Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis
Inflammatory bowel disease (IBD) and colorectal cancer (CRC) are heterogeneous intestinal diseases that threaten the health of an increasing number of individuals as their lifestyles become westernized. New insights have been discovered with the development of various omics techniques, revealing tha...
Saved in:
Published in | Cell host & microbe Vol. 30; no. 3; pp. 289 - 300 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
09.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Inflammatory bowel disease (IBD) and colorectal cancer (CRC) are heterogeneous intestinal diseases that threaten the health of an increasing number of individuals as their lifestyles become westernized. New insights have been discovered with the development of various omics techniques, revealing that gut-microbiota-derived metabolites play important roles in maintaining intestinal homeostasis and modulating the progression of intestinal diseases from both metabolic and immunological perspectives. Clinical metagenomic and metabolomic studies have revealed links between microbial bile acid (BA) metabolism and IBD and CRC progression. Several BA-derived metabolites were recently been demonstrated to play a role in intestinal immunity, providing fresh insights into how BAs affect the course of IBD and CRC. In this review, we discuss recent studies on the involvement of gut microbiota-derived BAs in intestinal immunity, inflammation, and tumorigenesis along with human omics data to provide prospective insights into future prevention and treatment of IBD and CRC. |
---|---|
AbstractList | Inflammatory bowel disease (IBD) and colorectal cancer (CRC) are heterogeneous intestinal diseases that threaten the health of an increasing number of individuals as their lifestyles become westernized. New insights have been discovered with the development of various omics techniques, revealing that gut-microbiota-derived metabolites play important roles in maintaining intestinal homeostasis and modulating the progression of intestinal diseases from both metabolic and immunological perspectives. Clinical metagenomic and metabolomic studies have revealed links between microbial bile acid (BA) metabolism and IBD and CRC progression. Several BA-derived metabolites were recently been demonstrated to play a role in intestinal immunity, providing fresh insights into how BAs affect the course of IBD and CRC. In this review, we discuss recent studies on the involvement of gut microbiota-derived BAs in intestinal immunity, inflammation, and tumorigenesis along with human omics data to provide prospective insights into future prevention and treatment of IBD and CRC. Inflammatory bowel disease (IBD) and colorectal cancer (CRC) are heterogeneous intestinal diseases that threaten the health of an increasing number of individuals as their lifestyles become westernized. New insights have been discovered with the development of various omics techniques, revealing that gut-microbiota-derived metabolites play important roles in maintaining intestinal homeostasis and modulating the progression of intestinal diseases from both metabolic and immunological perspectives. Clinical metagenomic and metabolomic studies have revealed links between microbial bile acid (BA) metabolism and IBD and CRC progression. Several BA-derived metabolites were recently been demonstrated to play a role in intestinal immunity, providing fresh insights into how BAs affect the course of IBD and CRC. In this review, we discuss recent studies on the involvement of gut microbiota-derived BAs in intestinal immunity, inflammation, and tumorigenesis along with human omics data to provide prospective insights into future prevention and treatment of IBD and CRC.Inflammatory bowel disease (IBD) and colorectal cancer (CRC) are heterogeneous intestinal diseases that threaten the health of an increasing number of individuals as their lifestyles become westernized. New insights have been discovered with the development of various omics techniques, revealing that gut-microbiota-derived metabolites play important roles in maintaining intestinal homeostasis and modulating the progression of intestinal diseases from both metabolic and immunological perspectives. Clinical metagenomic and metabolomic studies have revealed links between microbial bile acid (BA) metabolism and IBD and CRC progression. Several BA-derived metabolites were recently been demonstrated to play a role in intestinal immunity, providing fresh insights into how BAs affect the course of IBD and CRC. In this review, we discuss recent studies on the involvement of gut microbiota-derived BAs in intestinal immunity, inflammation, and tumorigenesis along with human omics data to provide prospective insights into future prevention and treatment of IBD and CRC. Inflammatory bowel diseases (IBD) and colorectal cancer (CRC) are heterogeneous intestinal diseases that threaten the health of an increasing number of individuals as their lifestyles become Westernized. New insights have been discovered with the development of various omics techniques, revealing that gut microbiota-derived metabolites play important roles in maintaining intestinal homeostasis and modulating the progression of intestinal diseases from both metabolic and immunological perspectives. Clinical metagenomic and metabolomic studies revealed a link between microbial bile acid (BA) metabolism, IBD and CRC progression. Several BA-derived metabolites have recently been demonstrated to play a role in intestinal immunity, providing fresh insights into how BAs affect the course of IBD and CRC. In this review, recent studies on the involvement of gut microbiota-derived BAs in intestinal immunity, inflammation and tumorigenesis are discussed, together with human omics data to provide prospective insights into future prevention and therapy of IBD and CRC. Cai et al. reviews recent studies that reveal novel mechanistic links between gut microbiota-derived bile acids and host immunity, intestinal inflammation, and tumorigenesis. Bile acid-related human omics data are summarized and bile acid-targeted therapeutics for the prevention and treatment of inflammatory bowel disease and colorectal cancer are discussed. |
Author | Cai, Jie Sun, Lulu Gonzalez, Frank J. |
Author_xml | – sequence: 1 givenname: Jie surname: Cai fullname: Cai, Jie – sequence: 2 givenname: Lulu surname: Sun fullname: Sun, Lulu – sequence: 3 givenname: Frank J. surname: Gonzalez fullname: Gonzalez, Frank J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35271802$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UUtrFjEUDVKxD_0DLmSWLjqfN4-ZyWwEKVoLBTfduAqZ5KbNxySpk0yh_95MH6JdCAcSbs49h5xzTA5iikjIewo7CrT_tN-ZmxR2DBjbQQWIV-SIjly0PfTjwcOdtpwyeUiOc94DdB0M9A055B0bqAR2RH6er6UJ3ixp8qno1uLi79A2k5-x0cbb3PhYUTAXH_Xc-BDW6Mv9aR26WYegi0_xtNHRNmUNafHXGDH7_Ja8dnrO-O7pPCFX375enX1vL3-cX5x9uWyNAFbaUVLUSK2A0QBlyOngjAUOYgTscRKWG5DCWD0KJx3FSTrRgXPI9GAZPyGfH2Vv1ymgNRjLomd1u_igl3uVtFf_vkR_o67TnZIj4x3fBD4-CSzp11q_qYLPBudZR0xrVqzncmCcjqJSP_zt9cfkOc5KkI-EmmfOCzplfHkIqFr7WVFQW3Nqr7bm1NacggrYtNmL1Wf1_yz9BoM4oEo |
