ijmultiphaseflow.2020.103472_bib0053) 2017; 61
Stone (10.1016/j.ijmultiphaseflow.2020.103472_bib0042) 1990; 211
Cavallo (10.1016/j.ijmultiphaseflow.2020.103472_bib0004) 2003; 42
Yu (10.1016/j.ijmultiphaseflow.2020.103472_bib0056) 2019; 31
Zhu (10.1016/j.ijmultiphaseflow.2020.103472_bib0059) 2017; 119
Tao (10.1016/j.ijmultiphaseflow.2020.103472_bib0044) 2013; 97
Halliday (10.1016/j.ijmultiphaseflow.2020.103472_bib0019) 2007; 76
Taylor (10.1016/j.ijmultiphaseflow.2020.103472_bib0045) 1934; 146
Shah (10.1016/j.ijmultiphaseflow.2020.103472_bib0038) 2008; 11
Tiribocchi (10.1016/j.ijmultiphaseflow.2020.103472_bib0046) 2020; 32
Aston (10.1016/j.ijmultiphaseflow.2020.103472_bib0001) 1972; 38
Oguz (10.1016/j.ijmultiphaseflow.2020.103472_bib0034) 1987; 179
Zhao (10.1016/j.ijmultiphaseflow.2020.103472_bib0057) 2011; 23
Halliday (10.1016/j.ijmultiphaseflow.2020.103472_bib0020) 2006; 73
Matsunaga (10.1016/j.ijmultiphaseflow.2020.103472_bib0033) 2015; 762
Zhou (10.1016/j.ijmultiphaseflow.2020.103472_bib0058) 2008; 34
Chen (10.1016/j.ijmultiphaseflow.2020.103472_bib0010) 2015; 15
Wang (10.1016/j.ijmultiphaseflow.2020.103472_bib0051) 2014; 89
Borthakur (10.1016/j.ijmultiphaseflow.2020.103472_bib0003) 2018; 97
Gunstensen (10.1016/j.ijmultiphaseflow.2020.103472_bib0016) 1991; 43
Smith (10.1016/j.ijmultiphaseflow.2020.103472_bib0039) 2004; 93
Vu (10.1016/j.ijmultiphaseflow.2020.103472_bib0050) 2019; 131
Guo (10.1016/j.ijmultiphaseflow.2020.103472_bib0018) 2002; 65
Li (10.1016/j.ijmultiphaseflow.2020.103472_bib0029) 2011; 27
Lee (10.1016/j.ijmultiphaseflow.2020.103472_bib0028) 2008; 20
Sadhal (10.1016/j.ijmultiphaseflow.2020.103472_bib0037) 1985; 160
Utada (10.1016/j.ijmultiphaseflow.2020.103472_bib0048) 2005; 308
Chen (10.1016/j.ijmultiphaseflow.2020.103472_bib0011) 2015; 106
Krüger (10.1016/j.ijmultiphaseflow.2020.103472_bib0025) 2017
Guo (10.1016/j.ijmultiphaseflow.2020.103472_bib0017) 2013
Zou (10.1016/j.ijmultiphaseflow.2020.103472_bib0061) 1997; 9
Leclaire (10.1016/j.ijmultiphaseflow.2020.103472_bib0027) 2013; 246
Gao (10.1016/j.ijmultiphaseflow.2020.103472_bib0014) 2011; 682
Farutin (10.1016/j.ijmultiphaseflow.2020.103472_bib0013) 2012; 700
Latva-Kokko (10.1016/j.ijmultiphaseflow.2020.103472_bib0026) 2005; 71
Wang (10.1016/j.ijmultiphaseflow.2020.103472_bib0052) 2013; 110
Qu (10.1016/j.ijmultiphaseflow.2020.103472_bib0036) 2012; 24
Chen (10.1016/j.ijmultiphaseflow.2020.103472_bib0006) 2011; 7
Deka (10.1016/j.ijmultiphaseflow.2020.103472_bib0012) 2019; 866
Chen (10.1016/j.ijmultiphaseflow.2020.103472_bib0009) 2013; 102
Luo (10.1016/j.ijmultiphaseflow.2020.103472_bib0032) 2015; 775
Guido (10.1016/j.ijmultiphaseflow.2020.103472_bib0015) 2004; 43
Song (10.1016/j.ijmultiphaseflow.2020.103472_bib0040) 2010; 22
Janssen (10.1016/j.ijmultiphaseflow.2020.103472_bib0023) 2010; 54
Chen (10.1016/j.ijmultiphaseflow.2020.103472_bib0007) 2011; 11
Succi (10.1016/j.ijmultiphaseflow.2020.103472_bib0043) 2001
Wannaborworn (10.1016/j.ijmultiphaseflow.2020.103472_bib0054) 2002; 46
