Deformation and breakup of a compound droplet in three-dimensional oscillatory shear flow
•A compound droplet under oscillatory shear is studied using a three-phase LBM.•We demonstrate the simple shear is a limiting case of the oscillatory shear.•Inner droplet can counterintuitively rotate in a direction opposite to the outer one.•Inner droplet exhibits multipeaked oscillations at high c...
Saved in:
Published in | International journal of multiphase flow Vol. 134; p. 103472 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A compound droplet under oscillatory shear is studied using a three-phase LBM.•We demonstrate the simple shear is a limiting case of the oscillatory shear.•Inner droplet can counterintuitively rotate in a direction opposite to the outer one.•Inner droplet exhibits multipeaked oscillations at high capillary numbers.•Critical capillary number for droplet breakup is greatly influenced by confinement.
A compound droplet subject to three-dimensional oscillatory shear flow is studied using a three-phase lattice Boltzmann model. Firstly, focusing on low values of capillary number (Ca) where the compound droplet eventually reaches steady-state oscillatory condition, we study the effect of oscillatory period, viscosities of inner and outer fluids of the compound droplet, wall confinement and Ca on the droplet behavior. As the oscillatory period increases, the maximum deformation parameters gradually approach the steady-state values in the corresponding simple shear flow for both inner and outer droplets, and the compound droplet is more synchronous with applied shear. We demonstrate for the first time that due to high pressure near two tips inside the outer droplet the inner droplet may rotate counterintuitively in a direction opposite to the outer one. The compound droplet undergoes larger deformation when either droplet is less viscous, which also decreases the synchronization between inner and outer droplets. Increasing confinement ratio not only promotes the deformations of both constituent droplets, but also makes them more synchronous with applied shear. It is also found that the maximum deformation parameters of both droplets increase linearly with Ca up to Ca=0.35 but deviate from the linearity at higher Ca, where multipeaked oscillations are observed for the deformation of the inner droplet, which can be due to the extensional flow resulting from the rapid contraction of the outer droplet. We then analyze the breakup behavior of compound droplet in the oscillatory shear flow for varying confinement ratios, and compare the findings with those in simple shear flow. The critical capillary number for droplet breakup exhibits a non-monotonic behavior with the confinement ratio in both shear flows, but its value is always higher in oscillatory shear flow than in simple shear flow. As the confinement ratio increases, in the case of oscillatory shear flow, the droplet undergoes a transition from inner ternary breakup to inner binary breakup, distinct from the one observed in the case of simple shear flow. Finally, increasing oscillatory period is found to not only decrease the critical capillary number but also change the mode of droplet breakup. |
---|---|
AbstractList | •A compound droplet under oscillatory shear is studied using a three-phase LBM.•We demonstrate the simple shear is a limiting case of the oscillatory shear.•Inner droplet can counterintuitively rotate in a direction opposite to the outer one.•Inner droplet exhibits multipeaked oscillations at high capillary numbers.•Critical capillary number for droplet breakup is greatly influenced by confinement.
A compound droplet subject to three-dimensional oscillatory shear flow is studied using a three-phase lattice Boltzmann model. Firstly, focusing on low values of capillary number (Ca) where the compound droplet eventually reaches steady-state oscillatory condition, we study the effect of oscillatory period, viscosities of inner and outer fluids of the compound droplet, wall confinement and Ca on the droplet behavior. As the oscillatory period increases, the maximum deformation parameters gradually approach the steady-state values in the corresponding simple shear flow for both inner and outer droplets, and the compound droplet is more synchronous with applied shear. We demonstrate for the first time that due to high pressure near two tips inside the outer droplet the inner droplet may rotate counterintuitively in a direction opposite to the outer one. The compound droplet undergoes larger deformation when either droplet is less viscous, which also decreases the synchronization between inner and outer droplets. Increasing confinement ratio not only promotes the deformations of both constituent droplets, but also makes them more synchronous with applied shear. It is also found that the maximum deformation parameters of both droplets increase linearly with Ca up to Ca=0.35 but deviate from the linearity at higher Ca, where multipeaked oscillations are observed for the deformation of the inner droplet, which can be due to the extensional flow resulting from the rapid contraction of the outer droplet. We then analyze the breakup behavior of compound droplet in the oscillatory shear flow for varying confinement ratios, and compare the findings with those in simple shear flow. The critical capillary number for droplet breakup exhibits a non-monotonic behavior with the confinement ratio in both shear flows, but its value is always higher in oscillatory shear flow than in simple shear flow. As the confinement ratio increases, in the case of oscillatory shear flow, the droplet undergoes a transition from inner ternary breakup to inner binary breakup, distinct from the one observed in the case of simple shear flow. Finally, increasing oscillatory period is found to not only decrease the critical capillary number but also change the mode of droplet breakup. |