CitedBy_id | crossref_primary_10_1002_advs_202205563 crossref_primary_10_1016_j_phrs_2024_107361 crossref_primary_10_1002_mnfr_202200649 crossref_primary_10_1002_fsn3_70023 crossref_primary_10_1093_ecco_jcc_jjae061 crossref_primary_10_1124_pharmrev_124_000978 crossref_primary_10_1016_j_jpha_2023_09_010 crossref_primary_10_1016_j_tox_2024_153951 crossref_primary_10_1007_s00394_024_03525_5 crossref_primary_10_1089_fpd_2024_0046 crossref_primary_10_1134_S0006297923070027 crossref_primary_10_1093_jn_nxac161 crossref_primary_10_1186_s40104_024_01113_5 crossref_primary_10_3390_ani15050710 crossref_primary_10_1016_j_biopha_2023_115906 crossref_primary_10_1111_imr_13396 crossref_primary_10_3389_fmicb_2025_1559119 crossref_primary_10_34172_ehsj_26270 crossref_primary_10_26599_FSHW_2024_9250040 crossref_primary_10_1016_j_xcrm_2025_102028 crossref_primary_10_1016_j_phytochem_2024_114162 crossref_primary_10_3390_microorganisms13030673 crossref_primary_10_1053_j_gastro_2024_07_040 crossref_primary_10_1002_JPER_22_0398 crossref_primary_10_1016_j_jare_2024_07_034 crossref_primary_10_1039_D3FO03233G crossref_primary_10_1016_j_ijbiomac_2024_136280 crossref_primary_10_1016_j_phrs_2024_107373 crossref_primary_10_1111_jpi_12929 crossref_primary_10_3389_fnins_2024_1388748 crossref_primary_10_1021_acs_est_4c01511 crossref_primary_10_1186_s12967_024_05320_6 crossref_primary_10_3389_fmicb_2024_1429360 crossref_primary_10_1016_j_ijbiomac_2024_134532 crossref_primary_10_1080_10408398_2023_2278155 crossref_primary_10_3390_nu15173829 crossref_primary_10_3748_wjg_v31_i2_100024 crossref_primary_10_1016_j_ijbiomac_2024_130062 crossref_primary_10_1021_acs_jafc_2c08631 crossref_primary_10_1038_s41589_022_01122_3 crossref_primary_10_1002_aro2_39 crossref_primary_10_1021_acs_jafc_2c02654 crossref_primary_10_1016_j_jff_2023_105457 crossref_primary_10_1186_s40168_023_01546_6 crossref_primary_10_3389_fmicb_2024_1513723 crossref_primary_10_1039_D3FO02471G crossref_primary_10_1016_j_immuni_2025_02_003 crossref_primary_10_1016_j_lfs_2023_122302 crossref_primary_10_1210_endocr_bqac155 crossref_primary_10_3389_fimmu_2024_1362133 crossref_primary_10_1002_mnfr_202300910 crossref_primary_10_1016_j_intimp_2024_112984 crossref_primary_10_1016_j_ijbiomac_2023_128847 crossref_primary_10_1016_j_mcp_2024_101958 crossref_primary_10_1021_acs_jafc_3c08527 crossref_primary_10_1016_j_theriogenology_2023_08_010 crossref_primary_10_3390_diagnostics12112746 crossref_primary_10_1038_s41396_022_01333_5 crossref_primary_10_1507_endocrj_EJ22_0544 crossref_primary_10_1002_cbic_202300821 crossref_primary_10_1080_19490976_2023_2274124 crossref_primary_10_1016_j_jchromb_2024_124218 crossref_primary_10_1038_s41564_024_01801_y crossref_primary_10_3390_biotech13030029 crossref_primary_10_3389_fphar_2024_1431240 crossref_primary_10_3390_diagnostics14020229 crossref_primary_10_1080_19490976_2024_2356284 crossref_primary_10_3389_fphar_2022_954684 crossref_primary_10_1016_j_chemosphere_2023_140905 crossref_primary_10_1016_j_jchromb_2024_124331 crossref_primary_10_3390_foods13182992 crossref_primary_10_1016_j_intimp_2024_111762 crossref_primary_10_1111_crj_13762 crossref_primary_10_1007_s12035_024_04101_y crossref_primary_10_1007_s13346_024_01621_x crossref_primary_10_1038_s41467_023_37055_1 crossref_primary_10_1038_s41575_024_00896_2 crossref_primary_10_1093_jas_skae233 crossref_primary_10_1007_s11427_023_2446_y crossref_primary_10_3390_nu15143187 crossref_primary_10_1016_j_intimp_2024_112172 crossref_primary_10_1186_s12888_024_05773_5 crossref_primary_10_1016_j_advnut_2023_09_010 crossref_primary_10_1007_s11101_024_09920_4 crossref_primary_10_3389_fcimb_2023_1083987 crossref_primary_10_3390_metabo14080452 crossref_primary_10_1021_acs_jafc_4c03617 crossref_primary_10_1016_j_envpol_2023_122238 crossref_primary_10_1111_srt_70006 crossref_primary_10_7717_peerj_17185 crossref_primary_10_1016_j_chom_2023_06_009 crossref_primary_10_1002_mco2_556 crossref_primary_10_1007_s10068_024_01759_x crossref_primary_10_3389_fcimb_2025_1529347 crossref_primary_10_1186_s12967_022_03700_4 crossref_primary_10_3390_cells12141888 crossref_primary_10_1016_j_chom_2023_06_003 crossref_primary_10_1038_s41598_024_75516_9 crossref_primary_10_1016_j_aninu_2024_11_016 crossref_primary_10_1016_j_celrep_2023_113324 crossref_primary_10_3389_fmicb_2024_1328324 crossref_primary_10_1093_cei_uxae006 crossref_primary_10_1038_s41522_025_00678_x crossref_primary_10_3389_fmicb_2023_1145315 crossref_primary_10_3390_foods12132492 crossref_primary_10_3390_ani12172270 crossref_primary_10_1016_j_phymed_2024_155577 crossref_primary_10_3390_ijms24054258 crossref_primary_10_1021_acs_jafc_3c08385 crossref_primary_10_1039_D3FO02286B crossref_primary_10_3389_fmed_2024_1482066 crossref_primary_10_1007_s00281_024_01012_x crossref_primary_10_1016_j_apsb_2024_02_020 crossref_primary_10_1016_j_biopha_2024_117731 crossref_primary_10_1016_j_ecoenv_2023_115749 crossref_primary_10_3390_vaccines12040365 crossref_primary_10_3390_biomedicines12122910 crossref_primary_10_3389_fonc_2022_1033145 crossref_primary_10_3389_fimmu_2024_1430001 crossref_primary_10_1016_j_autrev_2025_103780 crossref_primary_10_1016_j_jff_2023_105766 crossref_primary_10_1002_imo2_70008 crossref_primary_10_1038_s42255_024_01072_1 crossref_primary_10_53469_jcmp_2024_06_09__32 crossref_primary_10_1016_j_phrs_2023_107034 crossref_primary_10_1007_s00432_022_03998_z crossref_primary_10_1631_jzus_B2200439 crossref_primary_10_3389_fimmu_2025_1529958 crossref_primary_10_3389_fgene_2024_1380830 crossref_primary_10_1016_j_ijbiomac_2023_127308 crossref_primary_10_3390_nu15102411 crossref_primary_10_1016_j_scitotenv_2024_173795 crossref_primary_10_1038_s41388_024_03169_z crossref_primary_10_3892_ijo_2025_5730 crossref_primary_10_1021_acs_jproteome_3c00894 crossref_primary_10_53469_jcmp_2024_06_09__30 crossref_primary_10_1016_j_scitotenv_2023_166837 crossref_primary_10_1080_19490976_2024_2426610 crossref_primary_10_1039_D3FO03669C crossref_primary_10_3390_nu15010048 crossref_primary_10_3390_nu16162643 crossref_primary_10_1038_s41467_024_55668_y crossref_primary_10_26599_FSHW_2024_9250078 crossref_primary_10_1016_j_foodchem_2025_142932 crossref_primary_10_3390_nu16172918 crossref_primary_10_1016_j_phrs_2022_106643 crossref_primary_10_1080_19490976_2025_2476570 crossref_primary_10_1039_D4FO03417A crossref_primary_10_1016_j_jare_2024_03_005 crossref_primary_10_26599_FSHW_2024_9250070 crossref_primary_10_1016_j_chemosphere_2022_137499 crossref_primary_10_1128_jb_00180_23 crossref_primary_10_1016_j_jff_2023_105778 crossref_primary_10_1016_j_ebiom_2022_104113 crossref_primary_10_1186_s40168_024_01976_w crossref_primary_10_1016_j_lfs_2023_122105 crossref_primary_10_1038_s41423_023_01026_9 crossref_primary_10_3390_ijms232214254 crossref_primary_10_1002_mnfr_202300317 crossref_primary_10_1016_j_plrev_2024_05_003 crossref_primary_10_1371_journal_pone_0294049 crossref_primary_10_1136_gutjnl_2024_332891 crossref_primary_10_1016_j_immuni_2023_11_001 crossref_primary_10_1080_19490976_2023_2203968 crossref_primary_10_1016_j_lfs_2023_122229 crossref_primary_10_1021_acs_jafc_3c00798 crossref_primary_10_1016_j_jpha_2024_101042 crossref_primary_10_3390_toxins16050212 crossref_primary_10_1016_j_jhazmat_2024_135855 crossref_primary_10_1016_j_heliyon_2024_e24571 crossref_primary_10_3389_fmicb_2023_1287468 crossref_primary_10_1016_j_smim_2023_101756 crossref_primary_10_3389_fcimb_2023_1253447 crossref_primary_10_1186_s13046_023_02746_6 crossref_primary_10_1038_s41598_024_84801_6 crossref_primary_10_1016_j_intimp_2023_110838 crossref_primary_10_3390_antiox13020172 crossref_primary_10_1002_ctm2_1227 crossref_primary_10_1016_j_ecoenv_2024_117313 crossref_primary_10_1016_j_intimp_2024_112537 crossref_primary_10_1016_j_intimp_2024_113627 crossref_primary_10_3390_nu16101514 crossref_primary_10_1016_j_biopha_2023_115484 crossref_primary_10_1016_j_heliyon_2024_e34352 crossref_primary_10_1186_s12967_024_05092_z crossref_primary_10_1016_j_intimp_2024_113866 crossref_primary_10_3389_fcimb_2023_1191936 crossref_primary_10_1007_s00281_023_00999_z crossref_primary_10_1016_j_ecoenv_2023_115637 crossref_primary_10_3389_fmicb_2023_1188455 crossref_primary_10_1016_j_apsb_2024_02_011 crossref_primary_10_1016_j_aca_2022_340691 crossref_primary_10_2147_JIR_S458928 crossref_primary_10_1128_msystems_00023_24 crossref_primary_10_3390_metabo12070647 crossref_primary_10_31857_S0320972523070023 crossref_primary_10_1186_s40168_024_01964_0 crossref_primary_10_3389_fmicb_2024_1360225 crossref_primary_10_1002_jsfa_13410 crossref_primary_10_1016_j_neubiorev_2023_105147 