Spencer (10.1016/j.ijmultiphaseflow.2020.103472_bib0041) 2010; 82
Balla (10.1016/j.ijmultiphaseflow.2020.103472_bib0002) 2020; 34
Liu (10.1016/j.ijmultiphaseflow.2020.103472_bib0030) 2018; 837
Uijttewaal (10.1016/j.ijmultiphaseflow.2020.103472_bib0047) 1995; 302
Vu (10.1016/j.ijmultiphaseflow.2020.103472_bib0049) 2018; 32
Chen (10.1016/j.ijmultiphaseflow.2020.103472_bib0008) 1998; 30
References_xml – volume: 30
  start-page: 012114
  year: 2018
  ident: bib0005
  article-title: Flow structure of compound droplets moving in microchannels
  publication-title: Phys. Fluids
– volume: 24
  start-page: 123302
  year: 2012
  ident: bib0036
  article-title: Dynamics of concentric and eccentric compound droplets suspended in extensional flows
  publication-title: Phys. Fluids
– volume: 110
  start-page: 066001
  year: 2013
  ident: bib0052
  article-title: Effects of complex internal structures on rheology of multiple emulsions particles in 2d from a boundary integral method
  publication-title: Phys. Rev. Lett.
– volume: 99
  start-page: 013308
  year: 2019
  ident: bib0055
  article-title: Lattice Boltzmann simulation of immiscible three-phase flows with contact-line dynamics
  publication-title: Phys. Rev. E
– volume: 23
  start-page: 111901
  year: 2011
  ident: bib0057
  article-title: Dynamics of microcapsules in oscillating shear flow
  publication-title: Phys. Fluids
– volume: 146
  start-page: 501
  year: 1934
  end-page: 523
  ident: bib0045
  article-title: The formation of emulsions in definable fields of flow
  publication-title: Proc. R. Soc. Lond. A
– volume: 302
  start-page: 45
  year: 1995
  end-page: 63
  ident: bib0047
  article-title: The motion of a droplet subjected to linear shear flow including the presence of a plane wall
  publication-title: J. Fluid Mech.
– volume: 73
  start-page: 056708
  year: 2006
  ident: bib0020
  article-title: Improved simulation of drop dynamics in a shear flow at low Reynolds and capillary number
  publication-title: Phys. Rev. E
– year: 2017
  ident: bib0025
  article-title: The lattice Boltzmann method
– volume: 119
  start-page: 064502
  year: 2017
  ident: bib0059
  article-title: Bifurcation dynamics of a particle-encapsulating droplet in shear flow
  publication-title: Phys. Rev. Lett.
– volume: 762
  start-page: 288
  year: 2015
  end-page: 301
  ident: bib0033
  article-title: Deformation of a spherical capsule under oscillating shear flow
  publication-title: J. Fluid Mech.
– volume: 160
  start-page: 511
  year: 1985
  end-page: 529
  ident: bib0037
  article-title: Stokes flow past compound multiphase drops: the case of completely engulfed drops/bubbles
  publication-title: J. Fluid Mech.
– volume: 211
  start-page: 123
  year: 1990
  end-page: 156
  ident: bib0042
  article-title: Breakup of concentric double emulsion droplets in linear flows
  publication-title: J. Fluid Mech.
– volume: 30
  start-page: 329
  year: 1998
  end-page: 364
  ident: bib0008
  article-title: Lattice Boltzmann method for fluid flows
  publication-title: Annu. Rev. Fluid Mech.