ArticleNumber | 103472 |
Author | Sahu, Kirti Chandra Lu, Yang Liu, Haihu Li, Sheng Yu, Yuan |
Author_xml | – sequence: 1 givenname: Haihu surname: Liu fullname: Liu, Haihu email: haihu.liu@mail.xjtu.edu.cn organization: School of Energy and Power Engineering, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an 710049, China – sequence: 2 givenname: Yang surname: Lu fullname: Lu, Yang organization: School of Energy and Power Engineering, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an 710049, China – sequence: 3 givenname: Sheng surname: Li fullname: Li, Sheng organization: School of Energy and Power Engineering, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an 710049, China – sequence: 4 givenname: Yuan surname: Yu fullname: Yu, Yuan organization: School of Engineering, Sun Yat-Sen University, Guangzhou 510006, China – sequence: 5 givenname: Kirti Chandra surname: Sahu fullname: Sahu, Kirti Chandra organization: Department of Chemical Engineering, Indian Institute of Technology Hyderabad Sangareddy, Telangana, 502 285, India |
BookMark | eNqNkD1PwzAQhi1UJNrCf_DEluKPpEkWJNQCRarEAgOT5dhn1cWJI9sF9d-TUCamTie9p3t07zNDk853gNAtJQtK6PJuv7D79uCS7XcygnH-e8EIG5c8L9kFmtKqrDNecD5BU8IJzWrO2BWaxbgnhBRlzqfoYw3Gh1Ym6zssO42bAPLz0GNvsMTKt70_DKkOvneQsO1w2gWATNsWujgcSYd9VNY5mXw44rgDGfD4zDW6NNJFuPmbc_T-9Pi22mTb1-eX1cM2UzlhKasbXciy4YZVDQejq2WjSUPyQlc0Z7KuKqYpV2bJmyKvC-C8KImsWTEoKKshnqP1iauCjzGAEcqm3z4pSOsEJWLUJfbivy4x6hInXQPm_h-mD7aV4Xg-YHMCwFD2y0IQgxboFGgbQCWhvT0X9QPt-pdm |
CitedBy_id | crossref_primary_10_1063_5_0077372 crossref_primary_10_1103_PhysRevE_105_025101 crossref_primary_10_1122_8_0000382 crossref_primary_10_1016_j_camwa_2023_02_006 crossref_primary_10_1063_5_0174869 crossref_primary_10_1021_acs_iecr_3c03947 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104559 crossref_primary_10_1063_5_0087738 crossref_primary_10_3390_en16135094 crossref_primary_10_1016_j_fmre_2021_10_011 crossref_primary_10_1063_5_0088946 crossref_primary_10_1016_j_colsurfa_2024_136000 crossref_primary_10_1063_5_0155427 crossref_primary_10_1063_5_0146560 crossref_primary_10_1016_j_ces_2023_118772 crossref_primary_10_1063_5_0251045 crossref_primary_10_1063_5_0114610 crossref_primary_10_1115_1_4063154 crossref_primary_10_1016_j_jgsce_2022_204855 crossref_primary_10_1063_5_0218423 crossref_primary_10_1063_5_0219512 crossref_primary_10_1016_j_elstat_2024_103933 crossref_primary_10_1063_5_0045994 crossref_primary_10_1063_5_0062107 crossref_primary_10_1016_j_ces_2022_118265 crossref_primary_10_1016_j_jcis_2023_09_034 crossref_primary_10_1063_5_0196394 crossref_primary_10_1063_5_0086420 crossref_primary_10_1021_acs_langmuir_2c00742 crossref_primary_10_1063_5_0137904 crossref_primary_10_1017_jfm_2023_344 crossref_primary_10_1007_s12206_022_1220_5 crossref_primary_10_1103_PhysRevFluids_6_094304 crossref_primary_10_1007_s10665_024_10343_5 crossref_primary_10_3390_math10214092 crossref_primary_10_1063_5_0137505 crossref_primary_10_1063_5_0163519 crossref_primary_10_1088_1873_7005_ac3893 crossref_primary_10_1103_PhysRevFluids_7_013703 crossref_primary_10_1063_5_0068759 crossref_primary_10_1063_5_0064564 crossref_primary_10_1063_5_0220905 crossref_primary_10_1029_2022WR033267 crossref_primary_10_1016_j_molliq_2022_119823 crossref_primary_10_1016_j_ijmultiphaseflow_2025_105193 crossref_primary_10_1080_01932691_2021_2013864 crossref_primary_10_1002_fld_5061 crossref_primary_10_1063_5_0187158 crossref_primary_10_1016_j_apm_2022_11_041 crossref_primary_10_1063_5_0187395 crossref_primary_10_1021_acs_energyfuels_1c02587 crossref_primary_10_1063_5_0134587 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103846 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104349 crossref_primary_10_1103_PhysRevFluids_9_064203 crossref_primary_10_1021_acs_langmuir_2c03273 crossref_primary_10_3390_pr12010141 crossref_primary_10_1002_aic_18202 crossref_primary_10_1063_5_0116408 crossref_primary_10_1016_j_ces_2024_119738 crossref_primary_10_1063_5_0232493 crossref_primary_10_1016_j_molliq_2022_118841 |
Cites_doi | 10.1017/S0022112087001459 10.1103/PhysRevLett.110.066001 10.1007/s00162-020-00517-z 10.1017/S0022112095004009 10.1122/1.4984757 10.1063/1.4789865 10.1039/c0sm01100b 10.1103/PhysRevE.99.013308 10.1007/s00397-004-0388-1 10.1016/S1369-7021(08)70053-1 10.1103/PhysRevLett.119.064502 10.1103/PhysRevE.73.056708 10.1063/1.3153304 10.1146/annurev.fluid.30.1.329 10.1016/0021-9797(72)90272-X 10.1039/c1lc20265k 10.1017/S0022112090001525 10.1017/jfm.2017.859 10.1098/rspa.1934.0169 10.1063/1.5008908 10.1122/1.3473924 10.1016/j.ces.2013.04.043 10.1103/PhysRevE.71.056702 10.1017/S0022112085003585 10.1017/jfm.2012.137 10.1103/PhysRevE.89.052302 10.1039/C4LC01231C 10.1063/1.5056765 10.1103/PhysRevE.85.046309 10.1103/PhysRevA.43.4320 10.1103/PhysRevE.65.046308 10.1017/jfm.2011.235 10.1126/science.1109164 10.1122/1.1501960 10.1103/PhysRevE.76.026708 10.1007/s00397-002-0245-z 10.1063/1.4916623 10.1017/jfm.2015.286 10.1017/jfm.2014.649 10.1063/1.3460301 10.1063/1.4770294 10.1063/1.869307 10.1016/j.ijmultiphaseflow.2007.09.002 10.1021/ja205687k 10.1007/s12206-018-0420-5 10.1063/1.4926675 10.1016/j.jcp.2013.03.039 10.1063/1.5134901 10.1016/j.ijheatmasstransfer.2018.11.131 10.1016/j.ijheatfluidflow.2014.05.007 10.1103/PhysRevE.82.066701 10.1017/jfm.2019.137 10.1021/la200473h 10.1103/PhysRevLett.93.204501 10.1063/1.3655673 10.1103/PhysRevE.97.043112 10.1002/adma.200800918 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijmultiphaseflow.2020.103472 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-3533 |
ExternalDocumentID | 10_1016_j_ijmultiphaseflow_2020_103472 S0301932220305838 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SSG SST SSZ T5K TN5 VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c402t-9bd5a7b3f28b3efd86bd0b045d8142a9882d13cf63b5495e33570a92501678f63 |
IEDL.DBID | .~1 |
ISSN | 0301-9322 |
