A Two-Layer Dimension Reduction and Two-Tier Classification Model for Anomaly-Based Intrusion Detection in IoT Backbone Networks

With increasing reliance on Internet of Things (IoT) devices and services, the capability to detect intrusions and malicious activities within IoT networks is critical for resilience of the network infrastructure. In this paper, we present a novel model for intrusion detection based on two-layer dim...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on emerging topics in computing Vol. 7; no. 2; pp. 314 - 323
Main Authors Pajouh, Hamed Haddad, Javidan, Reza, Khayami, Raouf, Dehghantanha, Ali, Choo, Kim-Kwang Raymond
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With increasing reliance on Internet of Things (IoT) devices and services, the capability to detect intrusions and malicious activities within IoT networks is critical for resilience of the network infrastructure. In this paper, we present a novel model for intrusion detection based on two-layer dimension reduction and two-tier classification module, designed to detect malicious activities such as User to Root (U2R) and Remote to Local (R2L) attacks. The proposed model is using component analysis and linear discriminate analysis of dimension reduction module to spate the high dimensional dataset to a lower one with lesser features. We then apply a two-tier classification module utilizing Naïve Bayes and Certainty Factor version of K-Nearest Neighbor to identify suspicious behaviors. The experiment results using NSL-KDD dataset shows that our model outperforms previous models designed to detect U2R and R2L attacks.
AbstractList With increasing reliance on Internet of Things (IoT) devices and services, the capability to detect intrusions and malicious activities within IoT networks is critical for resilience of the network infrastructure. In this paper, we present a novel model for intrusion detection based on two-layer dimension reduction and two-tier classification module, designed to detect malicious activities such as User to Root (U2R) and Remote to Local (R2L) attacks. The proposed model is using component analysis and linear discriminate analysis of dimension reduction module to spate the high dimensional dataset to a lower one with lesser features. We then apply a two-tier classification module utilizing Naïve Bayes and Certainty Factor version of K-Nearest Neighbor to identify suspicious behaviors. The experiment results using NSL-KDD dataset shows that our model outperforms previous models designed to detect U2R and R2L attacks.
Author Khayami, Raouf
Pajouh, Hamed Haddad
Javidan, Reza
Choo, Kim-Kwang Raymond
Dehghantanha, Ali
Author_xml – sequence: 1
  givenname: Hamed Haddad
  surname: Pajouh
  fullname: Pajouh, Hamed Haddad
  email: hp@sutech.ac.ir
  organization: Department of Computer Engineering and Information Technology, Shiraz University of Technology, Moddares Blvd., Shiraz, Iran
– sequence: 2
  givenname: Reza
  surname: Javidan
  fullname: Javidan, Reza
  email: reza.javidan@sutech.ac.ir
  organization: Department of Computer Engineering and Information Technology, Shiraz University of Technology, Moddares Blvd., Shiraz, Iran
