DFT study on reaction mechanism of di-tert-butylphenol to di-tert-butylhydroxybenzoic acid
Experimental studies on the Kolbe–Schmitt reaction and its side reactions have made great progresses; however, the relative theoretical studies fall behind. In order to study the mechanism of the Kolbe–Schmitt reaction with 2,6-di-tert-butylphenol and 2,4-di-tert-butylphenol as reactants, we carried...
Saved in:
Published in | Structural chemistry Vol. 33; no. 2; pp. 601 - 606 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2022
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Experimental studies on the Kolbe–Schmitt reaction and its side reactions have made great progresses; however, the relative theoretical studies fall behind. In order to study the mechanism of the Kolbe–Schmitt reaction with 2,6-di-tert-butylphenol and 2,4-di-tert-butylphenol as reactants, we carried out theoretical calculation studies at the M06-2X/Def2-SVP/SMD level of theory using the Gaussian 09 D.01 software package. For the reactant 2,6-di-tert-butylphenol, there is a dynamic equilibrium between the main product and side product, which can rapidly transform into each other at 160 °C by crossing the Gibbs free energy barrier of 14.1 kcal/mol. Moreover, the relative Gibbs free energy of the main product and side product is close; both of them may be observed in the experimental system. However, for 2,4-di-tert-butylphenol, the main product is thermodynamically favorable due to its lower Gibbs free energy, while the side product is kinetically favorable due to the lower activation energy barrier; the main product and the side product compete with each other. We hope the study can shed light on the Kolbe–Schmitt reaction. |
---|---|
AbstractList | Experimental studies on the Kolbe-Schmitt reaction and its side reactions have made great progresses; however, the relative theoretical studies fall behind. In order to study the mechanism of the Kolbe-Schmitt reaction with 2,6-di-tert-butylphenol and 2,4-di-tert-butylphenol as reactants, we carried out theoretical calculation studies at the M06-2X/Def2-SVP/SMD level of theory using the Gaussian 09 D.01 software package. For the reactant 2,6-di-tert-butylphenol, there is a dynamic equilibrium between the main product and side product, which can rapidly transform into each other at 160 °C by crossing the Gibbs free energy barrier of 14.1 kcal/mol. Moreover, the relative Gibbs free energy of the main product and side product is close; both of them may be observed in the experimental system. However, for 2,4-di-tert-butylphenol, the main product is thermodynamically favorable due to its lower Gibbs free energy, while the side product is kinetically favorable due to the lower activation energy barrier; the main product and the side product compete with each other. We hope the study can shed light on the Kolbe-Schmitt reaction. Experimental studies on the Kolbe–Schmitt reaction and its side reactions have made great progresses; however, the relative theoretical studies fall