Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis

Inflammatory bowel disease (IBD) and colorectal cancer (CRC) are heterogeneous intestinal diseases that threaten the health of an increasing number of individuals as their lifestyles become westernized. New insights have been discovered with the development of various omics techniques, revealing tha...

Full description

Saved in:
Bibliographic Details
Published inCell host & microbe Vol. 30; no. 3; pp. 289 - 300
Main Authors Cai, Jie, Sun, Lulu, Gonzalez, Frank J.
Format Journal Article
LanguageEnglish
Published United States 09.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Inflammatory bowel disease (IBD) and colorectal cancer (CRC) are heterogeneous intestinal diseases that threaten the health of an increasing number of individuals as their lifestyles become westernized. New insights have been discovered with the development of various omics techniques, revealing that gut-microbiota-derived metabolites play important roles in maintaining intestinal homeostasis and modulating the progression of intestinal diseases from both metabolic and immunological perspectives. Clinical metagenomic and metabolomic studies have revealed links between microbial bile acid (BA) metabolism and IBD and CRC progression. Several BA-derived metabolites were recently been demonstrated to play a role in intestinal immunity, providing fresh insights into how BAs affect the course of IBD and CRC. In this review, we discuss recent studies on the involvement of gut microbiota-derived BAs in intestinal immunity, inflammation, and tumorigenesis along with human omics data to provide prospective insights into future prevention and treatment of IBD and CRC.
AbstractList Inflammatory bowel disease (IBD) and colorectal cancer (CRC) are heterogeneous intestinal diseases that threaten the health of an increasing number of individuals as their lifestyles become westernized. New insights have been discovered with the development of various omics techniques, revealing that gut-microbiota-derived metabolites play important roles in maintaining intestinal homeostasis and modulating the progression of intestinal diseases from both metabolic and immunological perspectives. Clinical metagenomic and metabolomic studies have revealed links between microbial bile acid (BA) metabolism and IBD and CRC progression. Several BA-derived metabolites were recently been demonstrated to play a role in intestinal immunity, providing fresh insights into how BAs affect the course of IBD and CRC. In this review, we discuss recent studies on the involvement of gut microbiota-derived BAs in intestinal immunity, inflammation, and tumorigenesis along with human omics data to provide prospective insights into future prevention and treatment of IBD and CRC.
Inflammatory bowel disease (IBD) and colorectal cancer (CRC) are heterogeneous intestinal diseases that threaten the health of an increasing number of individuals as their lifestyles become westernized. New insights have been discovered with the development of various omics techniques, revealing that gut-microbiota-derived metabolites play important roles in maintaining intestinal homeostasis and modulating the progression of intestinal diseases from both metabolic and immunological perspectives. Clinical metagenomic and metabolomic studies have revealed links between microbial bile acid (BA) metabolism and IBD and CRC progression. Several BA-derived metabolites were recently been demonstrated to play a role in intestinal immunity, providing fresh insights into how BAs affect the course of IBD and CRC. In this review, we discuss recent studies on the involvement of gut microbiota-derived BAs in intestinal immunity, inflammation, and tumorigenesis along with human omics data to provide prospective insights into future prevention and treatment of IBD and CRC.Inflammatory bowel disease (IBD) and colorectal cancer (CRC) are heterogeneous intestinal diseases that threaten the health of an increasing number of individuals as their lifestyles become westernized. New insights have been discovered with the development of various omics techniques, revealing that gut-microbiota-derived metabolites play important roles in maintaining intestinal homeostasis and modulating the progression of intestinal diseases from both metabolic and immunological perspectives. Clinical metagenomic and metabolomic studies have revealed links between microbial bile acid (BA) metabolism and IBD and CRC progression. Several BA-derived metabolites were recently been demonstrated to play a role in intestinal immunity, providing fresh insights into how BAs affect the course of IBD and CRC. In this review, we discuss recent studies on the involvement of gut microbiota-derived BAs in intestinal immunity, inflammation, and tumorigenesis along with human omics data to provide prospective insights into future prevention and treatment of IBD and CRC.
Inflammatory bowel diseases (IBD) and colorectal cancer (CRC) are heterogeneous intestinal diseases that threaten the health of an increasing number of individuals as their lifestyles become Westernized. New insights have been discovered with the development of various omics techniques, revealing that gut microbiota-derived metabolites play important roles in maintaining intestinal homeostasis and modulating the progression of intestinal diseases from both metabolic and immunological perspectives. Clinical metagenomic and metabolomic studies revealed a link between microbial bile acid (BA) metabolism, IBD and CRC progression. Several BA-derived metabolites have recently been demonstrated to play a role in intestinal immunity, providing fresh insights into how BAs affect the course of IBD and CRC. In this review, recent studies on the involvement of gut microbiota-derived BAs in intestinal immunity, inflammation and tumorigenesis are discussed, together with human omics data to provide prospective insights into future prevention and therapy of IBD and CRC. Cai et al. reviews recent studies that reveal novel mechanistic links between gut microbiota-derived bile acids and host immunity, intestinal inflammation, and tumorigenesis. Bile acid-related human omics data are summarized and bile acid-targeted therapeutics for the prevention and treatment of inflammatory bowel disease and colorectal cancer are discussed.
Author Cai, Jie
Sun, Lulu
Gonzalez, Frank J.
Author_xml – sequence: 1
  givenname: Jie
  surname: Cai
  fullname: Cai, Jie
– sequence: 2
  givenname: Lulu
  surname: Sun
  fullname: Sun, Lulu
– sequence: 3
  givenname: Frank J.
  surname: Gonzalez
  fullname: Gonzalez, Frank J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35271802$$D View this record in MEDLINE/PubMed
BookMark eNp9UUtrFjEUDVKxD_0DLmSWLjqfN4-ZyWwEKVoLBTfduAqZ5KbNxySpk0yh_95MH6JdCAcSbs49h5xzTA5iikjIewo7CrT_tN-ZmxR2DBjbQQWIV-SIjly0PfTjwcOdtpwyeUiOc94DdB0M9A055B0bqAR2RH6er6UJ3ixp8qno1uLi79A2k5-x0cbb3PhYUTAXH_Xc-BDW6Mv9aR26WYegi0_xtNHRNmUNafHXGDH7_Ja8dnrO-O7pPCFX375enX1vL3-cX5x9uWyNAFbaUVLUSK2A0QBlyOngjAUOYgTscRKWG5DCWD0KJx3FSTrRgXPI9GAZPyGfH2Vv1ymgNRjLomd1u_igl3uVtFf_vkR_o67TnZIj4x3fBD4-CSzp11q_qYLPBudZR0xrVqzncmCcjqJSP_zt9cfkOc5KkI-EmmfOCzplfHkIqFr7WVFQW3Nqr7bm1NacggrYtNmL1Wf1_yz9BoM4oEo
CitedBy_id crossref_primary_10_1002_advs_202205563
crossref_primary_10_1016_j_phrs_2024_107361
crossref_primary_10_1002_mnfr_202200649
crossref_primary_10_1002_fsn3_70023
crossref_primary_10_1093_ecco_jcc_jjae061
crossref_primary_10_1124_pharmrev_124_000978
crossref_primary_10_1016_j_jpha_2023_09_010
