Using machine learning to predict artistic styles: an analysis of trends and the research agenda

In the field of art, machine learning models have been used to predict artistic styles in paintings. The foregoing is somewhat advantageous for analysts, as these tools can provide more valuable results and help reduce bias in the results and conclusions provided. Therefore, the objective of this re...

Full description

Saved in:
Bibliographic Details
Published inThe Artificial intelligence review Vol. 57; no. 5; p. 118
Main Authors Valencia, Jackeline, Pineda, Geraldine García, Pineda, Vanessa García, Valencia-Arias, Alejandro, Arcila-Diaz, Juan, de la Puente, Renata Teodori
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.05.2024
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the field of art, machine learning models have been used to predict artistic styles in paintings. The foregoing is somewhat advantageous for analysts, as these tools can provide more valuable results and help reduce bias in the results and conclusions provided. Therefore, the objective of this research was to examine research trends in the use of machine learning to predict artistic styles from a bibliometric review based on the PRISMA methodology. From the search equations, 268 documents were found, out of which, following the application of inclusion and exclusion criteria, 128 documents were analyzed. Through quantitative analysis, a growing research interest in the subject is evident, progressing from user perception approaches to the utilization of tools like deep learning for art studies. Among the main results, it is possible to identify that one of the most used techniques in the field has been neural networks for pattern recognition. Also, a large part of the research focuses on the use of design software for image creation and manipulation. Finally, it is found that the number of studies focused on contemporary modern art is still limited, this is due to the fact that a large part of the investigations has focused on historical artistic styles.
AbstractList In the field of art, machine learning models have been used to predict artistic styles in paintings. The foregoing is somewhat advantageous for analysts, as these tools can provide more valuable results and help reduce bias in the results and conclusions provided. Therefore, the objective of this research was to examine research trends in the use of machine learning to predict artistic styles from a bibliometric review based on the PRISMA methodology. From the search equations, 268 documents were found, out of which, following the application of inclusion and exclusion criteria, 128 documents were analyzed. Through quantitative analysis, a growing research interest in the subject is evident, progressing from user perception approaches to the utilization of tools like deep learning for art studies. Among the main results, it is possible to identify that one of the most used techniques in the field has been neural networks for pattern recognition. Also, a large part of the research focuses on the use of design software for image creation and manipulation. Finally, it is found that the number of studies focused on contemporary modern art is still limited, this is due to the fact that a large part of the investigations has focused on historical artistic styles.
ArticleNumber 118
Audience Academic
Author Arcila-Diaz, Juan
Valencia, Jackeline
Valencia-Arias, Alejandro
Pineda, Vanessa García
Pineda, Geraldine García
de la Puente, Renata Teodori
Author_xml – sequence: 1
  givenname: Jackeline
  surname: Valencia
  fullname: Valencia, Jackeline
  organization: Instituto de Investigación y Estudios de la Mujer, Universidad Ricardo Palma, Facultad de Artes y Humanidades, Instituto Tecnológico Metropolitano
– sequence: 2
  givenname: Geraldine García
  surname: Pineda
  fullname: Pineda, Geraldine García
  organization: Facultad de Artes y Humanidades, Instituto Tecnológico Metropolitano
– sequence: 3
  givenname: Vanessa García
  surname: Pineda
  fullname: Pineda, Vanessa García
  organization: Facultad de Ingenierías, Instituto Tecnológico Metropolitano
– sequence: 4
  givenname: Alejandro
  surname: Valencia-Arias
  fullname: Valencia-Arias, Alejandro
  email: valenciajho@uss.edu.pe
  organization: School of Industrial Engineering, Universidad Señor de Sipán
– sequence: 5
  givenname: Juan
  surname: Arcila-Diaz
  fullname: Arcila-Diaz, Juan
  organization: Escuela de Ingeniería de Sistemas, Universidad Señor de Sipán
– sequence: 6
  givenname: Renata Teodori
  surname: de la Puente
  fullname: de la Puente, Renata Teodori
  organization: Universidad Ricardo Palma
BookMark eNp9kE1r3DAQhkVJoUnaP9CToGenI1m27N5C6BcEcknO6lga7yp45a1GOey_r1IXWnoIEki8zDMjPRfiLK2JhHiv4EoB2I-swPS6AW0aBVbbBl6Jc9XZtrE1P_vn_kZcMD8CQKdNey5-PHBMO3lAv4-J5EKY03NQVnnMFKIvEnOJXKKXXE4L8SeJqW5cThxZrrMsmVLgGgVZ9iQzcW3i9xJ3Nce34vWMC9O7P-elePjy-f7mW3N79_X7zfVt4w3o0oyDUWNnOyQ1KG8mGDCAUboz82wwmKklHTpUfR90jzR7hb2dJkt29JPyob0UH7a-x7z-fCIu7nF9yvWZ7FpoB9NZ1dtadbVV7XAhF9O8loy-rkCH6KvTOdb82o6grR6hq4DeAJ9X5kyzO-Z4wHxyCtyzerepd1W9-63eQYWG_yAfC5a4pjotLi-j7YZynZN2lP9-4wXqF7E2mo0
CitedBy_id crossref_primary_10_1016_j_mex_2025_103277
Cites_doi 10.1007/978-3-030-77004-4_18
10.1002/smr.2486
10.3390/su15118808
10.3389/fevo.2021.64277
10.1016/j.mfglet.2022.07.112
10.1145/3591196.3593341