behind. In order to study the mechanism of the Kolbe–Schmitt reaction with 2,6-di-tert-butylphenol and 2,4-di-tert-butylphenol as reactants, we carried out theoretical calculation studies at the M06-2X/Def2-SVP/SMD level of theory using the Gaussian 09 D.01 software package. For the reactant 2,6-di-tert-butylphenol, there is a dynamic equilibrium between the main product and side product, which can rapidly transform into each other at 160 °C by crossing the Gibbs free energy barrier of 14.1 kcal/mol. Moreover, the relative Gibbs free energy of the main product and side product is close; both of them may be observed in the experimental system. However, for 2,4-di-tert-butylphenol, the main product is thermodynamically favorable due to its lower Gibbs free energy, while the side product is kinetically favorable due to the lower activation energy barrier; the main product and the side product compete with each other. We hope the study can shed light on the Kolbe–Schmitt reaction. |
Audience | Academic |
Author | Zhang, Qi-Bin Liu, Rong Jin, Neng-Zhi Zhou, Pan-Pan |
Author_xml | – sequence: 1 givenname: Neng-Zhi orcidid: 0000-0003-3503-0595 surname: Jin fullname: Jin, Neng-Zhi email: jin_n_z@163.com organization: Key Laboratory of Cloud Computing of Gansu Province, Gansu Computing Center – sequence: 2 givenname: Qi-Bin surname: Zhang fullname: Zhang, Qi-Bin organization: Key Laboratory of Cloud Computing of Gansu Province, Gansu Computing Center – sequence: 3 givenname: Rong surname: Liu fullname: Liu, Rong organization: Key Laboratory of Fine Chemicals of Gansu Province, Gansu Chemical Industry Research Institute Co., Ltd – sequence: 4 givenname: Pan-Pan surname: Zhou fullname: Zhou, Pan-Pan organization: Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University |
BookMark | eNp9kEtLAzEUhYNU8PkHXA24jt4k81xKtSoIbnTjJmQyd2xkmtQkBae_3ugIoosSQi6H891DzhGZWWeRkDMGFwygugyMcZ5T4IwCq6ucbvfIISsqThsANksz5EDThQNyFMJbElkpikPycr14ykLcdGPmbOZR6WjSsEK9VNaEVeb6rDM0oo-03cRxWC_RuiGL7q-8HDvvPsYW7dYZnSltuhOy36sh4OnPe0yeFzdP8zv68Hh7P796oDoHHmnDauQ1422JNRQau7qDqs2xrUHovlUoGDS6qEAIhF7UutQIregr3kBRMSWOyfm0d-3d-wZDlG9u422KlLzMoShSAk-ui8n1qgaUxvYueqXT6XBldGqzN0m_SjFNwYGXCagnQHsXgsdeahPVVzsJNINkIL-ql1P1MlUvv6uX24Tyf-jam5Xy425ITFBIZvuK_vcbO6hPTbKZUA |
CitedBy_id | crossref_primary_10_3390_molecules30020248 |
Cites_doi | 10.1021/es400085y 10.1007/s11164-013-1151-y 10.1021/jo01148a002 10.1016/j.apcata.2008.03.037 10.1111/febs.13225 10.1016/j.jbiotec.2013.07.017 10.1021/ja01167a509 10.1021/jo01369a006 10.1007/s00214-007-0310-x 10.1021/op050045q 10.1016/j.vph.2018.10.008 10.1007/s11164-013-1150-z 10.1016/j.ces.2006.05.025 10.1016/j.molcata.2007.07.041 10.1021/ci700068b 10.1016/j.comptc.2021.113249 10.1016/j.cej.2012.04.099 10.1016/j.cherd.2017.05.011 10.1021/jp810292n 10.1021/acs.joc.0c02456 10.1021/ar00072a001 10.1016/j.jiec.2013.03.016 10.1063/1.456010 10.1021/cr50016a001 10.1016/S0040-4020(98)00475-X 10.1016/j.csbj.2021.05.044 10.1016/j.ultsonch.2015.05.019 10.1016/j.enzmictec.2018.02.008 10.1016/j.procbio.2020.04.030 10.1063/1.3382344 10.1021/ci0600556 10.1016/j.molcatb.2015.10.006 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 COPYRIGHT 2022 Springer The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: COPYRIGHT 2022 Springer – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11224-021-01874-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1572-9001 |
