DFT study on reaction mechanism of di-tert-butylphenol to di-tert-butylhydroxybenzoic acid

Experimental studies on the Kolbe–Schmitt reaction and its side reactions have made great progresses; however, the relative theoretical studies fall behind. In order to study the mechanism of the Kolbe–Schmitt reaction with 2,6-di-tert-butylphenol and 2,4-di-tert-butylphenol as reactants, we carried...

Full description

Saved in:
Bibliographic Details
Published inStructural chemistry Vol. 33; no. 2; pp. 601 - 606
Main Authors Jin, Neng-Zhi, Zhang, Qi-Bin, Liu, Rong, Zhou, Pan-Pan
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2022
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Experimental studies on the Kolbe–Schmitt reaction and its side reactions have made great progresses; however, the relative theoretical studies fall behind. In order to study the mechanism of the Kolbe–Schmitt reaction with 2,6-di-tert-butylphenol and 2,4-di-tert-butylphenol as reactants, we carried out theoretical calculation studies at the M06-2X/Def2-SVP/SMD level of theory using the Gaussian 09 D.01 software package. For the reactant 2,6-di-tert-butylphenol, there is a dynamic equilibrium between the main product and side product, which can rapidly transform into each other at 160 °C by crossing the Gibbs free energy barrier of 14.1 kcal/mol. Moreover, the relative Gibbs free energy of the main product and side product is close; both of them may be observed in the experimental system. However, for 2,4-di-tert-butylphenol, the main product is thermodynamically favorable due to its lower Gibbs free energy, while the side product is kinetically favorable due to the lower activation energy barrier; the main product and the side product compete with each other. We hope the study can shed light on the Kolbe–Schmitt reaction.
AbstractList Experimental studies on the Kolbe-Schmitt reaction and its side reactions have made great progresses; however, the relative theoretical studies fall behind. In order to study the mechanism of the Kolbe-Schmitt reaction with 2,6-di-tert-butylphenol and 2,4-di-tert-butylphenol as reactants, we carried out theoretical calculation studies at the M06-2X/Def2-SVP/SMD level of theory using the Gaussian 09 D.01 software package. For the reactant 2,6-di-tert-butylphenol, there is a dynamic equilibrium between the main product and side product, which can rapidly transform into each other at 160 °C by crossing the Gibbs free energy barrier of 14.1 kcal/mol. Moreover, the relative Gibbs free energy of the main product and side product is close; both of them may be observed in the experimental system. However, for 2,4-di-tert-butylphenol, the main product is thermodynamically favorable due to its lower Gibbs free energy, while the side product is kinetically favorable due to the lower activation energy barrier; the main product and the side product compete with each other. We hope the study can shed light on the Kolbe-Schmitt reaction.
Experimental studies on the Kolbe–Schmitt reaction and its side reactions have made great progresses; however, the relative theoretical studies fall behind. In order to study the mechanism of the Kolbe–Schmitt reaction with 2,6-di-tert-butylphenol and 2,4-di-tert-butylphenol as reactants, we carried out theoretical calculation studies at the M06-2X/Def2-SVP/SMD level of theory using the Gaussian 09 D.01 software package. For the reactant 2,6-di-tert-butylphenol, there is a dynamic equilibrium between the main product and side product, which can rapidly transform into each other at 160 °C by crossing the Gibbs free energy barrier of 14.1 kcal/mol. Moreover, the relative Gibbs free energy of the main product and side product is close; both of them may be observed in the experimental system. However, for 2,4-di-tert-butylphenol, the main product is thermodynamically favorable due to its lower Gibbs free energy, while the side product is kinetically favorable due to the lower activation energy barrier; the main product and the side product compete with each other. We hope the study can shed light on the Kolbe–Schmitt reaction.
