Semantic Matching Template-Based Zero-Shot Relation Triplet Extraction

To address the limitation of annotated datasets confined to fixed relation domains, which hampers the effective extraction of triplets, especially for novel relation types, our work introduces an innovative approach. We propose a method for training large-scale language models using prompt templates...

Full description

Saved in:
Bibliographic Details
Published inIEICE Transactions on Information and Systems Vol. E108.D; no. 3; pp. 277 - 285
Main Authors DUAN, Jianyong, ZHANG, Mei, TIAN, Yu, YANG, Yuechen
Format Journal Article
LanguageEnglish
Published Tokyo The Institute of Electronics, Information and Communication Engineers 01.03.2025
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN0916-8532
1745-1361
DOI10.1587/transinf.2024EDP7137

Cover

Abstract To address the limitation of annotated datasets confined to fixed relation domains, which hampers the effective extraction of triplets, especially for novel relation types, our work introduces an innovative approach. We propose a method for training large-scale language models using prompt templates designed for zero-shot learning in relation triplet extraction tasks. By utilizing these specially crafted prompt templates in combination with fine-grained matching scoring rules, we transform the structured prediction task into a cloze task. This transformation aligns the task more closely with the intrinsic capabilities of the language model, facilitating a more natural processing flow.Experimental evaluations on two public datasets show that our method achieves stable and enhanced performance compared to baseline models. This improvement underscores the efficiency and potential of our approach in facilitating zero-shot extraction of relation triplets, thus broadening the scope of applicable relation types without the need for domain-specific training data.
AbstractList To address the limitation of annotated datasets confined to fixed relation domains, which hampers the effective extraction of triplets, especially for novel relation types, our work introduces an innovative approach. We propose a method for training large-scale language models using prompt templates designed for zero-shot learning in relation triplet extraction tasks. By utilizing these specially crafted prompt templates in combination with fine-grained matching scoring rules, we transform the structured prediction task into a cloze task. This transformation aligns the task more closely with the intrinsic capabilities of the language model, facilitating a more natural processing flow.Experimental evaluations on two public datasets show that our method achieves stable and enhanced performance compared to baseline models. This improvement underscores the efficiency and potential of our approach in facilitating zero-shot extraction of relation triplets, thus broadening the scope of applicable relation types without the need for domain-specific training data.
ArticleNumber 2024EDP7137
Author ZHANG, Mei
TIAN, Yu
DUAN, Jianyong
YANG, Yuechen
Author_xml – sequence: 1
  fullname: DUAN, Jianyong
  organization: College of Informatics, North China University of Technology
– sequence: 1
  fullname: ZHANG, Mei
  organization: College of Informatics, North China University of Technology
– sequence: 1
  fullname: TIAN, Yu
  organization: College of Informatics, North China University of Technology
– sequence: 1
  fullname: YANG, Yuechen
  organization: College of Informatics, North China University of Technology
BookMark eNpNkEtPwkAUhScGEwH9By6auC7Os50ulYeaYDSAGzeTabmFkjKtM0Oi_94hCLK6NyfnnJv79VDHNAYQuiV4QIRM773VxlWmHFBM-Xj0nhKWXqAuSbmICUtIB3VxRpJYCkavUM-5DcZEUiK6aDKHrTa-KqJX7Yt1ZVbRArZtrT3Ej9rBMvoE28TzdeOjGQS5aky0sFVbg4_G3-FysZeu0WWpawc3f7OPPibjxfA5nr49vQwfpnHBMfWx5IClZjoruaA8I8u8lCBzqXOdiyUPCiU5lWlCKWOlSFhwCxB5lucl05qyPro79La2-dqB82rT7KwJJxUjGcZpeF0EFz-4Cts4Z6FUra222v4ogtWemDoSU2fEQmx2iG2c1ys4hbQNfGr4D40Jlmqk2HE5KzmZi7W2Cgz7BdgWf50