– sequence: 3
  givenname: Raouf
  surname: Khayami
  fullname: Khayami, Raouf
  email: khayami@sutech.ac.ir
  organization: Department of Computer Engineering and Information Technology, Shiraz University of Technology, Moddares Blvd., Shiraz, Iran
– sequence: 4
  givenname: Ali
  surname: Dehghantanha
  fullname: Dehghantanha, Ali
  email: A.Dehghantanha@salford.ac.uk
  organization: University of Salford, Greater Manchester, Salford, United Kingdom
– sequence: 5
  givenname: Kim-Kwang Raymond
  orcidid: 0000-0001-9208-5336
  surname: Choo
  fullname: Choo, Kim-Kwang Raymond
  email: raymond.choo@fulbrightmail.org
  organization: Department of Information Systems and Cyber Security, The University of Texas at San Antonio, San Antonio, TX, USA
BookMark eNp9kEtLAzEUhYNU8PkDxE3A9dQk4ySTZR8-ClVBxvWQSe5A2mlSkymlO3-6M62IuPBu7oWcc27ud4YGzjtA6IqSIaVE3hb3xWTICOVDxtOUsfwInTLK84SLjAx-zSfoMsYF6SqnXHJxij5HuNj6ZK52EPDUrsBF6x1-A7PRbT8pZ_aKwnaCSaNitLXVav_27A00uPYBj5xfqWaXjFUEg2euDZt9zhRaOORYh2e-wGOll1X3e_wC7daHZbxAx7VqIlx-93P0_tCd85TMXx9nk9E80XeEtUlOgGaMd0dkVFDIamW40VJyrVUlqkxImWrNJdMZKFUZmgvNDdR5BTUYKtNzdHPIXQf_sYHYlgu_Ca5bWTImOSU5o6JT0YNKBx9jgLpcB7tSYVdSUvasy5512bMuv1l3HvHHo227B9QGZZt_ndcHpwWAn01CcEZZmn4BUTOPWg
CODEN ITETBT
CitedBy_id crossref_primary_10_1007_s00542_025_05848_7
crossref_primary_10_1007_s10922_021_09589_6
crossref_primary_10_1007_s10669_022_09859_x
crossref_primary_10_1051_sands_2024003
crossref_primary_10_1007_s00521_020_04772_3
crossref_primary_10_3390_s20061706
crossref_primary_10_1002_ett_4062
crossref_primary_10_1007_s10922_025_09904_5
crossref_primary_10_3390_electronics9061022
crossref_primary_10_1109_ACCESS_2020_3022862
crossref_primary_10_1109_TKDE_2024_3523857
crossref_primary_10_1007_s11277_021_08994_z
crossref_primary_10_1007_s10207_023_00803_x
crossref_primary_10_32604_cmc_2021_018466
crossref_primary_10_1109_JIOT_2020_2977196
crossref_primary_10_1007_s42979_022_01053_9
crossref_primary_10_3390_app132112029
crossref_primary_10_1016_j_procs_2021_02_003
crossref_primary_10_1145_3703625
crossref_primary_10_1016_j_advengsoft_2022_103126
crossref_primary_10_3390_electronics11030494
crossref_primary_10_1007_s13369_020_05187_x
crossref_primary_10_1109_ACCESS_2021_3082147
crossref_primary_10_3390_info13060300
crossref_primary_10_4108_eetsis_3971
crossref_primary_10_1038_s41598_024_79230_4
crossref_primary_10_3390_s22103744
crossref_primary_10_1016_j_phycom_2022_101685
crossref_primary_10_1109_JIOT_2023_3294259
crossref_primary_10_1016_j_oceaneng_2021_110180
crossref_primary_10_3390_ijerph17249347
crossref_primary_10_1007_s11042_023_17894_2
crossref_primary_10_1109_JIOT_2020_3026660
crossref_primary_10_3390_info14020077
crossref_primary_10_1016_j_engappai_2023_107231
crossref_primary_10_1007_s00530_020_00743_9
crossref_primary_10_1109_ACCESS_2019_2962829
crossref_primary_10_1109_JIOT_2024_3414492
crossref_primary_10_1109_TIFS_2019_2922262
crossref_primary_10_1016_j_engappai_2022_105670
crossref_primary_10_1007_s11276_023_03435_0
crossref_primary_10_1007_s10586_024_04477_5
crossref_primary_10_3390_electronics10141633
crossref_primary_10_1016_j_patrec_2023_10_007
crossref_primary_10_1109_TGCN_2021_3062972