10.1148/radiol.09090626
10.1109/ICACITE51222.2021.9404606
10.1155/2022/8804711
10.1109/icip.2009.5413338
10.1007/s00500-022-07555-1
10.3390/e24091175
10.1142/S0219843622400023
10.1145/604045.604056
10.1145/642611.642690
10.1016/j.prostr.2022.05.017
10.1016/j.ijnaoe.2020.03.005
10.1109/TVCG.2005.38
10.1002/xrs.3188
10.1109/ro-man47096.2020.9223533
10.1016/j.ijsu.2021.105906
10.1007/978-3-030-32644-9_32
10.1109/icip.2016.7532335
10.1016/j.neucom.2018.05.045
10.1007/s00146-021-01370-2
10.1007/s00500-023-08146-4
10.1016/j.wpi.2022.102106
10.1109/JSTSP.2009.2015077
10.1109/cvpr.2016.566
10.1007/s11263-022-01665-x
10.1007/s42979-022-01529-8
10.1117/12.806245
10.1016/j.sysarc.2020.101766
10.1007/978-981-19-2828-4_21
10.3390/app10103396
10.3390/app8101768
10.6018/riite.548361
10.1109/DTPI52967.2021.9540081
10.1038/s41598-023-39865-1
10.1007/978-3-030-51328-3_14
10.1016/j.jobe.2020.102001
10.1109/msp.2015.2407091
10.1109/cvpr46437.2021.01140
10.1007/s11192-021-04082-y
10.1007/s12652-022-04472-x
10.1117/12.2593838
10.1016/j.eswa.2017.11.056
10.1007/s00521-021-06072-w
10.1016/j.worlddev.2019.04.010
10.1109/IWECAI55315.2022.00029
10.3390/s21061940
10.1109/JEEIT.2019.8717470
10.1038/s41467-020-18566-7
10.3389/fpsyg.2021.723325
ContentType Journal Article
Copyright The Author(s) 2024
COPYRIGHT 2024 Springer
Copyright Springer Nature B.V. May 2024
Copyright_xml – notice: The Author(s) 2024
– notice: COPYRIGHT 2024 Springer
– notice: Copyright Springer Nature B.V. May 2024
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
CNYFK
DWQXO
E3H
F2A
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M1O
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
PSYQQ
Q9U
DOI 10.1007/s10462-024-10727-0
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
Library & Information Science Collection
ProQuest Central Korea
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Library Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest One Psychology
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Library and Information Science Abstracts (LISA)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Library & Information Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Library Science
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef
ProQuest Business Collection (Alumni Edition)


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7462
ExternalDocumentID A790272905
10_1007_s10462_024_10727_0
GroupedDBID -4Z
-59
-5G
-BR
-EM
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
203
23N
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6J9
6NX
77K
7WY
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACACY
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGXO
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BENPR
BGNMA
C24
C6C
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
LLZTM
M1O
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9O
PF0
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~A9
~EX
8AO
8FE
8FG
AAFWJ
AASML
AAYXX
ABDBE
ABFSG
ABUWG
ACSTC
AEZWR
AFHIU
AFKRA
AHPBZ
AHWEU
AIXLP
AYFIA
AZQEC
BEZIV
BGLVJ
BPHCQ
CCPQU
CITATION
CNYFK
DWQXO
FRNLG
GNUQQ
ICD
K6V
K7-
M0C
MK~
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
Q2X
AEIIB
PMFND
3V.
7SC
7XB
8AL
8FD
8FK
E3H
F2A
JQ2
L.-
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PRQQA
Q9U
ID FETCH-LOGICAL-c402t-98419575ae181c4b08ad041254ff4ad4b3e2d5a166d26aefc1a67bb7e79cb1cd3
IEDL.DBID BENPR
ISSN 1573-7462
0269-2821
IngestDate Wed Aug 13 06:15:02 EDT 2025
Tue Jun 10 20:55:30 EDT 2025
Tue Jul 01 01:23:28 EDT 2025
Thu Apr 24 23:08:16 EDT 2025
Fri Feb 21 02:40:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Deep learning
PRISMA
Image analysis
Machine learning
Color
Artistic styles
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-98419575ae181c4b08ad041254ff4ad4b3e2d5a166d26aefc1a67bb7e79cb1cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s10462-024-10727-0
PQID 3038457167
PQPubID 36790
ParticipantIDs proquest_journals_3038457167
gale_infotracacademiconefile_A790272905
crossref_primary_10_1007_s10462_024_10727_0
crossref_citationtrail_10_1007_s10462_024_10727_0
springer_journals_10_1007_s10462_024_10727_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Science and Engineering Journal
PublicationTitle The Artificial intelligence review
PublicationTitleAbbrev Artif Intell Rev
PublicationYear 2024
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References LcRHuman enough: a space for reconstructions of AI visions in speculative climate futuresCreat Cognit202310.1145/3591196.3593341
Sánchez Santana P, Roman-Rangel E (2021) Quantifying visual similarity for artistic styles. In: Roman-Rangel E, Kuri-Morales ÁF, Martínez-Trinidad JF, Carrasco-Ochoa JA, Olvera-López JA (eds) Pattern recognition. MCPR 2021. Lecture Notes in Computer Science, vol. 12725. Springer, Cham. https://doi.org/10.1007/978-3-030-77004-4_18
MengyaoCYuTIntelligent product art design based on smart equipment and ma-chine learning algorithm: practice effect and trend analysisSoft Comput2023278449845810.1007/s00500-023-08146-4
BoloorAGarimellaKHeXGillCVorobeychikYZhangXAttacking Vi-sion-based perception in end-to-end autonomous driving modelsJ Syst Architect202011010176610.1016/j.sysarc.2020.101766
Li H, Zhang Z (2022) A study of unsupervised networks based on the network prior for the image inpainting. In: Proceedings of the 2022 3rd International Conference on Electronic CommuInication and Artificial Intelligence (IWECAI); IEEE: pp. 07–110
