METABOLISM OF MELATONIN BY HUMAN CYTOCHROMES P450

In humans, the pineal hormone melatonin (MEL) is principally metabolized to 6-hydroxymelatonin (6-HMEL), which is further conjugated with sulfate and excreted in urine. MEL O-demethylation represents a minor reaction. The exact role of individual human cytochromes P450 (P450s) in these pathways has...

Full description

Saved in:
Bibliographic Details
Published inDrug metabolism and disposition Vol. 33; no. 4; pp. 489 - 494
Main Authors Ma, Xiaochao, Idle, Jeffrey R., Krausz, Kristopher W., Gonzalez, Frank J.
Format Journal Article
LanguageEnglish
Published Bethesda, MD Elsevier Inc 01.04.2005
American Society for Pharmacology and Experimental Therapeutics
Subjects
Online AccessGet full text
ISSN0090-9556
1521-009X
DOI10.1124/dmd.104.002410

Cover

Loading…
Abstract In humans, the pineal hormone melatonin (MEL) is principally metabolized to 6-hydroxymelatonin (6-HMEL), which is further conjugated with sulfate and excreted in urine. MEL O-demethylation represents a minor reaction. The exact role of individual human cytochromes P450 (P450s) in these pathways has not been established. We used a panel of 11 recombinant human P450 isozymes to investigate for the first time the 6-hydroxylation and O-demethylation of MEL. CYP1A1, CYP1A2, and CYP1B1 all 6-hydroxylated MEL, with CYP2C19 playing a minor role. These reactions were NADPH-dependent. CYP2C19 and, to some extent CYP1A2, O-demethylated MEL. The Km (μM) and Vmax (kcat, pmol min-1 pmol-1 P450) for 6-hydroxylation were estimated as 19.2 ± 2.01 and 6.46 ± 0.22 (CYP1A1), 25.9 ± 2.47 and 10.6 ± 0.32 (CYP1A2), and 30.9 ± 3.76 and 5.31 ± 0.21 (CYP1B1). These findings confirm the suggestion of others that CYP1A2 is probably the foremost hepatic P450 in the 6-hydroxylation of MEL and a single report that CYP1A1 is also able to mediate this reaction. However, this is the first time that CYP1B1 has been shown to 6-hydroxylate MEL. The IC50 for the CYP1B1-selective inhibitor (E)-2,4,3′,5′-tetramethoxystilbene was estimated to be 30 nM for MEL 6-hydroxylation by recombinant human CYP1B1. Comparison of brain homogenates from wild-type and cyp1b1-null mice revealed that MEL 6-hydroxylation was clearly mediated to a significant degree by CYP1B1. CYP1B1 is not expressed in the liver but has a ubiquitous extrahepatic distribution, and is found at high levels in tissues that also accumulate either MEL or 6-HMEL, such as intestine and cerebral cortex, where it may assist in regulating levels of MEL and 6-HMEL.
AbstractList In humans, the pineal hormone melatonin (MEL) is principally metabolized to 6-hydroxymelatonin (6-HMEL), which is further conjugated with sulfate and excreted in urine. MEL O-demethylation represents a minor reaction. The exact role of individual human cytochromes P450 (P450s) in these pathways has not been established. We used a panel of 11 recombinant human P450 isozymes to investigate for the first time the 6-hydroxylation and O-demethylation of MEL. CYP1A1, CYP1A2, and CYP1B1 all 6-hydroxylated MEL, with CYP2C19 playing a minor role. These reactions were NADPH-dependent. CYP2C19 and, to some extent CYP1A2, O-demethylated MEL. The K(m) (microM) and V(max) (k(cat), pmol min(-1) pmol(-1) P450) for 6-hydroxylation were estimated as 19.2 +/- 2.01 and 6.46 +/- 0.22 (CYP1A1), 25.9 +/- 2.47 and 10.6 +/- 0.32 (CYP1A2), and 30.9 +/- 3.76 and 5.31 +/- 0.21 (CYP1B1). These findings confirm the suggestion of others that CYP1A2 is probably the foremost hepatic P450 in the 6-hydroxylation of MEL and a single report that CYP1A1 is also able to mediate this reaction. However, this is the first time that CYP1B1 has been shown to 6-hydroxylate MEL. The IC50 for the CYP1B1-selective inhibitor (E)-2,4,3',5'-tetramethoxystilbene was estimated to be 30 nM for MEL 6-hydroxylation by recombinant human CYP1B1. Comparison of brain homogenates from wild-type and cyp1b1-null mice revealed that MEL 6-hydroxylation was clearly mediated to a significant degree by CYP1B1. CYP1B1 is not expressed in the liver but has a ubiquitous extrahepatic distribution, and is found at high levels in tissues that also accumulate either MEL or 6-HMEL, such as intestine and cerebral cortex, where it may assist in regulating levels of MEL and 6-HMEL.
