A Two-Layer Dimension Reduction and Two-Tier Classification Model for Anomaly-Based Intrusion Detection in IoT Backbone Networks
With increasing reliance on Internet of Things (IoT) devices and services, the capability to detect intrusions and malicious activities within IoT networks is critical for resilience of the network infrastructure. In this paper, we present a novel model for intrusion detection based on two-layer dim...
Saved in:
Published in | IEEE transactions on emerging topics in computing Vol. 7; no. 2; pp. 314 - 323 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With increasing reliance on Internet of Things (IoT) devices and services, the capability to detect intrusions and malicious activities within IoT networks is critical for resilience of the network infrastructure. In this paper, we present a novel model for intrusion detection based on two-layer dimension reduction and two-tier classification module, designed to detect malicious activities such as User to Root (U2R) and Remote to Local (R2L) attacks. The proposed model is using component analysis and linear discriminate analysis of dimension reduction module to spate the high dimensional dataset to a lower one with lesser features. We then apply a two-tier classification module utilizing Naïve Bayes and Certainty Factor version of K-Nearest Neighbor to identify suspicious behaviors. The experiment results using NSL-KDD dataset shows that our model outperforms previous models designed to detect U2R and R2L attacks. |
---|---|
AbstractList | With increasing reliance on Internet of Things (IoT) devices and services, the capability to detect intrusions and malicious activities within IoT networks is critical for resilience of the network infrastructure. In this paper, we present a novel model for intrusion detection based on two-layer dimension reduction and two-tier classification module, designed to detect malicious activities such as User to Root (U2R) and Remote to Local (R2L) attacks. The proposed model is using component analysis and linear discriminate analysis of dimension reduction module to spate the high dimensional dataset to a lower one with lesser features. We then apply a two-tier classification module utilizing Naïve Bayes and Certainty Factor version of K-Nearest Neighbor to identify suspicious behaviors. The experiment results using NSL-KDD dataset shows that our model outperforms previous models designed to detect U2R and R2L attacks. |
Author | Khayami, Raouf Pajouh, Hamed Haddad Javidan, Reza Choo, Kim-Kwang Raymond Dehghantanha, Ali |
Author_xml | – sequence: 1 givenname: Hamed Haddad surname: Pajouh fullname: Pajouh, Hamed Haddad email: hp@sutech.ac.ir organization: Department of Computer Engineering and Information Technology, Shiraz University of Technology, Moddares Blvd., Shiraz, Iran – sequence: 2 givenname: Reza surname: Javidan fullname: Javidan, Reza email: reza.javidan@sutech.ac.ir organization: Department of Computer Engineering and Information Technology, Shiraz University of Technology, Moddares Blvd., Shiraz, Iran – sequence: 3 givenname: Raouf surname: Khayami fullname: Khayami, Raouf