Audience Academic
Author Zhang, Qi-Bin
Liu, Rong
Jin, Neng-Zhi
Zhou, Pan-Pan
Author_xml – sequence: 1
  givenname: Neng-Zhi
  orcidid: 0000-0003-3503-0595
  surname: Jin
  fullname: Jin, Neng-Zhi
  email: jin_n_z@163.com
  organization: Key Laboratory of Cloud Computing of Gansu Province, Gansu Computing Center
– sequence: 2
  givenname: Qi-Bin
  surname: Zhang
  fullname: Zhang, Qi-Bin
  organization: Key Laboratory of Cloud Computing of Gansu Province, Gansu Computing Center
– sequence: 3
  givenname: Rong
  surname: Liu
  fullname: Liu, Rong
  organization: Key Laboratory of Fine Chemicals of Gansu Province, Gansu Chemical Industry Research Institute Co., Ltd
– sequence: 4
  givenname: Pan-Pan
  surname: Zhou
  fullname: Zhou, Pan-Pan
  organization: Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University
BookMark eNp9kEtLAzEUhYNU8PkHXA24jt4k81xKtSoIbnTjJmQyd2xkmtQkBae_3ugIoosSQi6H891DzhGZWWeRkDMGFwygugyMcZ5T4IwCq6ucbvfIISsqThsANksz5EDThQNyFMJbElkpikPycr14ykLcdGPmbOZR6WjSsEK9VNaEVeb6rDM0oo-03cRxWC_RuiGL7q-8HDvvPsYW7dYZnSltuhOy36sh4OnPe0yeFzdP8zv68Hh7P796oDoHHmnDauQ1422JNRQau7qDqs2xrUHovlUoGDS6qEAIhF7UutQIregr3kBRMSWOyfm0d-3d-wZDlG9u422KlLzMoShSAk-ui8n1qgaUxvYueqXT6XBldGqzN0m_SjFNwYGXCagnQHsXgsdeahPVVzsJNINkIL-ql1P1MlUvv6uX24Tyf-jam5Xy425ITFBIZvuK_vcbO6hPTbKZUA
CitedBy_id crossref_primary_10_3390_molecules30020248
Cites_doi 10.1021/es400085y
10.1007/s11164-013-1151-y
10.1021/jo01148a002
10.1016/j.apcata.2008.03.037
10.1111/febs.13225
10.1016/j.jbiotec.2013.07.017
10.1021/ja01167a509
10.1021/jo01369a006
10.1007/s00214-007-0310-x
10.1021/op050045q
10.1016/j.vph.2018.10.008
10.1007/s11164-013-1150-z
10.1016/j.ces.2006.05.025
10.1016/j.molcata.2007.07.041
10.1021/ci700068b
10.1016/j.comptc.2021.113249
10.1016/j.cej.2012.04.099
10.1016/j.cherd.2017.05.011
10.1021/jp810292n
10.1021/acs.joc.0c02456
10.1021/ar00072a001
10.1016/j.jiec.2013.03.016
10.1063/1.456010
10.1021/cr50016a001
10.1016/S0040-4020(98)00475-X
10.1016/j.csbj.2021.05.044
10.1016/j.ultsonch.2015.05.019
10.1016/j.enzmictec.2018.02.008
10.1016/j.procbio.2020.04.030
10.1063/1.3382344
10.1021/ci0600556
10.1016/j.molcatb.2015.10.006
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
COPYRIGHT 2022 Springer
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
DOI 10.1007/s11224-021-01874-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1572-9001
EndPage 606
ExternalDocumentID A703952026
10_1007_s11224_021_01874_z
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z7U
Z7V
Z7X
Z7Y
Z86
Z8O
Z8P
Z8S
Z92
ZKB
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
AEIIB
ABRTQ
ID FETCH-LOGICAL-c402t-918e2812b6e805ced8d07b4eb803cfbae3109c57033e0f38c6ce0b3f7290571a3
IEDL.DBID U2A
ISSN 1040-0400
IngestDate Fri Jul 25 09:13:16 EDT 2025
Tue Jun 10 21:05:00 EDT 2025
Tue Jul 01 04:23:54 EDT 2025
Thu Apr 24 23:05:55 EDT 2025
Fri Feb 21 02:48:02 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Reaction mechanism