– volume: 50
  start-page: 63
  year: 2014
  end-page: 71
  ident: bib0021
  article-title: Dynamics of a compound droplet in shear flow
  publication-title: Int. J. Heat Fluid Flow
– volume: 837
  start-page: 381
  year: 2018
  end-page: 412
  ident: bib0030
  article-title: A hybrid lattice Boltzmann and finite difference method for droplet dynamics with insoluble surfactants
  publication-title: J. Fluid Mech.
– year: 2013
  ident: bib0017
  article-title: Lattice Boltzmann method and its applications in engineering
– year: 2001
  ident: bib0043
  article-title: The lattice Boltzmann equation: For fluid dynamics and beyond
– volume: 61
  start-page: 741
  year: 2017
  end-page: 758
  ident: bib0053
  article-title: Deformation and breakup of a confined droplet in shear flows with power-law rheology
  publication-title: J. Rheol.
– volume: 43
  start-page: 4320
  year: 1991
  end-page: 4327
  ident: bib0016
  article-title: Lattice Boltzmann model of immiscible fluids
  publication-title: Phys. Rev. A
– volume: 71
  start-page: 056702
  year: 2005
  ident: bib0026
  article-title: Diffusion properties of gradient-based lattice boltzmann models of immiscible fluids
  publication-title: Phys. Rev. E
– volume: 85
  start-page: 046309
  year: 2012
  ident: bib0031
  article-title: Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations
  publication-title: Phys. Rev. E
– volume: 22
  start-page: 072003
  year: 2010
  ident: bib0040
  article-title: Stokes flow past a compound drop in a circular tube
  publication-title: Phys. Fluids
– volume: 9
  start-page: 1591
  year: 1997
  end-page: 1598
  ident: bib0061
  article-title: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model
  publication-title: Phys. Fluids
– volume: 46
  start-page: 1279
  year: 2002
  end-page: 1293
  ident: bib0054
  article-title: Experimental observation and matching numerical simulation for the deformation and breakup of immiscible drops in oscillatory shear
  publication-title: J. Rheol.
– volume: 866
  start-page: R21
  year: 2019
  end-page: 11
  ident: bib0012
  article-title: Coalescence dynamics of a compound drop on a deep liquid pool
  publication-title: J. Fluid Mech.
– volume: 89
  start-page: 052302
  year: 2014
  ident: bib0051
  article-title: Possible oriented transition of multiple-emulsion globules with asymmetric internal structures in a microfluidic constriction
  publication-title: Phys. Rev. E
– volume: 97
  start-page: 043112
  year: 2018
  ident: bib0003
  article-title: Dynamics of deformation and pinch-off of a migrating compound droplet in a tube
  publication-title: Phys. Rev. E
– volume: 82
  start-page: 066701
  year: 2010
  ident: bib0041
  article-title: Lattice Boltzmann equation method for multiple immiscible continuum fluids
  publication-title: Phys. Rev. E
– volume: 218
  start-page: 122
  year: 1953
  end-page: 132
  ident: bib0035
  article-title: The elastic and viscous properties of emulsions and suspensions
  publication-title: Proc. R. Soc. A
– volume: 700
  start-page: 362
  year: 2012
  end-page: 381
  ident: bib0013
  article-title: Rheology of vesicle suspensions under combined steady and oscillating shear flows
  publication-title: J. Fluid Mech.
– volume: 27
  start-page: 071902
  year: 2015
  ident: bib0060
  article-title: The dynamics of a capsule in a wall-bounded oscillating shear flow
  publication-title: Phys. Fluids
– volume: 76
  start-page: 026708
  year: 2007
  ident: bib0019
  article-title: Lattice Boltzmann algorithm for continuum multicomponent flow
  publication-title: Phys. Rev. E
– volume: 34
  start-page: 133
  year: 2020
  end-page: 144
  ident: bib0002
  article-title: A numerical study of a hollow water droplet falling in air
  publication-title: Theor. Comput. Fluid Dyn.
– volume: 20
  start-page: 3498
  year: 2008
  end-page: 3503
  ident: bib0028
  article-title: Double emulsion-templated nanoparticle colloidosomes with selective permeability
  publication-title: Adv. Mater.