email: khayami@sutech.ac.ir organization: Department of Computer Engineering and Information Technology, Shiraz University of Technology, Moddares Blvd., Shiraz, Iran – sequence: 4 givenname: Ali surname: Dehghantanha fullname: Dehghantanha, Ali email: A.Dehghantanha@salford.ac.uk organization: University of Salford, Greater Manchester, Salford, United Kingdom – sequence: 5 givenname: Kim-Kwang Raymond orcidid: 0000-0001-9208-5336 surname: Choo fullname: Choo, Kim-Kwang Raymond email: raymond.choo@fulbrightmail.org organization: Department of Information Systems and Cyber Security, The University of Texas at San Antonio, San Antonio, TX, USA |
BookMark | eNp9kEtLAzEUhYNU8PkDxE3A9dQk4ySTZR8-ClVBxvWQSe5A2mlSkymlO3-6M62IuPBu7oWcc27ud4YGzjtA6IqSIaVE3hb3xWTICOVDxtOUsfwInTLK84SLjAx-zSfoMsYF6SqnXHJxij5HuNj6ZK52EPDUrsBF6x1-A7PRbT8pZ_aKwnaCSaNitLXVav_27A00uPYBj5xfqWaXjFUEg2euDZt9zhRaOORYh2e-wGOll1X3e_wC7daHZbxAx7VqIlx-93P0_tCd85TMXx9nk9E80XeEtUlOgGaMd0dkVFDIamW40VJyrVUlqkxImWrNJdMZKFUZmgvNDdR5BTUYKtNzdHPIXQf_sYHYlgu_Ca5bWTImOSU5o6JT0YNKBx9jgLpcB7tSYVdSUvasy5512bMuv1l3HvHHo227B9QGZZt_ndcHpwWAn01CcEZZmn4BUTOPWg |
CODEN | ITETBT |
CitedBy_id | crossref_primary_10_1007_s00542_025_05848_7 crossref_primary_10_1007_s10922_021_09589_6 crossref_primary_10_1007_s10669_022_09859_x crossref_primary_10_1051_sands_2024003 crossref_primary_10_1007_s00521_020_04772_3 crossref_primary_10_3390_s20061706 crossref_primary_10_1002_ett_4062 crossref_primary_10_1007_s10922_025_09904_5 crossref_primary_10_3390_electronics9061022 crossref_primary_10_1109_ACCESS_2020_3022862 crossref_primary_10_1109_TKDE_2024_3523857 crossref_primary_10_1007_s11277_021_08994_z crossref_primary_10_1007_s10207_023_00803_x crossref_primary_10_32604_cmc_2021_018466 crossref_primary_10_1109_JIOT_2020_2977196 crossref_primary_10_1007_s42979_022_01053_9 crossref_primary_10_3390_app132112029 crossref_primary_10_1016_j_procs_2021_02_003 crossref_primary_10_1145_3703625 crossref_primary_10_1016_j_advengsoft_2022_103126 crossref_primary_10_3390_electronics11030494 crossref_primary_10_1007_s13369_020_05187_x crossref_primary_10_1109_ACCESS_2021_3082147 crossref_primary_10_3390_info13060300 crossref_primary_10_4108_eetsis_3971 crossref_primary_10_1038_s41598_024_79230_4 crossref_primary_10_3390_s22103744 crossref_primary_10_1016_j_phycom_2022_101685 crossref_primary_10_1109_JIOT_2023_3294259 crossref_primary_10_1016_j_oceaneng_2021_110180 crossref_primary_10_3390_ijerph17249347 crossref_primary_10_1007_s11042_023_17894_2 crossref_primary_10_1109_JIOT_2020_3026660 crossref_primary_10_3390_info14020077 crossref_primary_10_1016_j_engappai_2023_107231 crossref_primary_10_1007_s00530_020_00743_9 crossref_primary_10_1109_ACCESS_2019_2962829 crossref_primary_10_1109_JIOT_2024_3414492 crossref_primary_10_1109_TIFS_2019_2922262 crossref_primary_10_1016_j_engappai_2022_105670 crossref_primary_10_1007_s11276_023_03435_0 crossref_primary_10_1007_s10586_024_04477_5 crossref_primary_10_3390_electronics10141633 crossref_primary_10_1016_j_patrec_2023_10_007 crossref_primary_10_1109_TGCN_2021_3062972 crossref_primary_10_1002_ett_4121 crossref_primary_10_3390_info12040154 