crossref_primary_10_1016_j_tox_2024_153951
crossref_primary_10_1007_s00394_024_03525_5
crossref_primary_10_1089_fpd_2024_0046
crossref_primary_10_1134_S0006297923070027
crossref_primary_10_1093_jn_nxac161
crossref_primary_10_1186_s40104_024_01113_5
crossref_primary_10_3390_ani15050710
crossref_primary_10_1016_j_biopha_2023_115906
crossref_primary_10_1111_imr_13396
crossref_primary_10_3389_fmicb_2025_1559119
crossref_primary_10_34172_ehsj_26270
crossref_primary_10_26599_FSHW_2024_9250040
crossref_primary_10_1016_j_xcrm_2025_102028
crossref_primary_10_1016_j_phytochem_2024_114162
crossref_primary_10_3390_microorganisms13030673
crossref_primary_10_1053_j_gastro_2024_07_040
crossref_primary_10_1002_JPER_22_0398
crossref_primary_10_1016_j_jare_2024_07_034
crossref_primary_10_1039_D3FO03233G
crossref_primary_10_1016_j_ijbiomac_2024_136280
crossref_primary_10_1016_j_phrs_2024_107373
crossref_primary_10_1111_jpi_12929
crossref_primary_10_3389_fnins_2024_1388748
crossref_primary_10_1021_acs_est_4c01511
crossref_primary_10_1186_s12967_024_05320_6
crossref_primary_10_3389_fmicb_2024_1429360
crossref_primary_10_1016_j_ijbiomac_2024_134532
crossref_primary_10_1080_10408398_2023_2278155
crossref_primary_10_3390_nu15173829
crossref_primary_10_3748_wjg_v31_i2_100024
crossref_primary_10_1016_j_ijbiomac_2024_130062
crossref_primary_10_1021_acs_jafc_2c08631
crossref_primary_10_1038_s41589_022_01122_3
crossref_primary_10_1002_aro2_39
crossref_primary_10_1021_acs_jafc_2c02654
crossref_primary_10_1016_j_jff_2023_105457
crossref_primary_10_1186_s40168_023_01546_6
crossref_primary_10_3389_fmicb_2024_1513723
crossref_primary_10_1039_D3FO02471G
crossref_primary_10_1016_j_immuni_2025_02_003
crossref_primary_10_1016_j_lfs_2023_122302
crossref_primary_10_1210_endocr_bqac155
crossref_primary_10_3389_fimmu_2024_1362133
crossref_primary_10_1002_mnfr_202300910
crossref_primary_10_1016_j_intimp_2024_112984
crossref_primary_10_1016_j_ijbiomac_2023_128847
crossref_primary_10_1016_j_mcp_2024_101958
crossref_primary_10_1021_acs_jafc_3c08527
crossref_primary_10_1016_j_theriogenology_2023_08_010
crossref_primary_10_3390_diagnostics12112746
crossref_primary_10_1038_s41396_022_01333_5
crossref_primary_10_1507_endocrj_EJ22_0544
crossref_primary_10_1002_cbic_202300821
crossref_primary_10_1080_19490976_2023_2274124
crossref_primary_10_1016_j_jchromb_2024_124218
crossref_primary_10_1038_s41564_024_01801_y
crossref_primary_10_3390_biotech13030029
crossref_primary_10_3389_fphar_2024_1431240
crossref_primary_10_3390_diagnostics14020229
crossref_primary_10_1080_19490976_2024_2356284
crossref_primary_10_3389_fphar_2022_954684
crossref_primary_10_1016_j_chemosphere_2023_140905
crossref_primary_10_1016_j_jchromb_2024_124331
crossref_primary_10_3390_foods13182992
crossref_primary_10_1016_j_intimp_2024_111762
crossref_primary_10_1111_crj_13762
crossref_primary_10_1007_s12035_024_04101_y
crossref_primary_10_1007_s13346_024_01621_x
crossref_primary_10_1038_s41467_023_37055_1
crossref_primary_10_1038_s41575_024_00896_2
crossref_primary_10_1093_jas_skae233
crossref_primary_10_1007_s11427_023_2446_y
crossref_primary_10_3390_nu15143187
crossref_primary_10_1016_j_intimp_2024_112172
crossref_primary_10_1186_s12888_024_05773_5
crossref_primary_10_1016_j_advnut_2023_09_010
crossref_primary_10_1007_s11101_024_09920_4
crossref_primary_10_3389_fcimb_2023_1083987
crossref_primary_10_3390_metabo14080452
crossref_primary_10_1021_acs_jafc_4c03617
crossref_primary_10_1016_j_envpol_2023_122238
crossref_primary_10_1111_srt_70006
crossref_primary_10_7717_peerj_17185
crossref_primary_10_1016_j_chom_2023_06_009
crossref_primary_10_1002_mco2_556
crossref_primary_10_1007_s10068_024_01759_x
crossref_primary_10_3389_fcimb_2025_1529347
crossref_primary_10_1186_s12967_022_03700_4
crossref_primary_10_3390_cells12141888
crossref_primary_10_1016_j_chom_2023_06_003
crossref_primary_10_1038_s41598_024_75516_9
crossref_primary_10_1016_j_aninu_2024_11_016
crossref_primary_10_1016_j_celrep_2023_113324
crossref_primary_10_3389_fmicb_2024_1328324
crossref_primary_10_1093_cei_uxae006
crossref_primary_10_1038_s41522_025_00678_x
crossref_primary_10_3389_fmicb_2023_1145315
crossref_primary_10_3390_foods12132492
crossref_primary_10_3390_ani12172270
crossref_primary_10_1016_j_phymed_2024_155577
crossref_primary_10_3390_ijms24054258
crossref_primary_10_1021_acs_jafc_3c08385
crossref_primary_10_1039_D3FO02286B
crossref_primary_10_3389_fmed_2024_1482066
crossref_primary_10_1007_s00281_024_01012_x
crossref_primary_10_1016_j_apsb_2024_02_020
crossref_primary_10_1016_j_biopha_2024_117731
crossref_primary_10_1016_j_ecoenv_2023_115749
crossref_primary_10_3390_vaccines12040365
crossref_primary_10_3390_biomedicines12122910
crossref_primary_10_3389_fonc_2022_1033145
crossref_primary_10_3389_fimmu_2024_1430001
crossref_primary_10_1016_j_autrev_2025_103780
crossref_primary_10_1016_j_jff_2023_105766
crossref_primary_10_1002_imo2_70008
crossref_primary_10_1038_s42255_024_01072_1
crossref_primary_10_53469_jcmp_2024_06_09__32
crossref_primary_10_1016_j_phrs_2023_107034
crossref_primary_10_1007_s00432_022_03998_z
crossref_primary_10_1631_jzus_B2200439
crossref_primary_10_3389_fimmu_2025_1529958
crossref_primary_10_3389_fgene_2024_1380830
crossref_primary_10_1016_j_ijbiomac_2023_127308
crossref_primary_10_3390_nu15102411
crossref_primary_10_1016_j_scitotenv_2024_173795
crossref_primary_10_1038_s41388_024_03169_z
crossref_primary_10_3892_ijo_2025_5730
crossref_primary_10_1021_acs_jproteome_3c00894
crossref_primary_10_53469_jcmp_2024_06_09__30
crossref_primary_10_1016_j_scitotenv_2023_166837
crossref_primary_10_1080_19490976_2024_2426610
crossref_primary_10_1039_D3FO03669C
crossref_primary_10_3390_nu15010048
crossref_primary_10_3390_nu16162643
crossref_primary_10_1038_s41467_024_55668_y
crossref_primary_10_26599_FSHW_2024_9250078
crossref_primary_10_1016_j_foodchem_2025_142932
crossref_primary_10_3390_nu16172918
crossref_primary_10_1016_j_phrs_2022_106643
crossref_primary_10_1080_19490976_2025_2476570
crossref_primary_10_1039_D4FO03417A
crossref_primary_10_1016_j_jare_2024_03_005
crossref_primary_10_26599_FSHW_2024_9250070
crossref_primary_10_1016_j_chemosphere_2022_137499
crossref_primary_10_1128_jb_00180_23
crossref_primary_10_1016_j_jff_2023_105778
crossref_primary_10_1016_j_ebiom_2022_104113
crossref_primary_10_1186_s40168_024_01976_w
crossref_primary_10_1016_j_lfs_2023_122105
crossref_primary_10_1038_s41423_023_01026_9
crossref_primary_10_3390_ijms232214254
crossref_primary_10_1002_mnfr_202300317
crossref_primary_10_1016_j_plrev_2024_05_003
crossref_primary_10_1371_journal_pone_0294049
crossref_primary_10_1136_gutjnl_2024_332891
crossref_primary_10_1016_j_immuni_2023_11_001
crossref_primary_10_1080_19490976_2023_2203968
crossref_primary_10_1016_j_lfs_2023_122229
crossref_primary_10_1021_acs_jafc_3c00798
crossref_primary_10_1016_j_jpha_2024_101042
crossref_primary_10_3390_toxins16050212
crossref_primary_10_1016_j_jhazmat_2024_135855
crossref_primary_10_1016_j_heliyon_2024_e24571
crossref_primary_10_3389_fmicb_2023_1287468
crossref_primary_10_1016_j_smim_2023_101756
crossref_primary_10_3389_fcimb_2023_1253447
crossref_primary_10_1186_s13046_023_02746_6
crossref_primary_10_1038_s41598_024_84801_6
crossref_primary_10_1016_j_intimp_2023_110838
crossref_primary_10_3390_antiox13020172
crossref_primary_10_1002_ctm2_1227
crossref_primary_10_1016_j_ecoenv_2024_117313
crossref_primary_10_1016_j_intimp_2024_112537
crossref_primary_10_1016_j_intimp_2024_113627
crossref_primary_10_3390_nu16101514
crossref_primary_10_1016_j_biopha_2023_115484
crossref_primary_10_1016_j_heliyon_2024_e34352
crossref_primary_10_1186_s12967_024_05092_z
crossref_primary_10_1016_j_intimp_2024_113866
crossref_primary_10_3389_fcimb_2023_1191936
crossref_primary_10_1007_s00281_023_00999_z
crossref_primary_10_1016_j_ecoenv_2023_115637
crossref_primary_10_3389_fmicb_2023_1188455
crossref_primary_10_1016_j_apsb_2024_02_011
crossref_primary_10_1016_j_aca_2022_340691
crossref_primary_10_2147_JIR_S458928
crossref_primary_10_1128_msystems_00023_24
crossref_primary_10_3390_metabo12070647
crossref_primary_10_31857_S0320972523070023
crossref_primary_10_1186_s40168_024_01964_0
crossref_primary_10_3389_fmicb_2024_1360225
crossref_primary_10_1002_jsfa_13410
crossref_primary_10_1016_j_neubiorev_2023_105147
crossref_primary_10_1016_j_cell_2024_03_034
crossref_primary_10_1039_D3FO05235D
crossref_primary_10_1016_j_chembiol_2024_05_009
crossref_primary_10_3390_ijms25021228
crossref_primary_10_3389_fcimb_2022_945263
crossref_primary_10_14309_ctg_0000000000000762
crossref_primary_10_1186_s12958_024_01184_z
crossref_primary_10_1016_j_micres_2024_127871
crossref_primary_10_1016_j_tox_2024_153799
crossref_primary_10_3390_microorganisms12040795
crossref_primary_10_1016_j_gtc_2024_01_003
crossref_primary_10_1161_JAHA_123_031241
crossref_primary_10_1186_s12866_024_03188_6
crossref_primary_10_3390_metabo13040534
crossref_primary_10_1007_s00011_024_01854_z
crossref_primary_10_1038_s41598_024_66660_3
crossref_primary_10_3389_fnut_2024_1495993
crossref_primary_10_1080_1040841X_2023_2254388
crossref_primary_10_1016_j_jaut_2023_103062
crossref_primary_10_3389_fmicb_2023_1210142
crossref_primary_10_2174_011574888X250413230920051715
crossref_primary_10_1128_spectrum_03948_23
crossref_primary_10_1186_s40168_022_01389_7
crossref_primary_10_5713_ab_23_0475
crossref_primary_10_4251_wjgo_v16_i7_3169
crossref_primary_10_14309_ctg_0000000000000658
crossref_primary_10_3390_foods12163083
crossref_primary_10_4103_NRR_NRR_D_24_00531
crossref_primary_10_1016_j_arabjc_2024_106056
crossref_primary_10_3389_fimmu_2024_1445838
crossref_primary_10_1016_j_intimp_2025_114034
crossref_primary_10_1038_s41579_023_00973_4
crossref_primary_10_3389_fmicb_2023_1182006
crossref_primary_10_3389_fmicb_2022_1053128
crossref_primary_10_1038_s41568_022_00513_x
crossref_primary_10_3389_fvets_2023_1206346
crossref_primary_10_3390_nu14122528
crossref_primary_10_1016_j_biopha_2023_114409
crossref_primary_10_1136_gutjnl_2021_326575
crossref_primary_10_1111_jgh_16750
crossref_primary_10_1002_advs_202307981
crossref_primary_10_3389_fendo_2024_1441415
crossref_primary_10_1080_19490976_2024_2370634
crossref_primary_10_1016_j_scitotenv_2022_160849
crossref_primary_10_1007_s00394_025_03622_z
crossref_primary_10_1016_j_lfs_2023_122385
crossref_primary_10_1039_D2FO03181G
crossref_primary_10_3390_molecules28145498
crossref_primary_10_17816_medjrf626841
crossref_primary_10_1016_j_micres_2024_127773
crossref_primary_10_1038_s41522_024_00610_9
crossref_primary_10_1039_D3FO05540J
crossref_primary_10_1038_s41598_025_91626_4
crossref_primary_10_1111_apha_14065
crossref_primary_10_1016_j_expneurol_2023_114672
crossref_primary_10_1016_j_jand_2022_10_004
crossref_primary_10_2174_1389200224666230418104540
crossref_primary_10_1038_s41392_023_01399_3
crossref_primary_10_1042_CS20230788
crossref_primary_10_1016_j_ijbiomac_2024_134370
crossref_primary_10_1016_j_foodres_2023_112753
crossref_primary_10_29328_journal_acst_1001045
crossref_primary_10_5937_arhfarm73_46395
crossref_primary_10_26599_JFB_2024_95028391
crossref_primary_10_1016_j_scitotenv_2023_167287
crossref_primary_10_1007_s11596_024_2931_x
crossref_primary_10_1016_j_ijbiomac_2025_142145
crossref_primary_10_3389_fcimb_2024_1333145
crossref_primary_10_3390_nu15020255
crossref_primary_10_1016_j_jprot_2024_105360
crossref_primary_10_1016_j_jhep_2024_09_032
crossref_primary_10_3390_medicina60030516
crossref_primary_10_1016_j_jep_2024_118870
crossref_primary_10_3389_fmicb_2023_1228815
crossref_primary_10_12998_wjcc_v10_i30_10823
crossref_primary_10_1002_imt2_265
crossref_primary_10_1038_s41598_025_91869_1
crossref_primary_10_3389_fcell_2025_1563184
crossref_primary_10_3390_biomedicines11020442
crossref_primary_10_3389_fnins_2022_917197
crossref_primary_10_1080_19490976_2023_2295394
crossref_primary_10_3389_fmicb_2023_1097148
crossref_primary_10_3389_fmicb_2024_1344992
crossref_primary_10_3748_wjg_v29_i36_5211
crossref_primary_10_1016_j_tem_2023_05_006
crossref_primary_10_1016_j_jff_2023_105995
crossref_primary_10_1016_j_medj_2024_07_002
crossref_primary_10_1111_1759_7714_15303
crossref_primary_10_1016_j_celrep_2023_112346
crossref_primary_10_1111_jpn_13969
crossref_primary_10_3390_nu14132664
crossref_primary_10_3389_fmolb_2023_1281987
crossref_primary_10_1186_s12884_023_05889_8
crossref_primary_10_1080_10408398_2025_2455954
crossref_primary_10_3389_fonc_2023_1285508
crossref_primary_10_1016_j_fbio_2024_105431
crossref_primary_10_3389_fnut_2023_1121203
crossref_primary_10_1007_s12602_023_10102_5
crossref_primary_10_1515_mr_2024_0020
crossref_primary_10_1016_j_compbiolchem_2025_108372
crossref_primary_10_1016_j_apsb_2024_04_027
crossref_primary_10_1055_a_1824_0120
crossref_primary_10_1016_j_ijbiomac_2025_141714
crossref_primary_10_1097_MD_0000000000039013
crossref_primary_10_3389_fmicb_2024_1390046
crossref_primary_10_3389_fmicb_2024_1479779
crossref_primary_10_3390_metabo13020207
crossref_primary_10_1038_s43018_023_00602_2
crossref_primary_10_1016_j_molmed_2023_01_001
crossref_primary_10_1097_JS9_0000000000002229
crossref_primary_10_1002_imt2_70000
crossref_primary_10_1016_j_jep_2024_118815
crossref_primary_10_3389_fimmu_2025_1565133
crossref_primary_10_1016_j_celrep_2024_113846
crossref_primary_10_1080_19490976_2023_2236364
crossref_primary_10_1007_s44403_024_00010_z
crossref_primary_10_1016_j_dld_2024_11_002
crossref_primary_10_1016_j_fbio_2024_105448
crossref_primary_10_1007_s11427_024_2577_0
crossref_primary_10_3389_fnut_2023_1111872
crossref_primary_10_1007_s11427_022_2302_5
crossref_primary_10_1016_j_isci_2024_109612
crossref_primary_10_3390_cells12030447
crossref_primary_10_1096_fj_202300819RR
crossref_primary_10_1016_j_fbio_2024_104110
crossref_primary_10_1080_19490976_2024_2409210
crossref_primary_10_1128_iai_00153_22
crossref_primary_10_1002_smll_202310851
crossref_primary_10_1016_j_ijbiomac_2024_138933
crossref_primary_10_3390_cells13231997
crossref_primary_10_5662_wjm_v15_i2_92592
crossref_primary_10_17749_2313_7347_ob_gyn_rep_2024_534
crossref_primary_10_3389_fmicb_2024_1380912
crossref_primary_10_1186_s13099_023_00571_y
crossref_primary_10_1016_j_chom_2024_06_003
crossref_primary_10_1016_j_jconrel_2023_09_033
crossref_primary_10_1016_j_chom_2023_12_015
crossref_primary_10_1016_j_mtbio_2025_101601
crossref_primary_10_1016_j_cbpa_2024_102539
crossref_primary_10_1016_j_fbio_2024_105218
crossref_primary_10_3389_fimmu_2024_1424987
crossref_primary_10_1002_jat_4587
crossref_primary_10_3390_antiox11112285
crossref_primary_10_1002_imt2_195
crossref_primary_10_1021_acs_jafc_3c09535
crossref_primary_10_1124_dmd_122_000860
crossref_primary_10_4254_wjh_v17_i3_103854
crossref_primary_10_1002_imt2_199
crossref_primary_10_1021_acs_jafc_3c00952
crossref_primary_10_1016_j_jhazmat_2024_134360
crossref_primary_10_1016_j_tifs_2025_104876
crossref_primary_10_1007_s10753_023_01948_6
crossref_primary_10_1016_j_scib_2025_01_029
crossref_primary_10_1002_fft2_471
crossref_primary_10_1016_j_fsi_2024_109376
crossref_primary_10_1093_lifemeta_load032
crossref_primary_10_3390_ani14111529