In humans, the pineal hormone melatonin (MEL) is principally metabolized to 6-hydroxymelatonin (6-HMEL), which is further conjugated with sulfate and excreted in urine. MEL O-demethylation represents a minor reaction. The exact role of individual human cytochromes P450 (P450s) in these pathways has not been established. We used a panel of 11 recombinant human P450 isozymes to investigate for the first time the 6-hydroxylation and O-demethylation of MEL. CYP1A1, CYP1A2, and CYP1B1 all 6-hydroxylated MEL, with CYP2C19 playing a minor role. These reactions were NADPH-dependent. CYP2C19 and, to some extent CYP1A2, O-demethylated MEL. The Km (μM) and Vmax (kcat, pmol min-1 pmol-1 P450) for 6-hydroxylation were estimated as 19.2 ± 2.01 and 6.46 ± 0.22 (CYP1A1), 25.9 ± 2.47 and 10.6 ± 0.32 (CYP1A2), and 30.9 ± 3.76 and 5.31 ± 0.21 (CYP1B1). These findings confirm the suggestion of others that CYP1A2 is probably the foremost hepatic P450 in the 6-hydroxylation of MEL and a single report that CYP1A1 is also able to mediate this reaction. However, this is the first time that CYP1B1 has been shown to 6-hydroxylate MEL. The IC50 for the CYP1B1-selective inhibitor (E)-2,4,3′,5′-tetramethoxystilbene was estimated to be 30 nM for MEL 6-hydroxylation by recombinant human CYP1B1. Comparison of brain homogenates from wild-type and cyp1b1-null mice revealed that MEL 6-hydroxylation was clearly mediated to a significant degree by CYP1B1. CYP1B1 is not expressed in the liver but has a ubiquitous extrahepatic distribution, and is found at high levels in tissues that also accumulate either MEL or 6-HMEL, such as intestine and cerebral cortex, where it may assist in regulating levels of MEL and 6-HMEL.
In humans, the pineal hormone melatonin (MEL) is principally metabolized to 6-hydroxymelatonin (6-HMEL), which is further conjugated with sulfate and excreted in urine. MEL O-demethylation represents a minor reaction. The exact role of individual human cytochromes P450 (P450s) in these pathways has not been established. We used a panel of 11 recombinant human P450 isozymes to investigate for the first time the 6-hydroxylation and O-demethylation of MEL. CYP1A1, CYP1A2, and CYP1B1 all 6-hydroxylated MEL, with CYP2C19 playing a minor role. These reactions were NADPH-dependent. CYP2C19 and, to some extent CYP1A2, O-demethylated MEL. The K(m) (microM) and V(max) (k(cat), pmol min(-1) pmol(-1) P450) for 6-hydroxylation were estimated as 19.2 +/- 2.01 and 6.46 +/- 0.22 (CYP1A1), 25.9 +/- 2.47 and 10.6 +/- 0.32 (CYP1A2), and 30.9 +/- 3.76 and 5.31 +/- 0.21 (CYP1B1). These findings confirm the suggestion of others that CYP1A2 is probably the foremost hepatic P450 in the 6-hydroxylation of MEL and a single report that CYP1A1 is also able to mediate this reaction. However, this is the first time that CYP1B1 has been shown to 6-hydroxylate MEL. The IC50 for the CYP1B1-selective inhibitor (E)-2,4,3',5'-tetramethoxystilbene was estimated to be 30 nM for MEL 6-hydroxylation by recombinant human CYP1B1. Comparison of brain homogenates from wild-type and cyp1b1-null mice revealed that MEL 6-hydroxylation was clearly mediated to a significant degree by CYP1B1. CYP1B1 is not expressed in the liver but has a ubiquitous extrahepatic distribution, and is found at high levels in tissues that also accumulate either MEL or 6-HMEL, such as intestine and cerebral cortex, where it may assist in regulating levels of MEL and 6-HMEL.In humans, the pineal hormone melatonin (MEL) is principally metabolized to 6-hydroxymelatonin (6-HMEL), which is further conjugated with sulfate and excreted in urine. MEL