Kolbe–Schmitt
2,6-Di-tert-butylphenol
2,4-Di-tert-butylphenol
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-918e2812b6e805ced8d07b4eb803cfbae3109c57033e0f38c6ce0b3f7290571a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3503-0595
OpenAccessLink http://ir.lzu.edu.cn/handle/262010/476257
PQID 2640559182
PQPubID 2043716
PageCount 6
ParticipantIDs proquest_journals_2640559182
gale_infotracacademiconefile_A703952026
crossref_citationtrail_10_1007_s11224_021_01874_z
crossref_primary_10_1007_s11224_021_01874_z
springer_journals_10_1007_s11224_021_01874_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle Computational and Experimental Studies of Chemical and Biological Systems
PublicationTitle Structural chemistry
PublicationTitleAbbrev Struct Chem
PublicationYear 2022
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References AbeKNakadaAMatsumotoTUchijyoDMoriHChangHCJ Org Chem2021869599691:CAS:528:DC%2BB3cXitlKrs7rP10.1021/acs.joc.0c02456
FergusonLNHolmesRRCalvinMJ Am Chem Soc19507253151:CAS:528:DyaG3MXisVWqsg%3D%3D10.1021/ja01167a509
SatoMSakuraiNSuzukiHShibataDKinoKJ Mol Catal B Enzym20151223483521:CAS:528:DC%2BC2MXhslGmtbrF10.1016/j.molcatb.2015.10.006
PesciLGlueckSMGurikovPSmirnovaIFaberKLieseAFEBS J2015282133413451:CAS:528:DC%2BC2MXlsFart7s%3D10.1111/febs.13225
ZhaoYTruhlarDGTheor Chem Acc20081202152411:CAS:528:DC%2BD1cXltFyltbY%3D10.1007/s00214-007-0310-x
Lu T, Chen Q (2021) Comput Theor Chem 1200:113249
IijimaTYamaguchiTAppl Catal A-Gen200834512171:CAS:528:DC%2BD1cXnvVGgt7k%3D10.1016/j.apcata.2008.03.037
AhnSJLeeYKJ Ind Eng Chem201319206020631:CAS:528:DC%2BC3sXlvFWltrY%3D10.1016/j.jiec.2013.03.016
GonzalezCSchlegelBJ Chem Phys198990215421611:CAS:528:DyaL1MXhsVahtbk%3D10.1063/1.456010
BapatDUPatwardhanAWChem Eng Res Des20171233173321:CAS:528:DC%2BC2sXptlSiu70%3D10.1016/j.cherd.2017.05.011
MarkovicZMarkovicSBegovicNJ Chem Inf Model200646195719641:CAS:528:DC%2BD28XlsFaktbk%3D10.1021/ci0600556
BaineOAdamsonGFBartonJWFitchJLSwayampatiDRJeskeyHJ Org Chem1954195105141:CAS:528:DyaG2MXitlOmsg%3D%3D10.1021/jo01369a006
DessimozALBerguerandCRenkenAKiwi-MinskerLChem Eng J2012200–20273874710.1016/j.cej.2012.04.099
StanescuIAchenieLEKChem Eng Sci200661619962121:CAS:528:DC%2BD28Xns1Gqtr0%3D10.1016/j.ces.2006.05.025
LiZSuKJ Mol Catal A-Chem20072771801841:CAS:528:DC%2BD2sXht1Smsb7F10.1016/j.molcata.2007.07.041
ShanthiBPalaniveluKUltrason Sonochem2015272682761:CAS:528:DC%2BC2MXovVChtbw%3D10.1016/j.ultsonch.2015.05.019
YanXChengZYueZYuanPRes Chem Intermediat201440304530581:CAS:528:DC%2BC3sXkt1KgsL0%3D10.1007/s11164-013-1150-z
CameronDJeskeyHBaineOTJ Org Chem1950152332361:CAS:528:DyaG3cXjvVShtg%3D%3D10.1021/jo01148a002
Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104
MarkovicZMarkovicSManojlovicNPredojevic-SimovicJJ Chem Inf Model200747152015251:CAS:528:DC%2BD2sXlsVSgtLg%3D10.1021/ci700068b
FukuiKAcc Chem Res1981143633681:CAS:528:DyaL3MXmtFSgtL0%3D10.1021/ar00072a001