crossref_primary_10_1021_acs_analchem_4c06108
crossref_primary_10_1186_s40104_024_01037_0
crossref_primary_10_3389_fcimb_2022_1054808
crossref_primary_10_1038_s41467_023_37459_z
crossref_primary_10_1016_j_jgg_2022_12_002
crossref_primary_10_3389_fimmu_2022_974305
crossref_primary_10_1016_j_lfs_2024_123107
crossref_primary_10_1002_mnfr_202300148
crossref_primary_10_1016_j_ijbiomac_2025_141151
crossref_primary_10_1016_j_phrs_2024_107278
crossref_primary_10_1016_j_cofs_2022_100956
crossref_primary_10_1007_s10695_022_01116_x
crossref_primary_10_3390_microorganisms10122486
crossref_primary_10_1038_s41392_023_01673_4
crossref_primary_10_1021_acs_jafc_4c01595
crossref_primary_10_3390_ijms232113583
crossref_primary_10_1016_j_scitotenv_2022_159031
crossref_primary_10_1016_j_clinre_2024_102370
crossref_primary_10_2174_0115680096281168231215060301
crossref_primary_10_3389_fmicb_2022_1023315
crossref_primary_10_1016_j_celrep_2022_111725
crossref_primary_10_1016_j_jff_2023_105951
crossref_primary_10_1016_j_tips_2024_07_006
crossref_primary_10_1097_HEP_0000000000000957
crossref_primary_10_4251_wjgo_v16_i4_1319
crossref_primary_10_1089_ten_teb_2023_0124
crossref_primary_10_1093_ismejo_wrad037
Cites_doi 10.1038/s41575-019-0258-z
10.1038/s41586-019-1865-0
10.3748/wjg.14.5630
10.1038/s41591-019-0406-6
10.1016/j.jcmgh.2016.06.004
10.1053/j.gastro.2018.08.022
10.1016/j.chom.2020.01.021
10.1038/nature12726
10.1038/s41579-019-0213-6
10.1016/0039-128X(94)90062-0
10.3390/microorganisms9030469
10.1053/jhep.2003.50116
10.1016/j.ejim.2017.06.020
10.1016/j.cell.2021.12.035
10.1126/science.aaa9420
10.1007/s12010-009-8738-1
10.1099/00207713-50-3-971
10.1039/C8FO01143E
10.1038/s41591-019-0458-7
10.1080/19490976.2020.1819155
10.1016/0005-2760(89)90272-5
10.4315/0362-028X-67.12.2772
10.1017/S0007114517001106
10.1038/s41586-020-2047-9
10.1002/cam4.1965
10.1186/s40168-019-0628-3
10.1016/0005-2760(78)90060-7
10.1371/journal.pone.0006386
10.1128/aem.63.3.1185-1188.1997
10.1080/19490976.2020.1748261
10.1038/nchembio.1864
10.1016/j.immuni.2014.05.013
10.1038/nm.4086
10.1016/j.cell.2017.05.016
10.1038/s41586-020-2396-4
10.3322/caac.21601
10.1136/gut.39.4.587
10.1099/00207713-51-1-39
10.1016/j.resmic.2006.04.002
10.1371/journal.pone.0085344
10.1128/AEM.66.6.2502-2512.2000
10.1016/j.immuni.2017.11.012
10.1080/19490976.2021.1907271
10.1038/s41586-019-1237-9
10.1146/annurev-immunol-061020-053702
10.1073/pnas.0509592103
10.1038/nrgastro.2016.165
10.1038/nature11225
10.1128/AEM.00235-18
10.1080/19490976.2015.1127483
10.1016/j.immuni.2018.01.007
10.1021/acschembio.1c00192
10.1002/cncr.28799
10.1016/S0021-9258(18)99213-6
10.1016/j.jhep.2012.01.019
10.1002/cphy.c120023
10.1038/nm.4185
10.1002/cphy.c120007
10.3390/pathogens3010014
10.1136/gut.2010.212159
10.1093/jnci/djz166
10.1016/j.chom.2021.07.013
10.1038/ncomms3384
10.1021/acscentsci.9b00147
10.1194/jlr.M075143
10.1073/pnas.0804437105
10.1016/0005-2736(80)90075-9
10.1016/S0140-6736(03)12489-0
10.1016/j.chom.2021.06.019
10.1053/j.gastro.2011.07.046
10.1093/jnci/djt300
10.1053/jhep.2000.7877
10.1016/S0022-2275(20)41573-1
10.1016/j.crohns.2013.09.009
10.1038/s41420-021-00589-8
10.7554/eLife.37182
10.1038/s41586-021-03421-6
10.1038/nri.2016.42
10.1016/j.femsre.2004.09.003
10.1038/nrgastro.2017.119
10.1038/s41577-021-00534-x
10.1053/j.gastro.2011.10.001
10.1038/s41586-019-1785-z
10.1016/0005-2744(76)90068-1
10.3748/wjg.v18.i21.2609
10.1194/jlr.R500013-JLR200
10.1016/j.cmet.2013.01.003
10.1099/00221287-147-12-3403
10.1002/mc.22999
10.1136/gut.48.2.206
10.1128/aem.61.7.2514-2520.1995
10.1038/s41564-018-0306-4
10.1053/j.gastro.2020.05.067
10.1038/cr.2016.151
10.1016/j.ebiom.2020.102719
10.1371/journal.pone.0070803
10.1093/ecco-jcc/jjab003
10.1016/0005-2760(76)90086-2
10.1016/j.immuni.2016.09.008
10.1038/nri.2016.36
10.1038/s41575-020-00404-2
10.1016/j.mam.2017.04.002
10.1128/aem.37.5.992-1000.1979
10.1007/s10620-020-06208-3
10.1038/nri3073
10.1038/s41589-020-0467-3
10.1038/s41586-021-03832-5
10.1038/s41586-020-2193-0
10.1038/nrgastro.2015.150
ContentType Journal Article
Copyright Copyright © 2022. Published by Elsevier Inc.
Copyright_xml – notice: Copyright © 2022. Published by Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.chom.2022.02.004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1934-6069
EndPage 300
ExternalDocumentID PMC8923532
35271802
10_1016_j_chom_2022_02_004
Genre Journal Article
Research Support, N.I.H., Intramural
Review
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: Z01 BC005562
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6J9
7-5
AAEDT
AAEDW
AAIKJ
AAKRW
AALRI
AAMRU
AAVLU
AAXUO
AAYWO
AAYXX
ABDGV
ABJNI
ABMAC
ACGFO
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEFWE
AENEX
AEUPX
AEXQZ
AFPUW
AFTJW
AGCQF
AGHFR
AGKMS
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
ASPBG
AVWKF
AZFZN
BAWUL
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
HVGLF
HZ~
IHE
IXB
JIG
M41
O-L
O9-
OK1
OZT
P2P
RIG
ROL
RPZ
SES
SSZ
TR2
UNMZH
ZBA
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c402t-981eae1d409c012e317fcd030490e6eb4d3c084cda94f8f1eb8f450ffe2a7d23
ISSN 1931-3128
1934-6069
IngestDate Thu Aug 21 18:37:23 EDT 2025
Fri Jul 11 02:30:06 EDT 2025
Mon Jul 21 05:45:54 EDT 2025
Thu Apr 24 23:00:15 EDT 2025
Tue Jul 01 02:44:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords colorectal cancer
inflammatory bowel diseases
omics
bile acids
gut microbiota
Language English
License Copyright © 2022. Published by Elsevier Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c402t-981eae1d409c012e317fcd030490e6eb4d3c084cda94f8f1eb8f450ffe2a7d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
AUTHOR CONTRIBUTIONS
Equal contribution
Writing – Original Draft, J.C.; Visualization, L.S.; Writing – Review & Editing, J.C., L.S, F.J.G.; Supervision – F.J.G.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8923532
PMID 35271802
PQID 2638723194
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8923532
proquest_miscellaneous_2638723194
pubmed_primary_35271802
crossref_citationtrail_10_1016_j_chom_2022_02_004
crossref_primary_10_1016_j_chom_2022_02_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-09
PublicationDateYYYYMMDD 2022-03-09
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-09
  day: 09
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell host & microbe
PublicationTitleAlternate Cell Host Microbe
PublicationYear 2022
References Li (10.1016/j.chom.2022.02.004_bib61) 2021; 29
Jia (10.1016/j.chom.2022.02.004_bib46) 2018; 15
Coleman (10.1016/j.chom.2022.02.004_bib14) 1980; 599
Wijaya (10.1016/j.chom.2022.02.004_bib104) 2004; 67
Kumar (10.1016/j.chom.2022.02.004_bib57) 2018; 48
O’Keefe (10.1016/j.chom.2022.02.004_bib72) 2016; 13
Huttenhower (10.1016/j.chom.2022.02.004_bib40) 2014; 40
Sato (10.1016/j.chom.2022.02.004_bib81) 2021; 599
Song (10.1016/j.chom.2022.02.004_bib91) 2020; 577
Pearson (10.1016/j.chom.2022.02.004_bib75) 2019; 8
Wang (10.1016/j.chom.2022.02.004_bib100) 2020; 12
Zhang (10.1016/j.chom.2022.02.004_bib110) 2021; 7
Tanaka (10.1016/j.chom.2022.02.004_bib96) 2000; 66
Gonzalez (10.1016/j.chom.2022.02.004_bib34) 2012; 2
Schirmer (10.1016/j.chom.2022.02.004_bib83) 2019; 17
Doden (10.1016/j.chom.2022.02.004_bib19) 2018; 84
Begley (10.1016/j.chom.2022.02.004_bib6) 2005; 29
Lorenzo-Zúñiga (10.1016/j.chom.2022.02.004_bib64) 2003; 37
Tanoue (10.1016/j.chom.2022.02.004_bib97) 2016; 16
Hang (10.1016/j.chom.2022.02.004_bib37) 2019; 576
Quinn (10.1016/j.chom.2022.02.004_bib76) 2020; 579
Jones (10.1016/j.chom.2022.02.004_bib50) 2008; 105