IngestDate | Tue Jul 01 02:45:08 EDT 2025 Thu Apr 24 23:11:56 EDT 2025 Fri Feb 23 02:46:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Critical capillary number Deformation and breakup Compound droplet Oscillatory shear Wall confinement |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-9bd5a7b3f28b3efd86bd0b045d8142a9882d13cf63b5495e33570a92501678f63 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ijmultiphaseflow_2020_103472 crossref_primary_10_1016_j_ijmultiphaseflow_2020_103472 elsevier_sciencedirect_doi_10_1016_j_ijmultiphaseflow_2020_103472 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationTitle | International journal of multiphase flow |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Gao, Feng (bib0014) 2011; 682 Tiribocchi, Montessori, Aime, Milani, Lauricella, Succi, Weitz (bib0046) 2020; 32 Lee, Weitz (bib0028) 2008; 20 Shah, Shum, Rowat, Lee, Agresti, Utada, Chu, Kim, Fernandez-Nieves, Martinez, Weitz (bib0038) 2008; 11 Leclaire, Reggio, Trépanier (bib0027) 2013; 246 Chen, Zhao, Li, Guo, Wan, Weitz, Stone (bib0007) 2011; 11 Wang, Liu, Zhang (bib0053) 2017; 61 Wang, Liu, Han, Guan (bib0052) 2013; 110 Borthakur, Biswas, Bandyopadhyay (bib0003) 2018; 97 Sadhal, Oguz (bib0037) 1985; 160 Taylor (bib0045) 1934; 146 Matsunaga, Imai, Yamaguchi, Ishikawa (bib0033) 2015; 762 Cavallo, Guido, Simeone (bib0004) 2003; 42 Aston (bib0001) 1972; 38 Uijttewaal, Nijhof (bib0047) 1995; 302 Janssen, Vananroye, Puyvelde, Moldenaers, Anderson (bib0023) 2010; 54 Chen, Doolen (bib0008) 1998; 30 Guo, Shu (bib0017) 2013 Smith, Ottino, Olvera de la Cruz (bib0039) 2004; 93 Zou, He (bib0061) 1997; 9 Chen, Li, Shum, Stone, Weitz (bib0006) 2011; 7 Vu, Vu, Bui (bib0050) 2019; 131 Spencer, Halliday, Care (bib0041) 2010; 82 Li, Chen, Stone (bib0029) 2011; 27 Farutin, Misbah (bib0013) 2012; 700 Wannaborworn, Mackley, Renardy (bib0054) 2002; 46 Yu, Liu, Liang, Zhang (bib0056) 2019; 31 Zhu, Gallaire (bib0059) 2017; 119 Oldroyd (bib0035) 1953; 218 Vu, Vu, Pham, Luu (bib0049) 2018; 32 Hua, Shin, Kim (bib0021) 2014; 50 Chen, Liu, Shi (bib0009) 2013; 102 Stone, Leal (bib0042) 1990; 211 Balla, Tripathi, Sahu (bib0002) 2020; 34 Oguz, Sadhal (bib0034) 1987; 179 Latva-Kokko, Rothman (bib0026) 2005; 71 Succi (bib0043) 2001 Yu, Liang, Liu (bib0055) 2019; 99 Wang, Li, Wang, Guan (bib0051) 2014; 89 Qu, Wang (bib0036) 2012; 24 Guido, Grosso, Maffettone (bib0015) 2004; 43 Guo, Zheng, Shi (bib0018) 2002; 65 Krüger, Kusumaatmaja, Kuzmin, Shardt, Silva, Viggen (bib0025) 2017 Liu, Valocchi, Kang (bib0031) 2012; 85 Che, Yap, Wang (bib0005) 2018; 30 Song, Xu, Yang (bib0040) 2010; 22 Tao, Song, Liu, Wang (bib0044) 2013; 97 Zhu, Rabault, Brandt (bib0060) 2015; 27 Deka, Biswas, Sahu, Kulkarni, Dalal (bib0012) 2019; 866 Liu, Ba, Wu, Li, Xi, Zhang (bib0030) 2018; 837 Halliday, Hollis, Care (bib0019) 2007; 76 Chen, Liu, Zhao (bib0011) 2015; 106 Chen, Liu, Zhang, Zhao (bib0010) 2015; 15 Utada, Lorenceau, Link, Kaplan, Stone, Weitz (bib0048) 2005; 308 Zhou, Yue, Feng (bib0058) 2008; 34 Zhao, Bagchi (bib0057) 2011; 23 Kim, Shum, Kim, Cho, Weitz (bib0024) 2011; 133 Luo, He, Bai (bib0032) 2015; 775 Janpaen, Niamlang, Lerdwijitjarud, Sirivat (bib0022) 2009; 21 Halliday, Law, Care, Hollis (bib0020) 2006; 73 Gunstensen, Rothman, Zaleski, Zanetti (bib0016) 1991; 43 Oldroyd (10.1016/j.ijmultiphaseflow.2020.103472_bib0035) 1953; 218 Janpaen (10.1016/j.ijmultiphaseflow.2020.103472_bib0022) 2009; 21 Hua (10.1016/j.ijmultiphaseflow.2020.103472_bib0021) 2014; 50 Zhu (10.1016/j.ijmultiphaseflow.2020.103472_bib0060) 2015; 27 Liu (10.1016/j.ijmultiphaseflow.2020.103472_bib0031) 2012; 85 Yu (10.1016/j.ijmultiphaseflow.2020.103472_bib0055) 2019; 99 Kim (10.1016/j.ijmultiphaseflow.2020.103472_bib0024) 2011; 133 Che (10.1016/j.ijmultiphaseflow.2020.103472_bib0005) 2018; 30 Wang (10.1016/j.ijmultiphaseflow.2020.103472_bib0053) 2017; 61 Stone (10.1016/j.ijmultiphaseflow.2020.103472_bib0042) 1990; 211 Cavallo (10.1016/j.ijmultiphaseflow.2020.103472_bib0004) 2003; 42 Yu (10.1016/j.ijmultiphaseflow.2020.103472_bib0056) 2019; 31 Zhu (10.1016/j.ijmultiphaseflow.2020.103472_bib0059) 2017; 119 Tao (10.1016/j.ijmultiphaseflow.2020.103472_bib0044) 2013; 97 Halliday (10.1016/j.ijmultiphaseflow.2020.103472_bib0019) 2007; 76 Taylor (10.1016/j.ijmultiphaseflow.2020.103472_bib0045) 1934; 146 Shah (10.1016/j.ijmultiphaseflow.2020.103472_bib0038) 2008; 11 Tiribocchi (10.1016/j.ijmultiphaseflow.2020.103472_bib0046) 2020; 32 Aston (10.1016/j.ijmultiphaseflow.2020.103472_bib0001) 1972; 38 Oguz (10.1016/j.ijmultiphaseflow.2020.103472_bib0034) 1987; 179 Zhao (10.1016/j.ijmultiphaseflow.2020.103472_bib0057) 2011; 23 Halliday (10.1016/j.ijmultiphaseflow.2020.103472_bib0020) 2006; 73 Matsunaga (10.1016/j.ijmultiphaseflow.2020.103472_bib0033) 2015; 762 Zhou (10.1016/j.ijmultiphaseflow.2020.103472_bib0058) 2008; 34 Chen (10.1016/j.ijmultiphaseflow.2020.103472_bib0010) 2015; 15 Wang (10.1016/j.ijmultiphaseflow.2020.103472_bib0051) 2014; 89 Borthakur (10.1016/j.ijmultiphaseflow.2020.103472_bib0003) 2018; 97 Gunstensen (10.1016/j.ijmultiphaseflow.2020.103472_bib0016) 1991; 43 Smith (10.1016/j.ijmultiphaseflow.2020.103472_bib0039) 2004; 93 Vu (10.1016/j.ijmultiphaseflow.2020.103472_bib0050) 2019; 131 Guo (10.1016/j.ijmultiphaseflow.2020.103472_bib0018) 2002; 65 Li (10.1016/j.ijmultiphaseflow.2020.103472_bib0029) 2011; 27 Lee (10.1016/j.ijmultiphaseflow.2020.103472_bib0028) 2008; 20 Sadhal (10.1016/j.ijmultiphaseflow.2020.103472_bib0037) 1985; 160 Utada (10.1016/j.ijmultiphaseflow.2020.103472_bib0048) 2005; 308 Chen (10.1016/j.ijmultiphaseflow.2020.103472_bib0011) 2015; 106 Krüger (10.1016/j.ijmultiphaseflow.2020.103472_bib0025) 2017 Guo (10.1016/j.ijmultiphaseflow.2020.103472_bib0017) 2013 Zou (10.1016/j.ijmultiphaseflow.2020.103472_bib0061) 1997; 9 Leclaire (10.1016/j.ijmultiphaseflow.2020.103472_bib0027) 2013; 246 Gao (10.1016/j.ijmultiphaseflow.2020.103472_bib0014) 2011; 682 Farutin (10.1016/j.ijmultiphaseflow.2020.103472_bib0013) 2012; 700 Latva-Kokko (10.1016/j.ijmultiphaseflow.2020.103472_bib0026) 