Cites_doi 10.1007/s12559-021-09917-7
10.18653/v1/2021.findings-acl.161
10.18653/v1/2022.findings-acl.5
10.18653/v1/2023.acl-long.369
10.18653/v1/P19-1129
10.18653/v1/2022.acl-long.395
10.18653/v1/D18-1514
10.18653/v1/2022.emnlp-main.249
10.1145/2629489
10.18653/v1/2020.coling-main.488
10.18653/v1/D19-1410
10.18653/v1/2020.acl-main.703
10.18653/v1/2021.naacl-main.272
ContentType Journal Article
Copyright 2025 The Institute of Electronics, Information and Communication Engineers
Copyright Japan Science and Technology Agency 2025
Copyright_xml – notice: 2025 The Institute of Electronics, Information and Communication Engineers
– notice: Copyright Japan Science and Technology Agency 2025
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1587/transinf.2024EDP7137
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1745-1361
EndPage 285
ExternalDocumentID 10_1587_transinf_2024EDP7137
article_transinf_E108_D_3_E108_D_2024EDP7137_article_char_en
GroupedDBID -~X
5GY
ABJNI
ABZEH
ACGFS
ADNWM
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
F5P
ICE
JSF
JSH
KQ8
OK1
P2P
RJT
RZJ
TN5
ZKX
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c402t-84e08a3a9f452491dbf8e8b8abab5d449121b28762233f56308a5e5b9bbf3aa23
ISSN 0916-8532
IngestDate Mon Jun 30 11:45:56 EDT 2025
Tue Jul 01 05:21:56 EDT 2025
Wed Sep 03 06:30:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c402t-84e08a3a9f452491dbf8e8b8abab5d449121b28762233f56308a5e5b9bbf3aa23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/transinf/E108.D/3/E108.D_2024EDP7137/_article/-char/en
PQID 3190077135
PQPubID 2048497
PageCount 9
ParticipantIDs proquest_journals_3190077135
crossref_primary_10_1587_transinf_2024EDP7137
jstage_primary_article_transinf_E108_D_3_E108_D_2024EDP7137_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle IEICE Transactions on Information and Systems
PublicationTitleAlternate IEICE Trans. Inf. & Syst.
PublicationYear 2025
Publisher The Institute of Electronics, Information and Communication Engineers
Japan Science and Technology Agency
Publisher_xml – name: The Institute of Electronics, Information and Communication Engineers
– name: Japan Science and Technology Agency
References [4] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language models are unsupervised multitask learners,” OpenAI blog, vol.1, no.8, 9, 2019.
[9] X. Han, H. Zhu, P. Yu, Z. Wang, Y. Yao, Z. Liu, and M. Sun, “FewRel: A large-scale supervised few-shot relation classification dataset with state-of-the-art evaluation,” Proc. 2018 Conference on Empirical Methods in Natural Language Processing, pp.4803-4809, Oct,-Nov. 2018. 10.18653/v1/d18-1514
[10] Y. Meng, J. Huang, Y. Zhang, and J. Han, “Generating training data with language models: Towards zero-shot language understanding,” Advances in Neural Information Processing Systems, vol.35, pp.462-477, 2022.
[1] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P.J. Liu, “Exploring the limits of transfer learning with a unified text-to-text transformer,” arXiv preprint, arXiv:1910.10683, Oct. 2019. 10.48550/arXiv.1910.10683
[12] T. Nayak, N. Majumder, P. Goyal, and S. Poria, “Deep neural approaches to relation triplets extraction: A comprehensive survey,” Cognitive Computation, vol.13, no.5, pp.1215-1232, 2021. 10.1007/s12559-021-09917-7
[6] L. Cui, Y. Wu, J. Liu, S. Yang, and Y. Zhang, “Template-based named entity recognition using BART,” Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pp.1835-1845, Aug. 2021. 10.18653/v1/2021.findings-acl.161
[15] C.-Y. Chen and C.-T. Li, “ZS-BERT: Towards zero-shot relation extraction with attribute representation learning,” Proc. 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.3470-3479, June 2021. 10.18653/v1/2021.naacl-main.272
[3] L. Dong, N. Yang, W. Wang, F. Wei, X. Liu, Y. Wang, J. Gao, M. Zhou, and H.W. Hon, “Unified language model pre-training for natural language understanding and generation,” Neural Information Processing Systems, pp.13042-13054, May 2019.