Harris (10.1016/j.chom.2022.02.004_bib39) 2018; 9
Li (10.1016/j.chom.2022.02.004_bib60) 2013; 4
Patel (10.1016/j.chom.2022.02.004_bib74) 2010; 162
Doden (10.1016/j.chom.2022.02.004_bib20) 2021; 13
Killenberg (10.1016/j.chom.2022.02.004_bib52) 1978; 19
Sefik (10.1016/j.chom.2022.02.004_bib86) 2015; 349
Macdonald (10.1016/j.chom.2022.02.004_bib65) 1976; 450
Fouts (10.1016/j.chom.2022.02.004_bib26) 2012; 56
Jin (10.1016/j.chom.2022.02.004_bib48) 2022; 185
Parasar (10.1016/j.chom.2022.02.004_bib73) 2019; 5
Gadaleta (10.1016/j.chom.2022.02.004_bib32) 2020; 54
Kishinaka (10.1016/j.chom.2022.02.004_bib53) 1994; 59
Jansson (10.1016/j.chom.2022.02.004_bib45) 2009; 4
Edenharder (10.1016/j.chom.2022.02.004_bib23) 1989; 1004
Sayin (10.1016/j.chom.2022.02.004_bib82) 2013; 17
Kitahara (10.1016/j.chom.2022.02.004_bib54) 2000; 50
Schroeder (10.1016/j.chom.2022.02.004_bib85) 2016; 22
Kitahara (10.1016/j.chom.2022.02.004_bib55) 2001; 51
Coleman (10.1016/j.chom.2022.02.004_bib13) 1995; 61
Martinez-Augustin (10.1016/j.chom.2022.02.004_bib67) 2008; 14
Cross (10.1016/j.chom.2022.02.004_bib15) 2014; 120
Wigg (10.1016/j.chom.2022.02.004_bib103) 2001; 48
Gadaleta (10.1016/j.chom.2022.02.004_bib31) 2017; 56
Saito (10.1016/j.chom.2022.02.004_bib80) 2016; 22
Wang (10.1016/j.chom.2022.02.004_bib99) 2019; 58
Smith (10.1016/j.chom.2022.02.004_bib89) 2014; 9
Clements (10.1016/j.chom.2022.02.004_bib12) 1996; 39
Nusse (10.1016/j.chom.2022.02.004_bib71) 2017; 169
Stellwag (10.1016/j.chom.2022.02.004_bib93) 1976; 452
Murray (10.1016/j.chom.2022.02.004_bib70) 2011; 11
Wirbel (10.1016/j.chom.2022.02.004_bib105) 2019; 25
Guo (10.1016/j.chom.2022.02.004_bib36) 2016; 45
Arpaia (10.1016/j.chom.2022.02.004_bib4) 2013; 504
Islam (10.1016/j.chom.2022.02.004_bib43) 2011; 141
Elkins (10.1016/j.chom.2022.02.004_bib24) 2001; 147
Yachida (10.1016/j.chom.2022.02.004_bib108) 2019; 25
Doden (10.1016/j.chom.2022.02.004_bib18) 2021; 9
Gadaleta (10.1016/j.chom.2022.02.004_bib30) 2011; 60
Ilan (10.1016/j.chom.2022.02.004_bib41) 2012; 18
Lavelle (10.1016/j.chom.2022.02.004_bib58) 2020; 17
Kühn (10.1016/j.chom.2022.02.004_bib56) 2020; 112
Ahn (10.1016/j.chom.2022.02.004_bib3) 2013; 105
Floreani (10.1016/j.chom.2022.02.004_bib25) 2018; 47
Lee (10.1016/j.chom.2022.02.004_bib59) 2021; 29
Song (10.1016/j.chom.2022.02.004_bib90) 2019; 7
Chiang (10.1016/j.chom.2022.02.004_bib11) 2013; 3
Cao (10.1016/j.chom.2022.02.004_bib9) 2017; 47
Taranto (10.1016/j.chom.2022.02.004_bib98) 2006; 157
Funabashi (10.1016/j.chom.2022.02.004_bib29) 2020; 582
Yao (10.1016/j.chom.2022.02.004_bib109) 2018; 7
Adhikari (10.1016/j.chom.2022.02.004_bib2) 2021; 16
Sun (10.1016/j.chom.2022.02.004_bib94) 2021; 18
MacDonald (10.1016/j.chom.2022.02.004_bib66) 1979; 37
Ridlon (10.1016/j.chom.2022.02.004_bib77) 2006; 47
Mulder (10.1016/j.chom.2022.02.004_bib69) 2014; 8
Dong (10.1016/j.chom.2022.02.004_bib22) 2021; 39
Watanabe (10.1016/j.chom.2022.02.004_bib101) 2017; 58
Sinha (10.1016/j.chom.2022.02.004_bib88) 2020; 27
Gérard (10.1016/j.chom.2022.02.004_bib33) 2013; 3
Brown (10.1016/j.chom.2022.02.004_bib7) 2017; 117
Sorrentino (10.1016/j.chom.2022.02.004_bib92) 2020; 159
Adhikari (10.1016/j.chom.2022.02.004_bib1) 2020; 16
Molodecky (10.1016/j.chom.2022.02.004_bib68) 2012; 142
Harris (10.1016/j.chom.2022.02.004_bib38) 1978; 528
Friedman (10.1016/j.chom.2022.02.004_bib28) 2018; 155
Siegel (10.1016/j.chom.2022.02.004_bib87) 2020; 70
Franzosa (10.1016/j.chom.2022.02.004_bib27) 2019; 4
Inagaki (10.1016/j.chom.2022.02.004_bib42) 2006; 103
Devkota (10.1016/j.chom.2022.02.004_bib16) 2012; 487
Schmitt (10.1016/j.chom.2022.02.004_bib84) 2021; 21
Campbell (10.1016/j.chom.2022.02.004_bib8) 2020; 581
Axelson (10.1016/j.chom.2022.02.004_bib5) 2000; 31
Guarner (10.1016/j.chom.2022.02.004_bib35) 2003; 361
Tanaka (10.1016/j.chom.2022.02.004_bib95) 2017; 27
Weir (10.1016/j.chom.2022.02.004_bib102) 2013; 8
Doerner (10.1016/j.chom.2022.02.004_bib21) 1997; 63
Johnson (10.1016/j.chom.2022.02.004_bib49) 1991; 266
Ridlon (10.1016/j.chom.2022.02.004_bib78) 2016; 7
Jia (10.1016/j.chom.2022.02.004_bib47) 2020; 11
Chen (10.1016/j.chom.2022.02.004_bib10) 2021; 593
Rooks (10.1016/j.chom.2022.02.004_bib79) 2016; 16
Devlin (10.1016/j.chom.2022.02.004_bib17) 2015; 11
Jacobs (10.1016/j.chom.2022.02.004_bib44) 2016; 2
Liu (10.1016/j.chom.2022.02.004_bib62) 2018; 9
Kaplan (10.1016/j.chom.2022.02.004_bib51) 2015; 12
Xu (10.1016/j.chom.2022.02.004_bib107) 2021; 15
Xu (10.1016/j.chom.2022.02.004_bib106) 2021; 66
Lloyd-Price (10.1016/j.chom.2022.02.004_bib63) 2019; 569
References_xml – volume: 17
  start-page: 223
  year: 2020
  ident: 10.1016/j.chom.2022.02.004_bib58
  article-title: Gut microbiota-derived metabolites as key actors in inflammatory bowel disease
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/s41575-019-0258-z
– volume: 577
  start-page: 410
  year: 2020
  ident: 10.1016/j.chom.2022.02.004_bib91
  article-title: Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis
  publication-title: Nature
  doi: 10.1038/s41586-019-1865-0
– volume: 14
  start-page: 5630
  year: 2008
  ident: 10.1016/j.chom.2022.02.004_bib67
  article-title: Intestinal bile acid physiology and pathophysiology
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.14.5630
– volume: 25
  start-page: 679
  year: 2019
  ident: 10.1016/j.chom.2022.02.004_bib105
  article-title: Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0406-6
– volume: 2
  start-page: 750
  year: 2016
  ident: 10.1016/j.chom.2022.02.004_bib44
  article-title: A disease-associated microbial and metabolomics state in relatives of pediatric inflammatory bowel disease patients
  publication-title: Cell. Mol. Gastroenterol. Hepatol.
  doi: 10.1016/j.jcmgh.2016.06.004
– volume: 155
  start-page: 1741
  year: 2018
  ident: 10.1016/j.chom.2022.02.004_bib28
  article-title: FXR-dependent modulation of the human small Intestinal microbiome by the bBile acid derivative obeticholic acid
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2018.08.022
– volume: 27
  start-page: 659
  year: 2020
  ident: 10.1016/j.chom.2022.02.004_bib88
  article-title: Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.01.021
– volume: 504
  start-page: 451
  year: 2013
  ident: 10.1016/j.chom.2022.02.004_bib4
  article-title: Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
  publication-title: Nature
  doi: 10.1038/nature12726
– volume: 17
  start-page: 497
  year: 2019
  ident: 10.1016/j.chom.2022.02.004_bib83
  article-title: Microbial genes and pathways in inflammatory bowel disease
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-019-0213-6
– volume: 59
  start-page: 485
  year: 1994
  ident: 10.1016/j.chom.2022.02.004_bib53
  article-title: High concentrations of conjugated bile acids inhibit bacterial growth of Clostridium perfringens and induce its extracellular cholylglycine hydrolase
  publication-title: Steroids
  doi: 10.1016/0039-128X(94)90062-0
– volume: 9
  start-page: 469
  year: 2021
  ident: 10.1016/j.chom.2022.02.004_bib18
  article-title: Microbial hydroxysteroid dehydrogenases: From α to omega
  publication-title: Microorganisms
  doi: 10.3390/microorganisms9030469
– volume: 37
  start-page: 551
  year: 2003
  ident: 10.1016/j.chom.2022.02.004_bib64
  article-title: Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats
  publication-title: Hepatology
  doi: 10.1053/jhep.2003.50116
– volume: 47
  start-page: 1
  year: 2018
  ident: 10.1016/j.chom.2022.02.004_bib25
  article-title: Primary biliary cholangitis: Old and novel therapy
  publication-title: Eur. J. Intern. Med.