GülzowJMPaetzoldPDeussenORecent developments regarding painting robots for research in automatic painting, artificial creativity, and machine learningAppl Sci202010339610.3390/app10103396
WenjingXCaiZAssessing the best art design based on artificial intelligence and machine learning using GTMASoft Comput20232714915610.1007/s00500-022-07555-1
SafraLChevallierCGrèzesJBaumardNTracking historical changes in perceived trustworthiness in Western Europe using machine learning analyses of facial cues in paintingsNat Commun202010.1038/s41467-020-18566-7
PageMJMcKenzieJEBossuytPMBoutronIHoffmannTCMulrowCDShamseerLTetzlaffJMAklEABrennanSEThe PRISMA 2020 Statement: an updated guideline for reporting systematic reviewsInt J Surg20218810590610.1016/j.ijsu.2021.105906
CasconeLNappiMNarducciFRussoSLClassification of fragments: recognition of artistic styleJ Ambient Intell Humaniz Comput2023144087409710.1007/s12652-022-04472-x
ChenAJesusRVilariguesMIdentification and visualization of pure and mixed Paint pigments in heritage artwork using machine learning algorithmsSN Comput Sci2022411510.1007/s42979-022-01529-8
Sun X, Qin J (2021) Deep learning-based creative intention understanding and color suggestions for illustration. In: Ahram T (eds) Advances in Artificial Intelligence, Software and Systems Engineering. AHFE 2020. Advances in Intelligent Systems and Computing, vol 1213. Springer, Cham. https://doi.org/10.1007/978-3-030-51328-3_14
JeongJHWooJHParkJMachine learning methodology for management of shipbuilding master dataInt J Naval Archit Ocean Eng20201242843910.1016/j.ijnaoe.2020.03.005
Fails JA, Olsen DR (2003b) Interactive machine learning. In: Proceedings of the Proceedings of the 8th International Conference on Intelligent User Interfaces; ACM, pp. 39–45
Kumar M, Sharma S, Chaudhary D, Prakash S (2021) Image recognition using artificial intelligence. In: Proceedings of the 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE); IEEE, pp. 760–763
Fails J, Olsen D (2003c) A design tool for camera-based interaction. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems; ACM, 449–456
Achlioptas P, Ovsjanikov M, Haydarov K, Elhoseiny M, Guibas LJ (2021) ArtEmis: affective language for visual art. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and PatternRecognition https://doi.org/10.1109/cvpr46437.2021.01140
RagotSMeasuring the originality of intellectual property assets based on estimated inter-asset distancesWorld Patent Inf20226910210610.1016/j.wpi.2022.102106
Culjak M, Mikus B, Jez K, Hadjic S (2011) Classification of art paintings by genre. In: International Convention on Information and Communication Technology, Electronics and Microelectronics, pp. 1634–1639. https://ieeexplore.ieee.org/document/5967323
SanhudoLCalvettiDMartinsJPRamosNMMMêdaPGonçalvesMCSousaHActivity classification using accelerometers and machine learning for com-plex construction worker activitiesJ Building Eng20213510200110.1016/j.jobe.2020.102001
GengenbachTKerstinSArtificial intelligence raters. neural networks for rating pictorial expressionJ Sci Technol Arts2022144971
Cucci C, Barucci A, Stefani L, Picollo M, Jiménez-Garnica R, Fuster-Lopez L (2021) Reflectance hyperspectral data processing on a set of picasso paintings: which algorithm provides what? A comparative analysis of multivariate, statistical and artificial intel-ligence methods. In R. Groves & H. Liang (Eds.), Proceedings of the Optics for Arts, Architecture, and Archaeology VIII. p. 1
TzengF-YLumEBKwan-Liu Ma An intelligent system approach to higher dimensional classification of volume dataIEEE Trans Vis Comput Graph20051127328410.1109/TVCG.2005.38
FanH-TXiaoGArinezJCoulthardMA case study on first time quality feature investigation for an automotive paint shopManuf Lett20223391992610.1016/j.mfglet.2022.07.112
Polatkan G, Jafarpour S, Brasoveanu A, Hughes SM, Daubechies I (2009) Detection of forgery in paintings using supervised learning. In: Proceedings-International Conference on Image Processing, ICIP https://doi.org/10.1109/icip.2009.5413338
SpeeBTMMikuniJLederHScharnowskiFPelowskiMSteyrlDMachine learning revealed symbolism, emotionality, and imaginativeness as primary predictors of creativity evaluations of Western art paintingsSci Rep202310.1038/s41598-023-39865-1
DobbsTBenedictARasZJumping into the artistic deep end: building the Cata-Logue RaisonnéAI Soc20223787388910.1007/s00146-021-01370-2
Orduña-MaleaECostasRLink-based approach to study scientific software usage: the case of VOSviewerScientometrics20211268153818610.1007/s11192-021-04082-y
Lu Y, Guo C, Dai X, Wang F-Y (2021) Image captioning on fine art paintings via virtual paintings. In: Proceedings of the 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence. DTPI, pp. 156–159
XuYNazirSRanking the art design and applications of artificial intelligence and machine learningJ Softw Evol Process202210.1002/smr.2486
Bidgoli A, De Guevara ML, Hsiung C, Oh J, Kang E (2020) Artistic style in robotic painting; a machine learning approach to learning brushstroke from human artists. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020. https://doi.org/10.1109/ro-man47096.2020.9223533