– volume: 32
  start-page: 2111
  year: 2018
  end-page: 2117
  ident: bib0049
  article-title: Numerical investigation of dynamic behavior of a compound drop in shear flow
  publication-title: J. Mech. Sci. Technol.
– volume: 106
  start-page: 141601
  year: 2015
  ident: bib0011
  article-title: Deformation dynamics of double emulsion droplet under shear
  publication-title: Appl. Phys. Lett.
– volume: 775
  start-page: 77
  year: 2015
  end-page: 104
  ident: bib0032
  article-title: Deformation of spherical compound capsules in simple shear flow
  publication-title: J. Fluid Mech.
– volume: 246
  start-page: 318
  year: 2013
  end-page: 342
  ident: bib0027
  article-title: Progress and investigation on lattice Boltzmann modeling of multiple immiscible fluids or components with variable density and viscosity ratios
  publication-title: J. Comput. Phys.
– volume: 11
  start-page: 18
  year: 2008
  end-page: 27
  ident: bib0038
  article-title: Designer emulsions using microfluidics
  publication-title: Mater. Today
– volume: 93
  start-page: 204501
  year: 2004
  ident: bib0039
  article-title: Encapsulated drop breakup in shear flow
  publication-title: Phys. Rev. Lett.
– volume: 682
  start-page: 415
  year: 2011
  end-page: 433
  ident: bib0014
  article-title: Spreading and breakup of a compound drop on a partially wetting substrate
  publication-title: J. Fluid Mech.
– volume: 32
  start-page: 017102
  year: 2020
  ident: bib0046
  article-title: Novel nonequilibrium steady states in multiple emulsions featured
  publication-title: Phys. Fluids
– volume: 179
  start-page: 105
  year: 1987
  end-page: 136
  ident: bib0034
  article-title: Growth and collapse of translating compound multiphase drops: analysis of fluid mechanics and heat transfer
  publication-title: J. Fluid Mech.
– volume: 38
  start-page: 547
  year: 1972
  end-page: 553
  ident: bib0001
  article-title: Gas-filled hollow drops in aerosols
  publication-title: J.Colloid Interface Sci.
– volume: 27
  start-page: 4324
  year: 2011
  end-page: 4327
  ident: bib0029
  article-title: Breakup of double emulsion droplets in a tapered nozzle
  publication-title: Langmuir
– volume: 43
  start-page: 575
  year: 2004
  end-page: 583
  ident: bib0015
  article-title: Newtonian drop in a newtonian matrix subjected to large amplitude oscillatory shear flows
  publication-title: Rheol. Acta
– volume: 11
  start-page: 2312
  year: 2011
  end-page: 2315
  ident: bib0007
  article-title: Reactions in double emulsions by flow-controlled coalescence of encapsulated drops
  publication-title: Lab Chip
– volume: 308
  start-page: 537
  year: 2005
  end-page: 541
  ident: bib0048
  article-title: Monodisperse double emulsions generated from a microcapillary device
  publication-title: Science
– volume: 21
  start-page: 063102
  year: 2009
  ident: bib0022
  article-title: Oscillatory shear induced droplet deformation and breakup in immiscible polymer blends
  publication-title: Phys. Fluids
– volume: 102
  start-page: 051609
  year: 2013
  ident: bib0009
  article-title: Hydrodynamics of double emulsion droplet in shear flow
  publication-title: Appl. Phys. Lett.
– volume: 131
  start-page: 1083
  year: 2019
  end-page: 1094
  ident: bib0050
  article-title: Numerical study of deformation and breakup of a multi-core compound droplet in simple shear flow
  publication-title: Intl J. Heat Mass Tran.