ArestaMQuarantaELiberioRDileoCTommasi lTetrahedron199854884188461:CAS:528:DyaK1cXksFCqsrY%3D10.1016/S0040-4020(98)00475-X
HesselVHofmannCLöbPLöhndorfJLöweHZiogasAOrg Process Res Dev200594794891:CAS:528:DC%2BD2MXksl2mur0%3D10.1021/op050045q
KaixunCYanFXupengCJianLHaoTJingTProcess Biochem20209420721210.1016/j.procbio.2020.04.030
KressirerSKralischDStarkAKrtschilUHesselVEnviron Sci Technol201347536253711:CAS:528:DC%2BC3sXlvFSqtbw%3D10.1021/es400085y
MarenichAVCramerCJTruhlarDGJ Phys Chem B2009113637863961:CAS:528:DC%2BD1MXksV2is74%3D10.1021/jp810292n
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth G A, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, revision D.01; Wallingford, CT: Gaussian, Inc
WuenschCSchmidtNGrossJGrischekBGlueckSMFaberKJ Biotechnol20131682642701:CAS:528:DC%2BC3sXht1GmsbbN10.1016/j.jbiotec.2013.07.017
ZhangXRenJYaoPGongRWangMWuQZhuDEnzyme Microb Technol201811337431:CAS:528:DC%2BC1cXjsFajt7Y%3D10.1016/j.enzmictec.2018.02.008
Legault CY (2009) CYLview, v 1.0b; Universite de Sherbrooke
MontinariMRMinelliSCaterinaRDVasc Pharmacol2019113181:CAS:528:DC%2BC1cXit1ymsL%2FE10.1016/j.vph.2018.10.008
YanXStudy on the reaction process and mechanism of synthesizing 3,6-dichloro salicylic acid by Kolbe-Schmitt reaction2013ShanghaiEast China university of science and technology
ShengXHimoFComput Struct Biotec202119317631861:CAS:528:DC%2BB3MXitFKisrvN10.1016/j.csbj.2021.05.044
YanXChengZYueZYuanPRes Chem Intermediat201440305930711:CAS:528:DC%2BC3sXkt1Knt7o%3D10.1007/s11164-013-1151-y
LindseyASJeskeyHChem Rev1957575836201:CAS:528:DyaG1cXmtFGj10.1021/cr50016a001
I Stanescu (1874_CR25) 2006; 61
1874_CR34
X Yan (1874_CR24) 2014; 40
1874_CR35
X Yan (1874_CR26) 2014; 40
L Pesci (1874_CR14) 2015; 282
Y Zhao (1874_CR29) 2008; 120
K Abe (1874_CR20) 2021; 86
V Hessel (1874_CR9) 2005; 9
X Zhang (1874_CR18) 2018; 113
O Baine (1874_CR4) 1954; 19
1874_CR30
C Gonzalez (1874_CR33) 1989; 90
B Shanthi (1874_CR19) 2015; 27
Z Li (1874_CR10) 2007; 277
C Kaixun (1874_CR13) 2020; 94
C Wuensch (1874_CR17) 2013; 168
AV Marenich (1874_CR31) 2009; 113
LN Ferguson (1874_CR3) 1950; 72
S Kressirer (1874_CR6) 2013; 47
T Iijima (1874_CR11) 2008; 345
M Aresta (1874_CR12) 1998; 54
Z Markovic (1874_CR23) 2007; 47
X Yan (1874_CR27) 2013
D Cameron (1874_CR5) 1950; 15
DU Bapat (1874_CR8) 2017; 123
K Fukui (1874_CR32) 1981; 14
X Sheng (1874_CR16) 2021; 19
SJ Ahn (1874_CR7) 2013; 19
Z Markovic (1874_CR22) 2006; 46
M Sato (1874_CR15) 2015; 122
AL Dessimoz (1874_CR21) 2012; 200–202
MR Montinari (1874_CR1) 2019; 113
AS Lindsey (1874_CR2) 1957; 57
1874_CR28
References_xml – reference: CameronDJeskeyHBaineOTJ Org Chem1950152332361:CAS:528:DyaG3cXjvVShtg%3D%3D10.1021/jo01148a002
– reference: YanXChengZYueZYuanPRes Chem Intermediat201440304530581:CAS:528:DC%2BC3sXkt1KgsL0%3D10.1007/s11164-013-1150-z