crossref_primary_10_1016_j_cell_2024_03_034 crossref_primary_10_1039_D3FO05235D crossref_primary_10_1016_j_chembiol_2024_05_009 crossref_primary_10_3390_ijms25021228 crossref_primary_10_3389_fcimb_2022_945263 crossref_primary_10_14309_ctg_0000000000000762 crossref_primary_10_1186_s12958_024_01184_z crossref_primary_10_1016_j_micres_2024_127871 crossref_primary_10_1016_j_tox_2024_153799 crossref_primary_10_3390_microorganisms12040795 crossref_primary_10_1016_j_gtc_2024_01_003 crossref_primary_10_1161_JAHA_123_031241 crossref_primary_10_1186_s12866_024_03188_6 crossref_primary_10_3390_metabo13040534 crossref_primary_10_1007_s00011_024_01854_z crossref_primary_10_1038_s41598_024_66660_3 crossref_primary_10_3389_fnut_2024_1495993 crossref_primary_10_1080_1040841X_2023_2254388 crossref_primary_10_1016_j_jaut_2023_103062 crossref_primary_10_3389_fmicb_2023_1210142 crossref_primary_10_2174_011574888X250413230920051715 crossref_primary_10_1128_spectrum_03948_23 crossref_primary_10_1186_s40168_022_01389_7 crossref_primary_10_5713_ab_23_0475 crossref_primary_10_4251_wjgo_v16_i7_3169 crossref_primary_10_14309_ctg_0000000000000658 crossref_primary_10_3390_foods12163083 crossref_primary_10_4103_NRR_NRR_D_24_00531 crossref_primary_10_1016_j_arabjc_2024_106056 crossref_primary_10_3389_fimmu_2024_1445838 crossref_primary_10_1016_j_intimp_2025_114034 crossref_primary_10_1038_s41579_023_00973_4 crossref_primary_10_3389_fmicb_2023_1182006 crossref_primary_10_3389_fmicb_2022_1053128 crossref_primary_10_1038_s41568_022_00513_x crossref_primary_10_3389_fvets_2023_1206346 crossref_primary_10_3390_nu14122528 crossref_primary_10_1016_j_biopha_2023_114409 crossref_primary_10_1136_gutjnl_2021_326575 crossref_primary_10_1111_jgh_16750 crossref_primary_10_1002_advs_202307981 crossref_primary_10_3389_fendo_2024_1441415 crossref_primary_10_1080_19490976_2024_2370634 crossref_primary_10_1016_j_scitotenv_2022_160849 crossref_primary_10_1007_s00394_025_03622_z crossref_primary_10_1016_j_lfs_2023_122385 crossref_primary_10_1039_D2FO03181G crossref_primary_10_3390_molecules28145498 crossref_primary_10_17816_medjrf626841 crossref_primary_10_1016_j_micres_2024_127773 crossref_primary_10_1038_s41522_024_00610_9 crossref_primary_10_1039_D3FO05540J crossref_primary_10_1038_s41598_025_91626_4 crossref_primary_10_1111_apha_14065 crossref_primary_10_1016_j_expneurol_2023_114672 crossref_primary_10_1016_j_jand_2022_10_004 crossref_primary_10_2174_1389200224666230418104540 crossref_primary_10_1038_s41392_023_01399_3 crossref_primary_10_1042_CS20230788 crossref_primary_10_1016_j_ijbiomac_2024_134370 crossref_primary_10_1016_j_foodres_2023_112753 crossref_primary_10_29328_journal_acst_1001045 crossref_primary_10_5937_arhfarm73_46395 crossref_primary_10_26599_JFB_2024_95028391 crossref_primary_10_1016_j_scitotenv_2023_167287 crossref_primary_10_1007_s11596_024_2931_x crossref_primary_10_1016_j_ijbiomac_2025_142145 crossref_primary_10_3389_fcimb_2024_1333145 crossref_primary_10_3390_nu15020255 crossref_primary_10_1016_j_jprot_2024_105360 crossref_primary_10_1016_j_jhep_2024_09_032 crossref_primary_10_3390_medicina60030516 crossref_primary_10_1016_j_jep_2024_118870 crossref_primary_10_3389_fmicb_2023_1228815 crossref_primary_10_12998_wjcc_v10_i30_10823 crossref_primary_10_1002_imt2_265 crossref_primary_10_1038_s41598_025_91869_1 crossref_primary_10_3389_fcell_2025_1563184 crossref_primary_10_3390_biomedicines11020442 crossref_primary_10_3389_fnins_2022_917197 crossref_primary_10_1080_19490976_2023_2295394 crossref_primary_10_3389_fmicb_2023_1097148 crossref_primary_10_3389_fmicb_2024_1344992 crossref_primary_10_3748_wjg_v29_i36_5211 crossref_primary_10_1016_j_tem_2023_05_006 crossref_primary_10_1016_j_jff_2023_105995 crossref_primary_10_1016_j_medj_2024_07_002 crossref_primary_10_1111_1759_7714_15303 crossref_primary_10_1016_j_celrep_2023_112346 crossref_primary_10_1111_jpn_13969 crossref_primary_10_3390_nu14132664 crossref_primary_10_3389_fmolb_2023_1281987 crossref_primary_10_1186_s12884_023_05889_8 crossref_primary_10_1080_10408398_2025_2455954 crossref_primary_10_3389_fonc_2023_1285508 crossref_primary_10_1016_j_fbio_2024_105431 crossref_primary_10_3389_fnut_2023_1121203 crossref_primary_10_1007_s12602_023_10102_5 crossref_primary_10_1515_mr_2024_0020 crossref_primary_10_1016_j_compbiolchem_2025_108372 crossref_primary_10_1016_j_apsb_2024_04_027 crossref_primary_10_1055_a_1824_0120 crossref_primary_10_1016_j_ijbiomac_2025_141714 crossref_primary_10_1097_MD_0000000000039013 crossref_primary_10_3389_fmicb_2024_1390046 crossref_primary_10_3389_fmicb_2024_1479779 crossref_primary_10_3390_metabo13020207 crossref_primary_10_1038_s43018_023_00602_2 crossref_primary_10_1016_j_molmed_2023_01_001 crossref_primary_10_1097_JS9_0000000000002229 crossref_primary_10_1002_imt2_70000 crossref_primary_10_1016_j_jep_2024_118815 crossref_primary_10_3389_fimmu_2025_1565133 crossref_primary_10_1016_j_celrep_2024_113846 crossref_primary_10_1080_19490976_2023_2236364 crossref_primary_10_1007_s44403_024_00010_z crossref_primary_10_1016_j_dld_2024_11_002 crossref_primary_10_1016_j_fbio_2024_105448 crossref_primary_10_1007_s11427_024_2577_0 crossref_primary_10_3389_fnut_2023_1111872 crossref_primary_10_1007_s11427_022_2302_5 crossref_primary_10_1016_j_isci_2024_109612 crossref_primary_10_3390_cells12030447 crossref_primary_10_1096_fj_202300819RR crossref_primary_10_1016_j_fbio_2024_104110 crossref_primary_10_1080_19490976_2024_2409210 crossref_primary_10_1128_iai_00153_22 crossref_primary_10_1002_smll_202310851 crossref_primary_10_1016_j_ijbiomac_2024_138933 crossref_primary_10_3390_cells13231997 crossref_primary_10_5662_wjm_v15_i2_92592 crossref_primary_10_17749_2313_7347_ob_gyn_rep_2024_534 crossref_primary_10_3389_fmicb_2024_1380912 crossref_primary_10_1186_s13099_023_00571_y crossref_primary_10_1016_j_chom_2024_06_003 crossref_primary_10_1016_j_jconrel_2023_09_033 crossref_primary_10_1016_j_chom_2023_12_015 crossref_primary_10_1016_j_mtbio_2025_101601 crossref_primary_10_1016_j_cbpa_2024_102539 crossref_primary_10_1016_j_fbio_2024_105218 crossref_primary_10_3389_fimmu_2024_1424987 crossref_primary_10_1002_jat_4587 crossref_primary_10_3390_antiox11112285 crossref_primary_10_1002_imt2_195 crossref_primary_10_1021_acs_jafc_3c09535 crossref_primary_10_1124_dmd_122_000860 crossref_primary_10_4254_wjh_v17_i3_103854 crossref_primary_10_1002_imt2_199 crossref_primary_10_1021_acs_jafc_3c00952 crossref_primary_10_1016_j_jhazmat_2024_134360 crossref_primary_10_1016_j_tifs_2025_104876 crossref_primary_10_1007_s10753_023_01948_6 crossref_primary_10_1016_j_scib_2025_01_029 crossref_primary_10_1002_fft2_471 crossref_primary_10_1016_j_fsi_2024_109376 crossref_primary_10_1093_lifemeta_load032 crossref_primary_10_3390_ani14111529 crossref_primary_10_1021_acs_analchem_4c06108 crossref_primary_10_1186_s40104_024_01037_0 crossref_primary_10_3389_fcimb_2022_1054808 crossref_primary_10_1038_s41467_023_37459_z crossref_primary_10_1016_j_jgg_2022_12_002 crossref_primary_10_3389_fimmu_2022_974305 crossref_primary_10_1016_j_lfs_2024_123107 crossref_primary_10_1002_mnfr_202300148 crossref_primary_10_1016_j_ijbiomac_2025_141151 crossref_primary_10_1016_j_phrs_2024_107278 crossref_primary_10_1016_j_cofs_2022_100956 crossref_primary_10_1007_s10695_022_01116_x crossref_primary_10_3390_microorganisms10122486 crossref_primary_10_1038_s41392_023_01673_4 crossref_primary_10_1021_acs_jafc_4c01595 crossref_primary_10_3390_ijms232113583 crossref_primary_10_1016_j_scitotenv_2022_159031 crossref_primary_10_1016_j_clinre_2024_102370 crossref_primary_10_2174_0115680096281168231215060301 crossref_primary_10_3389_fmicb_2022_1023315 crossref_primary_10_1016_j_celrep_2022_111725 crossref_primary_10_1016_j_jff_2023_105951 crossref_primary_10_1016_j_tips_2024_07_006 crossref_primary_10_1097_HEP_0000000000000957 crossref_primary_10_4251_wjgo_v16_i4_1319 crossref_primary_10_1089_ten_teb_2023_0124 crossref_primary_10_1093_ismejo_wrad037 |