– volume: 65
  start-page: 046308
  year: 2002
  ident: bib0018
  article-title: Discrete lattice effects on the forcing term in the lattice Boltzmann method
  publication-title: Phys. Rev. E
– volume: 42
  start-page: 1
  year: 2003
  end-page: 9
  ident: bib0004
  article-title: Drop deformation under small-amplitude oscillatory shear flow
  publication-title: Rheol. Acta
– volume: 15
  start-page: 1255
  year: 2015
  end-page: 1261
  ident: bib0010
  article-title: Enhancing and suppressing effects of an inner droplet on deformation of a double emulsion droplet under shear
  publication-title: Lab Chip
– volume: 54
  start-page: 1047
  year: 2010
  end-page: 1060
  ident: bib0023
  article-title: Generalized behavior of the breakup of viscous drops in confinements
  publication-title: J. Rheol.
– volume: 7
  start-page: 2345
  year: 2011
  end-page: 2347
  ident: bib0006
  article-title: Breakup of double emulsions in constrictions
  publication-title: Soft Matter
– volume: 133
  start-page: 15165
  year: 2011
  end-page: 15171
  ident: bib0024
  article-title: Multiple polymersomes for programmed release of multiple components
  publication-title: J. Am. Chem. Soc.
– volume: 34
  start-page: 102
  year: 2008
  end-page: 109
  ident: bib0058
  article-title: Deformation of a compound drop through a contraction in a pressure-driven pipe flow
  publication-title: Int. J. Multiphase Flow
– volume: 97
  start-page: 328
  year: 2013
  end-page: 336
  ident: bib0044
  article-title: Microfluidic rheology of the multiple-emulsion globule transiting in a contraction tube through a boundary element method
  publication-title: Chem. Eng. Sci.
– volume: 31
  start-page: 012108
  year: 2019
  ident: bib0056
  article-title: A versatile lattice Boltzmann model for immiscible ternary fluid flows
  publication-title: Phys. Fluids
– volume: 179
  start-page: 105
  year: 1987
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0034
  article-title: Growth and collapse of translating compound multiphase drops: analysis of fluid mechanics and heat transfer
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112087001459
– volume: 110
  start-page: 066001
  year: 2013
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0052
  article-title: Effects of complex internal structures on rheology of multiple emulsions particles in 2d from a boundary integral method
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.066001
– volume: 34
  start-page: 133
  year: 2020
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0002
  article-title: A numerical study of a hollow water droplet falling in air
  publication-title: Theor. Comput. Fluid Dyn.
  doi: 10.1007/s00162-020-00517-z
– volume: 302
  start-page: 45
  year: 1995
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0047
  article-title: The motion of a droplet subjected to linear shear flow including the presence of a plane wall
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112095004009
– volume: 61
  start-page: 741
  year: 2017
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0053
  article-title: Deformation and breakup of a confined droplet in shear flows with power-law rheology
  publication-title: J. Rheol.
  doi: 10.1122/1.4984757
– volume: 102
  start-page: 051609
  year: 2013
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0009
  article-title: Hydrodynamics of double emulsion droplet in shear flow
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4789865
– volume: 7
  start-page: 2345
  year: 2011
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0006
  article-title: Breakup of double emulsions in constrictions
  publication-title: Soft Matter
  doi: 10.1039/c0sm01100b
– volume: 99
  start-page: 013308
  year: 2019
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0055
  article-title: Lattice Boltzmann simulation of immiscible three-phase flows with contact-line dynamics
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.99.013308
– volume: 43
  start-page: 575
  year: 2004
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0015
  article-title: Newtonian drop in a newtonian matrix subjected to large amplitude oscillatory shear flows
  publication-title: Rheol. Acta
  doi: 10.1007/s00397-004-0388-1
– volume: 11
  start-page: 18
  year: 2008
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0038
  article-title: Designer emulsions using microfluidics
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(08)70053-1
– volume: 119
  start-page: 064502
  issue: 6
  year: 2017
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0059
  article-title: Bifurcation dynamics of a particle-encapsulating droplet in shear flow
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.064502
– volume: 73
  start-page: 056708
  issue: 5
  year: 2006
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0020
  article-title: Improved simulation of drop dynamics in a shear flow at low Reynolds and capillary number
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.73.056708
– volume: 218
  start-page: 122
  year: 1953
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0035
  article-title: The elastic and viscous properties of emulsions and suspensions
  publication-title: Proc. R. Soc. A
– volume: 21
  start-page: 063102
  year: 2009
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0022
  article-title: Oscillatory shear induced droplet deformation and breakup in immiscible polymer blends
  publication-title: Phys. Fluids
  doi: 10.1063/1.3153304
– volume: 30
  start-page: 329
  issue: 1
  year: 1998
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0008
  article-title: Lattice Boltzmann method for fluid flows
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.30.1.329
– volume: 38
  start-page: 547
  year: 1972
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0001
  article-title: Gas-filled hollow drops in aerosols
  publication-title: J.Colloid Interface Sci.