2005; 71 Wang (10.1016/j.ijmultiphaseflow.2020.103472_bib0052) 2013; 110 Qu (10.1016/j.ijmultiphaseflow.2020.103472_bib0036) 2012; 24 Chen (10.1016/j.ijmultiphaseflow.2020.103472_bib0006) 2011; 7 Deka (10.1016/j.ijmultiphaseflow.2020.103472_bib0012) 2019; 866 Chen (10.1016/j.ijmultiphaseflow.2020.103472_bib0009) 2013; 102 Luo (10.1016/j.ijmultiphaseflow.2020.103472_bib0032) 2015; 775 Guido (10.1016/j.ijmultiphaseflow.2020.103472_bib0015) 2004; 43 Song (10.1016/j.ijmultiphaseflow.2020.103472_bib0040) 2010; 22 Janssen (10.1016/j.ijmultiphaseflow.2020.103472_bib0023) 2010; 54 Chen (10.1016/j.ijmultiphaseflow.2020.103472_bib0007) 2011; 11 Succi (10.1016/j.ijmultiphaseflow.2020.103472_bib0043) 2001 Wannaborworn (10.1016/j.ijmultiphaseflow.2020.103472_bib0054) 2002; 46 Spencer (10.1016/j.ijmultiphaseflow.2020.103472_bib0041) 2010; 82 Balla (10.1016/j.ijmultiphaseflow.2020.103472_bib0002) 2020; 34 Liu (10.1016/j.ijmultiphaseflow.2020.103472_bib0030) 2018; 837 Uijttewaal (10.1016/j.ijmultiphaseflow.2020.103472_bib0047) 1995; 302 Vu (10.1016/j.ijmultiphaseflow.2020.103472_bib0049) 2018; 32 Chen (10.1016/j.ijmultiphaseflow.2020.103472_bib0008) 1998; 30 |
References_xml | – volume: 30 start-page: 012114 year: 2018 ident: bib0005 article-title: Flow structure of compound droplets moving in microchannels publication-title: Phys. Fluids – volume: 24 start-page: 123302 year: 2012 ident: bib0036 article-title: Dynamics of concentric and eccentric compound droplets suspended in extensional flows publication-title: Phys. Fluids – volume: 110 start-page: 066001 year: 2013 ident: bib0052 article-title: Effects of complex internal structures on rheology of multiple emulsions particles in 2d from a boundary integral method publication-title: Phys. Rev. Lett. – volume: 99 start-page: 013308 year: 2019 ident: bib0055 article-title: Lattice Boltzmann simulation of immiscible three-phase flows with contact-line dynamics publication-title: Phys. Rev. E – volume: 23 start-page: 111901 year: 2011 ident: bib0057 article-title: Dynamics of microcapsules in oscillating shear flow publication-title: Phys. Fluids – volume: 146 start-page: 501 year: 1934 end-page: 523 ident: bib0045 article-title: The formation of emulsions in definable fields of flow publication-title: Proc. R. Soc. Lond. A – volume: 302 start-page: 45 year: 1995 end-page: 63 ident: bib0047 article-title: The motion of a droplet subjected to linear shear flow including the presence of a plane wall publication-title: J. Fluid Mech. – volume: 73 start-page: 056708 year: 2006 ident: bib0020 article-title: Improved simulation of drop dynamics in a shear flow at low Reynolds and capillary number publication-title: Phys. Rev. E – year: 2017 ident: bib0025 article-title: The lattice Boltzmann method – volume: 119 start-page: 064502 year: 2017 ident: bib0059 article-title: Bifurcation dynamics of a particle-encapsulating droplet in shear flow publication-title: Phys. Rev. Lett. – volume: 762 start-page: 288 year: 2015 end-page: 301 ident: bib0033 article-title: Deformation of a spherical capsule under oscillating shear flow publication-title: J. Fluid Mech. – volume: 160 start-page: 511 year: 1985 end-page: 529 ident: bib0037 article-title: Stokes flow past compound multiphase drops: the case of completely engulfed drops/bubbles publication-title: J. Fluid Mech. – volume: 211 start-page: 123 year: 1990 end-page: 156 ident: bib0042 article-title: Breakup of concentric double emulsion droplets in linear flows publication-title: J. Fluid Mech. – volume: 30 start-page: 329 year: 1998 end-page: 364 ident: bib0008 article-title: Lattice Boltzmann method for fluid flows publication-title: Annu. Rev. Fluid Mech. – volume: 50 start-page: 63 year: 2014 end-page: 71 ident: bib0021 article-title: Dynamics of a compound droplet in shear flow publication-title: Int. J. Heat Fluid Flow – volume: 837 start-page: 381 year: 2018 end-page: 412 ident: bib0030 article-title: A hybrid lattice Boltzmann and finite difference method for droplet dynamics with insoluble surfactants publication-title: J. Fluid Mech. – year: 2013 ident: bib0017 article-title: Lattice Boltzmann method and its applications in engineering – year: 2001 ident: bib0043 article-title: The lattice Boltzmann equation: For fluid dynamics and beyond – volume: 61 start-page: 741 year: 2017 end-page: 758 ident: bib0053 article-title: Deformation and breakup of a confined droplet in shear flows with power-law rheology publication-title: J. Rheol. – volume: 43 start-page: 4320 year: 1991 end-page: 4327 ident: bib0016 article-title: Lattice Boltzmann model of immiscible fluids publication-title: Phys. Rev. A – volume: 71 start-page: 056702 year: 2005 ident: bib0026 article-title: Diffusion properties of gradient-based lattice boltzmann models of immiscible fluids publication-title: Phys. Rev. E – volume: 85 start-page: 046309 year: 2012 ident: bib0031 article-title: Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations publication-title: Phys. Rev. E – volume: 22 start-page: 072003 year: 2010 ident: bib0040 article-title: Stokes flow past a compound drop in a circular tube publication-title: Phys. Fluids – volume: 9 start-page: 1591 year: 1997 end-page: 1598 ident: bib0061 article-title: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model publication-title: Phys. Fluids – volume: 46 start-page: 1279 year: 2002 end-page: 1293 ident: bib0054 article-title: Experimental observation and matching numerical simulation for the deformation and breakup of immiscible drops in oscillatory shear publication-title: J. Rheol. – volume: 866 start-page: R21 year: 2019 end-page: 11 ident: bib0012 article-title: Coalescence dynamics of a compound drop on a deep liquid pool publication-title: J. Fluid Mech. – volume: 89 start-page: 052302 year: 2014 ident: bib0051 article-title: Possible oriented transition of multiple-emulsion globules with asymmetric