Cites_doi | 10.1038/s41575-019-0258-z 10.1038/s41586-019-1865-0 10.3748/wjg.14.5630 10.1038/s41591-019-0406-6 10.1016/j.jcmgh.2016.06.004 10.1053/j.gastro.2018.08.022 10.1016/j.chom.2020.01.021 10.1038/nature12726 10.1038/s41579-019-0213-6 10.1016/0039-128X(94)90062-0 10.3390/microorganisms9030469 10.1053/jhep.2003.50116 10.1016/j.ejim.2017.06.020 10.1016/j.cell.2021.12.035 10.1126/science.aaa9420 10.1007/s12010-009-8738-1 10.1099/00207713-50-3-971 10.1039/C8FO01143E 10.1038/s41591-019-0458-7 10.1080/19490976.2020.1819155 10.1016/0005-2760(89)90272-5 10.4315/0362-028X-67.12.2772 10.1017/S0007114517001106 10.1038/s41586-020-2047-9 10.1002/cam4.1965 10.1186/s40168-019-0628-3 10.1016/0005-2760(78)90060-7 10.1371/journal.pone.0006386 10.1128/aem.63.3.1185-1188.1997 10.1080/19490976.2020.1748261 10.1038/nchembio.1864 10.1016/j.immuni.2014.05.013 10.1038/nm.4086 10.1016/j.cell.2017.05.016 10.1038/s41586-020-2396-4 10.3322/caac.21601 10.1136/gut.39.4.587 10.1099/00207713-51-1-39 10.1016/j.resmic.2006.04.002 10.1371/journal.pone.0085344 10.1128/AEM.66.6.2502-2512.2000 10.1016/j.immuni.2017.11.012 10.1080/19490976.2021.1907271 10.1038/s41586-019-1237-9 10.1146/annurev-immunol-061020-053702 10.1073/pnas.0509592103 10.1038/nrgastro.2016.165 10.1038/nature11225 10.1128/AEM.00235-18 10.1080/19490976.2015.1127483 10.1016/j.immuni.2018.01.007 10.1021/acschembio.1c00192 10.1002/cncr.28799 10.1016/S0021-9258(18)99213-6 10.1016/j.jhep.2012.01.019 10.1002/cphy.c120023 10.1038/nm.4185 10.1002/cphy.c120007 10.3390/pathogens3010014 10.1136/gut.2010.212159 10.1093/jnci/djz166 10.1016/j.chom.2021.07.013 10.1038/ncomms3384 10.1021/acscentsci.9b00147 10.1194/jlr.M075143 10.1073/pnas.0804437105 10.1016/0005-2736(80)90075-9 10.1016/S0140-6736(03)12489-0 10.1016/j.chom.2021.06.019 10.1053/j.gastro.2011.07.046 10.1093/jnci/djt300 10.1053/jhep.2000.7877 10.1016/S0022-2275(20)41573-1 10.1016/j.crohns.2013.09.009 10.1038/s41420-021-00589-8 10.7554/eLife.37182 10.1038/s41586-021-03421-6 10.1038/nri.2016.42 10.1016/j.femsre.2004.09.003 10.1038/nrgastro.2017.119 10.1038/s41577-021-00534-x 10.1053/j.gastro.2011.10.001 10.1038/s41586-019-1785-z 10.1016/0005-2744(76)90068-1 10.3748/wjg.v18.i21.2609 10.1194/jlr.R500013-JLR200 10.1016/j.cmet.2013.01.003 10.1099/00221287-147-12-3403 10.1002/mc.22999 10.1136/gut.48.2.206 10.1128/aem.61.7.2514-2520.1995 10.1038/s41564-018-0306-4 10.1053/j.gastro.2020.05.067 10.1038/cr.2016.151 10.1016/j.ebiom.2020.102719 10.1371/journal.pone.0070803 10.1093/ecco-jcc/jjab003 10.1016/0005-2760(76)90086-2 10.1016/j.immuni.2016.09.008 10.1038/nri.2016.36 10.1038/s41575-020-00404-2 10.1016/j.mam.2017.04.002 10.1128/aem.37.5.992-1000.1979 10.1007/s10620-020-06208-3 10.1038/nri3073 10.1038/s41589-020-0467-3 10.1038/s41586-021-03832-5 10.1038/s41586-020-2193-0 10.1038/nrgastro.2015.150 |
ContentType | Journal Article |
Copyright | Copyright © 2022. Published by Elsevier Inc. |
Copyright_xml | – notice: Copyright © 2022. Published by Elsevier Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.chom.2022.02.004 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1934-6069 |
EndPage | 300 |
ExternalDocumentID | PMC8923532 35271802 10_1016_j_chom_2022_02_004 |
Genre | Journal Article Research Support, N.I.H., Intramural Review |
GrantInformation_xml | – fundername: Intramural NIH HHS grantid: Z01 BC005562 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6J9 7-5 AAEDT AAEDW AAIKJ AAKRW AALRI AAMRU AAVLU AAXUO AAYWO AAYXX ABDGV ABJNI ABMAC ACGFO ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEFWE AENEX AEUPX AEXQZ AFPUW AFTJW AGCQF AGHFR AGKMS AIGII AITUG AKAPO AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP ASPBG AVWKF AZFZN BAWUL CITATION CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE HVGLF HZ~ IHE IXB JIG M41 O-L O9- OK1 OZT P2P RIG ROL RPZ SES SSZ TR2 UNMZH ZBA CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c402t-981eae1d409c012e317fcd030490e6eb4d3c084cda94f8f1eb8f450ffe2a7d23 |
ISSN | 1931-3128 1934-6069 |
IngestDate | Thu Aug 21 18:37:23 EDT 2025 Fri Jul 11 02:30:06 EDT 2025 Mon Jul 21 05:45:54 EDT 2025 Thu Apr 24 23:00:15 EDT 2025 Tue Jul 01 02:44:23 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | colorectal cancer inflammatory bowel diseases omics bile acids gut microbiota |
Language | English |
License | Copyright © 2022. Published by Elsevier Inc. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c402t-981eae1d409c012e317fcd030490e6eb4d3c084cda94f8f1eb8f450ffe2a7d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 AUTHOR CONTRIBUTIONS Equal contribution Writing – Original Draft, J.C.; Visualization, L.S.; Writing – Review & Editing, J.C., L.S, F.J.G.; Supervision – F.J.G. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8923532 |
PMID | 35271802 |
PQID | 2638723194 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8923532 proquest_miscellaneous_2638723194 pubmed_primary_35271802 crossref_citationtrail_10_1016_j_chom_2022_02_004 crossref_primary_10_1016_j_chom_2022_02_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-09 |
PublicationDateYYYYMMDD | 2022-03-09 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell host & microbe |
PublicationTitleAlternate | Cell Host Microbe |
PublicationYear | 2022 |
References | Li (10.1016/j.chom.2022.02.004_bib61) 2021; 29 Jia (10.1016/j.chom.2022.02.004_bib46) 2018; 15 Coleman (10.1016/j.chom.2022.02.004_bib14) 1980; 599 Wijaya (10.1016/j.chom.2022.02.004_bib104) 2004; 67 Kumar (10.1016/j.chom.2022.02.004_bib57) 2018; 48 O’Keefe (10.1016/j.chom.2022.02.004_bib72) 2016; 13 Huttenhower (10.1016/j.chom.2022.02.004_bib40) 2014; 40 Sato (10.1016/j.chom.2022.02.004_bib81) 2021; 599 Song (10.1016/j.chom.2022.02.004_bib91) 2020; 577 Pearson (10.1016/j.chom.2022.02.004_bib75) 2019; 8 Wang (10.1016/j.chom.2022.02.004_bib100) 2020; 12 Zhang (10.1016/j.chom.2022.02.004_bib110) 2021; 7 Tanaka (10.1016/j.chom.2022.02.004_bib96) 2000; 66 Gonzalez (10.1016/j.chom.2022.02.004_bib34) 2012; 2 Schirmer (10.1016/j.chom.2022.02.004_bib83) 2019; 17 Doden (10.1016/j.chom.2022.02.004_bib19) 2018; 84 Begley (10.1016/j.chom.2022.02.004_bib6) 2005; 29 Lorenzo-Zúñiga (10.1016/j.chom.2022.02.004_bib64) 2003; 37 Tanoue (10.1016/j.chom.2022.02.004_bib97) 2016; 16 Hang (10.1016/j.chom.2022.02.004_bib37) 2019; 576 Quinn (10.1016/j.chom.2022.02.004_bib76) 2020; 579 Jones (10.1016/j.chom.2022.02.004_bib50) 2008; 105 Harris (10.1016/j.chom.2022.02.004_bib39) 2018; 9 Li (10.1016/j.chom.2022.02.004_bib60) 2013; 4 Patel (10.1016/j.chom.2022.02.004_bib74) 2010; 162 Doden (10.1016/j.chom.2022.02.004_bib20) 2021; 13 Killenberg (10.1016/j.chom.2022.02.004_bib52) 1978; 19 Sefik (10.1016/j.chom.2022.02.004_bib86) 2015; 349 Macdonald (10.1016/j.chom.2022.02.004_bib65) 1976; 450 Fouts (10.1016/j.chom.2022.02.004_bib26) 2012; 56 Jin (10.1016/j.chom.2022.02.004_bib48) 2022; 185 Parasar (10.1016/j.chom.2022.02.004_bib73) 2019; 5 Gadaleta (10.1016/j.chom.2022.02.004_bib32) 2020; 54 Kishinaka (10.1016/j.chom.2022.02.004_bib53) 1994; 59 Jansson (10.1016/j.chom.2022.02.004_bib45) 2009; 4 Edenharder (10.1016/j.chom.2022.02.004_bib23) 1989; 1004 Sayin (10.1016/j.chom.2022.02.004_bib82) 2013; 17 Kitahara (10.1016/j.chom.2022.02.004_bib54) 2000; 50 Schroeder (10.1016/j.chom.2022.02.004_bib85) 2016; 22 Kitahara (10.1016/j.chom.2022.02.004_bib55) 2001; 51 Coleman (10.1016/j.chom.2022.02.004_bib13) 1995; 61 Martinez-Augustin (10.1016/j.chom.2022.02.004_bib67) 2008; 14 Cross (10.1016/j.chom.2022.02.004_bib15) 2014; 120 Wigg (10.1016/j.chom.2022.02.004_bib103) 2001; 48 Gadaleta (10.1016/j.chom.2022.02.004_bib31) 2017; 56 Saito (10.1016/j.chom.2022.02.004_bib80) 2016; 22 Wang (10.1016/j.chom.2022.02.004_bib99) 2019; 58 Smith (10.1016/j.chom.2022.02.004_bib89) 2014; 9 Clements (10.1016/j.chom.2022.02.004_bib12) 1996; 39 Nusse (10.1016/j.chom.2022.02.004_bib71) 