EndPage | 606 |
ExternalDocumentID | A703952026 10_1007_s11224_021_01874_z |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9N PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 W4F WJK WK8 YLTOR Z45 Z7U Z7V Z7X Z7Y Z86 Z8O Z8P Z8S Z92 ZKB ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION AEIIB ABRTQ |
ID | FETCH-LOGICAL-c402t-918e2812b6e805ced8d07b4eb803cfbae3109c57033e0f38c6ce0b3f7290571a3 |
IEDL.DBID | U2A |
ISSN | 1040-0400 |
IngestDate | Fri Jul 25 09:13:16 EDT 2025 Tue Jun 10 21:05:00 EDT 2025 Tue Jul 01 04:23:54 EDT 2025 Thu Apr 24 23:05:55 EDT 2025 Fri Feb 21 02:48:02 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Reaction mechanism Kolbe–Schmitt 2,6-Di-tert-butylphenol 2,4-Di-tert-butylphenol |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-918e2812b6e805ced8d07b4eb803cfbae3109c57033e0f38c6ce0b3f7290571a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3503-0595 |
OpenAccessLink | http://ir.lzu.edu.cn/handle/262010/476257 |
PQID | 2640559182 |
PQPubID | 2043716 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2640559182 gale_infotracacademiconefile_A703952026 crossref_citationtrail_10_1007_s11224_021_01874_z crossref_primary_10_1007_s11224_021_01874_z springer_journals_10_1007_s11224_021_01874_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | Computational and Experimental Studies of Chemical and Biological Systems |
PublicationTitle | Structural chemistry |
PublicationTitleAbbrev | Struct Chem |
PublicationYear | 2022 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | AbeKNakadaAMatsumotoTUchijyoDMoriHChangHCJ Org Chem2021869599691:CAS:528:DC%2BB3cXitlKrs7rP10.1021/acs.joc.0c02456 FergusonLNHolmesRRCalvinMJ Am Chem Soc19507253151:CAS:528:DyaG3MXisVWqsg%3D%3D10.1021/ja01167a509 SatoMSakuraiNSuzukiHShibataDKinoKJ Mol Catal B Enzym20151223483521:CAS:528:DC%2BC2MXhslGmtbrF10.1016/j.molcatb.2015.10.006 PesciLGlueckSMGurikovPSmirnovaIFaberKLieseAFEBS J2015282133413451:CAS:528:DC%2BC2MXlsFart7s%3D10.1111/febs.13225 ZhaoYTruhlarDGTheor Chem Acc20081202152411:CAS:528:DC%2BD1cXltFyltbY%3D10.1007/s00214-007-0310-x Lu T, Chen Q (2021) Comput Theor Chem 1200:113249 IijimaTYamaguchiTAppl Catal A-Gen200834512171:CAS:528:DC%2BD1cXnvVGgt7k%3D10.1016/j.apcata.2008.03.037 AhnSJLeeYKJ Ind Eng Chem201319206020631:CAS:528:DC%2BC3sXlvFWltrY%3D10.1016/j.jiec.2013.03.016 GonzalezCSchlegelBJ Chem Phys198990215421611:CAS:528:DyaL1MXhsVahtbk%3D10.1063/1.456010 BapatDUPatwardhanAWChem Eng Res Des20171233173321:CAS:528:DC%2BC2sXptlSiu70%3D10.1016/j.cherd.2017.05.011 MarkovicZMarkovicSBegovicNJ Chem Inf Model200646195719641:CAS:528:DC%2BD28XlsFaktbk%3D10.1021/ci0600556 BaineOAdamsonGFBartonJWFitchJLSwayampatiDRJeskeyHJ Org Chem1954195105141:CAS:528:DyaG2MXitlOmsg%3D%3D10.1021/jo01369a006 DessimozALBerguerandCRenkenAKiwi-MinskerLChem Eng J2012200–20273874710.1016/j.cej.2012.04.099 StanescuIAchenieLEKChem Eng Sci200661619962121:CAS:528:DC%2BD28Xns1Gqtr0%3D10.1016/j.ces.2006.05.025 LiZSuKJ Mol Catal A-Chem20072771801841:CAS:528:DC%2BD2sXht1Smsb7F10.1016/j.molcata.2007.07.041 ShanthiBPalaniveluKUltrason Sonochem2015272682761:CAS:528:DC%2BC2MXovVChtbw%3D10.1016/j.ultsonch.2015.05.019 YanXChengZYueZYuanPRes Chem Intermediat201440304530581:CAS:528:DC%2BC3sXkt1KgsL0%3D10.1007/s11164-013-1150-z CameronDJeskeyHBaineOTJ Org Chem1950152332361:CAS:528:DyaG3cXjvVShtg%3D%3D10.1021/jo01148a002 Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104 MarkovicZMarkovicSManojlovicNPredojevic-SimovicJJ Chem Inf Model200747152015251:CAS:528:DC%2BD2sXlsVSgtLg%3D10.1021/ci700068b FukuiKAcc Chem Res1981143633681:CAS:528:DyaL3MXmtFSgtL0%3D10.1021/ar00072a001 ArestaMQuarantaELiberioRDileoCTommasi lTetrahedron199854884188461:CAS:528:DyaK1cXksFCqsrY%3D10.1016/S0040-4020(98)00475-X HesselVHofmannCLöbPLöhndorfJLöweHZiogasAOrg Process Res Dev200594794891:CAS:528:DC%2BD2MXksl2mur0%3D10.1021/op050045q KaixunCYanFXupengCJianLHaoTJingTProcess Biochem20209420721210.1016/j.procbio.2020.04.030 KressirerSKralischDStarkAKrtschilUHesselVEnviron Sci Technol201347536253711:CAS:528:DC%2BC3sXlvFSqtbw%3D10.1021/es400085y MarenichAVCramerCJTruhlarDGJ Phys Chem B2009113637863961:CAS:528:DC%2BD1MXksV2is74%3D10.1021/jp810292n Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth G A, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, revision D.01; Wallingford, CT: Gaussian, Inc WuenschCSchmidtNGrossJGrischekBGlueckSMFaberKJ Biotechnol20131682642701:CAS:528:DC%2BC3sXht1GmsbbN10.1016/j.jbiotec.2013.07.017 ZhangXRenJYaoPGongRWangMWuQZhuDEnzyme Microb Technol201811337431:CAS:528:DC%2BC1cXjsFajt7Y%3D10.1016/j.enzmictec.2018.02.008 Legault CY (2009) CYLview, v 1.0b; Universite de Sherbrooke MontinariMRMinelliSCaterinaRDVasc Pharmacol2019113181:CAS:528:DC%2BC1cXit1ymsL%2FE10.1016/j.vph.2018.10.008 YanXStudy on the reaction process and mechanism of synthesizing 3,6-dichloro salicylic acid by Kolbe-Schmitt reaction2013ShanghaiEast China university of science and technology ShengXHimoFComput Struct Biotec202119317631861:CAS:528:DC%2BB3MXitFKisrvN10.1016/j.csbj.2021.05.044 YanXChengZYueZYuanPRes Chem Intermediat201440305930711:CAS:528:DC%2BC3sXkt1Knt7o%3D10.1007/s11164-013-1151-y LindseyASJeskeyHChem Rev1957575836201:CAS:528:DyaG1cXmtFGj10.1021/cr50016a001 I Stanescu (1874_CR25) 2006; 61 1874_CR34 X Yan (1874_CR24) 2014; 40 1874_CR35 X Yan (1874_CR26) 2014; 40 L Pesci (1874_CR14) 2015; 282 Y Zhao (1874_CR29) 2008; 120 K Abe (1874_CR20) 2021; 86 V Hessel (1874_CR9) 2005; 9 X Zhang (1874_CR18) 2018; 113 O Baine (1874_CR4) 1954; 19 1874_CR30 C Gonzalez (1874_CR33) 1989; 90 B Shanthi (1874_CR19) 2015; 27 Z Li (1874_CR10) 2007; 277 C Kaixun (1874_CR13) 2020; 94 C Wuensch (1874_CR17) 2013; 168 AV Marenich (1874_CR31) 2009; 113 LN Ferguson (1874_CR3) 