[14] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and L. Zettlemoyer, “BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension,” Proc. 58th Annual Meeting of the Association for Computational Linguistics, pp.7871-7880, July 2020. 10.18653/v1/2020.acl-main.703
[20] V. Sanh, A. Webson, C. Raffel, S.H. Bach, L. Sutawika, Z. Alyafeai, A. Chaffin, A. Stiegler, T.L. Scao, A. Raja, M. Dey, M.S. Bari, C. Xu, U. Thakker, S.S. Sharma, E. Szczechla, T. Kim, G. Chhablani, N. Nayak, D. Datta, J. Chang, M.T.-J. Jiang, H. Wang, M. Manica, S. Shen, Z.X. Yong, H. Pandey, R. Bawden, T. Wang, T. Neeraj, J. Rozen, A. Sharma, A. Santilli, T. Fevry, J.A. Fries, R. Teehan, T. Bers, S. Biderman, L. Gao, T. Wolf, and A.M. Rush, “Multitask prompted training enables zero-shot task generalization,” arXiv preprint, arXiv:2110.08207, Oct. 2021. 10.48550/arXiv.2110.08207
[17] D. Sachan, M. Lewis, M. Joshi, A. Aghajanyan, W.-t. Yih, J. Pineau, and L. Zettlemoyer, “Improving passage retrieval with zero-shot question generation,” Proc. 2022 Conference on Empirical Methods in Natural Language Processing, pp.3781-3797, Dec. 2022. 10.18653/v1/2022.emnlp-main.249
[8] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence embeddings using Siamese BERT-networks,” arXiv preprint arXiv:1908.10084, Aug. 2019. 10.48550/arXiv.1908.10084
[22] J. Zhao, W. Zhan, X. Zhao, Q. Zhang, T. Gui, Z. Wei, J. Wang, M. Peng, and M. Sun, “Re-Matching: A fine-grained semantic matching method for zero-shot relation extraction,” Proc. 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.6680-6691, July 2023. 10.18653/v1/2023.acl-long.369
[7] D. Vrandečić and M. Krötzsch, “Wikidata: A free collaborative knowledgebase,” Commun. ACM, vol.57, no.10, pp.78-85, Sept. 2014. 10.1145/2629489
[18] N.S. Keskar, B. McCann, L.R. Varshney, C. Xiong, and R. Socher, “CTRL: A conditional transformer language model for controllable generation,” arXiv preprint, arXiv:1909.05858, Sept. 2019. 10.48550/arXiv.1909.05858
[16] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropagation,” Proc. 32nd International Conference on Machine Learning, pp.1180-1189, July 2015.
[5] Y. Lu, Q. Liu, D. Dai, X. Xiao, H. Lin, X. Han, L. Sun, and H. Wu, “Unified structure generation for universal information extraction,” Proc. 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.5755-5772, 2022. 10.18653/v1/2022.acl-long.395
[2] X. Li, F. Yin, Z. Sun, X. Li, A. Yuan, D. Chai, M. Zhou, and J. Li, “Entity-relation extraction as multi-turn question answering,” Proc. 57th Annual Meeting of the Association for Computational Linguistics, pp.1340-1350, July 2019. 10.18653/v1/p19-1129
[11] Y.K. Chia, L. Bing, S. Poria, and L. Si, “RelationPrompt: Leveraging prompts to generate synthetic data for zero-shot relation triplet extraction,” Findings of the Association for Computational Linguistics: ACL 2022, pp.45-57, 2022. 10.18653/v1/2022.findings-acl.5
[13] B. Yu, Z. Zhang, X. Shu, Y. Wang, T. Liu, B. Wang, and S. Li, “Joint extraction of entities and relations based on a novel decomposition strategy,” arXiv preprint, arXiv:1909.04273, Sept. 2019. 10.48550/arXiv.1909.04273
[19] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári, “Improved algorithms for linear stochastic bandits,” Advances in Neural Information Processing Systems, vol.24, 2011.