  doi: 10.1016/0021-9797(72)90272-X
– volume: 11
  start-page: 2312
  year: 2011
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0007
  article-title: Reactions in double emulsions by flow-controlled coalescence of encapsulated drops
  publication-title: Lab Chip
  doi: 10.1039/c1lc20265k
– volume: 211
  start-page: 123
  year: 1990
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0042
  article-title: Breakup of concentric double emulsion droplets in linear flows
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112090001525
– volume: 837
  start-page: 381
  year: 2018
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0030
  article-title: A hybrid lattice Boltzmann and finite difference method for droplet dynamics with insoluble surfactants
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2017.859
– year: 2001
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0043
– volume: 146
  start-page: 501
  year: 1934
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0045
  article-title: The formation of emulsions in definable fields of flow
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1934.0169
– volume: 30
  start-page: 012114
  year: 2018
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0005
  article-title: Flow structure of compound droplets moving in microchannels
  publication-title: Phys. Fluids
  doi: 10.1063/1.5008908
– volume: 54
  start-page: 1047
  year: 2010
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0023
  article-title: Generalized behavior of the breakup of viscous drops in confinements
  publication-title: J. Rheol.
  doi: 10.1122/1.3473924
– volume: 97
  start-page: 328
  year: 2013
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0044
  article-title: Microfluidic rheology of the multiple-emulsion globule transiting in a contraction tube through a boundary element method
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2013.04.043
– year: 2017
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0025
– volume: 71
  start-page: 056702
  year: 2005
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0026
  article-title: Diffusion properties of gradient-based lattice boltzmann models of immiscible fluids
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.71.056702
– volume: 160
  start-page: 511
  year: 1985
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0037
  article-title: Stokes flow past compound multiphase drops: the case of completely engulfed drops/bubbles
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112085003585
– volume: 700
  start-page: 362
  year: 2012
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0013
  article-title: Rheology of vesicle suspensions under combined steady and oscillating shear flows
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2012.137
– year: 2013
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0017
– volume: 89
  start-page: 052302
  year: 2014
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0051
  article-title: Possible oriented transition of multiple-emulsion globules with asymmetric internal structures in a microfluidic constriction
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.89.052302
– volume: 15
  start-page: 1255
  year: 2015
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0010
  article-title: Enhancing and suppressing effects of an inner droplet on deformation of a double emulsion droplet under shear
  publication-title: Lab Chip
  doi: 10.1039/C4LC01231C
– volume: 31
  start-page: 012108
  year: 2019
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0056
  article-title: A versatile lattice Boltzmann model for immiscible ternary fluid flows
  publication-title: Phys. Fluids
  doi: 10.1063/1.5056765
– volume: 85
  start-page: 046309
  year: 2012
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0031
  article-title: Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.85.046309
– volume: 43
  start-page: 4320
  issue: 8
  year: 1991
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0016
  article-title: Lattice Boltzmann model of immiscible fluids
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.43.4320
– volume: 65
  start-page: 046308
  year: 2002
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0018
  article-title: Discrete lattice effects on the forcing term in the lattice Boltzmann method
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.65.046308
– volume: 682
  start-page: 415
  year: 2011
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0014
  article-title: Spreading and breakup of a compound drop on a partially wetting substrate
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2011.235
– volume: 308
  start-page: 537
  year: 2005
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0048
  article-title: Monodisperse double emulsions generated from a microcapillary device
  publication-title: Science
  doi: 10.1126/science.1109164
– volume: 46
  start-page: 1279
  year: 2002
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0054
  article-title: Experimental observation and matching numerical simulation for the deformation and breakup of immiscible drops in oscillatory shear
  publication-title: J. Rheol.