internal structures in a microfluidic constriction publication-title: Phys. Rev. E – volume: 97 start-page: 043112 year: 2018 ident: bib0003 article-title: Dynamics of deformation and pinch-off of a migrating compound droplet in a tube publication-title: Phys. Rev. E – volume: 82 start-page: 066701 year: 2010 ident: bib0041 article-title: Lattice Boltzmann equation method for multiple immiscible continuum fluids publication-title: Phys. Rev. E – volume: 218 start-page: 122 year: 1953 end-page: 132 ident: bib0035 article-title: The elastic and viscous properties of emulsions and suspensions publication-title: Proc. R. Soc. A – volume: 700 start-page: 362 year: 2012 end-page: 381 ident: bib0013 article-title: Rheology of vesicle suspensions under combined steady and oscillating shear flows publication-title: J. Fluid Mech. – volume: 27 start-page: 071902 year: 2015 ident: bib0060 article-title: The dynamics of a capsule in a wall-bounded oscillating shear flow publication-title: Phys. Fluids – volume: 76 start-page: 026708 year: 2007 ident: bib0019 article-title: Lattice Boltzmann algorithm for continuum multicomponent flow publication-title: Phys. Rev. E – volume: 34 start-page: 133 year: 2020 end-page: 144 ident: bib0002 article-title: A numerical study of a hollow water droplet falling in air publication-title: Theor. Comput. Fluid Dyn. – volume: 20 start-page: 3498 year: 2008 end-page: 3503 ident: bib0028 article-title: Double emulsion-templated nanoparticle colloidosomes with selective permeability publication-title: Adv. Mater. – volume: 32 start-page: 2111 year: 2018 end-page: 2117 ident: bib0049 article-title: Numerical investigation of dynamic behavior of a compound drop in shear flow publication-title: J. Mech. Sci. Technol. – volume: 106 start-page: 141601 year: 2015 ident: bib0011 article-title: Deformation dynamics of double emulsion droplet under shear publication-title: Appl. Phys. Lett. – volume: 775 start-page: 77 year: 2015 end-page: 104 ident: bib0032 article-title: Deformation of spherical compound capsules in simple shear flow publication-title: J. Fluid Mech. – volume: 246 start-page: 318 year: 2013 end-page: 342 ident: bib0027 article-title: Progress and investigation on lattice Boltzmann modeling of multiple immiscible fluids or components with variable density and viscosity ratios publication-title: J. Comput. Phys. – volume: 11 start-page: 18 year: 2008 end-page: 27 ident: bib0038 article-title: Designer emulsions using microfluidics publication-title: Mater. Today – volume: 93 start-page: 204501 year: 2004 ident: bib0039 article-title: Encapsulated drop breakup in shear flow publication-title: Phys. Rev. Lett. – volume: 682 start-page: 415 year: 2011 end-page: 433 ident: bib0014 article-title: Spreading and breakup of a compound drop on a partially wetting substrate publication-title: J. Fluid Mech. – volume: 32 start-page: 017102 year: 2020 ident: bib0046 article-title: Novel nonequilibrium steady states in multiple emulsions featured publication-title: Phys. Fluids – volume: 179 start-page: 105 year: 1987 end-page: 136 ident: bib0034 article-title: Growth and collapse of translating compound multiphase drops: analysis of fluid mechanics and heat transfer publication-title: J. Fluid Mech. – volume: 38 start-page: 547 year: 1972 end-page: 553 ident: bib0001 article-title: Gas-filled hollow drops in aerosols publication-title: J.Colloid Interface Sci. – volume: 27 start-page: 4324 year: 2011 end-page: 4327 ident: bib0029 article-title: Breakup of double emulsion droplets in a tapered nozzle publication-title: Langmuir – volume: 43 start-page: 575 year: 2004 end-page: 583 ident: bib0015 article-title: Newtonian drop in a newtonian matrix subjected to large amplitude oscillatory shear flows publication-title: Rheol. Acta – volume: 11 start-page: 2312 year: 2011 end-page: 2315 ident: bib0007 article-title: Reactions in double emulsions by flow-controlled coalescence of encapsulated drops publication-title: Lab Chip – volume: 308 start-page: 537 year: 2005 end-page: 541 ident: bib0048 article-title: Monodisperse double emulsions generated from a microcapillary device publication-title: Science – volume: 21 start-page: 063102 year: 2009 ident: bib0022 article-title: Oscillatory shear induced droplet deformation and breakup in immiscible polymer blends publication-title: Phys. Fluids – volume: 102 start-page: 051609 year: 2013 ident: bib0009 article-title: Hydrodynamics of double emulsion droplet in shear flow publication-title: Appl. Phys. Lett. – volume: 131 start-page: 1083 year: 2019 end-page: 1094 ident: bib0050 article-title: Numerical study of deformation and breakup of a multi-core compound droplet in simple shear flow publication-title: Intl J. Heat Mass Tran. – volume: 65 start-page: 046308 year: 2002 ident: bib0018 article-title: Discrete lattice effects on the forcing term in the lattice Boltzmann method publication-title: Phys. Rev. E – volume: 42 start-page: 1 year: 2003 end-page: 9 ident: bib0004 article-title: Drop deformation under small-amplitude oscillatory shear flow publication-title: Rheol. Acta – volume: 15 start-page: 1255 year: 2015 end-page: 1261 ident: bib0010 article-title: Enhancing and suppressing effects of an inner droplet on deformation of a double emulsion droplet under shear publication-title: Lab Chip – volume: 54 start-page: 1047 year: 2010 end-page: 1060 ident: bib0023 article-title: Generalized behavior of the breakup of viscous drops in confinements publication-title: J. Rheol. – volume: 7 start-page: 2345 year: 2011 end-page: 2347 ident: bib0006 article-title: Breakup of double emulsions in constrictions publication-title: Soft Matter – volume: 133 start-page: 15165 year: 2011 end-page: 15171 ident: bib0024 article-title: Multiple polymersomes for programmed release of multiple components publication-title: J. Am. Chem. Soc. – volume: 34 start-page: 102 year: 2008 end-page: 