[21] T. Schick, H. Schmid, and H. Schütze, “Automatically identifying words that can serve as labels for few-shot text classification,” Proc. 28th International Conference on Computational Linguistics, pp.5569-5578, Dec. 2020. 10.18653/v1/2020.coling-main.488
11
22
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
10
21
References_xml – reference: [10] Y. Meng, J. Huang, Y. Zhang, and J. Han, “Generating training data with language models: Towards zero-shot language understanding,” Advances in Neural Information Processing Systems, vol.35, pp.462-477, 2022.
– reference: [21] T. Schick, H. Schmid, and H. Schütze, “Automatically identifying words that can serve as labels for few-shot text classification,” Proc. 28th International Conference on Computational Linguistics, pp.5569-5578, Dec. 2020. 10.18653/v1/2020.coling-main.488
– reference: [14] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and L. Zettlemoyer, “BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension,” Proc. 58th Annual Meeting of the Association for Computational Linguistics, pp.7871-7880, July 2020. 10.18653/v1/2020.acl-main.703
– reference: [6] L. Cui, Y. Wu, J. Liu, S. Yang, and Y. Zhang, “Template-based named entity recognition using BART,” Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pp.1835-1845, Aug. 2021. 10.18653/v1/2021.findings-acl.161
– reference: [9] X. Han, H. Zhu, P. Yu, Z. Wang, Y. Yao, Z. Liu, and M. Sun, “FewRel: A large-scale supervised few-shot relation classification dataset with state-of-the-art evaluation,” Proc. 2018 Conference on Empirical Methods in Natural Language Processing, pp.4803-4809, Oct,-Nov. 2018. 10.18653/v1/d18-1514
– reference: [7] D. Vrandečić and M. Krötzsch, “Wikidata: A free collaborative knowledgebase,” Commun. ACM, vol.57, no.10, pp.78-85, Sept. 2014. 10.1145/2629489
– reference: [12] T. Nayak, N. Majumder, P. Goyal, and S. Poria, “Deep neural approaches to relation triplets extraction: A comprehensive survey,” Cognitive Computation, vol.13, no.5, pp.1215-1232, 2021. 10.1007/s12559-021-09917-7
– reference: [16] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropagation,” Proc. 32nd International Conference on Machine Learning, pp.1180-1189, July 2015.
– reference: [18] N.S. Keskar, B. McCann, L.R. Varshney, C. Xiong, and R. Socher, “CTRL: A conditional transformer language model for controllable generation,” arXiv preprint, arXiv:1909.05858, Sept. 2019. 10.48550/arXiv.1909.05858
– reference: [19] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári, “Improved algorithms for linear stochastic bandits,” Advances in Neural Information Processing Systems, vol.24, 2011.