  doi: 10.1016/j.ejim.2017.06.020
– volume: 185
  start-page: 547
  year: 2022
  ident: 10.1016/j.chom.2022.02.004_bib48
  article-title: Genetic manipulation of gut microbes enables single-gene interrogation in a complex microbiome
  publication-title: Cell
  doi: 10.1016/j.cell.2021.12.035
– volume: 349
  start-page: 993
  year: 2015
  ident: 10.1016/j.chom.2022.02.004_bib86
  article-title: MUCOSAL IMMUNOLOGY. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells
  publication-title: Science
  doi: 10.1126/science.aaa9420
– volume: 162
  start-page: 166
  year: 2010
  ident: 10.1016/j.chom.2022.02.004_bib74
  article-title: Probiotic bile salt hydrolase: current developments and perspectives
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-009-8738-1
– volume: 50
  start-page: 971
  year: 2000
  ident: 10.1016/j.chom.2022.02.004_bib54
  article-title: Assignment of Eubacterium sp. VPI 12708 and related strains with high bile acid 7α-dehydroxylating activity to Clostridium scindens and proposal of Clostridium hylemonae sp. nov., isolated from human faeces
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/00207713-50-3-971
– volume: 9
  start-page: 5588
  year: 2018
  ident: 10.1016/j.chom.2022.02.004_bib62
  article-title: Deoxycholic acid disrupts the intestinal mucosal barrier and promotes intestinal tumorigenesis
  publication-title: Food Funct.
  doi: 10.1039/C8FO01143E
– volume: 25
  start-page: 968
  year: 2019
  ident: 10.1016/j.chom.2022.02.004_bib108
  article-title: Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0458-7
– volume: 12
  start-page: 1
  year: 2020
  ident: 10.1016/j.chom.2022.02.004_bib100
  article-title: Gut microbial bile acid metabolite skews macrophage polarization and contributes to high-fat diet-induced colonic inflammation
  publication-title: Gut Microbes
  doi: 10.1080/19490976.2020.1819155
– volume: 1004
  start-page: 230
  year: 1989
  ident: 10.1016/j.chom.2022.02.004_bib23
  article-title: Characterization of NAD-dependent 3α-and 3β-hydroxysteroid dehydrogenase and of NADP-dependent 7β-hydroxysteroid dehydrogenase from Peptostreptococcus productus.
  publication-title: Biochim. Biophys. Acta, Lipids Lipid Metab.
  doi: 10.1016/0005-2760(89)90272-5
– volume: 67
  start-page: 2772
  year: 2004
  ident: 10.1016/j.chom.2022.02.004_bib104
  article-title: Cloning of the bile salt hydrolase (bsh) gene from Enterococcus faecium FAIR-E 345 and chromosomal location of bsh genes in food enterococci
  publication-title: J. Food Prot.
  doi: 10.4315/0362-028X-67.12.2772
– volume: 117
  start-page: 1244
  year: 2017
  ident: 10.1016/j.chom.2022.02.004_bib7
  article-title: Heat-stabilised rice bran consumption by colorectal cancer survivors modulates stool metabolite profiles and metabolic networks: a randomised controlled trial
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114517001106
– volume: 579
  start-page: 123
  year: 2020
  ident: 10.1016/j.chom.2022.02.004_bib76
  article-title: Global chemical effects of the microbiome include new bile-acid conjugations
  publication-title: Nature
  doi: 10.1038/s41586-020-2047-9
– volume: 8
  start-page: 617
  year: 2019
  ident: 10.1016/j.chom.2022.02.004_bib75
  article-title: Effects of ursodeoxycholic acid on the gut microbiome and colorectal adenoma development
  publication-title: Cancer Med.
  doi: 10.1002/cam4.1965
– volume: 7
  start-page: 9
  year: 2019
  ident: 10.1016/j.chom.2022.02.004_bib90
  article-title: Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome
  publication-title: Microbiome
  doi: 10.1186/s40168-019-0628-3
– volume: 528
  start-page: 148
  year: 1978
  ident: 10.1016/j.chom.2022.02.004_bib38
  article-title: Partial purification and characterization of NADP-dependent 12α-hydroxysteroid dehydrogenase from Clostridium leptum
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2760(78)90060-7
– volume: 4
  start-page: e6386
  year: 2009
  ident: 10.1016/j.chom.2022.02.004_bib45
  article-title: Metabolomics reveals metabolic biomarkers of Crohn’s disease
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0006386
– volume: 63
  start-page: 1185
  year: 1997
  ident: 10.1016/j.chom.2022.02.004_bib21
  article-title: Assessment of fecal bacteria with bile acid 7 α-dehydroxylating activity for the presence of bai-like genes
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.63.3.1185-1188.1997
– volume: 11
  start-page: 1300
  year: 2020
  ident: 10.1016/j.chom.2022.02.004_bib47
  article-title: Metagenomic analysis of the human microbiome reveals the association between the abundance of gut bile salt hydrolases and host health
  publication-title: Gut Microbes
  doi: 10.1080/19490976.2020.1748261
– volume: 11
  start-page: 685
  year: 2015
  ident: 10.1016/j.chom.2022.02.004_bib17
  article-title: A biosynthetic pathway for a prominent class of microbiota-derived bile acids
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1864
– volume: 40
  start-page: 843
  year: 2014
  ident: 10.1016/j.chom.2022.02.004_bib40
  article-title: Inflammatory bowel disease as a model for translating the microbiome
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.05.013
– volume: 22
  start-page: 679
  year: 2016
  ident: 10.1016/j.chom.2022.02.004_bib80
  article-title: Two FOXP3(+)CD4(+) T cell subpopulations distinctly control the prognosis of colorectal cancers
  publication-title: Nat. Med.
  doi: 10.1038/nm.4086
– volume: 169
  start-page: 985
  year: 2017
  ident: 10.1016/j.chom.2022.02.004_bib71
  article-title: Wnt/β-catenin signaling, disease, and emerging therapeutic modalities
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.016
– volume: 582
  start-page: 566
  year: 2020
  ident: 10.1016/j.chom.2022.02.004_bib29
  article-title: A metabolic pathway for bile acid dehydroxylation by the gut microbiome
  publication-title: Nature
  doi: 10.1038/s41586-020-2396-4
– volume: 70
  start-page: 145
  year: 2020
  ident: 10.1016/j.chom.2022.02.004_bib87
  article-title: Colorectal cancer statistics, 2020
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21601
– volume: 39
  start-page: 587
  year: 1996
  ident: 10.1016/j.chom.2022.02.004_bib12
  article-title: Role of the gut in the pathophysiology of extrahepatic biliary obstruction
  publication-title: Gut
  doi: 10.1136/gut.39.4.587
– volume: 51
  start-page: 39
  year: 2001
  ident: 10.1016/j.chom.2022.02.004_bib55
  article-title: Clostridium hiranonis sp. nov., a human intestinal bacterium with bile acid 7α-dehydroxylating activity
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/00207713-51-1-39
– volume: 157
  start-page: 720
  year: 2006
  ident: 10.1016/j.chom.2022.02.004_bib98
  article-title: Effect of bile acid on the cell membrane functionality of lactic acid bacteria for oral administration
  publication-title: Res. Microbiol.