  doi: 10.1122/1.1501960
– volume: 76
  start-page: 026708
  year: 2007
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0019
  article-title: Lattice Boltzmann algorithm for continuum multicomponent flow
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.76.026708
– volume: 42
  start-page: 1
  year: 2003
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0004
  article-title: Drop deformation under small-amplitude oscillatory shear flow
  publication-title: Rheol. Acta
  doi: 10.1007/s00397-002-0245-z
– volume: 106
  start-page: 141601
  year: 2015
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0011
  article-title: Deformation dynamics of double emulsion droplet under shear
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4916623
– volume: 775
  start-page: 77
  year: 2015
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0032
  article-title: Deformation of spherical compound capsules in simple shear flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2015.286
– volume: 762
  start-page: 288
  year: 2015
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0033
  article-title: Deformation of a spherical capsule under oscillating shear flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2014.649
– volume: 22
  start-page: 072003
  year: 2010
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0040
  article-title: Stokes flow past a compound drop in a circular tube
  publication-title: Phys. Fluids
  doi: 10.1063/1.3460301
– volume: 24
  start-page: 123302
  year: 2012
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0036
  article-title: Dynamics of concentric and eccentric compound droplets suspended in extensional flows
  publication-title: Phys. Fluids
  doi: 10.1063/1.4770294
– volume: 9
  start-page: 1591
  year: 1997
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0061
  article-title: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model
  publication-title: Phys. Fluids
  doi: 10.1063/1.869307
– volume: 34
  start-page: 102
  year: 2008
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0058
  article-title: Deformation of a compound drop through a contraction in a pressure-driven pipe flow
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2007.09.002
– volume: 133
  start-page: 15165
  year: 2011
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0024
  article-title: Multiple polymersomes for programmed release of multiple components
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja205687k
– volume: 32
  start-page: 2111
  year: 2018
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0049
  article-title: Numerical investigation of dynamic behavior of a compound drop in shear flow
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-018-0420-5
– volume: 27
  start-page: 071902
  year: 2015
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0060
  article-title: The dynamics of a capsule in a wall-bounded oscillating shear flow
  publication-title: Phys. Fluids
  doi: 10.1063/1.4926675
– volume: 246
  start-page: 318
  year: 2013
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0027
  article-title: Progress and investigation on lattice Boltzmann modeling of multiple immiscible fluids or components with variable density and viscosity ratios
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.03.039
– volume: 32
  start-page: 017102
  year: 2020
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0046
  article-title: Novel nonequilibrium steady states in multiple emulsions featured
  publication-title: Phys. Fluids
  doi: 10.1063/1.5134901
– volume: 131
  start-page: 1083
  year: 2019
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0050
  article-title: Numerical study of deformation and breakup of a multi-core compound droplet in simple shear flow
  publication-title: Intl J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2018.11.131
– volume: 50
  start-page: 63
  year: 2014
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0021
  article-title: Dynamics of a compound droplet in shear flow
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2014.05.007
– volume: 82