crossref_primary_10_1109_ACCESS_2020_2969428 crossref_primary_10_1109_TSC_2023_3319953 crossref_primary_10_3103_S0146411621020085 crossref_primary_10_1109_TII_2019_2946791 crossref_primary_10_1109_ACCESS_2023_3250235 crossref_primary_10_1007_s00500_023_09452_7 crossref_primary_10_1109_ACCESS_2021_3118573 crossref_primary_10_1038_s41598_024_81535_3 crossref_primary_10_1109_MIE_2020_2979272 crossref_primary_10_1109_COMST_2019_2922584 crossref_primary_10_1007_s11042_023_16395_6 crossref_primary_10_1109_ACCESS_2020_3026044 crossref_primary_10_1007_s00500_020_05017_0 crossref_primary_10_1109_JIOT_2020_2989053 crossref_primary_10_1016_j_comcom_2023_01_004 crossref_primary_10_1007_s44196_024_00421_y crossref_primary_10_1109_TETC_2020_3034495 crossref_primary_10_1109_JIOT_2022_3203249 crossref_primary_10_1002_spy2_337 crossref_primary_10_1016_j_comnet_2021_108525 crossref_primary_10_1016_j_aej_2022_02_063 crossref_primary_10_1002_dac_5588 crossref_primary_10_3390_electronics12132849 crossref_primary_10_1142_S0219691320500939 crossref_primary_10_53600_ajesa_1254542 crossref_primary_10_1109_TNSM_2023_3259474 crossref_primary_10_1109_ACCESS_2020_3005643 crossref_primary_10_1109_ACCESS_2023_3311822 crossref_primary_10_1016_j_comnet_2020_107417 crossref_primary_10_1016_j_cosrev_2022_100529 crossref_primary_10_1007_s10586_023_04097_5 crossref_primary_10_1016_j_engappai_2024_108162 crossref_primary_10_1007_s10586_024_04310_z crossref_primary_10_1016_j_iot_2024_101377 crossref_primary_10_1109_ACCESS_2020_3047895 crossref_primary_10_3233_JIFS_233575 crossref_primary_10_1109_TNSE_2020_3038618 crossref_primary_10_3390_s22124459 crossref_primary_10_1007_s11277_023_10722_8 crossref_primary_10_1007_s11227_023_05474_y crossref_primary_10_1016_j_scs_2020_102324 crossref_primary_10_1109_TSUSC_2018_2809665 crossref_primary_10_1007_s12652_017_0558_5 crossref_primary_10_1016_j_simpat_2019_102031 crossref_primary_10_1088_2631_8695_ad4cb5 crossref_primary_10_1109_JIOT_2021_3119055 crossref_primary_10_1109_ACCESS_2022_3202914 crossref_primary_10_1109_ACCESS_2019_2959739 crossref_primary_10_1109_ACCESS_2021_3063671 crossref_primary_10_3390_electronics13163210 crossref_primary_10_1016_j_compeleceng_2021_107536 crossref_primary_10_1007_s12243_020_00780_5 crossref_primary_10_32604_jihpp_2022_029922 crossref_primary_10_3390_fi12090157 crossref_primary_10_1049_el_2019_4158 crossref_primary_10_1016_j_matpr_2022_03_661 crossref_primary_10_1016_j_comnet_2023_109681 crossref_primary_10_32604_cmc_2021_017574 crossref_primary_10_1155_2022_3795183 crossref_primary_10_1002_ett_4418 crossref_primary_10_1109_ACCESS_2023_3318600 crossref_primary_10_1109_JIOT_2018_2871719 crossref_primary_10_1007_s11277_020_07137_0 crossref_primary_10_1016_j_iswa_2024_200407 crossref_primary_10_1155_2022_5724168 crossref_primary_10_1002_cpe_7548 crossref_primary_10_1007_s10586_023_04089_5 crossref_primary_10_1142_S0219265921450080 crossref_primary_10_1007_s13198_021_01168_x crossref_primary_10_1109_ACCESS_2020_3037359 crossref_primary_10_1080_15325008_2023_2285940 crossref_primary_10_1109_COMST_2020_2988293 crossref_primary_10_55056_jec_648 