2017; 169 Stellwag (10.1016/j.chom.2022.02.004_bib93) 1976; 452 Murray (10.1016/j.chom.2022.02.004_bib70) 2011; 11 Wirbel (10.1016/j.chom.2022.02.004_bib105) 2019; 25 Guo (10.1016/j.chom.2022.02.004_bib36) 2016; 45 Arpaia (10.1016/j.chom.2022.02.004_bib4) 2013; 504 Islam (10.1016/j.chom.2022.02.004_bib43) 2011; 141 Elkins (10.1016/j.chom.2022.02.004_bib24) 2001; 147 Yachida (10.1016/j.chom.2022.02.004_bib108) 2019; 25 Doden (10.1016/j.chom.2022.02.004_bib18) 2021; 9 Gadaleta (10.1016/j.chom.2022.02.004_bib30) 2011; 60 Ilan (10.1016/j.chom.2022.02.004_bib41) 2012; 18 Lavelle (10.1016/j.chom.2022.02.004_bib58) 2020; 17 Kühn (10.1016/j.chom.2022.02.004_bib56) 2020; 112 Ahn (10.1016/j.chom.2022.02.004_bib3) 2013; 105 Floreani (10.1016/j.chom.2022.02.004_bib25) 2018; 47 Lee (10.1016/j.chom.2022.02.004_bib59) 2021; 29 Song (10.1016/j.chom.2022.02.004_bib90) 2019; 7 Chiang (10.1016/j.chom.2022.02.004_bib11) 2013; 3 Cao (10.1016/j.chom.2022.02.004_bib9) 2017; 47 Taranto (10.1016/j.chom.2022.02.004_bib98) 2006; 157 Funabashi (10.1016/j.chom.2022.02.004_bib29) 2020; 582 Yao (10.1016/j.chom.2022.02.004_bib109) 2018; 7 Adhikari (10.1016/j.chom.2022.02.004_bib2) 2021; 16 Sun (10.1016/j.chom.2022.02.004_bib94) 2021; 18 MacDonald (10.1016/j.chom.2022.02.004_bib66) 1979; 37 Ridlon (10.1016/j.chom.2022.02.004_bib77) 2006; 47 Mulder (10.1016/j.chom.2022.02.004_bib69) 2014; 8 Dong (10.1016/j.chom.2022.02.004_bib22) 2021; 39 Watanabe (10.1016/j.chom.2022.02.004_bib101) 2017; 58 Sinha (10.1016/j.chom.2022.02.004_bib88) 2020; 27 Gérard (10.1016/j.chom.2022.02.004_bib33) 2013; 3 Brown (10.1016/j.chom.2022.02.004_bib7) 2017; 117 Sorrentino (10.1016/j.chom.2022.02.004_bib92) 2020; 159 Adhikari (10.1016/j.chom.2022.02.004_bib1) 2020; 16 Molodecky (10.1016/j.chom.2022.02.004_bib68) 2012; 142 Harris (10.1016/j.chom.2022.02.004_bib38) 1978; 528 Friedman (10.1016/j.chom.2022.02.004_bib28) 2018; 155 Siegel (10.1016/j.chom.2022.02.004_bib87) 2020; 70 Franzosa (10.1016/j.chom.2022.02.004_bib27) 2019; 4 Inagaki (10.1016/j.chom.2022.02.004_bib42) 2006; 103 Devkota (10.1016/j.chom.2022.02.004_bib16) 2012; 487 Schmitt (10.1016/j.chom.2022.02.004_bib84) 2021; 21 Campbell (10.1016/j.chom.2022.02.004_bib8) 2020; 581 Axelson (10.1016/j.chom.2022.02.004_bib5) 2000; 31 Guarner (10.1016/j.chom.2022.02.004_bib35) 2003; 361 Tanaka (10.1016/j.chom.2022.02.004_bib95) 2017; 27 Weir (10.1016/j.chom.2022.02.004_bib102) 2013; 8 Doerner (10.1016/j.chom.2022.02.004_bib21) 1997; 63 Johnson (10.1016/j.chom.2022.02.004_bib49) 1991; 266 Ridlon (10.1016/j.chom.2022.02.004_bib78) 2016; 7 Jia (10.1016/j.chom.2022.02.004_bib47) 2020; 11 Chen (10.1016/j.chom.2022.02.004_bib10) 2021; 593 Rooks (10.1016/j.chom.2022.02.004_bib79) 2016; 16 Devlin (10.1016/j.chom.2022.02.004_bib17) 2015; 11 Jacobs (10.1016/j.chom.2022.02.004_bib44) 2016; 2 Liu (10.1016/j.chom.2022.02.004_bib62) 2018; 9 Kaplan (10.1016/j.chom.2022.02.004_bib51) 2015; 12 Xu (10.1016/j.chom.2022.02.004_bib107) 2021; 15 Xu (10.1016/j.chom.2022.02.004_bib106) 2021; 66 Lloyd-Price (10.1016/j.chom.2022.02.004_bib63) 2019; 569 |
References_xml | – volume: 17 start-page: 223 year: 2020 ident: 10.1016/j.chom.2022.02.004_bib58 article-title: Gut microbiota-derived metabolites as key actors in inflammatory bowel disease publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-019-0258-z – volume: 577 start-page: 410 year: 2020 ident: 10.1016/j.chom.2022.02.004_bib91 article-title: Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis publication-title: Nature doi: 10.1038/s41586-019-1865-0 – volume: 14 start-page: 5630 year: 2008 ident: 10.1016/j.chom.2022.02.004_bib67 article-title: Intestinal bile acid physiology and pathophysiology publication-title: World J. Gastroenterol. doi: 10.3748/wjg.14.5630 – volume: 25 start-page: 679 year: 2019 ident: 10.1016/j.chom.2022.02.004_bib105 article-title: Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer publication-title: Nat. Med. doi: 10.1038/s41591-019-0406-6 – volume: 2 start-page: 750 year: 2016 ident: 10.1016/j.chom.2022.02.004_bib44 article-title: A disease-associated microbial and metabolomics state in relatives of pediatric inflammatory bowel disease patients publication-title: Cell. Mol. Gastroenterol. Hepatol. doi: 10.1016/j.jcmgh.2016.06.004 – volume: 155 start-page: 1741 year: 2018 ident: 10.1016/j.chom.2022.02.004_bib28 article-title: FXR-dependent modulation of the human small Intestinal microbiome by the bBile acid derivative obeticholic acid publication-title: Gastroenterology doi: 10.1053/j.gastro.2018.08.022 – volume: 27 start-page: 659 year: 2020 ident: 10.1016/j.chom.2022.02.004_bib88 article-title: Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.01.021 – volume: 504 start-page: 451 year: 2013 ident: 10.1016/j.chom.2022.02.004_bib4 article-title: Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation publication-title: Nature doi: 10.1038/nature12726 – volume: 17 start-page: 497 year: 2019 ident: 10.1016/j.chom.2022.02.004_bib83 article-title: Microbial genes and pathways in inflammatory bowel disease publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-019-0213-6 – volume: 59 start-page: 485 year: 1994 ident: 10.1016/j.chom.2022.02.004_bib53 article-title: High concentrations of conjugated bile acids inhibit bacterial growth of Clostridium perfringens and induce its extracellular cholylglycine hydrolase publication-title: Steroids doi: 10.1016/0039-128X(94)90062-0 – volume: 9 start-page: 469 year: 2021 ident: 10.1016/j.chom.2022.02.004_bib18 article-title: Microbial hydroxysteroid dehydrogenases: From α to omega publication-title: Microorganisms doi: 10.3390/microorganisms9030469 – volume: 37 start-page: 551 year: 2003 ident: 10.1016/j.chom.2022.02.004_bib64 article-title: Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats publication-title: Hepatology doi: 10.1053/jhep.2003.50116 – volume: 47 start-page: 1 year: 2018 ident: 10.1016/j.chom.2022.02.004_bib25 article-title: Primary biliary cholangitis: Old and novel therapy publication-title: Eur. J. Intern. Med. doi: 10.1016/j.ejim.2017.06.020 – volume: 185 start-page: 547 year: 2022 ident: 10.1016/j.chom.2022.02.004_bib48 article-title: Genetic manipulation of gut microbes enables single-gene interrogation in a complex microbiome publication-title: Cell doi: 10.1016/j.cell.2021.12.035 – volume: 349 start-page: 993 year: 2015 ident: 10.1016/j.chom.2022.02.004_bib86 article-title: MUCOSAL IMMUNOLOGY. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells publication-title: Science doi: 10.1126/science.aaa9420 – volume: 162 start-page: 166 year: 2010 ident: 10.1016/j.chom.2022.02.004_bib74 article-title: Probiotic bile salt hydrolase: current developments and perspectives publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-009-8738-1 – volume: 50 start-page: 971 year: 2000 ident: 10.1016/j.chom.2022.02.004_bib54 article-title: Assignment of Eubacterium sp. VPI 12708 and related strains with high bile acid 7α-dehydroxylating activity to Clostridium scindens and proposal of Clostridium hylemonae sp. nov., isolated from human faeces publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/00207713-50-3-971 – volume: 9 start-page: 5588 year: 2018 ident: 10.1016/j.chom.2022.02.004_bib62 article-title: Deoxycholic acid disrupts the intestinal mucosal barrier and promotes intestinal tumorigenesis publication-title: Food Funct. doi: 10.1039/C8FO01143E – volume: 25 start-page: 968 year: 2019 ident: 10.1016/j.chom.2022.02.004_bib108 article-title: Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer publication-title: Nat. Med. doi: 10.1038/s41591-019-0458-7 – volume: 12 start-page: 1 year: 2020 ident: 10.1016/j.chom.2022.02.004_bib100 article-title: Gut microbial bile acid metabolite skews macrophage polarization and contributes to high-fat diet-induced colonic inflammation publication-title: Gut Microbes doi: 