LürigMDDonougheSSvenssonEIPortoATsuboiMComputer vision, machine learning, and the promise of phenomics in ecology and evolutionary biologyFront Ecol Evol202110.3389/fevo.2021.64277
Vadicherla D, Gadicha V (2022) Supervised machine learning approach for crack detection in digital images. In: Tomar A, Malik H, Kumar P, Iqbal A (eds) Proceedings of 3rd International Conference on Machine Learning, Advances in Computing, Renewable Energy and Communication. Lecture Notes in Electrical Engineering, vol 915. Springer, Singapore. https://doi.org/10.1007/978-981-19-2828-4_21
LiCChenTAesthetic visual quality assessment of paintingsIEEE J Sel Top Signal Process2009323625210.1109/JSTSP.2009.2015077
TianTNanFA multitask convolutional neural network for artwork appreciationMobile Information Systems202210.1155/2022/8804711
KnippenbergEJensenNConstasMQuantifying household resilience with high frequency data: temporal dynamics and methodological optionsWorld Dev201912111510.1016/j.worlddev.2019.04.010
Van Der MaatenLErdmannRGAutomatic thread-level canvas analysis: a machine-learning approach to analyzing the canvas of paintingsIEEE Signal Process Mag2015324384510.1109/msp.2015.2407091
FalomirZMuserosLSanzIAbrilLGCategorizing paintings in art styles based on qualitative color descriptors, quantitative global features and machine learning (QArt-Learn)Expert Syst Appl201897839410.1016/j.eswa.2017.11.056
Jboor NH, Belhi A, Al-Ali AK, Bouras A, Jaoua A (2019) Towards an inpainting framework for visual cultural heritage. In: Proceedings of the 2019 IEEE Jordan Interna-Tional Joint Conference on Electrical Engineering and Information Technology (JEEIT); IEEE, pp. 602–607
MaoWVideo analysis of intelligent teaching based on machine learning and virtual reality technologyNeural Comput Appl2022346603661410.1007/s00521-021-06072-w
HuBAnalysis of art therapy for children with autism by using the implemented artificial intelligence systemInt J Humanoid Rob202210.1142/S0219843622400023
Irfan MT, Stork DG (2009) Multiple visual features for the computer authentication of Jackson Pollock’s drip paintings: beyond box counting and fractals. Proceedings Of SPIE. https://doi.org/10.1117/12.806245
Folego G, Gomes O, Rocha A (2016) From impressionism to expressionism: automatically identifying Van Gogh’s paintings. In: Proceedings-International Conference on Image Processing, ICIP https://doi.org/10.1109/icip.2016.7532335
AllahlohASSarfrazMGhalebAMAl-Shamma’aAAFarhHAl-ShaalanAMRevolutionizing IC genset operations with IIoT and AI: a study on fuel savings and predictive maintenanceSustainability202315880810.3390/su15118808
CalifanoAFotiPBertoFBaiesiMBertolinCPredicting damage evolution in panel paintings with machine learningProcedia Struct Integr20224114515710.1016/j.prostr.2022.05.017
LiuYQinZWanTLuoZAuto-painter: cartoon image generation from sketch by using conditional wasserstein generative adversarial networksNeurocomputing2018311788710.1016/j.neucom.2018.05.045
Srinivasa DesikanBShimaoHMitonHWikiArtVectors: style and color repre-sentations of artworks for cultural analysis via information theoretic measuresEntropy202224117510.3390/e24091175
BelhiABourasAFoufouSLeveraging known data for missing label prediction in cultural heritage contextAppl Sci2018810176810.3390/app8101768
MondalBArtificial intelligence: state of the artEn Intell Syst Ref Libr201910.1007/978-3-030-32644-9_32
Alameda-Pineda X, Ricci E, Yan Y, Sebe N (2016) Recognizing emotions from abstract paintings using non-linear matrix completion. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. https://
10727_CR44
10727_CR48
W Mao (10727_CR35) 2022; 34
R Lc (10727_CR29) 2023
T Gengenbach (10727_CR20) 2022; 14
T Tian (10727_CR49) 2022
S Kogou (10727_CR27) 2020; 50
E Orduña-Malea (10727_CR38) 2021; 126
B Hu (10727_CR22) 2022
J Zhang (10727_CR56) 2021
AS Allahloh (10727_CR3) 2023; 15
10727_CR41
10727_CR33
T Yu (10727_CR55) 2022; 130
A Boloor (10727_CR6) 2020; 110
JH Jeong (10727_CR25) 2020; 12
C Mengyao (10727_CR36) 2023; 27
MJ Page (10727_CR39) 2021; 88
A Califano (10727_CR7) 2022; 41
JM Gülzow (10727_CR21) 2020; 10
BTM Spee (10727_CR46) 2023
MD Lürig (10727_CR34) 2021
X Wenjing (10727_CR53) 2023; 27
A Belhi (10727_CR4) 2018; 8
10727_CR31
I Pedraza-Navarro (10727_CR40) 2022; 2022
10727_CR23
10727_CR24
B Mondal (10727_CR37) 2019
L Van Der Maaten (10727_CR52) 2015; 32
10727_CR28
S Ragot (10727_CR42) 2022; 69
L Sanhudo (10727_CR45) 2021; 35
E Knippenberg (10727_CR26) 2019; 121
L Safra (10727_CR43) 2020
F-Y Tzeng (10727_CR50) 2005; 11
Z Falomir (10727_CR17) 2018; 97
A Chen (10727_CR9) 2022; 4
10727_CR10
Y Xu (10727_CR54) 2022
10727_CR11
10727_CR14
10727_CR15
H-T Fan (10727_CR18) 2022; 33
10727_CR16
Y Liu (10727_CR32) 2018; 311
10727_CR5
10727_CR19
L Cascone (10727_CR8) 2023; 14
T Dobbs (10727_CR12) 2022; 37
10727_CR2
10727_CR1
W Zhao (10727_CR57) 2021
B Srinivasa Desikan (10727_CR47) 2022; 24
V Durieux (10727_CR13) 2010; 255
C Li (10727_CR30) 2009; 3
10727_CR51
References_xml – reference: TianTNanFA multitask convolutional neural network for artwork appreciationMobile Information Systems202210.1155/2022/8804711
– reference: SafraLChevallierCGrèzesJBaumardNTracking historical changes in perceived trustworthiness in Western Europe using machine learning analyses of facial cues in paintingsNat Commun202010.1038/s41467-020-18566-7