crossref_primary_10_1109_JIOT_2020_3048439 crossref_primary_10_1088_1742_6596_2449_1_012029 crossref_primary_10_1109_ACCESS_2020_2976624 crossref_primary_10_1038_s41598_022_16261_9 crossref_primary_10_1109_ACCESS_2021_3129775 crossref_primary_10_1109_JIOT_2021_3055937 crossref_primary_10_4218_etrij_2021_0044 crossref_primary_10_1007_s11227_024_05993_2 crossref_primary_10_1016_j_procs_2023_01_080 crossref_primary_10_1007_s11042_018_6338_1 crossref_primary_10_3390_data7020022 crossref_primary_10_1109_JIOT_2020_2993410 crossref_primary_10_1007_s11227_024_06021_z crossref_primary_10_1109_TSUSC_2024_3390003 crossref_primary_10_3390_electronics10222857 crossref_primary_10_32604_iasc_2023_026799 crossref_primary_10_1007_s13369_020_05181_3 crossref_primary_10_3390_app14166967 crossref_primary_10_1016_j_neucom_2021_01_076 crossref_primary_10_1109_JIOT_2021_3098051 crossref_primary_10_1109_TII_2022_3192035 crossref_primary_10_3934_era_2024060 crossref_primary_10_1109_TNSM_2022_3202801 crossref_primary_10_1109_TNET_2024_3423780 crossref_primary_10_3390_s20185107 crossref_primary_10_1057_s41288_022_00266_6 crossref_primary_10_1109_ACCESS_2020_3022842 crossref_primary_10_1109_ACCESS_2020_3022963 crossref_primary_10_1016_j_jnca_2018_12_006 crossref_primary_10_3390_math12121799 crossref_primary_10_1007_s13369_022_07079_8 crossref_primary_10_3390_network3010008 crossref_primary_10_1007_s10515_021_00298_7 crossref_primary_10_1109_TII_2023_3245681 crossref_primary_10_3390_e23050529 crossref_primary_10_1109_TII_2022_3205366 crossref_primary_10_1371_journal_pone_0313890 crossref_primary_10_3390_s22239305 crossref_primary_10_32604_cmc_2022_018708 crossref_primary_10_1007_s11227_021_04188_3 crossref_primary_10_1109_COMST_2019_2896380 crossref_primary_10_1109_ACCESS_2020_3022855 crossref_primary_10_1007_s12652_020_02696_3 crossref_primary_10_1111_exsy_12556 crossref_primary_10_1007_s00500_021_06028_1 crossref_primary_10_1016_j_cose_2025_104323 crossref_primary_10_3390_ai3010002 crossref_primary_10_1145_3467981 crossref_primary_10_1007_s12652_022_04110_6 crossref_primary_10_1016_j_adhoc_2021_102685 crossref_primary_10_1007_s41870_023_01651_7 crossref_primary_10_1109_TITS_2022_3181436 crossref_primary_10_1186_s40537_024_00892_y crossref_primary_10_3390_iot3010008 crossref_primary_10_1007_s00500_023_08536_8 crossref_primary_10_1038_s41598_024_76016_6 crossref_primary_10_1587_transcom_2020EBP3192 crossref_primary_10_3390_electronics11030422 crossref_primary_10_1016_j_hcc_2021_100047 crossref_primary_10_1016_j_micpro_2022_104660 crossref_primary_10_1109_ACCESS_2019_2928048 crossref_primary_10_1109_ACCESS_2019_2920326 crossref_primary_10_3390_s21051809 crossref_primary_10_1109_COMST_2020_2986444 |