10.1080/19490976.2020.1819155 – volume: 1004 start-page: 230 year: 1989 ident: 10.1016/j.chom.2022.02.004_bib23 article-title: Characterization of NAD-dependent 3α-and 3β-hydroxysteroid dehydrogenase and of NADP-dependent 7β-hydroxysteroid dehydrogenase from Peptostreptococcus productus. publication-title: Biochim. Biophys. Acta, Lipids Lipid Metab. doi: 10.1016/0005-2760(89)90272-5 – volume: 67 start-page: 2772 year: 2004 ident: 10.1016/j.chom.2022.02.004_bib104 article-title: Cloning of the bile salt hydrolase (bsh) gene from Enterococcus faecium FAIR-E 345 and chromosomal location of bsh genes in food enterococci publication-title: J. Food Prot. doi: 10.4315/0362-028X-67.12.2772 – volume: 117 start-page: 1244 year: 2017 ident: 10.1016/j.chom.2022.02.004_bib7 article-title: Heat-stabilised rice bran consumption by colorectal cancer survivors modulates stool metabolite profiles and metabolic networks: a randomised controlled trial publication-title: Br. J. Nutr. doi: 10.1017/S0007114517001106 – volume: 579 start-page: 123 year: 2020 ident: 10.1016/j.chom.2022.02.004_bib76 article-title: Global chemical effects of the microbiome include new bile-acid conjugations publication-title: Nature doi: 10.1038/s41586-020-2047-9 – volume: 8 start-page: 617 year: 2019 ident: 10.1016/j.chom.2022.02.004_bib75 article-title: Effects of ursodeoxycholic acid on the gut microbiome and colorectal adenoma development publication-title: Cancer Med. doi: 10.1002/cam4.1965 – volume: 7 start-page: 9 year: 2019 ident: 10.1016/j.chom.2022.02.004_bib90 article-title: Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome publication-title: Microbiome doi: 10.1186/s40168-019-0628-3 – volume: 528 start-page: 148 year: 1978 ident: 10.1016/j.chom.2022.02.004_bib38 article-title: Partial purification and characterization of NADP-dependent 12α-hydroxysteroid dehydrogenase from Clostridium leptum publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2760(78)90060-7 – volume: 4 start-page: e6386 year: 2009 ident: 10.1016/j.chom.2022.02.004_bib45 article-title: Metabolomics reveals metabolic biomarkers of Crohn’s disease publication-title: PLoS ONE doi: 10.1371/journal.pone.0006386 – volume: 63 start-page: 1185 year: 1997 ident: 10.1016/j.chom.2022.02.004_bib21 article-title: Assessment of fecal bacteria with bile acid 7 α-dehydroxylating activity for the presence of bai-like genes publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.63.3.1185-1188.1997 – volume: 11 start-page: 1300 year: 2020 ident: 10.1016/j.chom.2022.02.004_bib47 article-title: Metagenomic analysis of the human microbiome reveals the association between the abundance of gut bile salt hydrolases and host health publication-title: Gut Microbes doi: 10.1080/19490976.2020.1748261 – volume: 11 start-page: 685 year: 2015 ident: 10.1016/j.chom.2022.02.004_bib17 article-title: A biosynthetic pathway for a prominent class of microbiota-derived bile acids publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1864 – volume: 40 start-page: 843 year: 2014 ident: 10.1016/j.chom.2022.02.004_bib40 article-title: Inflammatory bowel disease as a model for translating the microbiome publication-title: Immunity doi: 10.1016/j.immuni.2014.05.013 – volume: 22 start-page: 679 year: 2016 ident: 10.1016/j.chom.2022.02.004_bib80 article-title: Two FOXP3(+)CD4(+) T cell subpopulations distinctly control the prognosis of colorectal cancers publication-title: Nat. Med. doi: 10.1038/nm.4086 – volume: 169 start-page: 985 year: 2017 ident: 10.1016/j.chom.2022.02.004_bib71 article-title: Wnt/β-catenin signaling, disease, and emerging therapeutic modalities publication-title: Cell doi: 10.1016/j.cell.2017.05.016 – volume: 582 start-page: 566 year: 2020 ident: 10.1016/j.chom.2022.02.004_bib29 article-title: A metabolic pathway for bile acid dehydroxylation by the gut microbiome publication-title: Nature doi: 10.1038/s41586-020-2396-4 – volume: 70 start-page: 145 year: 2020 ident: 10.1016/j.chom.2022.02.004_bib87 article-title: Colorectal cancer statistics, 2020 publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21601 – volume: 39 start-page: 587 year: 1996 ident: 10.1016/j.chom.2022.02.004_bib12 article-title: Role of the gut in the pathophysiology of extrahepatic biliary obstruction publication-title: Gut doi: 10.1136/gut.39.4.587 – volume: 51 start-page: 39 year: 2001 ident: 10.1016/j.chom.2022.02.004_bib55 article-title: Clostridium hiranonis sp. nov., a human intestinal bacterium with bile acid 7α-dehydroxylating activity publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/00207713-51-1-39 – volume: 157 start-page: 720 year: 2006 ident: 10.1016/j.chom.2022.02.004_bib98 article-title: Effect of bile acid on the cell membrane functionality of lactic acid bacteria for oral administration publication-title: Res. Microbiol. doi: 10.1016/j.resmic.2006.04.002 – volume: 9 start-page: e85344 year: 2014 ident: 10.1016/j.chom.2022.02.004_bib89 article-title: Discovery of bile salt hydrolase inhibitors using an efficient high-throughput screening system publication-title: PLoS ONE doi: 10.1371/journal.pone.0085344 – volume: 66 start-page: 2502 year: 2000 ident: 10.1016/j.chom.2022.02.004_bib96 article-title: Bile salt hydrolase of Bifidobacterium longum-biochemical and genetic characterization publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.66.6.2502-2512.2000 – volume: 47 start-page: 1182 year: 2017 ident: 10.1016/j.chom.2022.02.004_bib9 article-title: The xenobiotic transporter Mdr1 enforces T cell homeostasis in the presence of intestinal bile acids publication-title: Immunity doi: 10.1016/j.immuni.2017.11.012 – volume: 13 start-page: 1 year: 2021 ident: 10.1016/j.chom.2022.02.004_bib20 article-title: Completion of the gut microbial epi-bile acid pathway publication-title: Gut Microbes doi: 10.1080/19490976.2021.1907271 – volume: 569 start-page: 655 year: 2019 ident: 10.1016/j.chom.2022.02.004_bib63 article-title: Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases publication-title: Nature doi: 10.1038/s41586-019-1237-9 – volume: 39 start-page: 51 year: 2021 ident: 10.1016/j.chom.2022.02.004_bib22 article-title: Cytokine regulation and function in T cells publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-061020-053702 – volume: 103 start-page: 3920 year: 2006 ident: 10.1016/j.chom.2022.02.004_bib42 article-title: Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0509592103 – volume: 13 start-page: 691 year: 2016 ident: 10.1016/j.chom.2022.02.004_bib72 article-title: Diet, microorganisms and their metabolites, and colon cancer publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2016.165 – volume: 487 start-page: 104 year: 2012 ident: 10.1016/j.chom.2022.02.004_bib16 article-title: Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice publication-title: Nature doi: 10.1038/nature11225 – volume: 84 year: 2018 ident: 10.1016/j.chom.2022.02.004_bib19 article-title: Metabolism of oxo-bile acids and characterization of recombinant 12α-hydroxysteroid dehydrogenases from bile acid 7α-dehydroxylating human gut bacteria publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00235-18 – volume: 7 start-page: 22 year: 2016 ident: 10.1016/j.chom.2022.02.004_bib78 article-title: Consequences of bile salt biotransformations by intestinal bacteria publication-title: Gut Microbes doi: 10.1080/19490976.2015.1127483 – volume: 48 start-page: 202 year: 2018 ident: 10.1016/j.chom.2022.02.004_bib57 article-title: Human T cell development, localization, and function throughout life publication-title: Immunity doi: 10.1016/j.immuni.2018.01.007 – volume: 16 start-page: 1401 year: 2021 ident: 10.1016/j.chom.2022.02.004_bib2 article-title: A gut-restricted lithocholic acid analog as an inhibitor of gut bacterial bile salt hydrolases publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.1c00192 – volume: 120 