– reference: HuBAnalysis of art therapy for children with autism by using the implemented artificial intelligence systemInt J Humanoid Rob202210.1142/S0219843622400023
– reference: ChenAJesusRVilariguesMIdentification and visualization of pure and mixed Paint pigments in heritage artwork using machine learning algorithmsSN Comput Sci2022411510.1007/s42979-022-01529-8
– reference: MengyaoCYuTIntelligent product art design based on smart equipment and ma-chine learning algorithm: practice effect and trend analysisSoft Comput2023278449845810.1007/s00500-023-08146-4
– reference: SpeeBTMMikuniJLederHScharnowskiFPelowskiMSteyrlDMachine learning revealed symbolism, emotionality, and imaginativeness as primary predictors of creativity evaluations of Western art paintingsSci Rep202310.1038/s41598-023-39865-1
– reference: Srinivasa DesikanBShimaoHMitonHWikiArtVectors: style and color repre-sentations of artworks for cultural analysis via information theoretic measuresEntropy202224117510.3390/e24091175
– reference: ZhangJDuanYGuXResearch on emotion analysis of Chinese Literati painting images based on deep learningFront Psychol202110.3389/fpsyg.2021.723325
– reference: RagotSMeasuring the originality of intellectual property assets based on estimated inter-asset distancesWorld Patent Inf20226910210610.1016/j.wpi.2022.102106
– reference: Pedraza-NavarroISánchez-SerranoSAnálisis De Las Publicaciones presentes En WoS Y Scopus. Posibilidades De Búsqueda Para Evitar Literatura Fugitiva En Las Revisiones SistemáticasRevista Interuniversitaria De Investigación en Tecnología Educativa20222022416110.6018/riite.548361
– reference: KnippenbergEJensenNConstasMQuantifying household resilience with high frequency data: temporal dynamics and methodological optionsWorld Dev201912111510.1016/j.worlddev.2019.04.010
– reference: Sun X, Qin J (2021) Deep learning-based creative intention understanding and color suggestions for illustration. In: Ahram T (eds) Advances in Artificial Intelligence, Software and Systems Engineering. AHFE 2020. Advances in Intelligent Systems and Computing, vol 1213. Springer, Cham. https://doi.org/10.1007/978-3-030-51328-3_14
– reference: Folego G, Gomes O, Rocha A (2016) From impressionism to expressionism: automatically identifying Van Gogh’s paintings. In: Proceedings-International Conference on Image Processing, ICIP https://doi.org/10.1109/icip.2016.7532335
– reference: XuYNazirSRanking the art design and applications of artificial intelligence and machine learningJ Softw Evol Process202210.1002/smr.2486
– reference: Cucci C, Barucci A, Stefani L, Picollo M, Jiménez-Garnica R, Fuster-Lopez L (2021) Reflectance hyperspectral data processing on a set of picasso paintings: which algorithm provides what? A comparative analysis of multivariate, statistical and artificial intel-ligence methods. In R. Groves & H. Liang (Eds.), Proceedings of the Optics for Arts, Architecture, and Archaeology VIII. p. 1
– reference: Bidgoli A, De Guevara ML, Hsiung C, Oh J, Kang E (2020) Artistic style in robotic painting; a machine learning approach to learning brushstroke from human artists. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020. https://doi.org/10.1109/ro-man47096.2020.9223533
– reference: GülzowJMPaetzoldPDeussenORecent developments regarding painting robots for research in automatic painting, artificial creativity, and machine learningAppl Sci202010339610.3390/app10103396
– reference: Fails J, Olsen D (2003c) A design tool for camera-based interaction. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems; ACM, 449–456
– reference: SanhudoLCalvettiDMartinsJPRamosNMMMêdaPGonçalvesMCSousaHActivity classification using accelerometers and machine learning for com-plex construction worker activitiesJ Building Eng20213510200110.1016/j.jobe.2020.102001
– reference: MaoWVideo analysis of intelligent teaching based on machine learning and virtual reality technologyNeural Comput Appl2022346603661410.1007/s00521-021-06072-w
– reference: Achlioptas P, Ovsjanikov M, Haydarov K, Elhoseiny M, Guibas LJ (2021) ArtEmis: affective language for visual art. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and PatternRecognition https://doi.org/10.1109/cvpr46437.2021.01140
– reference: Jboor NH, Belhi A, Al-Ali AK, Bouras A, Jaoua A (2019) Towards an inpainting framework for visual cultural heritage. In: Proceedings of the 2019 IEEE Jordan Interna-Tional Joint Conference on Electrical Engineering and Information Technology (JEEIT); IEEE, pp. 602–607
– reference: Orduña-MaleaECostasRLink-based approach to study scientific software usage: the case of VOSviewerScientometrics20211268153818610.1007/s11192-021-04082-y
– reference: LürigMDDonougheSSvenssonEIPortoATsuboiMComputer vision, machine learning, and the promise of phenomics in ecology and evolutionary biologyFront Ecol Evol202110.3389/fevo.2021.64277
– reference: Polatkan G, Jafarpour S, Brasoveanu A, Hughes SM, Daubechies I (2009) Detection of forgery in paintings using supervised learning. In: Proceedings-International Conference on Image Processing, ICIP https://doi.org/10.1109/icip.2009.5413338
– reference: LcRHuman enough: a space for reconstructions of AI visions in speculative climate futuresCreat Cognit202310.1145/3591196.3593341
– reference: LiuYQinZWanTLuoZAuto-painter: cartoon image generation from sketch by using conditional wasserstein generative adversarial networksNeurocomputing2018311788710.1016/j.neucom.2018.05.045