109 ident: bib0058 article-title: Deformation of a compound drop through a contraction in a pressure-driven pipe flow publication-title: Int. J. Multiphase Flow – volume: 97 start-page: 328 year: 2013 end-page: 336 ident: bib0044 article-title: Microfluidic rheology of the multiple-emulsion globule transiting in a contraction tube through a boundary element method publication-title: Chem. Eng. Sci. – volume: 31 start-page: 012108 year: 2019 ident: bib0056 article-title: A versatile lattice Boltzmann model for immiscible ternary fluid flows publication-title: Phys. Fluids – volume: 179 start-page: 105 year: 1987 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0034 article-title: Growth and collapse of translating compound multiphase drops: analysis of fluid mechanics and heat transfer publication-title: J. Fluid Mech. doi: 10.1017/S0022112087001459 – volume: 110 start-page: 066001 year: 2013 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0052 article-title: Effects of complex internal structures on rheology of multiple emulsions particles in 2d from a boundary integral method publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.066001 – volume: 34 start-page: 133 year: 2020 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0002 article-title: A numerical study of a hollow water droplet falling in air publication-title: Theor. Comput. Fluid Dyn. doi: 10.1007/s00162-020-00517-z – volume: 302 start-page: 45 year: 1995 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0047 article-title: The motion of a droplet subjected to linear shear flow including the presence of a plane wall publication-title: J. Fluid Mech. doi: 10.1017/S0022112095004009 – volume: 61 start-page: 741 year: 2017 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0053 article-title: Deformation and breakup of a confined droplet in shear flows with power-law rheology publication-title: J. Rheol. doi: 10.1122/1.4984757 – volume: 102 start-page: 051609 year: 2013 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0009 article-title: Hydrodynamics of double emulsion droplet in shear flow publication-title: Appl. Phys. Lett. doi: 10.1063/1.4789865 – volume: 7 start-page: 2345 year: 2011 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0006 article-title: Breakup of double emulsions in constrictions publication-title: Soft Matter doi: 10.1039/c0sm01100b – volume: 99 start-page: 013308 year: 2019 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0055 article-title: Lattice Boltzmann simulation of immiscible three-phase flows with contact-line dynamics publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.99.013308 – volume: 43 start-page: 575 year: 2004 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0015 article-title: Newtonian drop in a newtonian matrix subjected to large amplitude oscillatory shear flows publication-title: Rheol. Acta doi: 10.1007/s00397-004-0388-1 – volume: 11 start-page: 18 year: 2008 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0038 article-title: Designer emulsions using microfluidics publication-title: Mater. Today doi: 10.1016/S1369-7021(08)70053-1 – volume: 119 start-page: 064502 issue: 6 year: 2017 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0059 article-title: Bifurcation dynamics of a particle-encapsulating droplet in shear flow publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.064502 – volume: 73 start-page: 056708 issue: 5 year: 2006 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0020 article-title: Improved simulation of drop dynamics in a shear flow at low Reynolds and capillary number publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.73.056708 – volume: 218 start-page: 122 year: 1953 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0035 article-title: The elastic and viscous properties of emulsions and suspensions publication-title: Proc. R. Soc. A – volume: 21 start-page: 063102 year: 2009 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0022 article-title: Oscillatory shear induced droplet deformation and breakup in immiscible polymer blends publication-title: Phys. Fluids doi: 10.1063/1.3153304 – volume: 30 start-page: 329 issue: 1 year: 1998 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0008 article-title: Lattice Boltzmann method for fluid flows publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.30.1.329 – volume: 38 start-page: 547 year: 1972 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0001 article-title: Gas-filled hollow drops in aerosols publication-title: J.Colloid Interface Sci. doi: 10.1016/0021-9797(72)90272-X – volume: 11 start-page: 2312 year: 2011 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0007 article-title: Reactions in double emulsions by flow-controlled coalescence of encapsulated drops publication-title: Lab Chip doi: 10.1039/c1lc20265k – volume: 211 start-page: 123 year: 1990 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0042 article-title: Breakup of concentric double emulsion droplets in linear flows publication-title: J. Fluid Mech. doi: 10.1017/S0022112090001525 – volume: 837 start-page: 381 year: 2018 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0030 article-title: A hybrid lattice Boltzmann and finite difference method for droplet dynamics with insoluble surfactants publication-title: J. Fluid Mech. doi: 10.1017/jfm.2017.859 – year: 2001 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0043 – volume: 146 start-page: 501 year: 1934 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0045 article-title: The formation of emulsions in definable fields of flow publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1934.0169 – volume: 30 start-page: 012114 year: 2018 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0005 article-title: Flow structure of compound droplets moving in microchannels publication-title: Phys. Fluids doi: 10.1063/1.5008908 – volume: 54 