start-page: 3049 year: 2014 ident: 10.1016/j.chom.2022.02.004_bib15 article-title: A prospective study of serum metabolites and colorectal cancer risk publication-title: Cancer doi: 10.1002/cncr.28799 – volume: 266 start-page: 10227 year: 1991 ident: 10.1016/j.chom.2022.02.004_bib49 article-title: Purification and characterization of bile acid-CoA:amino acid N-acyltransferase from human liver publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)99213-6 – volume: 56 start-page: 1283 year: 2012 ident: 10.1016/j.chom.2022.02.004_bib26 article-title: Bacterial translocation and changes in the intestinal microbiome in mouse models of liver disease publication-title: J. Hepatol. doi: 10.1016/j.jhep.2012.01.019 – volume: 3 start-page: 1191 year: 2013 ident: 10.1016/j.chom.2022.02.004_bib11 article-title: Bile acid metabolism and signaling publication-title: Compr. Physiol. doi: 10.1002/cphy.c120023 – volume: 22 start-page: 1079 year: 2016 ident: 10.1016/j.chom.2022.02.004_bib85 article-title: Signals from the gut microbiota to distant organs in physiology and disease publication-title: Nat. Med. doi: 10.1038/nm.4185 – volume: 2 start-page: 2811 year: 2012 ident: 10.1016/j.chom.2022.02.004_bib34 article-title: Nuclear receptor control of enterohepatic circulation publication-title: Compr. Physiol. doi: 10.1002/cphy.c120007 – volume: 3 start-page: 14 year: 2013 ident: 10.1016/j.chom.2022.02.004_bib33 article-title: Metabolism of cholesterol and bile acids by the gut microbiota publication-title: Pathogens doi: 10.3390/pathogens3010014 – volume: 60 start-page: 463 year: 2011 ident: 10.1016/j.chom.2022.02.004_bib30 article-title: Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease publication-title: Gut doi: 10.1136/gut.2010.212159 – volume: 112 start-page: 516 year: 2020 ident: 10.1016/j.chom.2022.02.004_bib56 article-title: Prediagnostic plasma bile acid levels and colon cancer risk: A prospective study publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/djz166 – volume: 29 start-page: 1366 year: 2021 ident: 10.1016/j.chom.2022.02.004_bib61 article-title: A bacterial bile acid metabolite modulates Treg activity through the nuclear hormone receptor NR4A1 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.07.013 – volume: 4 start-page: 2384 year: 2013 ident: 10.1016/j.chom.2022.02.004_bib60 article-title: Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity publication-title: Nat. Commun. doi: 10.1038/ncomms3384 – volume: 5 start-page: 867 year: 2019 ident: 10.1016/j.chom.2022.02.004_bib73 article-title: Chemoproteomic profiling of gut microbiota-associated bile salt hydrolase activity publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.9b00147 – volume: 58 start-page: 1143 year: 2017 ident: 10.1016/j.chom.2022.02.004_bib101 article-title: Comprehensive evaluation of the bactericidal activities of free bile acids in the large intestine of humans and rodents publication-title: J. Lipid Res. doi: 10.1194/jlr.M075143 – volume: 105 start-page: 13580 year: 2008 ident: 10.1016/j.chom.2022.02.004_bib50 article-title: Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0804437105 – volume: 599 start-page: 294 year: 1980 ident: 10.1016/j.chom.2022.02.004_bib14 article-title: Membrane lipid composition and susceptibility to bile salt damage publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2736(80)90075-9 – volume: 361 start-page: 512 year: 2003 ident: 10.1016/j.chom.2022.02.004_bib35 article-title: Gut flora in health and disease publication-title: Lancet doi: 10.1016/S0140-6736(03)12489-0 – volume: 29 start-page: 1294 year: 2021 ident: 10.1016/j.chom.2022.02.004_bib59 article-title: Multi-omics reveal microbial determinants impacting responses to biologic therapies in inflammatory bowel disease publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.06.019 – volume: 141 start-page: 1773 year: 2011 ident: 10.1016/j.chom.2022.02.004_bib43 article-title: Bile acid is a host factor that regulates the composition of the cecal microbiota in rats publication-title: Gastroenterology doi: 10.1053/j.gastro.2011.07.046 – volume: 105 start-page: 1907 year: 2013 ident: 10.1016/j.chom.2022.02.004_bib3 article-title: Human gut microbiome and risk for colorectal cancer publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/djt300 – volume: 31 start-page: 1305 year: 2000 ident: 10.1016/j.chom.2022.02.004_bib5 article-title: Bile acid synthesis in cultured human hepatocytes: support for an alternative biosynthetic pathway to cholic acid publication-title: Hepatology doi: 10.1053/jhep.2000.7877 – volume: 19 start-page: 24 year: 1978 ident: 10.1016/j.chom.2022.02.004_bib52 article-title: Measurement and subcellular distribution of choloyl-CoA synthetase and bile acid-CoA:amino acid N-acyltransferase activities in rat liver publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)41573-1 – volume: 8 start-page: 341 year: 2014 ident: 10.1016/j.chom.2022.02.004_bib69 article-title: A tale of two diseases: the history of inflammatory bowel disease publication-title: J. Crohn’s Colitis doi: 10.1016/j.crohns.2013.09.009 – volume: 7 start-page: 207 year: 2021 ident: 10.1016/j.chom.2022.02.004_bib110 article-title: Ursodeoxycholic acid suppresses the malignant progression of colorectal cancer through TGR5-YAP axis publication-title: Cell Death Discov. doi: 10.1038/s41420-021-00589-8 – volume: 7 start-page: e37182 year: 2018 ident: 10.1016/j.chom.2022.02.004_bib109 article-title: A selective gut bacterial bile salt hydrolase alters host metabolism publication-title: eLife doi: 10.7554/eLife.37182 – volume: 9 start-page: 523 year: 2018 ident: 10.1016/j.chom.2022.02.004_bib39 article-title: Bile acid oxidation by Eggerthella lenta strains C592 and DSM 2243T publication-title: Gut Microbes – volume: 593 start-page: 147 year: 2021 ident: 10.1016/j.chom.2022.02.004_bib10 article-title: CAR directs T cell adaptation to bile acids in the small intestine publication-title: Nature doi: 10.1038/s41586-021-03421-6 – volume: 16 start-page: 341 year: 2016 ident: 10.1016/j.chom.2022.02.004_bib79 article-title: Gut microbiota, metabolites and host immunity publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.42 – volume: 29 start-page: 625 year: 2005 ident: 10.1016/j.chom.2022.02.004_bib6 article-title: The interaction between bacteria and bile publication-title: FEMS Microbiol. Rev. doi: 10.1016/j.femsre.2004.09.003 – volume: 15 start-page: 111 year: 2018 ident: 10.1016/j.chom.2022.02.004_bib46 article-title: Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2017.119 – volume: 21 start-page: 653 year: 2021 ident: 10.1016/j.chom.2022.02.004_bib84 article-title: The inflammatory pathogenesis of colorectal cancer publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-021-00534-x – volume: 142 start-page: 46 year: 2012 ident: 10.1016/j.chom.2022.02.004_bib68 article-title: Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review publication-title: Gastroenterology doi: 10.1053/j.gastro.2011.10.001 – volume: 576 start-page: 143 year: 2019 ident: 10.1016/j.chom.2022.02.004_bib37 article-title: Bile acid metabolites control TH17 and Treg cell differentiation publication-title: Nature doi: 10.1038/s41586-019-1785-z – volume: 452 start-page: 165 year: 1976 ident: 10.1016/j.chom.2022.02.004_bib93 article-title: Purification and characterization of bile salt hydrolase from Bacteroides fragilis subsp. fragilis publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2744(76)90068-1 – volume: 18 start-page: 2609 year: 2012 ident: 10.1016/j.chom.2022.02.004_bib41 article-title: Leaky gut and the liver: a role for bacterial translocation in nonalcoholic steatohepatitis publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v18.i21.2609 – volume: 47 start-page: 241 year: 2006 ident: 10.1016/j.chom.2022.02.004_bib77 article-title: Bile salt biotransformations by human