Cites_doi | 10.1016/j.comcom.2012.01.016 10.1016/j.comcom.2008.12.037 10.1007/978-3-642-00296-0_5 10.1145/1541880.1541882 10.1109/TSG.2015.2409775 10.1016/j.neucom.2016.06.021 10.1016/j.eswa.2010.06.066 10.1016/j.jnca.2012.09.004 10.1109/JIOT.2014.2349899 10.1109/JIOT.2016.2516102 10.1016/S1361-3723(15)30045-2 10.1109/TLA.2015.7106364 10.1109/ICCSEE.2012.373 10.1016/j.comcom.2007.05.002 10.1021/ie990110i 10.1117/12.487069 10.1016/j.cose.2010.12.004 10.1109/DISCEX.2000.821506 10.1109/CISDA.2009.5356528 10.1109/CyberSec.2012.6246111 10.1109/TC.2016.2519914 10.1109/COMST.2014.2336610 10.1109/SURV.2013.050113.00191 10.1016/j.jnca.2016.01.001 10.1016/j.comnet.2014.11.008 10.1007/s10796-014-9489-2 10.1007/978-1-4899-7439-6_6 10.1016/j.neucom.2014.09.083 10.1109/GLOCOMW.2010.5700198 10.1109/CIMCA.2006.148 10.1109/TSP.2003.814797 10.1109/COMST.2015.2494502 10.1021/ac50012a027 10.1016/j.jnca.2016.08.016 10.1016/j.eswa.2012.07.009 10.1109/TIE.2012.2196010 10.1109/SURV.2013.052213.00046 10.1007/978-3-642-40675-1_43 10.1007/s10115-006-0013-y 10.1109/JIOT.2016.2569094 10.1145/355744.355745 10.1016/j.comnet.2010.05.010 10.1109/TSMC.2015.2415763 10.1109/TPDS.2014.2311791 10.1016/j.jnca.2014.11.011 10.1016/j.knosys.2015.01.009 10.1109/TPDS.2013.146 10.1016/j.patcog.2016.08.027 10.1002/cpe.3855 10.1109/TSMCC.2008.923876 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TETC.2016.2633228 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2168-6750 |
EndPage | 323 |
ExternalDocumentID | 10_1109_TETC_2016_2633228 7762123 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IEDLZ IFIPE IPLJI JAVBF KQ8 M43 O9- OCL RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c402t-80e15266755171e5fad6dc996ccab7b57993cc692c5eaabd187c6def8befed193 |
IEDL.DBID | RIE |
ISSN | 2168-6750 |
IngestDate | Sun Jun 29 12:23:49 EDT 2025 Tue Jul 01 03:33:15 EDT 2025 Thu Apr 24 22:55:43 EDT 2025 Wed Aug 27 06:00:42 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-80e15266755171e5fad6dc996ccab7b57993cc692c5eaabd187c6def8befed193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9208-5336 |
OpenAccessLink | http://usir.salford.ac.uk/id/eprint/40937/7/Submission%20TETC-2016-06-0164%20R2.pdf |
PQID | 2296108217 |
PQPubID | 4437215 |
PageCount | 10 |
ParticipantIDs | ieee_primary_7762123 crossref_primary_10_1109_TETC_2016_2633228 proquest_journals_2296108217 crossref_citationtrail_10_1109_TETC_2016_2633228 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on emerging topics in computing |
PublicationTitleAbbrev | TETC |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 jolliffe (ref42) 2005 ref59 ref15 hettich (ref8) 1999 ref58 ref14 ref53 ref55 ref11 ref54 panda (ref52) 0 ref17 ref16 giarratano (ref49) 1998 ref19 ref18 dua (ref12) 2011 zhang (ref50) 2010; 11 ref51 ref46 ref45 ref48 ref41 ref44 ref43 tan (ref30) 2014; 25 ref7 ref9 ref4 ref3 ref6 ref5 witten (ref47) 2005 ref40 ref35 ref34 ref37 ref36 ref33 ref32 pajouh (ref31) 2015 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref20 ref22 ref21 pan (ref25) 0; 4 ref28 ref27 ref29 bouzida (ref10) 0; 28 ref60 |
References_xml | – ident: ref22 doi: 10.1016/j.comcom.2012.01.016 – ident: ref11 doi: 10.1016/j.comcom.2008.12.037 – ident: ref48 doi: 10.1007/978-3-642-00296-0_5 – ident: ref21 doi: 10.1145/1541880.1541882 – ident: ref34 doi: 10.1109/TSG.2015.2409775 – ident: ref27 doi: 10.1016/j.neucom.2016.06.021 – ident: ref29 doi: 10.1016/j.eswa.2010.06.066 – ident: ref5 doi: 10.1016/j.jnca.2012.09.004 – start-page: 1 year: 2015 ident: ref31 article-title: Two-tier network anomaly detection model: A machine learning