– reference: Culjak M, Mikus B, Jez K, Hadjic S (2011) Classification of art paintings by genre. In: International Convention on Information and Communication Technology, Electronics and Microelectronics, pp. 1634–1639. https://ieeexplore.ieee.org/document/5967323/
– reference: CalifanoAFotiPBertoFBaiesiMBertolinCPredicting damage evolution in panel paintings with machine learningProcedia Struct Integr20224114515710.1016/j.prostr.2022.05.017
– reference: TzengF-YLumEBKwan-Liu Ma An intelligent system approach to higher dimensional classification of volume dataIEEE Trans Vis Comput Graph20051127328410.1109/TVCG.2005.38
– reference: DobbsTBenedictARasZJumping into the artistic deep end: building the Cata-Logue RaisonnéAI Soc20223787388910.1007/s00146-021-01370-2
– reference: BoloorAGarimellaKHeXGillCVorobeychikYZhangXAttacking Vi-sion-based perception in end-to-end autonomous driving modelsJ Syst Architect202011010176610.1016/j.sysarc.2020.101766
– reference: KogouSLeeLShahtahmassebiGLiangHA new approach to the interpretation of XRF spectral imaging data using neural networksX-Ray Spectrom202050431031910.1002/xrs.3188
– reference: Irfan MT, Stork DG (2009) Multiple visual features for the computer authentication of Jackson Pollock’s drip paintings: beyond box counting and fractals. Proceedings Of SPIE. https://doi.org/10.1117/12.806245
– reference: Lu Y, Guo C, Dai X, Wang F-Y (2021) Image captioning on fine art paintings via virtual paintings. In: Proceedings of the 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence. DTPI, pp. 156–159
– reference: ZhaoWZhouDQiuXJiangWHow to represent paintings: a painting classification using artistic comments Sensors202110.3390/s21061940
– reference: WenjingXCaiZAssessing the best art design based on artificial intelligence and machine learning using GTMASoft Comput20232714915610.1007/s00500-022-07555-1
– reference: FanH-TXiaoGArinezJCoulthardMA case study on first time quality feature investigation for an automotive paint shopManuf Lett20223391992610.1016/j.mfglet.2022.07.112
– reference: PageMJMcKenzieJEBossuytPMBoutronIHoffmannTCMulrowCDShamseerLTetzlaffJMAklEABrennanSEThe PRISMA 2020 Statement: an updated guideline for reporting systematic reviewsInt J Surg20218810590610.1016/j.ijsu.2021.105906
– reference: JeongJHWooJHParkJMachine learning methodology for management of shipbuilding master dataInt J Naval Archit Ocean Eng20201242843910.1016/j.ijnaoe.2020.03.005
– reference: LiCChenTAesthetic visual quality assessment of paintingsIEEE J Sel Top Signal Process2009323625210.1109/JSTSP.2009.2015077
– reference: FalomirZMuserosLSanzIAbrilLGCategorizing paintings in art styles based on qualitative color descriptors, quantitative global features and machine learning (QArt-Learn)Expert Syst Appl201897839410.1016/j.eswa.2017.11.056
– reference: YuTLinCZhangSWangCDingXAnHLiuXQuTWanLYouSArtificial intelligence for Dunhuang cultural heritage protection: the project and the datasetInt J Comput Vis20221302646267310.1007/s11263-022-01665-x
– reference: DurieuxVGevenoisPABibliometric indicators: quality measurements of scientific publicationRadiology201025534235110.1148/radiol.09090626
– reference: Sánchez Santana P, Roman-Rangel E (2021) Quantifying visual similarity for artistic styles. In: Roman-Rangel E, Kuri-Morales ÁF, Martínez-Trinidad JF, Carrasco-Ochoa JA, Olvera-López JA (eds) Pattern recognition. MCPR 2021. Lecture Notes in Computer Science, vol. 12725. Springer, Cham. https://doi.org/10.1007/978-3-030-77004-4_18
– reference: Vadicherla D, Gadicha V (2022) Supervised machine learning approach for crack detection in digital images. In: Tomar A, Malik H, Kumar P, Iqbal A (eds) Proceedings of 3rd International Conference on Machine Learning, Advances in Computing, Renewable Energy and Communication. Lecture Notes in Electrical Engineering, vol 915. Springer, Singapore. https://doi.org/10.1007/978-981-19-2828-4_21
– reference: AllahlohASSarfrazMGhalebAMAl-Shamma’aAAFarhHAl-ShaalanAMRevolutionizing IC genset operations with IIoT and AI: a study on fuel savings and predictive maintenanceSustainability202315880810.3390/su15118808
– reference: Alameda-Pineda X, Ricci E, Yan Y, Sebe N (2016) Recognizing emotions from abstract paintings using non-linear matrix completion. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/cvpr.2016.566
– reference: CasconeLNappiMNarducciFRussoSLClassification of fragments: recognition of artistic styleJ Ambient Intell Humaniz Comput2023144087409710.1007/s12652-022-04472-x
– reference: MondalBArtificial intelligence: state of the artEn Intell Syst Ref Libr201910.1007/978-3-030-32644-9_32
– reference: Li H, Zhang Z (2022) A study of unsupervised networks based on the network prior for the image inpainting. In: Proceedings of the 2022 3rd International Conference on Electronic CommuInication and Artificial Intelligence (IWECAI); IEEE: pp. 07–110
– reference: GengenbachTKerstinSArtificial intelligence raters. neural networks for rating pictorial expressionJ Sci Technol Arts2022144971
– reference: Kumar M, Sharma S, Chaudhary D, Prakash S (2021) Image recognition using artificial intelligence. In: Proceedings of the 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE); IEEE, pp. 760–763
– reference: Fails JA, Olsen DR (2003b) Interactive machine learning. In: Proceedings of the Proceedings of the 8th International Conference on Intelligent User Interfaces; ACM, pp. 39–45