start-page: 1047 year: 2010 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0023 article-title: Generalized behavior of the breakup of viscous drops in confinements publication-title: J. Rheol. doi: 10.1122/1.3473924 – volume: 97 start-page: 328 year: 2013 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0044 article-title: Microfluidic rheology of the multiple-emulsion globule transiting in a contraction tube through a boundary element method publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2013.04.043 – year: 2017 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0025 – volume: 71 start-page: 056702 year: 2005 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0026 article-title: Diffusion properties of gradient-based lattice boltzmann models of immiscible fluids publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.71.056702 – volume: 160 start-page: 511 year: 1985 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0037 article-title: Stokes flow past compound multiphase drops: the case of completely engulfed drops/bubbles publication-title: J. Fluid Mech. doi: 10.1017/S0022112085003585 – volume: 700 start-page: 362 year: 2012 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0013 article-title: Rheology of vesicle suspensions under combined steady and oscillating shear flows publication-title: J. Fluid Mech. doi: 10.1017/jfm.2012.137 – year: 2013 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0017 – volume: 89 start-page: 052302 year: 2014 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0051 article-title: Possible oriented transition of multiple-emulsion globules with asymmetric internal structures in a microfluidic constriction publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.89.052302 – volume: 15 start-page: 1255 year: 2015 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0010 article-title: Enhancing and suppressing effects of an inner droplet on deformation of a double emulsion droplet under shear publication-title: Lab Chip doi: 10.1039/C4LC01231C – volume: 31 start-page: 012108 year: 2019 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0056 article-title: A versatile lattice Boltzmann model for immiscible ternary fluid flows publication-title: Phys. Fluids doi: 10.1063/1.5056765 – volume: 85 start-page: 046309 year: 2012 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0031 article-title: Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.85.046309 – volume: 43 start-page: 4320 issue: 8 year: 1991 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0016 article-title: Lattice Boltzmann model of immiscible fluids publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.43.4320 – volume: 65 start-page: 046308 year: 2002 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0018 article-title: Discrete lattice effects on the forcing term in the lattice Boltzmann method publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.65.046308 – volume: 682 start-page: 415 year: 2011 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0014 article-title: Spreading and breakup of a compound drop on a partially wetting substrate publication-title: J. Fluid Mech. doi: 10.1017/jfm.2011.235 – volume: 308 start-page: 537 year: 2005 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0048 article-title: Monodisperse double emulsions generated from a microcapillary device publication-title: Science doi: 10.1126/science.1109164 – volume: 46 start-page: 1279 year: 2002 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0054 article-title: Experimental observation and matching numerical simulation for the deformation and breakup of immiscible drops in oscillatory shear publication-title: J. Rheol. doi: 10.1122/1.1501960 – volume: 76 start-page: 026708 year: 2007 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0019 article-title: Lattice Boltzmann algorithm for continuum multicomponent flow publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.76.026708 – volume: 42 start-page: 1 year: 2003 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0004 article-title: Drop deformation under small-amplitude oscillatory shear flow publication-title: Rheol. Acta doi: 10.1007/s00397-002-0245-z – volume: 106 start-page: 141601 year: 2015 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0011 article-title: Deformation dynamics of double emulsion droplet under shear publication-title: Appl. Phys. Lett. doi: 10.1063/1.4916623 – volume: 775 start-page: 77 year: 2015 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0032 article-title: Deformation of spherical compound capsules in simple shear flow publication-title: J. Fluid Mech. doi: 10.1017/jfm.2015.286 – volume: 762 start-page: 288 year: 2015 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0033 article-title: Deformation of a spherical capsule under oscillating shear flow publication-title: J. Fluid Mech. doi: 10.1017/jfm.2014.649 – volume: 22 start-page: 072003 year: 2010 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0040 article-title: Stokes flow past a compound drop in a circular tube publication-title: Phys. Fluids doi: 10.1063/1.3460301 – volume: 24 start-page: 123302 year: 2012 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0036 article-title: Dynamics of concentric and eccentric compound droplets suspended in extensional flows publication-title: Phys. Fluids doi: 10.1063/1.4770294 – volume: 9 start-page: 1591 year: 1997 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0061 article-title: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model publication-title: Phys. Fluids doi: 10.1063/1.869307 – volume: 34 start-page: 102 year: 2008 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0058 article-title: Deformation of a compound drop through a contraction in a pressure-driven pipe flow publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2007.09.002 – volume: 133 start-page: 15165 