1950; 72 S Kressirer (1874_CR6) 2013; 47 T Iijima (1874_CR11) 2008; 345 M Aresta (1874_CR12) 1998; 54 Z Markovic (1874_CR23) 2007; 47 X Yan (1874_CR27) 2013 D Cameron (1874_CR5) 1950; 15 DU Bapat (1874_CR8) 2017; 123 K Fukui (1874_CR32) 1981; 14 X Sheng (1874_CR16) 2021; 19 SJ Ahn (1874_CR7) 2013; 19 Z Markovic (1874_CR22) 2006; 46 M Sato (1874_CR15) 2015; 122 AL Dessimoz (1874_CR21) 2012; 200–202 MR Montinari (1874_CR1) 2019; 113 AS Lindsey (1874_CR2) 1957; 57 1874_CR28 |
References_xml | – reference: CameronDJeskeyHBaineOTJ Org Chem1950152332361:CAS:528:DyaG3cXjvVShtg%3D%3D10.1021/jo01148a002 – reference: YanXChengZYueZYuanPRes Chem Intermediat201440304530581:CAS:528:DC%2BC3sXkt1KgsL0%3D10.1007/s11164-013-1150-z – reference: AbeKNakadaAMatsumotoTUchijyoDMoriHChangHCJ Org Chem2021869599691:CAS:528:DC%2BB3cXitlKrs7rP10.1021/acs.joc.0c02456 – reference: FukuiKAcc Chem Res1981143633681:CAS:528:DyaL3MXmtFSgtL0%3D10.1021/ar00072a001 – reference: LindseyASJeskeyHChem Rev1957575836201:CAS:528:DyaG1cXmtFGj10.1021/cr50016a001 – reference: FergusonLNHolmesRRCalvinMJ Am Chem Soc19507253151:CAS:528:DyaG3MXisVWqsg%3D%3D10.1021/ja01167a509 – reference: BaineOAdamsonGFBartonJWFitchJLSwayampatiDRJeskeyHJ Org Chem1954195105141:CAS:528:DyaG2MXitlOmsg%3D%3D10.1021/jo01369a006 – reference: HesselVHofmannCLöbPLöhndorfJLöweHZiogasAOrg Process Res Dev200594794891:CAS:528:DC%2BD2MXksl2mur0%3D10.1021/op050045q – reference: Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104 – reference: AhnSJLeeYKJ Ind Eng Chem201319206020631:CAS:528:DC%2BC3sXlvFWltrY%3D10.1016/j.jiec.2013.03.016 – reference: YanXChengZYueZYuanPRes Chem Intermediat201440305930711:CAS:528:DC%2BC3sXkt1Knt7o%3D10.1007/s11164-013-1151-y – reference: PesciLGlueckSMGurikovPSmirnovaIFaberKLieseAFEBS J2015282133413451:CAS:528:DC%2BC2MXlsFart7s%3D10.1111/febs.13225 – reference: BapatDUPatwardhanAWChem Eng Res Des20171233173321:CAS:528:DC%2BC2sXptlSiu70%3D10.1016/j.cherd.2017.05.011 – reference: ZhaoYTruhlarDGTheor Chem Acc20081202152411:CAS:528:DC%2BD1cXltFyltbY%3D10.1007/s00214-007-0310-x – reference: SatoMSakuraiNSuzukiHShibataDKinoKJ Mol Catal B Enzym20151223483521:CAS:528:DC%2BC2MXhslGmtbrF10.1016/j.molcatb.2015.10.006 – reference: ShanthiBPalaniveluKUltrason Sonochem2015272682761:CAS:528:DC%2BC2MXovVChtbw%3D10.1016/j.ultsonch.2015.05.019 – reference: ZhangXRenJYaoPGongRWangMWuQZhuDEnzyme Microb Technol201811337431:CAS:528:DC%2BC1cXjsFajt7Y%3D10.1016/j.enzmictec.2018.02.008 – reference: KressirerSKralischDStarkAKrtschilUHesselVEnviron Sci Technol201347536253711:CAS:528:DC%2BC3sXlvFSqtbw%3D10.1021/es400085y – reference: MarenichAVCramerCJTruhlarDGJ Phys Chem B2009113637863961:CAS:528:DC%2BD1MXksV2is74%3D10.1021/jp810292n – reference: ArestaMQuarantaELiberioRDileoCTommasi lTetrahedron199854884188461:CAS:528:DyaK1cXksFCqsrY%3D10.1016/S0040-4020(98)00475-X – reference: Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth G A, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, revision D.01; Wallingford, CT: Gaussian, Inc – reference: Lu T, Chen