crossref_primary_10_1002_ett_4121
crossref_primary_10_3390_info12040154
crossref_primary_10_1109_ACCESS_2020_2969428
crossref_primary_10_1109_TSC_2023_3319953
crossref_primary_10_3103_S0146411621020085
crossref_primary_10_1109_TII_2019_2946791
crossref_primary_10_1109_ACCESS_2023_3250235
crossref_primary_10_1007_s00500_023_09452_7
crossref_primary_10_1109_ACCESS_2021_3118573
crossref_primary_10_1038_s41598_024_81535_3
crossref_primary_10_1109_MIE_2020_2979272
crossref_primary_10_1109_COMST_2019_2922584
crossref_primary_10_1007_s11042_023_16395_6
crossref_primary_10_1109_ACCESS_2020_3026044
crossref_primary_10_1007_s00500_020_05017_0
crossref_primary_10_1109_JIOT_2020_2989053
crossref_primary_10_1016_j_comcom_2023_01_004
crossref_primary_10_1007_s44196_024_00421_y
crossref_primary_10_1109_TETC_2020_3034495
crossref_primary_10_1109_JIOT_2022_3203249
crossref_primary_10_1002_spy2_337
crossref_primary_10_1016_j_comnet_2021_108525
crossref_primary_10_1016_j_aej_2022_02_063
crossref_primary_10_1002_dac_5588
crossref_primary_10_3390_electronics12132849
crossref_primary_10_1142_S0219691320500939
crossref_primary_10_53600_ajesa_1254542
crossref_primary_10_1109_TNSM_2023_3259474
crossref_primary_10_1109_ACCESS_2020_3005643
crossref_primary_10_1109_ACCESS_2023_3311822
crossref_primary_10_1016_j_comnet_2020_107417
crossref_primary_10_1016_j_cosrev_2022_100529
crossref_primary_10_1007_s10586_023_04097_5
crossref_primary_10_1016_j_engappai_2024_108162
crossref_primary_10_1007_s10586_024_04310_z
crossref_primary_10_1016_j_iot_2024_101377
crossref_primary_10_1109_ACCESS_2020_3047895
crossref_primary_10_3233_JIFS_233575
crossref_primary_10_1109_TNSE_2020_3038618
crossref_primary_10_3390_s22124459
crossref_primary_10_1007_s11277_023_10722_8
crossref_primary_10_1007_s11227_023_05474_y
crossref_primary_10_1016_j_scs_2020_102324
crossref_primary_10_1109_TSUSC_2018_2809665
crossref_primary_10_1007_s12652_017_0558_5
crossref_primary_10_1016_j_simpat_2019_102031
crossref_primary_10_1088_2631_8695_ad4cb5
crossref_primary_10_1109_JIOT_2021_3119055
crossref_primary_10_1109_ACCESS_2022_3202914
crossref_primary_10_1109_ACCESS_2019_2959739
crossref_primary_10_1109_ACCESS_2021_3063671
crossref_primary_10_3390_electronics13163210
crossref_primary_10_1016_j_compeleceng_2021_107536
crossref_primary_10_1007_s12243_020_00780_5
crossref_primary_10_32604_jihpp_2022_029922
crossref_primary_10_3390_fi12090157
crossref_primary_10_1049_el_2019_4158
crossref_primary_10_1016_j_matpr_2022_03_661
crossref_primary_10_1016_j_comnet_2023_109681
crossref_primary_10_32604_cmc_2021_017574
crossref_primary_10_1155_2022_3795183
crossref_primary_10_1002_ett_4418
crossref_primary_10_1109_ACCESS_2023_3318600
crossref_primary_10_1109_JIOT_2018_2871719
crossref_primary_10_1007_s11277_020_07137_0
crossref_primary_10_1016_j_iswa_2024_200407
crossref_primary_10_1155_2022_5724168
crossref_primary_10_1002_cpe_7548
crossref_primary_10_1007_s10586_023_04089_5
crossref_primary_10_1142_S0219265921450080
crossref_primary_10_1007_s13198_021_01168_x
crossref_primary_10_1109_ACCESS_2020_3037359
crossref_primary_10_1080_15325008_2023_2285940
crossref_primary_10_1109_COMST_2020_2988293