– reference: [5] Y. Lu, Q. Liu, D. Dai, X. Xiao, H. Lin, X. Han, L. Sun, and H. Wu, “Unified structure generation for universal information extraction,” Proc. 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.5755-5772, 2022. 10.18653/v1/2022.acl-long.395
– reference: [13] B. Yu, Z. Zhang, X. Shu, Y. Wang, T. Liu, B. Wang, and S. Li, “Joint extraction of entities and relations based on a novel decomposition strategy,” arXiv preprint, arXiv:1909.04273, Sept. 2019. 10.48550/arXiv.1909.04273
– reference: [15] C.-Y. Chen and C.-T. Li, “ZS-BERT: Towards zero-shot relation extraction with attribute representation learning,” Proc. 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.3470-3479, June 2021. 10.18653/v1/2021.naacl-main.272
– reference: [3] L. Dong, N. Yang, W. Wang, F. Wei, X. Liu, Y. Wang, J. Gao, M. Zhou, and H.W. Hon, “Unified language model pre-training for natural language understanding and generation,” Neural Information Processing Systems, pp.13042-13054, May 2019.
– reference: [11] Y.K. Chia, L. Bing, S. Poria, and L. Si, “RelationPrompt: Leveraging prompts to generate synthetic data for zero-shot relation triplet extraction,” Findings of the Association for Computational Linguistics: ACL 2022, pp.45-57, 2022. 10.18653/v1/2022.findings-acl.5
– reference: [4] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language models are unsupervised multitask learners,” OpenAI blog, vol.1, no.8, 9, 2019.
– reference: [8] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence embeddings using Siamese BERT-networks,” arXiv preprint arXiv:1908.10084, Aug. 2019. 10.48550/arXiv.1908.10084
– reference: [17] D. Sachan, M. Lewis, M. Joshi, A. Aghajanyan, W.-t. Yih, J. Pineau, and L. Zettlemoyer, “Improving passage retrieval with zero-shot question generation,” Proc. 2022 Conference on Empirical Methods in Natural Language Processing, pp.3781-3797, Dec. 2022. 10.18653/v1/2022.emnlp-main.249
– reference: [22] J. Zhao, W. Zhan, X. Zhao, Q. Zhang, T. Gui, Z. Wei, J. Wang, M. Peng, and M. Sun, “Re-Matching: A fine-grained semantic matching method for zero-shot relation extraction,” Proc. 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.6680-6691, July 2023. 10.18653/v1/2023.acl-long.369
– reference: [1] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P.J. Liu, “Exploring the limits of transfer learning with a unified text-to-text transformer,” arXiv preprint, arXiv:1910.10683, Oct. 2019. 10.48550/arXiv.1910.10683
– reference: [2] X. Li, F. Yin, Z. Sun, X. Li, A. Yuan, D. Chai, M. Zhou, and J. Li, “Entity-relation extraction as multi-turn question answering,” Proc. 57th Annual Meeting of the Association for Computational Linguistics, pp.1340-1350, July 2019. 10.18653/v1/p19-1129
– reference: [20] V. Sanh, A. Webson, C. Raffel, S.H. Bach, L. Sutawika, Z. Alyafeai, A. Chaffin, A. Stiegler, T.L. Scao, A. Raja, M. Dey, M.S. Bari, C. Xu, U. Thakker, S.S. Sharma, E. Szczechla, T. Kim, G. Chhablani, N. Nayak, D. Datta, J. Chang, M.T.-J. Jiang, H. Wang, M. Manica, S. Shen, Z.X. Yong, H. Pandey, R. Bawden, T. Wang, T. Neeraj, J. Rozen, A. Sharma, A. Santilli, T. Fevry, J.A. Fries, R. Teehan, T. Bers, S. Biderman, L. Gao, T. Wolf, and A.M. Rush, “Multitask prompted training enables zero-shot task generalization,” arXiv preprint, arXiv:2110.08207, Oct. 2021. 10.48550/arXiv.2110.08207
– ident: 12
  doi: 10.1007/s12559-021-09917-7
– ident: 3
– ident: 18
– ident: 6
  doi: 10.18653/v1/2021.findings-acl.161
– ident: 4
– ident: 11
  doi: 10.18653/v1/2022.findings-acl.5
– ident: 1
– ident: 22
  doi: 10.18653/v1/2023.acl-long.369
– ident: 2
  doi: 10.18653/v1/P19-1129
– ident: 5
  doi: 10.18653/v1/2022.acl-long.395
– ident: 10
– ident: 19
– ident: 9
  doi: 10.18653/v1/D18-1514
– ident: 13
– ident: 16
– ident: 17
  doi: 10.18653/v1/2022.emnlp-main.249
– ident: 7
  doi: 10.1145/2629489
– ident: 21
  doi: 10.18653/v1/2020.coling-main.488
– ident: 8
  doi: 10.18653/v1/D19-1410
– ident: 14
  doi: 10.18653/v1/2020.acl-main.703
– ident: 20
– ident: 15
  doi: 10.18653/v1/2021.naacl-main.272
SSID ssj0018215
Score 2.3722038
Snippet To address the limitation of annotated datasets confined to fixed relation domains, which hampers the effective extraction of triplets, especially for novel...