Q (2021) Comput Theor Chem 1200:113249 – reference: LiZSuKJ Mol Catal A-Chem20072771801841:CAS:528:DC%2BD2sXht1Smsb7F10.1016/j.molcata.2007.07.041 – reference: Legault CY (2009) CYLview, v 1.0b; Universite de Sherbrooke – reference: MarkovicZMarkovicSBegovicNJ Chem Inf Model200646195719641:CAS:528:DC%2BD28XlsFaktbk%3D10.1021/ci0600556 – reference: MontinariMRMinelliSCaterinaRDVasc Pharmacol2019113181:CAS:528:DC%2BC1cXit1ymsL%2FE10.1016/j.vph.2018.10.008 – reference: StanescuIAchenieLEKChem Eng Sci200661619962121:CAS:528:DC%2BD28Xns1Gqtr0%3D10.1016/j.ces.2006.05.025 – reference: KaixunCYanFXupengCJianLHaoTJingTProcess Biochem20209420721210.1016/j.procbio.2020.04.030 – reference: DessimozALBerguerandCRenkenAKiwi-MinskerLChem Eng J2012200–20273874710.1016/j.cej.2012.04.099 – reference: IijimaTYamaguchiTAppl Catal A-Gen200834512171:CAS:528:DC%2BD1cXnvVGgt7k%3D10.1016/j.apcata.2008.03.037 – reference: ShengXHimoFComput Struct Biotec202119317631861:CAS:528:DC%2BB3MXitFKisrvN10.1016/j.csbj.2021.05.044 – reference: WuenschCSchmidtNGrossJGrischekBGlueckSMFaberKJ Biotechnol20131682642701:CAS:528:DC%2BC3sXht1GmsbbN10.1016/j.jbiotec.2013.07.017 – reference: MarkovicZMarkovicSManojlovicNPredojevic-SimovicJJ Chem Inf Model200747152015251:CAS:528:DC%2BD2sXlsVSgtLg%3D10.1021/ci700068b – reference: YanXStudy on the reaction process and mechanism of synthesizing 3,6-dichloro salicylic acid by Kolbe-Schmitt reaction2013ShanghaiEast China university of science and technology – reference: GonzalezCSchlegelBJ Chem Phys198990215421611:CAS:528:DyaL1MXhsVahtbk%3D10.1063/1.456010 – volume: 47 start-page: 5362 year: 2013 ident: 1874_CR6 publication-title: Environ Sci Technol doi: 10.1021/es400085y – volume: 40 start-page: 3059 year: 2014 ident: 1874_CR26 publication-title: Res Chem Intermediat doi: 10.1007/s11164-013-1151-y – volume: 15 start-page: 233 year: 1950 ident: 1874_CR5 publication-title: J Org Chem doi: 10.1021/jo01148a002 – volume: 345 start-page: 12 year: 2008 ident: 1874_CR11 publication-title: Appl Catal A-Gen doi: 10.1016/j.apcata.2008.03.037 – volume: 282 start-page: 1334 year: 2015 ident: 1874_CR14 publication-title: FEBS J doi: 10.1111/febs.13225 – volume: 168 start-page: 264 year: 2013 ident: 1874_CR17 publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2013.07.017 – volume: 72 start-page: 5315 year: 1950 ident: 1874_CR3 publication-title: J Am Chem Soc doi: 10.1021/ja01167a509 – volume: 19 start-page: 510 year: 1954 ident: 1874_CR4 publication-title: J Org Chem doi: 10.1021/jo01369a006 – volume: 120 start-page: 215 year: 2008 ident: 1874_CR29 publication-title: Theor Chem Acc doi: 10.1007/s00214-007-0310-x – volume: 9 start-page: 479 year: 2005 ident: 1874_CR9 publication-title: Org Process Res Dev doi: 10.1021/op050045q – volume: 113 start-page: 1 year: 2019 ident: 1874_CR1 publication-title: Vasc Pharmacol doi: 10.1016/j.vph.2018.10.008 – volume: 40 start-page: 3045 year: 2014 ident: 1874_CR24 publication-title: Res Chem Intermediat doi: 10.1007/s11164-013-1150-z – volume: 61 start-page: 