  doi: 10.1016/j.resmic.2006.04.002
– volume: 9
  start-page: e85344
  year: 2014
  ident: 10.1016/j.chom.2022.02.004_bib89
  article-title: Discovery of bile salt hydrolase inhibitors using an efficient high-throughput screening system
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0085344
– volume: 66
  start-page: 2502
  year: 2000
  ident: 10.1016/j.chom.2022.02.004_bib96
  article-title: Bile salt hydrolase of Bifidobacterium longum-biochemical and genetic characterization
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.66.6.2502-2512.2000
– volume: 47
  start-page: 1182
  year: 2017
  ident: 10.1016/j.chom.2022.02.004_bib9
  article-title: The xenobiotic transporter Mdr1 enforces T cell homeostasis in the presence of intestinal bile acids
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.11.012
– volume: 13
  start-page: 1
  year: 2021
  ident: 10.1016/j.chom.2022.02.004_bib20
  article-title: Completion of the gut microbial epi-bile acid pathway
  publication-title: Gut Microbes
  doi: 10.1080/19490976.2021.1907271
– volume: 569
  start-page: 655
  year: 2019
  ident: 10.1016/j.chom.2022.02.004_bib63
  article-title: Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases
  publication-title: Nature
  doi: 10.1038/s41586-019-1237-9
– volume: 39
  start-page: 51
  year: 2021
  ident: 10.1016/j.chom.2022.02.004_bib22
  article-title: Cytokine regulation and function in T cells
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-061020-053702
– volume: 103
  start-page: 3920
  year: 2006
  ident: 10.1016/j.chom.2022.02.004_bib42
  article-title: Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0509592103
– volume: 13
  start-page: 691
  year: 2016
  ident: 10.1016/j.chom.2022.02.004_bib72
  article-title: Diet, microorganisms and their metabolites, and colon cancer
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/nrgastro.2016.165
– volume: 487
  start-page: 104
  year: 2012
  ident: 10.1016/j.chom.2022.02.004_bib16
  article-title: Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice
  publication-title: Nature
  doi: 10.1038/nature11225
– volume: 84
  year: 2018
  ident: 10.1016/j.chom.2022.02.004_bib19
  article-title: Metabolism of oxo-bile acids and characterization of recombinant 12α-hydroxysteroid dehydrogenases from bile acid 7α-dehydroxylating human gut bacteria
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00235-18
– volume: 7
  start-page: 22
  year: 2016
  ident: 10.1016/j.chom.2022.02.004_bib78
  article-title: Consequences of bile salt biotransformations by intestinal bacteria
  publication-title: Gut Microbes
  doi: 10.1080/19490976.2015.1127483
– volume: 48
  start-page: 202
  year: 2018
  ident: 10.1016/j.chom.2022.02.004_bib57
  article-title: Human T cell development, localization, and function throughout life
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.01.007
– volume: 16
  start-page: 1401
  year: 2021
  ident: 10.1016/j.chom.2022.02.004_bib2
  article-title: A gut-restricted lithocholic acid analog as an inhibitor of gut bacterial bile salt hydrolases
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.1c00192
– volume: 120
  start-page: 3049
  year: 2014
  ident: 10.1016/j.chom.2022.02.004_bib15
  article-title: A prospective study of serum metabolites and colorectal cancer risk
  publication-title: Cancer
  doi: 10.1002/cncr.28799
– volume: 266
  start-page: 10227
  year: 1991
  ident: 10.1016/j.chom.2022.02.004_bib49
  article-title: Purification and characterization of bile acid-CoA:amino acid N-acyltransferase from human liver
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)99213-6
– volume: 56
  start-page: 1283
  year: 2012
  ident: 10.1016/j.chom.2022.02.004_bib26
  article-title: Bacterial translocation and changes in the intestinal microbiome in mouse models of liver disease
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2012.01.019
– volume: 3
  start-page: 1191
  year: 2013
  ident: 10.1016/j.chom.2022.02.004_bib11
  article-title: Bile acid metabolism and signaling
  publication-title: Compr. Physiol.
  doi: 10.1002/cphy.c120023
– volume: 22
  start-page: 1079
  year: 2016
  ident: 10.1016/j.chom.2022.02.004_bib85
  article-title: Signals from the gut microbiota to distant organs in physiology and disease
  publication-title: Nat. Med.
  doi: 10.1038/nm.4185
– volume: 2
  start-page: 2811
  year: 2012
  ident: 10.1016/j.chom.2022.02.004_bib34
  article-title: Nuclear receptor control of enterohepatic circulation
  publication-title: Compr. Physiol.
  doi: 10.1002/cphy.c120007
– volume: 3
  start-page: 14
  year: 2013
  ident: 10.1016/j.chom.2022.02.004_bib33
  article-title: Metabolism of cholesterol and bile acids by the gut microbiota
  publication-title: Pathogens
  doi: 10.3390/pathogens3010014
– volume: 60
  start-page: 463
  year: 2011
  ident: 10.1016/j.chom.2022.02.004_bib30
  article-title: Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease
  publication-title: Gut
  doi: 10.1136/gut.2010.212159
– volume: 112
  start-page: 516
  year: 2020
  ident: 10.1016/j.chom.2022.02.004_bib56
  article-title: Prediagnostic plasma bile acid levels and colon cancer risk: A prospective study
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/djz166
– volume: 29
  start-page: 1366
  year: 2021
  ident: 10.1016/j.chom.2022.02.004_bib61
  article-title: A bacterial bile acid metabolite modulates Treg activity through the nuclear hormone receptor NR4A1
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.07.013
– volume: 4
  start-page: 2384
  year: 2013
  ident: 10.1016/j.chom.2022.02.004_bib60
  article-title: Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3384
– volume: 5
  start-page: 867
  year: 2019
  ident: 10.1016/j.chom.2022.02.004_bib73
  article-title: Chemoproteomic profiling of gut microbiota-associated bile salt hydrolase activity
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.9b00147
– volume: 58
  start-page: 1143
  year: 2017
  ident: 10.1016/j.chom.2022.02.004_bib101
  article-title: Comprehensive evaluation of the bactericidal activities of free bile acids in the large intestine of humans and rodents
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M075143
– volume: 105
  start-page: 13580
  year: 2008
  ident: 10.1016/j.chom.2022.02.004_bib50
  article-title: Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0804437105
– volume: 599
  start-page: 294
  year: 1980
  ident: 10.1016/j.chom.2022.02.004_bib14
  article-title: Membrane lipid composition and susceptibility to bile salt damage
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2736(80)90075-9
– volume: 361
  start-page: 512
  year: 2003
  ident: 10.1016/j.chom.2022.02.004_bib35
  article-title: Gut flora in health and disease
  publication-title: Lancet
  doi: 10.1016/S0140-6736(03)12489-0
– volume: 29
  start-page: 1294
  year: 2021
  ident: 10.1016/j.chom.2022.02.004_bib59
  article-title: Multi-omics reveal microbial determinants impacting responses to biologic therapies in inflammatory bowel disease
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.06.019
– volume: 141
  start-page: 1773
  year: 2011
  ident: 10.1016/j.chom.2022.02.004_bib43
  article-title: Bile acid is a host factor that regulates the composition of the cecal microbiota in rats
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2011.07.046
– volume: 105
  start-page: 1907
  year: 2013
  ident: 10.1016/j.chom.2022.02.004_bib3
  article-title: Human gut microbiome and risk for colorectal cancer
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/djt300
– volume: 31
  start-page: 1305
  year: 2000
  ident: 10.1016/j.chom.2022.02.004_bib5
  article-title: Bile acid synthesis in cultured human hepatocytes: support for an alternative biosynthetic pathway to cholic acid
  publication-title: Hepatology
  doi: 10.1053/jhep.2000.7877
– volume: 19
  start-page: 24
  year: 1978
  ident: 10.1016/j.chom.2022.02.004_bib52
  article-title: Measurement and subcellular distribution of choloyl-CoA synthetase and bile acid-CoA:amino acid N-acyltransferase activities in rat liver
  publication-title: J. Lipid Res.
  doi: 10.1016/S0022-2275(20)41573-1
– volume: 8
  start-page: 341
  year: 2014
  ident: 10.1016/j.chom.2022.02.004_bib69
  article-title: A tale of two diseases: the history of inflammatory bowel disease
  publication-title: J. Crohn’s Colitis
  doi: 10.1016/j.crohns.2013.09.009
– volume: 7
  start-page: 207
  year: 2021
  ident: 10.1016/j.chom.2022.02.004_bib110
  article-title: Ursodeoxycholic acid suppresses the malignant progression of colorectal cancer through TGR5-YAP axis
  publication-title: Cell Death Discov.
  doi: 10.1038/s41420-021-00589-8
– volume: 7
  start-page: e37182
  year: 2018
  ident: 10.1016/j.chom.2022.02.004_bib109
  article-title: A selective gut bacterial bile salt hydrolase alters host metabolism
  publication-title: eLife
  doi: 10.7554/eLife.37182
– volume: 9
  start-page: 523
  year: 2018
  ident: 10.1016/j.chom.2022.02.004_bib39
  article-title: Bile acid oxidation by Eggerthella lenta strains C592 and DSM 2243T
  publication-title: Gut Microbes
– volume: 593
  start-page: 147
  year: 2021
  ident: 10.1016/j.chom.2022.02.004_bib10
  article-title: CAR directs T cell adaptation to bile acids in the small intestine
  publication-title: Nature
  doi: 10.1038/s41586-021-03421-6
– volume: 16
  start-page: 341
  year: 2016
  ident: 10.1016/j.chom.2022.02.004_bib79
  article-title: Gut microbiota, metabolites and host immunity
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2016.42
– volume: 29
  start-page: 625
  year: 2005
  ident: 10.1016/j.chom.2022.02.004_bib6
  article-title: The interaction between bacteria and bile
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1016/j.femsre.2004.09.003
– volume: 15
  start-page: 111
  year: 2018
  ident: 10.1016/j.chom.2022.02.004_bib46
  article-title: Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/nrgastro.2017.119
– volume: 21
  start-page: 653
  year: 2021
  ident: 10.1016/j.chom.2022.02.004_bib84
  article-title: The inflammatory pathogenesis of colorectal cancer
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-021-00534-x
– volume: 142
  start-page: 46
  year: 2012
  ident: 10.1016/j.chom.2022.02.004_bib68
  article-title: Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2011.10.001
– volume: 576
  start-page: 143
  year: 2019
  ident: 10.1016/j.chom.2022.02.004_bib37
  article-title: Bile acid metabolites control TH17 and Treg cell differentiation
  publication-title: Nature
  doi: 10.1038/s41586-019-1785-z
– volume: 452
  start-page: 165
  year: 1976
  ident: 10.1016/j.chom.2022.02.004_bib93
  article-title: Purification and characterization of bile salt hydrolase from Bacteroides fragilis subsp. fragilis
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2744(76)90068-1
– volume: 18
  start-page: 2609
  year: 2012
  ident: 10.1016/j.chom.2022.02.004_bib41
  article-title: Leaky gut and the liver: a role for bacterial translocation in nonalcoholic steatohepatitis
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v18.i21.2609
– volume: 47
  start-page: 241
  year: 2006
  ident: 10.1016/j.chom.2022.02.004_bib77
  article-title: Bile salt biotransformations by human intestinal bacteria
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.R500013-JLR200
– volume: 17
  start-page: 225
  year: 2013
  ident: 10.1016/j.chom.2022.02.004_bib82
  article-title: Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-β-muricholic acid, a naturally occurring FXR antagonist
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2013.01.003
– volume: 147
  start-page: 3403
  year: 2001
  ident: 10.1016/j.chom.2022.02.004_bib24
  article-title: Genes encoding bile salt hydrolases and conjugated bile salt transporters in Lactobacillus johnsonii 100-100 and other Lactobacillus species
  publication-title: Microbiology (Reading)
  doi: 10.1099/00221287-147-12-3403
– volume: 58
  start-page: 1155
  year: 2019
  ident: 10.1016/j.chom.2022.02.004_bib99
  article-title: Interplay between bile acids and the gut microbiota promotes intestinal carcinogenesis
  publication-title: Mol. Carcinog.