– reference: AbeKNakadaAMatsumotoTUchijyoDMoriHChangHCJ Org Chem2021869599691:CAS:528:DC%2BB3cXitlKrs7rP10.1021/acs.joc.0c02456
– reference: FukuiKAcc Chem Res1981143633681:CAS:528:DyaL3MXmtFSgtL0%3D10.1021/ar00072a001
– reference: LindseyASJeskeyHChem Rev1957575836201:CAS:528:DyaG1cXmtFGj10.1021/cr50016a001
– reference: FergusonLNHolmesRRCalvinMJ Am Chem Soc19507253151:CAS:528:DyaG3MXisVWqsg%3D%3D10.1021/ja01167a509
– reference: BaineOAdamsonGFBartonJWFitchJLSwayampatiDRJeskeyHJ Org Chem1954195105141:CAS:528:DyaG2MXitlOmsg%3D%3D10.1021/jo01369a006
– reference: HesselVHofmannCLöbPLöhndorfJLöweHZiogasAOrg Process Res Dev200594794891:CAS:528:DC%2BD2MXksl2mur0%3D10.1021/op050045q
– reference: Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104
– reference: AhnSJLeeYKJ Ind Eng Chem201319206020631:CAS:528:DC%2BC3sXlvFWltrY%3D10.1016/j.jiec.2013.03.016
– reference: YanXChengZYueZYuanPRes Chem Intermediat201440305930711:CAS:528:DC%2BC3sXkt1Knt7o%3D10.1007/s11164-013-1151-y
– reference: PesciLGlueckSMGurikovPSmirnovaIFaberKLieseAFEBS J2015282133413451:CAS:528:DC%2BC2MXlsFart7s%3D10.1111/febs.13225
– reference: BapatDUPatwardhanAWChem Eng Res Des20171233173321:CAS:528:DC%2BC2sXptlSiu70%3D10.1016/j.cherd.2017.05.011
– reference: ZhaoYTruhlarDGTheor Chem Acc20081202152411:CAS:528:DC%2BD1cXltFyltbY%3D10.1007/s00214-007-0310-x
– reference: SatoMSakuraiNSuzukiHShibataDKinoKJ Mol Catal B Enzym20151223483521:CAS:528:DC%2BC2MXhslGmtbrF10.1016/j.molcatb.2015.10.006
– reference: ShanthiBPalaniveluKUltrason Sonochem2015272682761:CAS:528:DC%2BC2MXovVChtbw%3D10.1016/j.ultsonch.2015.05.019
– reference: ZhangXRenJYaoPGongRWangMWuQZhuDEnzyme Microb Technol201811337431:CAS:528:DC%2BC1cXjsFajt7Y%3D10.1016/j.enzmictec.2018.02.008
– reference: KressirerSKralischDStarkAKrtschilUHesselVEnviron Sci Technol201347536253711:CAS:528:DC%2BC3sXlvFSqtbw%3D10.1021/es400085y
– reference: MarenichAVCramerCJTruhlarDGJ Phys Chem B2009113637863961:CAS:528:DC%2BD1MXksV2is74%3D10.1021/jp810292n
– reference: ArestaMQuarantaELiberioRDileoCTommasi lTetrahedron199854884188461:CAS:528:DyaK1cXksFCqsrY%3D10.1016/S0040-4020(98)00475-X
– reference: Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth G A, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, revision D.01; Wallingford, CT: Gaussian, Inc
– reference: Lu T, Chen Q (2021) Comput Theor Chem 1200:113249
– reference: LiZSuKJ Mol Catal A-Chem20072771801841:CAS:528:DC%2BD2sXht1Smsb7F10.1016/j.molcata.2007.07.041
– reference: Legault CY (2009) CYLview, v 1.0b; Universite de Sherbrooke
– reference: MarkovicZMarkovicSBegovicNJ Chem Inf Model200646195719641:CAS:528:DC%2BD28XlsFaktbk%3D10.1021/ci0600556
– reference: MontinariMRMinelliSCaterinaRDVasc Pharmacol2019113181:CAS:528:DC%2BC1cXit1ymsL%2FE10.1016/j.vph.2018.10.008
– reference: StanescuIAchenieLEKChem Eng Sci200661619962121:CAS:528:DC%2BD28Xns1Gqtr0%3D10.1016/j.ces.2006.05.025
– reference: KaixunCYanFXupengCJianLHaoTJingTProcess Biochem20209420721210.1016/j.procbio.2020.04.030