intestinal bacteria publication-title: J. Lipid Res. doi: 10.1194/jlr.R500013-JLR200 – volume: 17 start-page: 225 year: 2013 ident: 10.1016/j.chom.2022.02.004_bib82 article-title: Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-β-muricholic acid, a naturally occurring FXR antagonist publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.01.003 – volume: 147 start-page: 3403 year: 2001 ident: 10.1016/j.chom.2022.02.004_bib24 article-title: Genes encoding bile salt hydrolases and conjugated bile salt transporters in Lactobacillus johnsonii 100-100 and other Lactobacillus species publication-title: Microbiology (Reading) doi: 10.1099/00221287-147-12-3403 – volume: 58 start-page: 1155 year: 2019 ident: 10.1016/j.chom.2022.02.004_bib99 article-title: Interplay between bile acids and the gut microbiota promotes intestinal carcinogenesis publication-title: Mol. Carcinog. doi: 10.1002/mc.22999 – volume: 48 start-page: 206 year: 2001 ident: 10.1016/j.chom.2022.02.004_bib103 article-title: The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor α in the pathogenesis of non-alcoholic steatohepatitis publication-title: Gut doi: 10.1136/gut.48.2.206 – volume: 61 start-page: 2514 year: 1995 ident: 10.1016/j.chom.2022.02.004_bib13 article-title: Cloning and characterization of a conjugated bile acid hydrolase gene from Clostridium perfringens publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.61.7.2514-2520.1995 – volume: 4 start-page: 293 year: 2019 ident: 10.1016/j.chom.2022.02.004_bib27 article-title: Gut microbiome structure and metabolic activity in inflammatory bowel disease publication-title: Nat. Microbiol. doi: 10.1038/s41564-018-0306-4 – volume: 159 start-page: 956 year: 2020 ident: 10.1016/j.chom.2022.02.004_bib92 article-title: Bile acids signal via TGR5 to activate intestinal stem cells and epithelial regeneration publication-title: Gastroenterology doi: 10.1053/j.gastro.2020.05.067 – volume: 27 start-page: 109 year: 2017 ident: 10.1016/j.chom.2022.02.004_bib95 article-title: Regulatory T cells in cancer immunotherapy publication-title: Cell Res. doi: 10.1038/cr.2016.151 – volume: 54 start-page: 102719 year: 2020 ident: 10.1016/j.chom.2022.02.004_bib32 article-title: Fibroblast Growth Factor 19 modulates intestinal microbiota and inflammation in presence of Farnesoid X Receptor publication-title: EBioMedicine doi: 10.1016/j.ebiom.2020.102719 – volume: 8 start-page: e70803 year: 2013 ident: 10.1016/j.chom.2022.02.004_bib102 article-title: Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults publication-title: PLoS ONE doi: 10.1371/journal.pone.0070803 – volume: 15 start-page: 1197 year: 2021 ident: 10.1016/j.chom.2022.02.004_bib107 article-title: Modulation of the gut microbiota-farnesoid X receptor axis improves deoxycholic acid-induced intestinal inflammation in mice publication-title: J. Crohn’s Colitis doi: 10.1093/ecco-jcc/jjab003 – volume: 450 start-page: 142 year: 1976 ident: 10.1016/j.chom.2022.02.004_bib65 article-title: 3α-, 7α- and 12α-hydroxysteroid dehydrogenase activities from Clostridium perfringens. publication-title: Biochim. Biophys. Acta, Lipids Lipid Metab. doi: 10.1016/0005-2760(76)90086-2 – volume: 45 start-page: 802 year: 2016 ident: 10.1016/j.chom.2022.02.004_bib36 article-title: Bile acids control Inflammation and metabolic disorder through inhibition of NLRP3 inflammasome publication-title: Immunity doi: 10.1016/j.immuni.2016.09.008 – volume: 16 start-page: 295 year: 2016 ident: 10.1016/j.chom.2022.02.004_bib97 article-title: Development and maintenance of intestinal regulatory T cells publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.36 – volume: 18 start-page: 335 year: 2021 ident: 10.1016/j.chom.2022.02.004_bib94 article-title: The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-020-00404-2 – volume: 56 start-page: 66 year: 2017 ident: 10.1016/j.chom.2022.02.004_bib31 article-title: Bile acids and colon cancer: Is FXR the solution of the conundrum? publication-title: Mol. Aspects Med. doi: 10.1016/j.mam.2017.04.002 – volume: 37 start-page: 992 year: 1979 ident: 10.1016/j.chom.2022.02.004_bib66 article-title: Bile salt 3 α- and 12 α-hydroxysteroid dehydrogenases from Eubacterium lentum and related organisms publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.37.5.992-1000.1979 – volume: 66 start-page: 568 year: 2021 ident: 10.1016/j.chom.2022.02.004_bib106 article-title: Deoxycholic acid-induced gut dysbiosis disrupts bile acid Enterohepatic circulation and promotes intestinal Inflammation publication-title: Dig. Dis. Sci. doi: 10.1007/s10620-020-06208-3 – volume: 11 start-page: 723 year: 2011 ident: 10.1016/j.chom.2022.02.004_bib70 article-title: Protective and pathogenic functions of macrophage subsets publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3073 – volume: 16 start-page: 318 year: 2020 ident: 10.1016/j.chom.2022.02.004_bib1 article-title: Development of a covalent inhibitor of gut bacterial bile salt hydrolases publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-020-0467-3 – volume: 599 start-page: 458 year: 2021 ident: 10.1016/j.chom.2022.02.004_bib81 article-title: Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians publication-title: Nature doi: 10.1038/s41586-021-03832-5 – volume: 581 start-page: 475 year: 2020 ident: 10.1016/j.chom.2022.02.004_bib8 article-title: Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells publication-title: Nature doi: 10.1038/s41586-020-2193-0 – volume: 12 start-page: 720 year: 2015 ident: 10.1016/j.chom.2022.02.004_bib51 article-title: The global burden of IBD: from 2015 to 2025 publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2015.150 |
SSID | ssj0055071 |
Score | 2.7216334 |
SecondaryResourceType | review_article |
Snippet | Inflammatory bowel disease (IBD) and colorectal cancer (CRC) are heterogeneous intestinal diseases that threaten the health of an increasing number of... Inflammatory bowel diseases (IBD) and colorectal cancer (CRC) are heterogeneous intestinal diseases that threaten the health of an increasing number of... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 289 |
SubjectTerms | Bile Acids and Salts Carcinogenesis Gastrointestinal Microbiome Humans Inflammation Prospective Studies |
Title | Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35271802 https://www.proquest.com/docview/2638723194 https://pubmed.ncbi.nlm.nih.gov/PMC8923532 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCLSXiW86PmQk3jpXcew0ySMqG2MIXijSeIoSf2gZazqxBIn-9dzFcZqugACpiirH8Um-n8939n0Q8opzBRtDpJkSQcGk5pblQWFYbAIrp4abaZsy_8PH6fFneXIana6rdLbRJXUxUatfxpX8D1ehDfiKUbL_wNl-UGiA_8BfeAKH4flXPH7b1ONF6VIp1TnTQPM7apSw0se5Kp2vKyaEgHWMWmfZBoO4MgBAH8DgAhe9C2fdLLBQFoq_8mqots7whA_jQVqkOJI9ImauovVJ2bd8alxAQ3PR9P49y2oFe9HKK8tfu_uo7sABbFX0uHJizTghmQrJwPBJh1K0u10ph0a2E4muRNCWqHanBucTrAkzQToud6ocdobpvly0zAM9McZkdettq3cm9K9uklsh2ApYxuLNu_d-O8Z8bbyLlnKOfdcJ7pI7fohN5WTL4rjuODvQROZ3yV5nQtDXDg_3yA1T3Se3XVHRHw_IF0AF3UYFRVTQFhW0rOgaFdSj4oAOMXFAARF0AxEPyfzocD47Zl0BDaZkENYsTbjJDddgwytQRAzoilZpvAxPAzM1hdRCBYlUOk-lTSw3RWJlFFhrwjzWoXhEdqplZZ4QGomIGzBFRaIwnxEsYBsJqU2krRU6FSPC_cRlqksujzVOLjLvRXie4bxnOO9ZAL9Ajsi4_-bSpVb5Y--Xnh8ZSEC81sors2yushC2kBjMlBT6PHb86cfzjB2ReINzfQfMrr75pirP2izrCZg-kQj3fzvmU7K7Xh7PyE79rTHPQUOtixctAn8CB5OSUw |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gut+microbiota-derived+bile+acids+in+intestinal+immunity%2C+inflammation%2C+and+tumorigenesis&rft.jtitle=Cell+host+%26+microbe&rft.au=Cai%2C+Jie&rft.au=Sun%2C+Lulu&rft.au=Gonzalez%2C+Frank+J&rft.date=2022-03-09&rft.eissn=1934-6069&rft.volume=30&rft.issue=3&rft.spage=289&rft_id=info:doi/10.1016%2Fj.chom.2022.02.004&rft_id=info%3Apmid%2F35271802&rft.externalDocID=35271802 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3128&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3128&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3128&client=summon |