6199 year: 2006 ident: 1874_CR25 publication-title: Chem Eng Sci doi: 10.1016/j.ces.2006.05.025 – volume: 277 start-page: 180 year: 2007 ident: 1874_CR10 publication-title: J Mol Catal A-Chem doi: 10.1016/j.molcata.2007.07.041 – volume: 47 start-page: 1520 year: 2007 ident: 1874_CR23 publication-title: J Chem Inf Model doi: 10.1021/ci700068b – ident: 1874_CR34 doi: 10.1016/j.comptc.2021.113249 – volume: 200–202 start-page: 738 year: 2012 ident: 1874_CR21 publication-title: Chem Eng J doi: 10.1016/j.cej.2012.04.099 – volume: 123 start-page: 317 year: 2017 ident: 1874_CR8 publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2017.05.011 – volume: 113 start-page: 6378 year: 2009 ident: 1874_CR31 publication-title: J Phys Chem B doi: 10.1021/jp810292n – volume: 86 start-page: 959 year: 2021 ident: 1874_CR20 publication-title: J Org Chem doi: 10.1021/acs.joc.0c02456 – volume: 14 start-page: 363 year: 1981 ident: 1874_CR32 publication-title: Acc Chem Res doi: 10.1021/ar00072a001 – volume: 19 start-page: 2060 year: 2013 ident: 1874_CR7 publication-title: J Ind Eng Chem doi: 10.1016/j.jiec.2013.03.016 – volume: 90 start-page: 2154 year: 1989 ident: 1874_CR33 publication-title: J Chem Phys doi: 10.1063/1.456010 – ident: 1874_CR35 – volume: 57 start-page: 583 year: 1957 ident: 1874_CR2 publication-title: Chem Rev doi: 10.1021/cr50016a001 – volume-title: Study on the reaction process and mechanism of synthesizing 3,6-dichloro salicylic acid by Kolbe-Schmitt reaction year: 2013 ident: 1874_CR27 – volume: 54 start-page: 8841 year: 1998 ident: 1874_CR12 publication-title: Tetrahedron doi: 10.1016/S0040-4020(98)00475-X – volume: 19 start-page: 3176 year: 2021 ident: 1874_CR16 publication-title: Comput Struct Biotec doi: 10.1016/j.csbj.2021.05.044 – volume: 27 start-page: 268 year: 2015 ident: 1874_CR19 publication-title: Ultrason Sonochem doi: 10.1016/j.ultsonch.2015.05.019 – volume: 113 start-page: 37 year: 2018 ident: 1874_CR18 publication-title: Enzyme Microb Technol doi: 10.1016/j.enzmictec.2018.02.008 – ident: 1874_CR28 – volume: 94 start-page: 207 year: 2020 ident: 1874_CR13 publication-title: Process Biochem doi: 10.1016/j.procbio.2020.04.030 – ident: 1874_CR30 doi: 10.1063/1.3382344 – volume: 46 start-page: 1957 year: 2006 ident: 1874_CR22 publication-title: J Chem Inf Model doi: 10.1021/ci0600556 – volume: 122 start-page: 348 year: 2015 ident: 1874_CR15 publication-title: J Mol Catal B Enzym doi: 10.1016/j.molcatb.2015.10.006 |
SSID | ssj0011635 |
Score | 2.2725518 |
Snippet | Experimental studies on the Kolbe–Schmitt reaction and its side reactions have made great progresses; however, the relative theoretical studies fall behind. In... Experimental studies on the Kolbe-Schmitt reaction and its side reactions have made great progresses; however, the relative theoretical studies fall behind. In... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 601 |
SubjectTerms | Activation energy Chemistry Chemistry and Materials Science Computer Applications in Chemistry Gibbs free energy Original Research Physical Chemistry Reaction mechanisms Theoretical and Computational Chemistry Thermodynamics |