– reference: Fails JA, Olsen DR (2003a) Interactive machine learning. In: Proceedings of the 8th International Conference on Intelligent User Interfaces; ACM, pp. 39–45
– reference: Van Der MaatenLErdmannRGAutomatic thread-level canvas analysis: a machine-learning approach to analyzing the canvas of paintingsIEEE Signal Process Mag2015324384510.1109/msp.2015.2407091
– reference: BelhiABourasAFoufouSLeveraging known data for missing label prediction in cultural heritage contextAppl Sci2018810176810.3390/app8101768
– ident: 10727_CR44
  doi: 10.1007/978-3-030-77004-4_18
– year: 2022
  ident: 10727_CR54
  publication-title: J Softw Evol Process
  doi: 10.1002/smr.2486
– volume: 15
  start-page: 8808
  year: 2023
  ident: 10727_CR3
  publication-title: Sustainability
  doi: 10.3390/su15118808
– year: 2021
  ident: 10727_CR34
  publication-title: Front Ecol Evol
  doi: 10.3389/fevo.2021.64277
– volume: 33
  start-page: 919
  year: 2022
  ident: 10727_CR18
  publication-title: Manuf Lett
  doi: 10.1016/j.mfglet.2022.07.112
– year: 2023
  ident: 10727_CR29
  publication-title: Creat Cognit
  doi: 10.1145/3591196.3593341
– volume: 255
  start-page: 342
  year: 2010
  ident: 10727_CR13
  publication-title: Radiology
  doi: 10.1148/radiol.09090626
– ident: 10727_CR28
  doi: 10.1109/ICACITE51222.2021.9404606
– year: 2022
  ident: 10727_CR49
  publication-title: Mobile Information Systems
  doi: 10.1155/2022/8804711
– ident: 10727_CR41
  doi: 10.1109/icip.2009.5413338
– volume: 27
  start-page: 149
  year: 2023
  ident: 10727_CR53
  publication-title: Soft Comput
  doi: 10.1007/s00500-022-07555-1
– volume: 24
  start-page: 1175
  year: 2022
  ident: 10727_CR47
  publication-title: Entropy
  doi: 10.3390/e24091175
– year: 2022
  ident: 10727_CR22
  publication-title: Int J Humanoid Rob
  doi: 10.1142/S0219843622400023
– ident: 10727_CR14
  doi: 10.1145/604045.604056
– ident: 10727_CR16
  doi: 10.1145/642611.642690
– volume: 41
  start-page: 145
  year: 2022
  ident: 10727_CR7
  publication-title: Procedia Struct Integr
  doi: 10.1016/j.prostr.2022.05.017
– volume: 12
  start-page: 428
  year: 2020
  ident: 10727_CR25
  publication-title: Int J Naval Archit Ocean Eng
  doi: 10.1016/j.ijnaoe.2020.03.005
– volume: 11
  start-page: 273
  year: 2005
  ident: 10727_CR50
  publication-title: IEEE Trans Vis Comput Graph
  doi: 10.1109/TVCG.2005.38
– ident: 10727_CR15
  doi: 10.1145/604045.604056
– volume: 50
  start-page: 310
  issue: 4
  year: 2020
  ident: 10727_CR27
  publication-title: X-Ray Spectrom
  doi: 10.1002/xrs.3188
– ident: 10727_CR5
  doi: 10.1109/ro-man47096.2020.9223533
– volume: 88
  start-page: 105906
  year: 2021
  ident: 10727_CR39
  publication-title: Int J Surg
  doi: 10.1016/j.ijsu.2021.105906
– year: 2019
  ident: 10727_CR37
  publication-title: En Intell Syst Ref Libr
  doi: 10.1007/978-3-030-32644-9_32
– ident: 10727_CR19
  doi: 10.1109/icip.2016.7532335
– volume: 311
  start-page: 78
  year: 2018
  ident: 10727_CR32
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.045
– volume: 37
  start-page: 873
  year: 2022
  ident: 10727_CR12
  publication-title: AI Soc
  doi: 10.1007/s00146-021-01370-2
– volume: 14
  start-page: 49
  year: 2022
  ident: 10727_CR20
  publication-title: J Sci Technol Arts
– volume: 27
  start-page: 8449
  year: 2023
  ident: 10727_CR36
  publication-title: Soft Comput
  doi: 10.1007/s00500-023-08146-4
– volume: 69
  start-page: 102106
  year: 2022
  ident: 10727_CR42
  publication-title: World Patent Inf
  doi: 10.1016/j.wpi.2022.102106
– volume: 3
  start-page: 236
  year: 2009
  ident: 10727_CR30
  publication-title: IEEE J Sel Top Signal Process
  doi: 10.1109/JSTSP.2009.2015077
– ident: 10727_CR2
  doi: 10.1109/cvpr.2016.566
– ident: 10727_CR11
– volume: 130
  start-page: 2646
  year: 2022
  ident: 10727_CR55
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-022-01665-x
– volume: 4
  start-page: 115
  year: 2022
  ident: 10727_CR9
  publication-title: SN Comput Sci
  doi: 10.1007/s42979-022-01529-8
– ident: 10727_CR23
  doi: 10.1117/12.806245
– volume: 110
  start-page: 101766
  year: 2020
  ident: 10727_CR6
  publication-title: J Syst Architect
  doi: 10.1016/j.sysarc.2020.101766
– ident: 10727_CR51
  doi: 10.1007/978-981-19-2828-4_21
– volume: 10
  start-page: 3396
  year: 2020
  ident: 10727_CR21
  publication-title: Appl Sci
  doi: 10.3390/app10103396
– volume: 8
  start-page: 1768
  issue: 10
  year: 2018
  ident: 10727_CR4
  publication-title: Appl Sci
  doi: 10.3390/app8101768
– volume: 2022
  start-page: 41
  year: 2022
  ident: 10727_CR40
  publication-title: Revista Interuniversitaria De Investigación en Tecnología Educativa
  doi: 10.6018/riite.548361
– ident: 10727_CR33
  doi: 10.1109/DTPI52967.2021.9540081
– year: 2023
  ident: 10727_CR46
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-39865-1
– ident: 10727_CR48
  doi: 10.1007/978-3-030-51328-3_14
– volume: 35
  start-page: 102001
  year: 2021
  ident: 10727_CR45
  publication-title: J Building Eng
  doi: 10.1016/j.jobe.2020.102001
– volume: 32
  start-page: 38
  issue: 4
  year: 2015
  ident: 10727_CR52
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/msp.2015.2407091
– ident: 10727_CR1
  doi: 10.1109/cvpr46437.2021.01140
– volume: 126
  start-page: 8153