– reference: DessimozALBerguerandCRenkenAKiwi-MinskerLChem Eng J2012200–20273874710.1016/j.cej.2012.04.099
– reference: IijimaTYamaguchiTAppl Catal A-Gen200834512171:CAS:528:DC%2BD1cXnvVGgt7k%3D10.1016/j.apcata.2008.03.037
– reference: ShengXHimoFComput Struct Biotec202119317631861:CAS:528:DC%2BB3MXitFKisrvN10.1016/j.csbj.2021.05.044
– reference: WuenschCSchmidtNGrossJGrischekBGlueckSMFaberKJ Biotechnol20131682642701:CAS:528:DC%2BC3sXht1GmsbbN10.1016/j.jbiotec.2013.07.017
– reference: MarkovicZMarkovicSManojlovicNPredojevic-SimovicJJ Chem Inf Model200747152015251:CAS:528:DC%2BD2sXlsVSgtLg%3D10.1021/ci700068b
– reference: YanXStudy on the reaction process and mechanism of synthesizing 3,6-dichloro salicylic acid by Kolbe-Schmitt reaction2013ShanghaiEast China university of science and technology
– reference: GonzalezCSchlegelBJ Chem Phys198990215421611:CAS:528:DyaL1MXhsVahtbk%3D10.1063/1.456010
– volume: 47
  start-page: 5362
  year: 2013
  ident: 1874_CR6
  publication-title: Environ Sci Technol
  doi: 10.1021/es400085y
– volume: 40
  start-page: 3059
  year: 2014
  ident: 1874_CR26
  publication-title: Res Chem Intermediat
  doi: 10.1007/s11164-013-1151-y
– volume: 15
  start-page: 233
  year: 1950
  ident: 1874_CR5
  publication-title: J Org Chem
  doi: 10.1021/jo01148a002
– volume: 345
  start-page: 12
  year: 2008
  ident: 1874_CR11
  publication-title: Appl Catal A-Gen
  doi: 10.1016/j.apcata.2008.03.037
– volume: 282
  start-page: 1334
  year: 2015
  ident: 1874_CR14
  publication-title: FEBS J
  doi: 10.1111/febs.13225
– volume: 168
  start-page: 264
  year: 2013
  ident: 1874_CR17
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2013.07.017
– volume: 72
  start-page: 5315
  year: 1950
  ident: 1874_CR3
  publication-title: J Am Chem Soc
  doi: 10.1021/ja01167a509
– volume: 19
  start-page: 510
  year: 1954
  ident: 1874_CR4
  publication-title: J Org Chem
  doi: 10.1021/jo01369a006
– volume: 120
  start-page: 215
  year: 2008
  ident: 1874_CR29
  publication-title: Theor Chem Acc
  doi: 10.1007/s00214-007-0310-x
– volume: 9
  start-page: 479
  year: 2005
  ident: 1874_CR9
  publication-title: Org Process Res Dev
  doi: 10.1021/op050045q
– volume: 113
  start-page: 1
  year: 2019
  ident: 1874_CR1
  publication-title: Vasc Pharmacol
  doi: 10.1016/j.vph.2018.10.008
– volume: 40
  start-page: 3045
  year: 2014
  ident: 1874_CR24
  publication-title: Res Chem Intermediat
  doi: 10.1007/s11164-013-1150-z
– volume: 61
  start-page: 6199
  year: 2006
  ident: 1874_CR25
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2006.05.025
– volume: 277
  start-page: 180
  year: 2007
  ident: 1874_CR10
  publication-title: J Mol Catal A-Chem
  doi: 10.1016/j.molcata.2007.07.041
– volume: 47
  start-page: 1520
  year: 2007
  ident: 1874_CR23
  publication-title: J Chem Inf Model
  doi: 10.1021/ci700068b
– ident: 1874_CR34