crossref_primary_10_55056_jec_648
crossref_primary_10_1109_JIOT_2020_3048439
crossref_primary_10_1088_1742_6596_2449_1_012029
crossref_primary_10_1109_ACCESS_2020_2976624
crossref_primary_10_1038_s41598_022_16261_9
crossref_primary_10_1109_ACCESS_2021_3129775
crossref_primary_10_1109_JIOT_2021_3055937
crossref_primary_10_4218_etrij_2021_0044
crossref_primary_10_1007_s11227_024_05993_2
crossref_primary_10_1016_j_procs_2023_01_080
crossref_primary_10_1007_s11042_018_6338_1
crossref_primary_10_3390_data7020022
crossref_primary_10_1109_JIOT_2020_2993410
crossref_primary_10_1007_s11227_024_06021_z
crossref_primary_10_1109_TSUSC_2024_3390003
crossref_primary_10_3390_electronics10222857
crossref_primary_10_32604_iasc_2023_026799
crossref_primary_10_1007_s13369_020_05181_3
crossref_primary_10_3390_app14166967
crossref_primary_10_1016_j_neucom_2021_01_076
crossref_primary_10_1109_JIOT_2021_3098051
crossref_primary_10_1109_TII_2022_3192035
crossref_primary_10_3934_era_2024060
crossref_primary_10_1109_TNSM_2022_3202801
crossref_primary_10_1109_TNET_2024_3423780
crossref_primary_10_3390_s20185107
crossref_primary_10_1057_s41288_022_00266_6
crossref_primary_10_1109_ACCESS_2020_3022842
crossref_primary_10_1109_ACCESS_2020_3022963
crossref_primary_10_1016_j_jnca_2018_12_006
crossref_primary_10_3390_math12121799
crossref_primary_10_1007_s13369_022_07079_8
crossref_primary_10_3390_network3010008
crossref_primary_10_1007_s10515_021_00298_7
crossref_primary_10_1109_TII_2023_3245681
crossref_primary_10_3390_e23050529
crossref_primary_10_1109_TII_2022_3205366
crossref_primary_10_1371_journal_pone_0313890
crossref_primary_10_3390_s22239305
crossref_primary_10_32604_cmc_2022_018708
crossref_primary_10_1007_s11227_021_04188_3
crossref_primary_10_1109_COMST_2019_2896380
crossref_primary_10_1109_ACCESS_2020_3022855
crossref_primary_10_1007_s12652_020_02696_3
crossref_primary_10_1111_exsy_12556
crossref_primary_10_1007_s00500_021_06028_1
crossref_primary_10_1016_j_cose_2025_104323
crossref_primary_10_3390_ai3010002
crossref_primary_10_1145_3467981
crossref_primary_10_1007_s12652_022_04110_6
crossref_primary_10_1016_j_adhoc_2021_102685
crossref_primary_10_1007_s41870_023_01651_7
crossref_primary_10_1109_TITS_2022_3181436
crossref_primary_10_1186_s40537_024_00892_y
crossref_primary_10_3390_iot3010008
crossref_primary_10_1007_s00500_023_08536_8
crossref_primary_10_1038_s41598_024_76016_6
crossref_primary_10_1587_transcom_2020EBP3192
crossref_primary_10_3390_electronics11030422
crossref_primary_10_1016_j_hcc_2021_100047
crossref_primary_10_1016_j_micpro_2022_104660
crossref_primary_10_1109_ACCESS_2019_2928048
crossref_primary_10_1109_ACCESS_2019_2920326
crossref_primary_10_3390_s21051809
crossref_primary_10_1109_COMST_2020_2986444
Cites_doi 10.1016/j.comcom.2012.01.016
10.1016/j.comcom.2008.12.037
10.1007/978-3-642-00296-0_5
10.1145/1541880.1541882
10.1109/TSG.2015.2409775
10.1016/j.neucom.2016.06.021
10.1016/j.eswa.2010.06.066
10.1016/j.jnca.2012.09.004
10.1109/JIOT.2014.2349899
10.1109/JIOT.2016.2516102
10.1016/S1361-3723(15)30045-2
10.1109/TLA.2015.7106364
10.1109/ICCSEE.2012.373
10.1016/j.comcom.2007.05.002
10.1021/ie990110i
10.1117/12.487069
10.1016/j.cose.2010.12.004