approach publication-title: J Intell Inf Syst – ident: ref40 doi: 10.1109/JIOT.2014.2349899 – ident: ref39 doi: 10.1109/JIOT.2016.2516102 – ident: ref56 doi: 10.1016/S1361-3723(15)30045-2 – ident: ref41 doi: 10.1109/TLA.2015.7106364 – start-page: 5 year: 0 ident: ref52 article-title: Discriminative multinomial naive bayes for network intrusion detection publication-title: Proc 6th Int Conf Inf Assurance Secur IAS – ident: ref4 doi: 10.1109/ICCSEE.2012.373 – ident: ref28 doi: 10.1016/j.comcom.2007.05.002 – year: 2011 ident: ref12 publication-title: Data Mining and Machine Learning in Cybersecurity – ident: ref44 doi: 10.1021/ie990110i – volume: 28 year: 0 ident: ref10 article-title: Neural networks versus decision trees for intrusion detection publication-title: Proc IEEEIST Workshop Monit Attack Detect Mitig MonAM Tuebingen Ger – ident: ref20 doi: 10.1117/12.487069 – ident: ref15 doi: 10.1016/j.cose.2010.12.004 – ident: ref53 doi: 10.1109/DISCEX.2000.821506 – ident: ref9 doi: 10.1109/CISDA.2009.5356528 – ident: ref14 doi: 10.1109/CyberSec.2012.6246111 – ident: ref33 doi: 10.1109/TC.2016.2519914 – ident: ref19 doi: 10.1109/COMST.2014.2336610 – ident: ref7 doi: 10.1109/SURV.2013.050113.00191 – year: 1998 ident: ref49 publication-title: Expert Systems – ident: ref13 doi: 10.1016/j.jnca.2016.01.001 – ident: ref2 doi: 10.1016/j.comnet.2014.11.008 – ident: ref36 doi: 10.1007/s10796-014-9489-2 – ident: ref60 doi: 10.1007/978-1-4899-7439-6_6 – volume: 4 start-page: 2463 year: 0 ident: ref25 article-title: Hybrid neural network and C4. 5 for misuse detection publication-title: Proc Int Conf Mach Learn Cybern – year: 2005 ident: ref47 publication-title: Data Mining Practical Machine Learning Tools and Techniques – ident: ref23 doi: 10.1016/j.neucom.2014.09.083 – volume: 11 start-page: 24 year: 2010 ident: ref50 article-title: KNN-CF Approach: Incorporating Certainty Factor to kNN Classification publication-title: IEEE Intell Inf Bull – ident: ref46 doi: 10.1109/GLOCOMW.2010.5700198 – year: 2005 ident: ref42 publication-title: Principal Component Analysis – ident: ref57 doi: 10.1109/CIMCA.2006.148 – ident: ref18 doi: 10.1109/TSP.2003.814797 – ident: ref54 doi: 10.1109/COMST.2015.2494502 – ident: ref43 doi: 10.1021/ac50012a027 – ident: ref32 doi: 10.1016/j.jnca.2016.08.016 – ident: ref16 doi: 10.1016/j.eswa.2012.07.009 – ident: ref3 doi: 10.1109/TIE.2012.2196010 – ident: ref6 doi: 10.1109/SURV.2013.052213.00046 – ident: ref55 doi: 10.1007/978-3-642-40675-1_43 – ident: ref45 doi: 10.1007/s10115-006-0013-y – ident: ref58 doi: 10.1109/JIOT.2016.2569094 – ident: ref51 doi: 10.1145/355744.355745 – ident: ref1 doi: 10.1016/j.comnet.2010.05.010 – ident: ref35 doi: 10.1109/TSMC.2015.2415763 – ident: ref38 doi: 10.1109/TPDS.2014.2311791 – ident: ref37 doi: 10.1016/j.jnca.2014.11.011 – ident: ref17 doi: 10.1016/j.knosys.2015.01.009 – year: 1999 ident: ref8 article-title: Kdd cup 1999 data – volume: 25 start-page: 447 year: 2014 ident: ref30 article-title: A system for denial-of-service attack detection based on multivariate correlation analysis publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2013.146 – ident: ref24 doi: 10.1016/j.patcog.2016.08.027 – ident: ref59 doi: 10.1002/cpe.3855 – ident: ref26 doi: 10.1109/TSMCC.2008.923876 |