  start-page: 066701
  year: 2010
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0041
  article-title: Lattice Boltzmann equation method for multiple immiscible continuum fluids
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.82.066701
– volume: 866
  start-page: R21
  year: 2019
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0012
  article-title: Coalescence dynamics of a compound drop on a deep liquid pool
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.137
– volume: 27
  start-page: 4324
  year: 2011
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0029
  article-title: Breakup of double emulsion droplets in a tapered nozzle
  publication-title: Langmuir
  doi: 10.1021/la200473h
– volume: 93
  start-page: 204501
  year: 2004
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0039
  article-title: Encapsulated drop breakup in shear flow
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.204501
– volume: 23
  start-page: 111901
  year: 2011
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0057
  article-title: Dynamics of microcapsules in oscillating shear flow
  publication-title: Phys. Fluids
  doi: 10.1063/1.3655673
– volume: 97
  start-page: 043112
  year: 2018
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0003
  article-title: Dynamics of deformation and pinch-off of a migrating compound droplet in a tube
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.97.043112
– volume: 20
  start-page: 3498
  year: 2008
  ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0028
  article-title: Double emulsion-templated nanoparticle colloidosomes with selective permeability
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200800918
SSID ssj0005743
Score 2.544969
Snippet •A compound droplet under oscillatory shear is studied using a three-phase LBM.•We demonstrate the simple shear is a limiting case of the oscillatory...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103472
SubjectTerms Compound droplet
Critical capillary number
Deformation and breakup
Oscillatory shear
Wall confinement
Title Deformation and breakup of a compound droplet in three-dimensional oscillatory shear flow
URI https://dx.doi.org/10.1016/j.ijmultiphaseflow.2020.103472
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED5VIBAMiKd4ywNiM00TJ3EGhgqoCogugFSmKH5EtFRpRVOx8du5S9JSEEMHVsu2rPPp7jv7uzuAsxSNvpDK8IbVHhfatzyyqeEmDKJUyyh0ilyYh07QfhZ3Xb9bg6tpLgzRKivbX9r0wlpXI_VKmvVRr1d_JDAf0UcB6az0KOFXiJC0_OJzjuZRkuxpMqfZq3D-zfHq9Uva3it6jHQw_MB40S3y0EXo_u2o5pxPaxM2KtTImuXBtqBms21Yn6sluA0rBZdTj3fg5drOUhJZkhmGUW_yNhmxYcoSRhxyaqXEzDtxx3PWy1iOF2q5oUL_ZZEORiUuUUHoB56Nqek1o4PvwnPr5umqzasOClxjXJjzSBk_CZWXulJ5eAUyUMZRiOKMbAg3iRBem4an08BTGCf61vP80EkihEUNdGI4vAdL2TCz-8B8jdjDSWRgtREKPZq0MhSJENoRxjX6AC6n4op1VV6culwM4imPrB__FndM4o5LcR9AOFs_KgttLLyyOb2d-IfqxOgVFtzj8B_2OII1lwgvxfvMMSzl7xN7goglV6eFSp7CcvP2vt35AiFk78o
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLZgiNcB8RRvckDconVt2qYHDhMPbTx2ASQ4Vc2jYmPqpq0Tfx-77WAgDhy4RnUUOZb9uflsA5ym6PSFVIY3rPa40L7lkU0NN2EQpVpGoVPUwtx3gtaTuHn2n-fgYloLQ7TKyveXPr3w1tVKvdJmfdjt1h8IzEf0UEA2Kz05DwvUncqvwUKzfdvqfDE9Sp49fc9JYAnOvmhe3V7J3HvFoJH2B--YMrpFKboI3d9j1Uz8uV6HtQo4smZ5tg2Ys9kmrM60E9yExYLOqcdb8HJpP6sSWZIZholv8jYZskHKEkY0cpqmxMyI6OM562Ysxzu13FCv_7JPB6Mul2gj9AjPxjT3mtHBt-Hp-urxosWrIQpcY2qY80gZPwmVl7pSeXgLMlDGUQjkjGwIN4kQYZuGp9PAU5gq-tbz_NBJIkRGDYxjuLwDtWyQ2V1gvkb44SQysNoIhUFNWhmKRAjtCOMavQfnU3XFuuowToMu-vGUStaLf6o7JnXHpbr3IPyUH5a9Nv4s2ZzeTvzNemIMDH_cY_8f9jiB5dbj_V181-7cHsCKS_yX4nfNIdTy0cQeIYDJ1XFloB9Q-fJ7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deformation+and+breakup+of+a+compound+droplet+in+three-dimensional+oscillatory+shear+flow&rft.jtitle=International+journal+of+multiphase+flow&rft.au=Liu%2C+Haihu&rft.au=Lu%2C+Yang&rft.au=Li%2C+Sheng&rft.au=Yu%2C+Yuan&rft.date=2021-01-01&rft.pub=Elsevier+Ltd&rft.issn=0301-9322&rft.eissn=1879-3533&rft.volume=134&rft_id=info:doi/10.1016%2Fj.ijmultiphaseflow.2020.103472&rft.externalDocID=S0301932220305838
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-9322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-9322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-9322&client=summon