10.1109/DISCEX.2000.821506
10.1109/CISDA.2009.5356528
10.1109/CyberSec.2012.6246111
10.1109/TC.2016.2519914
10.1109/COMST.2014.2336610
10.1109/SURV.2013.050113.00191
10.1016/j.jnca.2016.01.001
10.1016/j.comnet.2014.11.008
10.1007/s10796-014-9489-2
10.1007/978-1-4899-7439-6_6
10.1016/j.neucom.2014.09.083
10.1109/GLOCOMW.2010.5700198
10.1109/CIMCA.2006.148
10.1109/TSP.2003.814797
10.1109/COMST.2015.2494502
10.1021/ac50012a027
10.1016/j.jnca.2016.08.016
10.1016/j.eswa.2012.07.009
10.1109/TIE.2012.2196010
10.1109/SURV.2013.052213.00046
10.1007/978-3-642-40675-1_43
10.1007/s10115-006-0013-y
10.1109/JIOT.2016.2569094
10.1145/355744.355745
10.1016/j.comnet.2010.05.010
10.1109/TSMC.2015.2415763
10.1109/TPDS.2014.2311791
10.1016/j.jnca.2014.11.011
10.1016/j.knosys.2015.01.009
10.1109/TPDS.2013.146
10.1016/j.patcog.2016.08.027
10.1002/cpe.3855
10.1109/TSMCC.2008.923876
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TETC.2016.2633228
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-6750
EndPage 323
ExternalDocumentID 10_1109_TETC_2016_2633228
7762123
Genre orig-research
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IEDLZ
IFIPE
IPLJI
JAVBF
KQ8
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c402t-80e15266755171e5fad6dc996ccab7b57993cc692c5eaabd187c6def8befed193
IEDL.DBID RIE
ISSN 2168-6750
IngestDate Sun Jun 29 12:23:49 EDT 2025
Tue Jul 01 03:33:15 EDT 2025
Thu Apr 24 22:55:43 EDT 2025
Wed Aug 27 06:00:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-80e15266755171e5fad6dc996ccab7b57993cc692c5eaabd187c6def8befed193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9208-5336
OpenAccessLink http://usir.salford.ac.uk/id/eprint/40937/7/Submission%20TETC-2016-06-0164%20R2.pdf
PQID 2296108217
PQPubID 4437215
PageCount 10
ParticipantIDs ieee_primary_7762123
crossref_primary_10_1109_TETC_2016_2633228
proquest_journals_2296108217
crossref_citationtrail_10_1109_TETC_2016_2633228
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on emerging topics in computing
PublicationTitleAbbrev TETC
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
jolliffe (ref42) 2005
ref59
ref15
hettich (ref8) 1999
ref58
ref14
ref53
ref55
ref11
ref54
panda (ref52) 0
ref17
ref16
giarratano (ref49) 1998
ref19
ref18
dua (ref12) 2011
zhang (ref50) 2010; 11
ref51
ref46
ref45
ref48
ref41
ref44
ref43
tan (ref30) 2014; 25
ref7
ref9
ref4
ref3
ref6
ref5
witten (ref47) 2005
ref40
ref35
ref34
ref37
ref36
ref33
ref32
pajouh (ref31) 2015
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref20
ref22
ref21
pan (ref25) 0; 4
ref28
ref27
ref29
bouzida (ref10) 0; 28
ref60
References_xml – ident: ref22
  doi: 10.1016/j.comcom.2012.01.016
– ident: ref11
  doi: 10.1016/j.comcom.2008.12.037
– ident: ref48
  doi: 10.1007/978-3-642-00296-0_5
– ident: ref21
  doi: 10.1145/1541880.1541882
– ident: ref34
  doi: 10.1109/TSG.2015.2409775
– ident: ref27
  doi: 10.1016/j.neucom.2016.06.021
– ident: ref29
  doi: 10.1016/j.eswa.2010.06.066
– ident: ref5
  doi: 10.1016/j.jnca.2012.09.004
– start-page: 1
  year: 2015
  ident: ref31
  article-title: Two-tier network anomaly detection model: A machine learning approach
  publication-title: J Intell Inf Syst