  year: 2021
  ident: 10727_CR38
  publication-title: Scientometrics
  doi: 10.1007/s11192-021-04082-y
– volume: 14
  start-page: 4087
  year: 2023
  ident: 10727_CR8
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-022-04472-x
– ident: 10727_CR10
  doi: 10.1117/12.2593838
– volume: 97
  start-page: 83
  year: 2018
  ident: 10727_CR17
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.11.056
– volume: 34
  start-page: 6603
  year: 2022
  ident: 10727_CR35
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-06072-w
– volume: 121
  start-page: 1
  year: 2019
  ident: 10727_CR26
  publication-title: World Dev
  doi: 10.1016/j.worlddev.2019.04.010
– ident: 10727_CR31
  doi: 10.1109/IWECAI55315.2022.00029
– year: 2021
  ident: 10727_CR57
  publication-title:  Sensors
  doi: 10.3390/s21061940
– ident: 10727_CR24
  doi: 10.1109/JEEIT.2019.8717470
– year: 2020
  ident: 10727_CR43
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-18566-7
– year: 2021
  ident: 10727_CR56
  publication-title: Front Psychol
  doi: 10.3389/fpsyg.2021.723325
SSID ssj0005243
Score 2.3763113
Snippet In the field of art, machine learning models have been used to predict artistic styles in paintings. The foregoing is somewhat advantageous for analysts, as...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118
SubjectTerms Artificial Intelligence
Bibliometrics
Computational linguistics
Computer Science
Creative ability
Deep learning
Documents
Graphics software
Image manipulation
Language processing
Machine learning
Natural language interfaces
Neural networks
Pattern recognition
Trends
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGA-iFy--xeqUHAQPWugjaRZvYziGoCcHu8W8qofZjbUe_O_9kqWbbxB6apO2fO8f3yMInec2zxWFyK3QJIuJJGUsFaOxBqyQW_APCXPdyHf3xXBEbsd0HJrC6rbavU1Jekv9odmNFFkMPgVMB3jdGID6BgXs7uS673ocloUdJA_tMT_v--SCvhribxlR72gGO2grRIi4t2DpLlqz1R7abk9fwEEZ99Gjz_bjF18NaXE4_uEJN1M8m7v0S4OdWLg5zLhu3ia2vsaygmsxhQRPS9z4gli4ZTDEgTgM_nnGYGMAqR-g0eDmoT-Mw3kJsQYU2MS8S1IO4Ze04LY1UUlXGjdOi5KyJNIQldvMUJkWhckKaUudyoIpxSzjWqXa5IdovZpW9gjhEvReWUmYJdwhTGlNqUuumdHcpkxGKG1JKHQYJu7OtJiI1RhkR3YBZBee7CKJ0OVyz2wxSuPP1ReOM8LpGbxZy9AuAP_nJlaJHuOAqDOe0Ah1WuaJoIC1AM_cJRTAIIvQVcvQ1ePfv3v8v-UnaDNzouVLIDtovZm_2lMIUxp15qXyHeoe3us
  priority: 102
  providerName: Springer Nature
Title Using machine learning to predict artistic styles: an analysis of trends and the research agenda
URI https://link.springer.com/article/10.1007/s10462-024-10727-0
https://www.proquest.com/docview/3038457167
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB61zYULjxZEoEQ-VOJALXa9XnvdCwohaVVIQUCkcjJ-LRxKkjbLgX_PeOMlQNVKK6-0D-9qxv5mxp4HwEERisKWqLkJxxnlhtfUWFlSh7ZCEVA-ZDJGI0_PxMmMn56X52nBbZXcKjtMbIHaL1xcI3-JUFvxErV7-Wp5SWPVqLi7mkpobEMPIbhC46v3enz24eNfTh5rvzkmFEXjIk9hMyl4jgtGUUYhFKEUp9k_oul_gL62U9oKoMl9uJs0RzJcs_oBbIX5LtzrqjKQNEn34GvrBUB-tF6SgaSyEN9IsyDLq7gt05A4XGJ-ZrJqfl2E1RExczzW2UnIoiZN6yiLlzxB_ZCkhEDfCWIPWvAPYTYZfx6d0FRHgTq0DhuqKp4rVMtMQHHuuM0q42OarZLXNTee2yIwX5pcCM-ECbXLjZDWyiCVs7nzxSPYmS_m4TGQGvHABsNl4Cpanib42tXKSe9UyKXpQ96RULuUZDzWurjQm_TIkewaya5bsuusDy_-vLNcp9i49ennkTM6zj_s2ZkURoD_FzNZ6aFUaGkzlZV92O-Yp9PEXOnNMOrDYcfQze2bv_vk9t6ewh0Wh1LrCrkPO83Vz_AM1ZXGDmC7mhwPoDd8M333KZ6Pv7wdD9JIxbsjxmMrRthO8_fYztjwN-Id7SE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoBLeYstBXwAcQCLxHHiNRJCFbBs6ePUSr25foUe2uzSDar6p_obmUkcloforVJOeTjRePzNTDzzDcCLIhaFK9Fzq7wUXFpZc-tUyT3GCkVE-5Apqkbe3aumB_LrYXm4ApdDLQylVQ6Y2AF1mHn6R_4WoXYsS_Tu1Yf5d05do2h3dWih0avFdrw4x5Bt8X7rE87vSyEmn_c_TnnqKsA9xkot12OZa3RSbETj5qXLxjYQ6VQp61raIF0RRShtXlVBVDbWPreVck5Fpb3LfShw3BtwUxaFphU1nnz5LaWkz9ITleYYyuSpSCeV6slKcLSICHzoM_DsD0P4tzn4Z1-2M3eTu7CW_FS22SvWPViJzX24M_SAYAkSHsBRl3PATruczMhSE4pvrJ2x-RltArWMlJPYoNmivTiJi3fMNnj0XChsVrO2S8vFU4GhN8oS_dAxQ6Rrgn0IB9ci30ew2sya-BhYjejjopUqSk1xro2h9rX2Kngdc2VHkA8iND5RmlNnjROzJGMmsRsUu-nEbrIRvP71zLwn9Ljy7lc0M4ZWO47sbSpawO8j3iyzqTTG9UJn5Qg2hskzCQYWZqm0I3gzTOjy8v_fu371aM_h1nR_d8fsbO1tP4HbgtSqS8LcgNX27Ed8io5S65512sng6LqXw08XyiHm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NTxRBEK0gJsaL-BlXUPug8aANMz093TsmxhBxAyLoQRJuTX9qAsyu7BACP42_4p-xeqbHVYzcOJjsaT96d2dfv6rafvUK4Fnhi8KUmLkJyxnlmgeqjSypxVqh8BgfMhm7kbe2xfoO_7Bb7s7Bed8LE2WVPSe2RO3GNv5HvoJUO-QlZvdyJSRZxOe10dvJdxonSMWT1n6cRgeRTX96guXb9M3GGv7Wzxkbvf_ybp2mCQPUYt3U0GrI8woTFu0x0FlusqF20YCq5CFw7bgpPHOlzoVwTGgfbK6FNEZ6WVmTW1fgutfguuRiGOWEW_mn3-QlnWKPiYpiWZOnhp3UtscFoxgdkQQxf6DZH0HxYmj464y2DX2jBfjRX7RO8bK_fNyYZXt2wU_y_7yqt-FWysjJareF7sCcr-_CQj_tgiTyuwd7rbqCHLbqU0_SuI2vpBmTyVE87mpI3IbR95pMm9MDP31NdI23zvWFjANpWgEy3uUI5t0kGS19I8jptdP3YedKvucDmK_HtX8IJCDPGq-59LyKFb32LthQWels5XOpB5D3AFE2mbfHGSIHamY7HUGlEFSqBZXKBvDy12smnXXJpc9-EXGnIq_hylan9gz8fNEhTK3KKmNYiWXlAJZ6LKlEeFM1A9IAXvVwnT387_d9dPlqT-EGAlJ93NjeXISbLO6ZVm26BPPN0bF_jBlhY560W4_A3lWj8iej-W4P
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+machine+learning+to+predict+artistic+styles%3A+an+analysis+of+trends+and+the+research+agenda&rft.jtitle=The+Artificial+intelligence+review&rft.au=Valencia%2C+Jackeline&rft.au=Pineda%2C+Geraldine+Garc%C3%ADa&rft.au=Pineda%2C+Vanessa+Garc%C3%ADa&rft.au=Valencia-Arias%2C+Alejandro&rft.date=2024-05-01&rft.pub=Springer&rft.issn=0269-2821&rft.volume=57&rft.issue=5&rft_id=info:doi/10.1007%2Fs10462-024-10727-0&rft.externalDocID=A790272905
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7462&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7462&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7462&client=summon