O-demethylation represents a minor reaction. The exact role of individual human cytochromes P450 (P450s) in these pathways has not been established. We used a panel of 11 recombinant human P450 isozymes to investigate for the first time the 6-hydroxylation and O-demethylation of MEL. CYP1A1, CYP1A2, and CYP1B1 all 6-hydroxylated MEL, with CYP2C19 playing a minor role. These reactions were NADPH-dependent. CYP2C19 and, to some extent CYP1A2, O-demethylated MEL. The K(m) (microM) and V(max) (k(cat), pmol min(-1) pmol(-1) P450) for 6-hydroxylation were estimated as 19.2 +/- 2.01 and 6.46 +/- 0.22 (CYP1A1), 25.9 +/- 2.47 and 10.6 +/- 0.32 (CYP1A2), and 30.9 +/- 3.76 and 5.31 +/- 0.21 (CYP1B1). These findings confirm the suggestion of others that CYP1A2 is probably the foremost hepatic P450 in the 6-hydroxylation of MEL and a single report that CYP1A1 is also able to mediate this reaction. However, this is the first time that CYP1B1 has been shown to 6-hydroxylate MEL. The IC50 for the CYP1B1-selective inhibitor (E)-2,4,3',5'-tetramethoxystilbene was estimated to be 30 nM for MEL 6-hydroxylation by recombinant human CYP1B1. Comparison of brain homogenates from wild-type and cyp1b1-null mice revealed that MEL 6-hydroxylation was clearly mediated to a significant degree by CYP1B1. CYP1B1 is not expressed in the liver but has a ubiquitous extrahepatic distribution, and is found at high levels in tissues that also accumulate either MEL or 6-HMEL, such as intestine and cerebral cortex, where it may assist in regulating levels of MEL and 6-HMEL.
In humans, the pineal hormone melatonin (MEL) is principally metabolized to 6-hydroxymelatonin (6-HMEL), which is further conjugated with sulfate and excreted in urine. MEL O -demethylation represents a minor reaction. The exact role of individual human cytochromes P450 (P450s) in these pathways has not been established. We used a panel of 11 recombinant human P450 isozymes to investigate for the first time the 6-hydroxylation and O -demethylation of MEL. CYP1A1, CYP1A2, and CYP1B1 all 6-hydroxylated MEL, with CYP2C19 playing a minor role. These reactions were NADPH-dependent. CYP2C19 and, to some extent CYP1A2, O -demethylated MEL. The K m (μM) and V max ( k cat , pmol min -1 pmol -1 P450) for 6-hydroxylation were estimated as 19.2 ± 2.01 and 6.46 ± 0.22 (CYP1A1), 25.9 ± 2.47 and 10.6 ± 0.32 (CYP1A2), and 30.9 ± 3.76 and 5.31 ± 0.21 (CYP1B1). These findings confirm the suggestion of others that CYP1A2 is probably the foremost hepatic P450 in the 6-hydroxylation of MEL and a single report that CYP1A1 is also able to mediate this reaction. However, this is the first time that CYP1B1 has been shown to 6-hydroxylate MEL. The IC 50 for the CYP1B1-selective inhibitor ( E )-2,4,3′,5′-tetramethoxystilbene was estimated to be 30 nM for MEL 6-hydroxylation by recombinant human CYP1B1. Comparison of brain homogenates from wild-type and cyp1b1 -null mice revealed that MEL 6-hydroxylation was clearly mediated to a significant degree by CYP1B1. CYP1B1 is not expressed in the liver but has a ubiquitous extrahepatic distribution, and is found at high levels in tissues that also accumulate either MEL or 6-HMEL, such as intestine and cerebral cortex, where it may assist in regulating levels of MEL and 6-HMEL.
Author Ma, Xiaochao
Krausz, Kristopher W.
Gonzalez, Frank J.
Idle, Jeffrey R.
Author_xml – sequence: 1
  givenname: Xiaochao
  surname: Ma
  fullname: Ma, Xiaochao
– sequence: 2
  givenname: Jeffrey R.
  surname: Idle
  fullname: Idle, Jeffrey R.
– sequence: 3
  givenname: Kristopher W.
  surname: Krausz
  fullname: Krausz, Kristopher W.