– ident: ref40
  doi: 10.1109/JIOT.2014.2349899
– ident: ref39
  doi: 10.1109/JIOT.2016.2516102
– ident: ref56
  doi: 10.1016/S1361-3723(15)30045-2
– ident: ref41
  doi: 10.1109/TLA.2015.7106364
– start-page: 5
  year: 0
  ident: ref52
  article-title: Discriminative multinomial naive bayes for network intrusion detection
  publication-title: Proc 6th Int Conf Inf Assurance Secur IAS
– ident: ref4
  doi: 10.1109/ICCSEE.2012.373
– ident: ref28
  doi: 10.1016/j.comcom.2007.05.002
– year: 2011
  ident: ref12
  publication-title: Data Mining and Machine Learning in Cybersecurity
– ident: ref44
  doi: 10.1021/ie990110i
– volume: 28
  year: 0
  ident: ref10
  article-title: Neural networks versus decision trees for intrusion detection
  publication-title: Proc IEEEIST Workshop Monit Attack Detect Mitig MonAM Tuebingen Ger
– ident: ref20
  doi: 10.1117/12.487069
– ident: ref15
  doi: 10.1016/j.cose.2010.12.004
– ident: ref53
  doi: 10.1109/DISCEX.2000.821506
– ident: ref9
  doi: 10.1109/CISDA.2009.5356528
– ident: ref14
  doi: 10.1109/CyberSec.2012.6246111
– ident: ref33
  doi: 10.1109/TC.2016.2519914
– ident: ref19
  doi: 10.1109/COMST.2014.2336610
– ident: ref7
  doi: 10.1109/SURV.2013.050113.00191
– year: 1998
  ident: ref49
  publication-title: Expert Systems
– ident: ref13
  doi: 10.1016/j.jnca.2016.01.001
– ident: ref2
  doi: 10.1016/j.comnet.2014.11.008
– ident: ref36
  doi: 10.1007/s10796-014-9489-2
– ident: ref60
  doi: 10.1007/978-1-4899-7439-6_6
– volume: 4
  start-page: 2463
  year: 0
  ident: ref25
  article-title: Hybrid neural network and C4. 5 for misuse detection
  publication-title: Proc Int Conf Mach Learn Cybern
– year: 2005
  ident: ref47
  publication-title: Data Mining Practical Machine Learning Tools and Techniques
– ident: ref23
  doi: 10.1016/j.neucom.2014.09.083
– volume: 11
  start-page: 24
  year: 2010
  ident: ref50
  article-title: KNN-CF Approach: Incorporating Certainty Factor to kNN Classification
  publication-title: IEEE Intell Inf Bull
– ident: ref46
  doi: 10.1109/GLOCOMW.2010.5700198
– year: 2005
  ident: ref42
  publication-title: Principal Component Analysis
– ident: ref57
  doi: 10.1109/CIMCA.2006.148
– ident: ref18
  doi: 10.1109/TSP.2003.814797
– ident: ref54
  doi: 10.1109/COMST.2015.2494502
– ident: ref43
  doi: 10.1021/ac50012a027
– ident: ref32
  doi: 10.1016/j.jnca.2016.08.016
– ident: ref16
  doi: 10.1016/j.eswa.2012.07.009
– ident: ref3
  doi: 10.1109/TIE.2012.2196010
– ident: ref6
  doi: 10.1109/SURV.2013.052213.00046
– ident: ref55
  doi: 10.1007/978-3-642-40675-1_43
– ident: ref45
  doi: 10.1007/s10115-006-0013-y
– ident: ref58
  doi: 10.1109/JIOT.2016.2569094
– ident: ref51
  doi: 10.1145/355744.355745
– ident: ref1
  doi: 10.1016/j.comnet.2010.05.010
– ident: ref35
  doi: 10.1109/TSMC.2015.2415763
– ident: ref38
  doi: 10.1109/TPDS.2014.2311791
– ident: ref37
  doi: 10.1016/j.jnca.2014.11.011
– ident: ref17
  doi: 10.1016/j.knosys.2015.01.009
– year: 1999
  ident: ref8
  article-title: Kdd cup 1999 data
– volume: 25
  start-page: 447
  year: 2014
  ident: ref30
  article-title: A system for denial-of-service attack detection based on multivariate correlation analysis