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 277
SubjectTerms Datasets
fine-grained matching
Large language models
prompt learning
relation triplet extraction
Template matching
Zero-shot learning
Title Semantic Matching Template-Based Zero-Shot Relation Triplet Extraction
URI https://www.jstage.jst.go.jp/article/transinf/E108.D/3/E108.D_2024EDP7137/_article/-char/en
https://www.proquest.com/docview/3190077135
Volume E108.D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX IEICE Transactions on Information and Systems, 2025/03/01, Vol.E108.D(3), pp.277-285
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdg8AAPAwYTHQPlgbfK0MR26j6WNVW7rQO0VOp4seLEgSHWTl0qAX89568kExUCXtLIdZvo7ue78_k-EHrNY16oUhYYFmGJqVI6CCAucVGwLOYkLLippTc7iydzerxgi8ana7JLKvkm_7k1r-R_uApjwFedJfsPnK3_FAbgHvgLV-AwXP-Kx-fqCghzmXdnIFCNKylVV9ffwHzE70A7Fd1Par3C519WVR301k3X2rVedZPv1domNbTt02kyPUp03wjfRNycJrjqqpUPXb5plTnXTufJ0GY-zdRl7QmYDk0AwcWmlitu0sVGAVBqTI7mduIx4PTHyulR54aIWBOHZVUEqPZGHulXaY4GukOTRtr2PYYxBjvBimFlJW-fMhwSW5ndi-Yk7PFRC4Vkq9Bn2m0yNqSBcdjzRzQZfYDdd79Rcv5g_-y9GM9PT0WaLNK76F7U75vD_ZOPzdkTj2zfC_-SLuESnvJ22zNuGTT3v4JN__l3xW6slfQx2nXbjGBoMfME3VHLPfTIt_AIHAX30MNWPcqnaOwBFXhABbcBFdSACjygAgeooAHUMzQfJ-nRBLtGGzinvajCnKoez0g2KCmD7XhYyJIrLnkmM8kKCiNRKCOtNyNCSl1RjmdMMTmQsiRZFpF9tLNcLdVzFJQ5L3s0VHSgP8Dw4XmU04HkMbCW0KyDsKeWuLb1VITehwJ1haeuaFG3g04sSevZbrU1szVIxEgQf9P6dT1ZpzCCxOigQ88X4dbxjQAlpItahYQd_PnrF-hBg_xDtFOtN-olmKSVfGUQ9AvYtI5q
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semantic+Matching+Template-Based+Zero-Shot+Relation+Triplet+Extraction&rft.jtitle=IEICE+transactions+on+information+and+systems&rft.au=ZHANG%2C+Mei&rft.au=TIAN%2C+Yu&rft.au=YANG%2C+Yuechen&rft.au=DUAN%2C+Jianyong&rft.date=2025-03-01&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=0916-8532&rft.eissn=1745-1361&rft.volume=E108D&rft.issue=3&rft_id=info:doi/10.1587%2Ftransinf.2024EDP7137&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-8532&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-8532&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-8532&client=summon