year: 2011 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0024 article-title: Multiple polymersomes for programmed release of multiple components publication-title: J. Am. Chem. Soc. doi: 10.1021/ja205687k – volume: 32 start-page: 2111 year: 2018 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0049 article-title: Numerical investigation of dynamic behavior of a compound drop in shear flow publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-018-0420-5 – volume: 27 start-page: 071902 year: 2015 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0060 article-title: The dynamics of a capsule in a wall-bounded oscillating shear flow publication-title: Phys. Fluids doi: 10.1063/1.4926675 – volume: 246 start-page: 318 year: 2013 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0027 article-title: Progress and investigation on lattice Boltzmann modeling of multiple immiscible fluids or components with variable density and viscosity ratios publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.03.039 – volume: 32 start-page: 017102 year: 2020 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0046 article-title: Novel nonequilibrium steady states in multiple emulsions featured publication-title: Phys. Fluids doi: 10.1063/1.5134901 – volume: 131 start-page: 1083 year: 2019 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0050 article-title: Numerical study of deformation and breakup of a multi-core compound droplet in simple shear flow publication-title: Intl J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2018.11.131 – volume: 50 start-page: 63 year: 2014 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0021 article-title: Dynamics of a compound droplet in shear flow publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2014.05.007 – volume: 82 start-page: 066701 year: 2010 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0041 article-title: Lattice Boltzmann equation method for multiple immiscible continuum fluids publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.82.066701 – volume: 866 start-page: R21 year: 2019 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0012 article-title: Coalescence dynamics of a compound drop on a deep liquid pool publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.137 – volume: 27 start-page: 4324 year: 2011 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0029 article-title: Breakup of double emulsion droplets in a tapered nozzle publication-title: Langmuir doi: 10.1021/la200473h – volume: 93 start-page: 204501 year: 2004 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0039 article-title: Encapsulated drop breakup in shear flow publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.204501 – volume: 23 start-page: 111901 year: 2011 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0057 article-title: Dynamics of microcapsules in oscillating shear flow publication-title: Phys. Fluids doi: 10.1063/1.3655673 – volume: 97 start-page: 043112 year: 2018 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0003 article-title: Dynamics of deformation and pinch-off of a migrating compound droplet in a tube publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.97.043112 – volume: 20 start-page: 3498 year: 2008 ident: 10.1016/j.ijmultiphaseflow.2020.103472_bib0028 article-title: Double emulsion-templated nanoparticle colloidosomes with selective permeability publication-title: Adv. Mater. doi: 10.1002/adma.200800918 |
SSID | ssj0005743 |
Score | 2.544969 |
Snippet | •A compound droplet under oscillatory shear is studied using a three-phase LBM.•We demonstrate the simple shear is a limiting case of the oscillatory... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103472 |
SubjectTerms | Compound droplet Critical capillary number Deformation and breakup Oscillatory shear Wall confinement |
Title | Deformation and breakup of a compound droplet in three-dimensional oscillatory shear flow |
URI | https://dx.doi.org/10.1016/j.ijmultiphaseflow.2020.103472 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED5VIBAMiKd4ywNiM00TJ3EGhgqoCogugFSmKH5EtFRpRVOx8du5S9JSEEMHVsu2rPPp7jv7uzuAsxSNvpDK8IbVHhfatzyyqeEmDKJUyyh0ilyYh07QfhZ3Xb9bg6tpLgzRKivbX9r0wlpXI_VKmvVRr1d_JDAf0UcB6az0KOFXiJC0_OJzjuZRkuxpMqfZq3D-zfHq9Uva3it6jHQw_MB40S3y0EXo_u2o5pxPaxM2KtTImuXBtqBms21Yn6sluA0rBZdTj3fg5drOUhJZkhmGUW_yNhmxYcoSRhxyaqXEzDtxx3PWy1iOF2q5oUL_ZZEORiUuUUHoB56Nqek1o4PvwnPr5umqzasOClxjXJjzSBk_CZWXulJ5eAUyUMZRiOKMbAg3iRBem4an08BTGCf61vP80EkihEUNdGI4vAdL2TCz-8B8jdjDSWRgtREKPZq0MhSJENoRxjX6AC6n4op1VV6culwM4imPrB__FndM4o5LcR9AOFs_KgttLLyyOb2d-IfqxOgVFtzj8B_2OII1lwgvxfvMMSzl7xN7goglV6eFSp7CcvP2vt35AiFk78o |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLZgiNcB8RRvckDconVt2qYHDhMPbTx2ASQ4Vc2jYmPqpq0Tfx-77WAgDhy4RnUUOZb9uflsA5ym6PSFVIY3rPa40L7lkU0NN2EQpVpGoVPUwtx3gtaTuHn2n-fgYloLQ7TKyveXPr3w1tVKvdJmfdjt1h8IzEf0UEA2Kz05DwvUncqvwUKzfdvqfDE9Sp49fc9JYAnOvmhe3V7J3HvFoJH2B--YMrpFKboI3d9j1Uz8uV6HtQo4smZ5tg2Ys9kmrM60E9yExYLOqcdb8HJpP6sSWZIZholv8jYZskHKEkY0cpqmxMyI6OM562Ysxzu13FCv_7JPB6Mul2gj9AjPxjT3mtHBt-Hp-urxosWrIQpcY2qY80gZPwmVl7pSeXgLMlDGUQjkjGwIN4kQYZuGp9PAU5gq-tbz_NBJIkRGDYxjuLwDtWyQ2V1gvkb44SQysNoIhUFNWhmKRAjtCOMavQfnU3XFuuowToMu-vGUStaLf6o7JnXHpbr3IPyUH5a9Nv4s2ZzeTvzNemIMDH_cY_8f9jiB5dbj_V181-7cHsCKS_yX4nfNIdTy0cQeIYDJ1XFloB9Q-fJ7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deformation+and+breakup+of+a+compound+droplet+in+three-dimensional+oscillatory+shear+flow&rft.jtitle=International+journal+of+multiphase+flow&rft.au=Liu%2C+Haihu&rft.au=Lu%2C+Yang&rft.au=Li%2C+Sheng&rft.au=Yu%2C+Yuan&rft.date=2021-01-01&rft.pub=Elsevier+Ltd&rft.issn=0301-9322&rft.eissn=1879-3533&rft.volume=134&rft_id=info:doi/10.1016%2Fj.ijmultiphaseflow.2020.103472&rft.externalDocID=S0301932220305838 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-9322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-9322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-9322&client=summon |