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2013.146
– ident: ref24
  doi: 10.1016/j.patcog.2016.08.027
– ident: ref59
  doi: 10.1002/cpe.3855
– ident: ref26
  doi: 10.1109/TSMCC.2008.923876
SSID ssj0000816967
Score 2.5907466
Snippet With increasing reliance on Internet of Things (IoT) devices and services, the capability to detect intrusions and malicious activities within IoT networks is...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 314
SubjectTerms Anomaly detection
CF-KNN
Classification
Computational modeling
Computer networks
Datasets
Dimensionality reduction
Discriminant analysis
Feature extraction
Hidden Markov models
Internet of Things
Intrusion detection
intrusion detection system
Intrusion detection systems
IoT
Modules
multi-layer classification
Principal component analysis
Reduction
Regression analysis
Title A Two-Layer Dimension Reduction and Two-Tier Classification Model for Anomaly-Based Intrusion Detection in IoT Backbone Networks
URI https://ieeexplore.ieee.org/document/7762123
https://www.proquest.com/docview/2296108217
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp3IopbTqlod84ISaZeOsnfi4vASocEBB4hb5MZEqlqTSLkLtiZ_eGSe7Ki2qesth7Fj-xp757PEMwP64VkbV4yLJQuGScYEuMUGnxFJqKYPL6jwwUby61ue348s7dbcCX5ZvYRAxBp_hkD_jXX5o_SMflR3mtHJpp12FVSJu3Vut5XkKF5AwOu8vLtOROSxPy2OO3dJDqTPS2-KF6Ym1VP7agKNVOduAq8V4umCS--Hj3A39zz9SNf7vgN_B2969FJNOHzZhBZv3sP5b0sEteJ6I8qlNvlpytsUJJ_fnAzNxwzlcGSVhmxAlSrKYIhbN5HCiiKDg0mlTQY6umDTtg53-SI7IDAZx0fDjDZY4wTl2_XxrxEVbiiPr713boLjuIs5nH-D2jCbtPOnrMCSe2OWcjBiSlddELVSap6hqG3TwRJQIfZc7lZOP47020iu01oW0yL0OWBcOawzkIX6EtYb-8wkEqjQLNuSFtcQs0RgbMjky5OZLbZUMAxgtIKp8n6Sca2VMq0hWRqZiVCtGtepRHcDBssn3LkPHv4S3GKWlYA_QAHYWelD1a3hWSWnItyyIs31-vdU2vKG-TRfHswNrNNG4Sy7K3O1F3fwFlTDlIw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOLVAQSwv4wAmR7cZZO_FxS6l2YXcPKJV6i_yYSFWXBKlbITjx0zvjZFe8hLjlMI4tf2PPN_Z4BuD1uFZG1eMiyULhknGBLjFBp-Sl1FIGl9V5YEdxsdTT8_GHC3WxA2-3b2EQMQaf4ZA_411-aP0NH5Ud57Ryaae9A3fJ7ivZvdbanqhwCQmj8_7qMh2Z4_J9-Y6jt_RQ6ow0t_jF-MRqKn9swdGunO3DYjOiLpzkanizdkP__bdkjf875Iew1xNMMek04hHsYPMYHvyUdvAAfkxE-bVN5pbotjjl9P58ZCY-cRZXxknYJkSJkmymiGUzOaAoYii4eNpKENUVk6b9bFffkhMyhEHMGn6-wRKnuMbuP5eNmLWlOLH-yrUNimUXc379BM7PaNKmSV-JIfHkX67JjCHZeU3OhUrzFFVtgw6eXCXC3-VO5cRyvNdGeoXWupAWudcB68JhjYE44lPYbaifZyBQpVmwIS-sJd8SjbEhkyNDRF9qq2QYwGgDUeX7NOVcLWNVRXdlZCpGtWJUqx7VAbzZNvnS5ej4l_ABo7QV7AEawNFGD6p-FV9XUhpilwV5bc__3uoV3JuWi3k1ny0_HsJ96sd0UT1HsEuTji-IsKzdy6int69t6G0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Two-Layer+Dimension+Reduction+and+Two-Tier+Classification+Model+for+Anomaly-Based+Intrusion+Detection+in+IoT+Backbone+Networks&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computing&rft.au=Pajouh%2C+Hamed+Haddad&rft.au=Javidan%2C+Reza&rft.au=Khayami%2C+Raouf&rft.au=Dehghantanha%2C+Ali&rft.date=2019-04-01&rft.issn=2168-6750&rft.eissn=2168-6750&rft.volume=7&rft.issue=2&rft.spage=314&rft.epage=323&rft_id=info:doi/10.1109%2FTETC.2016.2633228&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TETC_2016_2633228
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-6750&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-6750&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-6750&client=summon