SSID | ssj0000816967 |
Score | 2.5907466 |
Snippet | With increasing reliance on Internet of Things (IoT) devices and services, the capability to detect intrusions and malicious activities within IoT networks is... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 314 |
SubjectTerms | Anomaly detection CF-KNN Classification Computational modeling Computer networks Datasets Dimensionality reduction Discriminant analysis Feature extraction Hidden Markov models Internet of Things Intrusion detection intrusion detection system Intrusion detection systems IoT Modules multi-layer classification Principal component analysis Reduction Regression analysis |
Title | A Two-Layer Dimension Reduction and Two-Tier Classification Model for Anomaly-Based Intrusion Detection in IoT Backbone Networks |
URI | https://ieeexplore.ieee.org/document/7762123 https://www.proquest.com/docview/2296108217 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp3IopbTqlod84ISaZeOsnfi4vASocEBB4hb5MZEqlqTSLkLtiZ_eGSe7Ki2qesth7Fj-xp757PEMwP64VkbV4yLJQuGScYEuMUGnxFJqKYPL6jwwUby61ue348s7dbcCX5ZvYRAxBp_hkD_jXX5o_SMflR3mtHJpp12FVSJu3Vut5XkKF5AwOu8vLtOROSxPy2OO3dJDqTPS2-KF6Ym1VP7agKNVOduAq8V4umCS--Hj3A39zz9SNf7vgN_B2969FJNOHzZhBZv3sP5b0sEteJ6I8qlNvlpytsUJJ_fnAzNxwzlcGSVhmxAlSrKYIhbN5HCiiKDg0mlTQY6umDTtg53-SI7IDAZx0fDjDZY4wTl2_XxrxEVbiiPr713boLjuIs5nH-D2jCbtPOnrMCSe2OWcjBiSlddELVSap6hqG3TwRJQIfZc7lZOP47020iu01oW0yL0OWBcOawzkIX6EtYb-8wkEqjQLNuSFtcQs0RgbMjky5OZLbZUMAxgtIKp8n6Sca2VMq0hWRqZiVCtGtepRHcDBssn3LkPHv4S3GKWlYA_QAHYWelD1a3hWSWnItyyIs31-vdU2vKG-TRfHswNrNNG4Sy7K3O1F3fwFlTDlIw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOLVAQSwv4wAmR7cZZO_FxS6l2YXcPKJV6i_yYSFWXBKlbITjx0zvjZFe8hLjlMI4tf2PPN_Z4BuD1uFZG1eMiyULhknGBLjFBp-Sl1FIGl9V5YEdxsdTT8_GHC3WxA2-3b2EQMQaf4ZA_411-aP0NH5Ud57Ryaae9A3fJ7ivZvdbanqhwCQmj8_7qMh2Z4_J9-Y6jt_RQ6ow0t_jF-MRqKn9swdGunO3DYjOiLpzkanizdkP__bdkjf875Iew1xNMMek04hHsYPMYHvyUdvAAfkxE-bVN5pbotjjl9P58ZCY-cRZXxknYJkSJkmymiGUzOaAoYii4eNpKENUVk6b9bFffkhMyhEHMGn6-wRKnuMbuP5eNmLWlOLH-yrUNimUXc379BM7PaNKmSV-JIfHkX67JjCHZeU3OhUrzFFVtgw6eXCXC3-VO5cRyvNdGeoXWupAWudcB68JhjYE44lPYbaifZyBQpVmwIS-sJd8SjbEhkyNDRF9qq2QYwGgDUeX7NOVcLWNVRXdlZCpGtWJUqx7VAbzZNvnS5ej4l_ABo7QV7AEawNFGD6p-FV9XUhpilwV5bc__3uoV3JuWi3k1ny0_HsJ96sd0UT1HsEuTji-IsKzdy6int69t6G0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Two-Layer+Dimension+Reduction+and+Two-Tier+Classification+Model+for+Anomaly-Based+Intrusion+Detection+in+IoT+Backbone+Networks&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computing&rft.au=Pajouh%2C+Hamed+Haddad&rft.au=Javidan%2C+Reza&rft.au=Khayami%2C+Raouf&rft.au=Dehghantanha%2C+Ali&rft.date=2019-04-01&rft.issn=2168-6750&rft.eissn=2168-6750&rft.volume=7&rft.issue=2&rft.spage=314&rft.epage=323&rft_id=info:doi/10.1109%2FTETC.2016.2633228&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TETC_2016_2633228 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-6750&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-6750&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-6750&client=summon |