  doi: 10.1016/j.comptc.2021.113249
– volume: 200–202
  start-page: 738
  year: 2012
  ident: 1874_CR21
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2012.04.099
– volume: 123
  start-page: 317
  year: 2017
  ident: 1874_CR8
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2017.05.011
– volume: 113
  start-page: 6378
  year: 2009
  ident: 1874_CR31
  publication-title: J Phys Chem B
  doi: 10.1021/jp810292n
– volume: 86
  start-page: 959
  year: 2021
  ident: 1874_CR20
  publication-title: J Org Chem
  doi: 10.1021/acs.joc.0c02456
– volume: 14
  start-page: 363
  year: 1981
  ident: 1874_CR32
  publication-title: Acc Chem Res
  doi: 10.1021/ar00072a001
– volume: 19
  start-page: 2060
  year: 2013
  ident: 1874_CR7
  publication-title: J Ind Eng Chem
  doi: 10.1016/j.jiec.2013.03.016
– volume: 90
  start-page: 2154
  year: 1989
  ident: 1874_CR33
  publication-title: J Chem Phys
  doi: 10.1063/1.456010
– ident: 1874_CR35
– volume: 57
  start-page: 583
  year: 1957
  ident: 1874_CR2
  publication-title: Chem Rev
  doi: 10.1021/cr50016a001
– volume-title: Study on the reaction process and mechanism of synthesizing 3,6-dichloro salicylic acid by Kolbe-Schmitt reaction
  year: 2013
  ident: 1874_CR27
– volume: 54
  start-page: 8841
  year: 1998
  ident: 1874_CR12
  publication-title: Tetrahedron
  doi: 10.1016/S0040-4020(98)00475-X
– volume: 19
  start-page: 3176
  year: 2021
  ident: 1874_CR16
  publication-title: Comput Struct Biotec
  doi: 10.1016/j.csbj.2021.05.044
– volume: 27
  start-page: 268
  year: 2015
  ident: 1874_CR19
  publication-title: Ultrason Sonochem
  doi: 10.1016/j.ultsonch.2015.05.019
– volume: 113
  start-page: 37
  year: 2018
  ident: 1874_CR18
  publication-title: Enzyme Microb Technol
  doi: 10.1016/j.enzmictec.2018.02.008
– ident: 1874_CR28
– volume: 94
  start-page: 207
  year: 2020
  ident: 1874_CR13
  publication-title: Process Biochem
  doi: 10.1016/j.procbio.2020.04.030
– ident: 1874_CR30
  doi: 10.1063/1.3382344
– volume: 46
  start-page: 1957
  year: 2006
  ident: 1874_CR22
  publication-title: J Chem Inf Model
  doi: 10.1021/ci0600556
– volume: 122
  start-page: 348
  year: 2015
  ident: 1874_CR15
  publication-title: J Mol Catal B Enzym
  doi: 10.1016/j.molcatb.2015.10.006
SSID ssj0011635
Score 2.2725518
Snippet Experimental studies on the Kolbe–Schmitt reaction and its side reactions have made great progresses; however, the relative theoretical studies fall behind. In...
Experimental studies on the Kolbe-Schmitt reaction and its side reactions have made great progresses; however, the relative theoretical studies fall behind. In...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 601
SubjectTerms Activation energy
Chemistry
Chemistry and Materials Science
Computer Applications in Chemistry
Gibbs free energy
Original Research
Physical Chemistry
Reaction mechanisms
Theoretical and Computational Chemistry
Thermodynamics