Title | DFT study on reaction mechanism of di-tert-butylphenol to di-tert-butylhydroxybenzoic acid |
URI | https://link.springer.com/article/10.1007/s11224-021-01874-z https://www.proquest.com/docview/2640559182 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgO8AF8RTjpRyQOECkrq91x2kwEAhOTAIuUeOmotLWIlYO7NdjZ-0mnhLXNk1Tu3Fs-fNngGNyCTAy6EsX0ZV-J0HZ9bAraSehl9CZhBbyf3sXXg3964fgoSoKm9Ro9zolaS31otiNk0CSIQW2kZycLkMzoNidgVxDtzfPHZCHEcw4CBi46DhVqczPc3w6jr4a5W_ZUXvoDNZhrfIWRW-m3g1YMvkmrPTrJm1b8HQ-uBeWIlYUuSAH0JYpiLHhgt5sMhZFKpJMcuJf6rfyfcSQrmIkyuLz5ef3hPEs2uTTIkMRY5Zsw3Bwcd-_klW7BIkUBJZktiLj0nmtQxM5AZokIllr3-jI8TDVsWESUGTGLc84qRdhiMbRXkruNTlt7djbgUZe5GYXhBs7ndjT6CZp7LfjlGIQmodikSAlmxB1WtCupaaw4hLnlhYjtWBBZkkrkrSyklbTFpzOn3mZMWn8OfqElaF4m9HMGFfVArQ-JqxSPfqMLms_bMFBrS9V7b-JovU6FCtR8NSCs1qHi9u_v3fvf8P3YdXleggL5TmARvn6Zg7JSyn1ETR7l483F0f25_wALJ3fiA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4HOCCeIrBgBxAHCBSl7Zbd-AwDabxPG0S4hIaNxWTthaxIrT9Hn4oTtYy8ZQ4cO0jde04tuXPNsA-uQQYaPS4QBTcq0XI6y7WOWkSuhHZJLSQ_-ubarvrXdz6tzPwWtTCWLR7kZK0J_W02M0kgbiBFNhBcnycQykv9eiFArXhyfkpSfVAiNZZp9nm-SwBjhQhZaTTgRZkzFRVB46POgqIEOVpFTguxirUpkMmmnZUrnZiN8Aqake5Mfme5NFUQpfWnYV5cj4Coztd0XjPVZBH4096HhigpOPkpTnf0_zB_H02Al-ysdbItZZhKfdOWWOynVZgRiersNAshsKtwd1pq8NsS1qWJowcTlsWwQbaFBD3hgOWxizqcQM04Oo5G_UNhCztsyz9ePlhFBn8jNLJOO0hC7EXrUP3X1i6AXNJmuhNYCJ0aqGrUERx6FXCmGIeWodiHz-mMyiolaBScE1i3rvcjNDoy2nXZcNpSZyWltNyXIKj93ceJ507fn360AhDGrWmlTHMqxOIPtMgSzboN-q-oIi1BOVCXjLX96Ekeh2KzShYK8FxIcPp7Z-_u_W3x_dgod25vpJX5zeX27AoTC2GhRGVYS57etY75CFlatduUAb3_60Rb_i1Gqw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RkFouCGirhuceQD20K5y1nTgHDhEh4q0eiIS4bL3jtRop2IgYoeRX8ROZ2dhElIfEgau9Xq9ndzwz2u_7FmCLUgKMLAZSISoZNBOULR9bkjwJ_YRiEjrI_-lZ46AXHF2EFzNwX3FhHNq92pKccBpYpSkrdq6TdGdKfOMNIcnwAneonByXsMpjO7qjom24e9ihGd5Wqrt_vncgy3MFJFK1VJB_R1ZRYDMNG3kh2iSiQZnAmsjzMTWxZbVMZGkq33qpH2EDrWf8lPJQym7qsU_9foK5gNnH5EE91X7ct6DsJpzoHzBo0vNKms7LY34SCv8PCM92Zl3A6y7CQpmpivZkaS3BjM2W4ctedUDcV7jsdM-Fk6cVeSYo-XQUCXFlmUzcH16JPBVJXzLoQJrbYjRgOFk-EEX-9PK_UcJYGmOzcd5HEWM_-Qa9DzHpd5jN8sz-AKFirxn7BlWSxkE9Tqn-oX6oDgpT-h9FzRrUK6tpLHXM-TiNgZ4qMLOlNVlaO0vrcQ1-PT5zPVHxeLP1T54MzS5OPWNcMhVofCyWpdv0Ga1QUfVag7VqvnTp-0NN4_WoTqPCrQa_qzmc3n79vSvva74Jn_90uvrk8Ox4FeYV0zIcomgNZoubW7tOyVJhNtz6FPD3ox3iAYA6Ht8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DFT+study+on+reaction+mechanism+of+di-tert-butylphenol+to+di-tert-butylhydroxybenzoic+acid&rft.jtitle=Structural+chemistry&rft.au=Jin%2C+Neng-Zhi&rft.au=Zhang%2C+Qi-Bin&rft.au=Liu%2C+Rong&rft.au=Zhou%2C+Pan-Pan&rft.date=2022-04-01&rft.issn=1040-0400&rft.eissn=1572-9001&rft.volume=33&rft.issue=2&rft.spage=601&rft.epage=606&rft_id=info:doi/10.1007%2Fs11224-021-01874-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11224_021_01874_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-0400&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-0400&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-0400&client=summon |