  doi: 10.1002/mc.22999
– volume: 48
  start-page: 206
  year: 2001
  ident: 10.1016/j.chom.2022.02.004_bib103
  article-title: The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor α in the pathogenesis of non-alcoholic steatohepatitis
  publication-title: Gut
  doi: 10.1136/gut.48.2.206
– volume: 61
  start-page: 2514
  year: 1995
  ident: 10.1016/j.chom.2022.02.004_bib13
  article-title: Cloning and characterization of a conjugated bile acid hydrolase gene from Clostridium perfringens
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.61.7.2514-2520.1995
– volume: 4
  start-page: 293
  year: 2019
  ident: 10.1016/j.chom.2022.02.004_bib27
  article-title: Gut microbiome structure and metabolic activity in inflammatory bowel disease
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-018-0306-4
– volume: 159
  start-page: 956
  year: 2020
  ident: 10.1016/j.chom.2022.02.004_bib92
  article-title: Bile acids signal via TGR5 to activate intestinal stem cells and epithelial regeneration
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2020.05.067
– volume: 27
  start-page: 109
  year: 2017
  ident: 10.1016/j.chom.2022.02.004_bib95
  article-title: Regulatory T cells in cancer immunotherapy
  publication-title: Cell Res.
  doi: 10.1038/cr.2016.151
– volume: 54
  start-page: 102719
  year: 2020
  ident: 10.1016/j.chom.2022.02.004_bib32
  article-title: Fibroblast Growth Factor 19 modulates intestinal microbiota and inflammation in presence of Farnesoid X Receptor
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2020.102719
– volume: 8
  start-page: e70803
  year: 2013
  ident: 10.1016/j.chom.2022.02.004_bib102
  article-title: Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0070803
– volume: 15
  start-page: 1197
  year: 2021
  ident: 10.1016/j.chom.2022.02.004_bib107
  article-title: Modulation of the gut microbiota-farnesoid X receptor axis improves deoxycholic acid-induced intestinal inflammation in mice
  publication-title: J. Crohn’s Colitis
  doi: 10.1093/ecco-jcc/jjab003
– volume: 450
  start-page: 142
  year: 1976
  ident: 10.1016/j.chom.2022.02.004_bib65
  article-title: 3α-, 7α- and 12α-hydroxysteroid dehydrogenase activities from Clostridium perfringens.
  publication-title: Biochim. Biophys. Acta, Lipids Lipid Metab.
  doi: 10.1016/0005-2760(76)90086-2
– volume: 45
  start-page: 802
  year: 2016
  ident: 10.1016/j.chom.2022.02.004_bib36
  article-title: Bile acids control Inflammation and metabolic disorder through inhibition of NLRP3 inflammasome
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.09.008
– volume: 16
  start-page: 295
  year: 2016
  ident: 10.1016/j.chom.2022.02.004_bib97
  article-title: Development and maintenance of intestinal regulatory T cells
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2016.36
– volume: 18
  start-page: 335
  year: 2021
  ident: 10.1016/j.chom.2022.02.004_bib94
  article-title: The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/s41575-020-00404-2
– volume: 56
  start-page: 66
  year: 2017
  ident: 10.1016/j.chom.2022.02.004_bib31
  article-title: Bile acids and colon cancer: Is FXR the solution of the conundrum?
  publication-title: Mol. Aspects Med.
  doi: 10.1016/j.mam.2017.04.002
– volume: 37
  start-page: 992
  year: 1979
  ident: 10.1016/j.chom.2022.02.004_bib66
  article-title: Bile salt 3 α- and 12 α-hydroxysteroid dehydrogenases from Eubacterium lentum and related organisms
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.37.5.992-1000.1979
– volume: 66
  start-page: 568
  year: 2021
  ident: 10.1016/j.chom.2022.02.004_bib106
  article-title: Deoxycholic acid-induced gut dysbiosis disrupts bile acid Enterohepatic circulation and promotes intestinal Inflammation
  publication-title: Dig. Dis. Sci.
  doi: 10.1007/s10620-020-06208-3
– volume: 11
  start-page: 723
  year: 2011
  ident: 10.1016/j.chom.2022.02.004_bib70
  article-title: Protective and pathogenic functions of macrophage subsets
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3073
– volume: 16
  start-page: 318
  year: 2020
  ident: 10.1016/j.chom.2022.02.004_bib1
  article-title: Development of a covalent inhibitor of gut bacterial bile salt hydrolases
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-020-0467-3
– volume: 599
  start-page: 458
  year: 2021
  ident: 10.1016/j.chom.2022.02.004_bib81
  article-title: Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians
  publication-title: Nature
  doi: 10.1038/s41586-021-03832-5
– volume: 581
  start-page: 475
  year: 2020
  ident: 10.1016/j.chom.2022.02.004_bib8
  article-title: Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells
  publication-title: Nature
  doi: 10.1038/s41586-020-2193-0
– volume: 12
  start-page: 720
  year: 2015
  ident: 10.1016/j.chom.2022.02.004_bib51
  article-title: The global burden of IBD: from 2015 to 2025
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/nrgastro.2015.150
SSID ssj0055071
Score 2.7216334
SecondaryResourceType review_article
Snippet Inflammatory bowel disease (IBD) and colorectal cancer (CRC) are heterogeneous intestinal diseases that threaten the health of an increasing number of...
Inflammatory bowel diseases (IBD) and colorectal cancer (CRC) are heterogeneous intestinal diseases that threaten the health of an increasing number of...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 289
SubjectTerms Bile Acids and Salts
Carcinogenesis
Gastrointestinal Microbiome
Humans
Inflammation
Prospective Studies
Title Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis
URI https://www.ncbi.nlm.nih.gov/pubmed/35271802
https://www.proquest.com/docview/2638723194
https://pubmed.ncbi.nlm.nih.gov/PMC8923532
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCLSXiW86PmQk3jpXcew0ySMqG2MIXijSeIoSf2gZazqxBIn-9dzFcZqugACpiirH8Um-n8939n0Q8opzBRtDpJkSQcGk5pblQWFYbAIrp4abaZsy_8PH6fFneXIana6rdLbRJXUxUatfxpX8D1ehDfiKUbL_wNl-UGiA_8BfeAKH4flXPH7b1ONF6VIp1TnTQPM7apSw0se5Kp2vKyaEgHWMWmfZBoO4MgBAH8DgAhe9C2fdLLBQFoq_8mqots7whA_jQVqkOJI9ImauovVJ2bd8alxAQ3PR9P49y2oFe9HKK8tfu_uo7sABbFX0uHJizTghmQrJwPBJh1K0u10ph0a2E4muRNCWqHanBucTrAkzQToud6ocdobpvly0zAM9McZkdettq3cm9K9uklsh2ApYxuLNu_d-O8Z8bbyLlnKOfdcJ7pI7fohN5WTL4rjuODvQROZ3yV5nQtDXDg_3yA1T3Se3XVHRHw_IF0AF3UYFRVTQFhW0rOgaFdSj4oAOMXFAARF0AxEPyfzocD47Zl0BDaZkENYsTbjJDddgwytQRAzoilZpvAxPAzM1hdRCBYlUOk-lTSw3RWJlFFhrwjzWoXhEdqplZZ4QGomIGzBFRaIwnxEsYBsJqU2krRU6FSPC_cRlqksujzVOLjLvRXie4bxnOO9ZAL9Ajsi4_-bSpVb5Y--Xnh8ZSEC81sors2yushC2kBjMlBT6PHb86cfzjB2ReINzfQfMrr75pirP2izrCZg-kQj3fzvmU7K7Xh7PyE79rTHPQUOtixctAn8CB5OSUw
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gut+microbiota-derived+bile+acids+in+intestinal+immunity%2C+inflammation%2C+and+tumorigenesis&rft.jtitle=Cell+host+%26+microbe&rft.au=Cai%2C+Jie&rft.au=Sun%2C+Lulu&rft.au=Gonzalez%2C+Frank+J&rft.date=2022-03-09&rft.eissn=1934-6069&rft.volume=30&rft.issue=3&rft.spage=289&rft_id=info:doi/10.1016%2Fj.chom.2022.02.004&rft_id=info%3Apmid%2F35271802&rft.externalDocID=35271802
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3128&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3128&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3128&client=summon