Title DFT study on reaction mechanism of di-tert-butylphenol to di-tert-butylhydroxybenzoic acid
URI https://link.springer.com/article/10.1007/s11224-021-01874-z
https://www.proquest.com/docview/2640559182
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgO8AF8RTjpRyQOECkrq91x2kwEAhOTAIuUeOmotLWIlYO7NdjZ-0mnhLXNk1Tu3Fs-fNngGNyCTAy6EsX0ZV-J0HZ9bAraSehl9CZhBbyf3sXXg3964fgoSoKm9Ro9zolaS31otiNk0CSIQW2kZycLkMzoNidgVxDtzfPHZCHEcw4CBi46DhVqczPc3w6jr4a5W_ZUXvoDNZhrfIWRW-m3g1YMvkmrPTrJm1b8HQ-uBeWIlYUuSAH0JYpiLHhgt5sMhZFKpJMcuJf6rfyfcSQrmIkyuLz5ef3hPEs2uTTIkMRY5Zsw3Bwcd-_klW7BIkUBJZktiLj0nmtQxM5AZokIllr3-jI8TDVsWESUGTGLc84qRdhiMbRXkruNTlt7djbgUZe5GYXhBs7ndjT6CZp7LfjlGIQmodikSAlmxB1WtCupaaw4hLnlhYjtWBBZkkrkrSyklbTFpzOn3mZMWn8OfqElaF4m9HMGFfVArQ-JqxSPfqMLms_bMFBrS9V7b-JovU6FCtR8NSCs1qHi9u_v3fvf8P3YdXleggL5TmARvn6Zg7JSyn1ETR7l483F0f25_wALJ3fiA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4HOCCeIrBgBxAHCBSl7Zbd-AwDabxPG0S4hIaNxWTthaxIrT9Hn4oTtYy8ZQ4cO0jde04tuXPNsA-uQQYaPS4QBTcq0XI6y7WOWkSuhHZJLSQ_-ubarvrXdz6tzPwWtTCWLR7kZK0J_W02M0kgbiBFNhBcnycQykv9eiFArXhyfkpSfVAiNZZp9nm-SwBjhQhZaTTgRZkzFRVB46POgqIEOVpFTguxirUpkMmmnZUrnZiN8Aqake5Mfme5NFUQpfWnYV5cj4Coztd0XjPVZBH4096HhigpOPkpTnf0_zB_H02Al-ysdbItZZhKfdOWWOynVZgRiersNAshsKtwd1pq8NsS1qWJowcTlsWwQbaFBD3hgOWxizqcQM04Oo5G_UNhCztsyz9ePlhFBn8jNLJOO0hC7EXrUP3X1i6AXNJmuhNYCJ0aqGrUERx6FXCmGIeWodiHz-mMyiolaBScE1i3rvcjNDoy2nXZcNpSZyWltNyXIKj93ceJ507fn360AhDGrWmlTHMqxOIPtMgSzboN-q-oIi1BOVCXjLX96Ekeh2KzShYK8FxIcPp7Z-_u_W3x_dgod25vpJX5zeX27AoTC2GhRGVYS57etY75CFlatduUAb3_60Rb_i1Gqw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RkFouCGirhuceQD20K5y1nTgHDhEh4q0eiIS4bL3jtRop2IgYoeRX8ROZ2dhElIfEgau9Xq9ndzwz2u_7FmCLUgKMLAZSISoZNBOULR9bkjwJ_YRiEjrI_-lZ46AXHF2EFzNwX3FhHNq92pKccBpYpSkrdq6TdGdKfOMNIcnwAneonByXsMpjO7qjom24e9ihGd5Wqrt_vncgy3MFJFK1VJB_R1ZRYDMNG3kh2iSiQZnAmsjzMTWxZbVMZGkq33qpH2EDrWf8lPJQym7qsU_9foK5gNnH5EE91X7ct6DsJpzoHzBo0vNKms7LY34SCv8PCM92Zl3A6y7CQpmpivZkaS3BjM2W4ctedUDcV7jsdM-Fk6cVeSYo-XQUCXFlmUzcH16JPBVJXzLoQJrbYjRgOFk-EEX-9PK_UcJYGmOzcd5HEWM_-Qa9DzHpd5jN8sz-AKFirxn7BlWSxkE9Tqn-oX6oDgpT-h9FzRrUK6tpLHXM-TiNgZ4qMLOlNVlaO0vrcQ1-PT5zPVHxeLP1T54MzS5OPWNcMhVofCyWpdv0Ga1QUfVag7VqvnTp-0NN4_WoTqPCrQa_qzmc3n79vSvva74Jn_90uvrk8Ox4FeYV0zIcomgNZoubW7tOyVJhNtz6FPD3ox3iAYA6Ht8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DFT+study+on+reaction+mechanism+of+di-tert-butylphenol+to+di-tert-butylhydroxybenzoic+acid&rft.jtitle=Structural+chemistry&rft.au=Jin%2C+Neng-Zhi&rft.au=Zhang%2C+Qi-Bin&rft.au=Liu%2C+Rong&rft.au=Zhou%2C+Pan-Pan&rft.date=2022-04-01&rft.issn=1040-0400&rft.eissn=1572-9001&rft.volume=33&rft.issue=2&rft.spage=601&rft.epage=606&rft_id=info:doi/10.1007%2Fs11224-021-01874-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11224_021_01874_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-0400&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-0400&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-0400&client=summon