– sequence: 4
  givenname: Frank J.
  surname: Gonzalez
  fullname: Gonzalez, Frank J.
  email: fjgonz@helix.nih.gov
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16654961$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15616152$$D View this record in MEDLINE/PubMed
BookMark eNp10M1P2zAYBnALMUFhu3JEucAtnd_EceJjqcpaqWmmUaRxshznDTXKR7FTJv57jFo2aRIn29LveW0_Z-S46zsk5ALoGCBi36u2GgNlY0ojBvSIjCCJIKRU_D4mI7_QUCQJPyVnzj1RCozF4oScQsKBezkikM_Wk5tiubjLg-I2yGfLybpYLVbBzUMwv88nq2D6sC6m819FPrsLfrKEfiVfatU4_HZYz8n97Ww9nYfL4sdiOlmGmtFoCNOU0rIChQyhZCmL4roSSkWipjrW5fshAwEKdIwosjpCnWrOeaVLWnKdxOfkej93a_vnHbpBtsZpbBrVYb9zkqdJDDxjHl4e4K5ssZJba1plX-XHJz24OgDltGpqqzpt3D_HecIEB-_Y3mnbO2exltoMajB9N1hlGglUvncufed-z-S-cx8b_xf7O_mzwOE9G_O4-WMsyu1G2VbpvukfX2UcSyZZJrzL9g59zS8GrXTaYKex8hk9yKo3n13xBqWInLc
CODEN DMDSAI
CitedBy_id crossref_primary_10_3390_neurolint15010031
crossref_primary_10_1111_j_1742_7843_2005_pto_973160_x
crossref_primary_10_1111_j_1600_079X_2007_00512_x
crossref_primary_10_3390_ijms25168567
crossref_primary_10_1111_cen_13814
crossref_primary_10_1111_jpi_12134
crossref_primary_10_1111_jpi_12253
crossref_primary_10_3109_03602530903286476
crossref_primary_10_3390_ijms22042058
crossref_primary_10_3892_etm_2022_11142
crossref_primary_10_1016_j_taap_2024_116956
crossref_primary_10_3109_10799893_2011_557734
crossref_primary_10_1002_mc_20589
crossref_primary_10_7759_cureus_50948
crossref_primary_10_1089_jop_2005_21_259
crossref_primary_10_5937_KgJSci2400004S
crossref_primary_10_1017_S0965539513000089
crossref_primary_10_3390_ijms23031238
crossref_primary_10_1016_j_jchromb_2022_123217
crossref_primary_10_3390_metabo13050629
crossref_primary_10_3389_fphar_2023_1332567
crossref_primary_10_1016_j_ejmech_2011_05_019
crossref_primary_10_1039_D2CS00650B
crossref_primary_10_1111_j_1600_079X_2006_00407_x
crossref_primary_10_1177_1925362119851107
crossref_primary_10_1111_jpi_12003
crossref_primary_10_1016_j_physbeh_2014_04_016
crossref_primary_10_1016_j_phrs_2015_08_016
crossref_primary_10_1016_j_neuchi_2013_04_004
crossref_primary_10_1074_jbc_M113_452953
crossref_primary_10_1124_dmd_122_001072
crossref_primary_10_1016_j_phrs_2021_105480
crossref_primary_10_1007_s00210_024_03575_w
crossref_primary_10_1016_j_toxlet_2016_09_004
crossref_primary_10_1016_S1734_1140_13_71479_8
crossref_primary_10_1080_03602530902843483
crossref_primary_10_1111_j_1600_079X_2005_00246_x
crossref_primary_10_1111_jpi_12830
crossref_primary_10_1515_JPEM_2011_402
crossref_primary_10_1016_j_bcp_2024_116445
crossref_primary_10_1016_j_mce_2014_07_024
crossref_primary_10_1111_jpi_12274
crossref_primary_10_1016_j_toxlet_2021_06_013
crossref_primary_10_1016_j_lfs_2018_01_024
crossref_primary_10_1016_j_cbi_2010_03_020
crossref_primary_10_3390_ijms19072033
crossref_primary_10_1002_cmdc_200900363
crossref_primary_10_1016_j_ejbas_2016_07_001
crossref_primary_10_1161_HYPERTENSIONAHA_114_03275
crossref_primary_10_4046_trd_2015_78_2_99
crossref_primary_10_1038_mp_2012_42
crossref_primary_10_5497_wjp_v8_i2_14
crossref_primary_10_1111_j_1600_079X_2010_00788_x
crossref_primary_10_1124_dmd_115_067413
crossref_primary_10_1111_ane_13317
crossref_primary_10_2147_DDDT_S348028
crossref_primary_10_1039_C4OB01396D
crossref_primary_10_3390_antiox3020245
crossref_primary_10_1124_dmd_108_022301
crossref_primary_10_1039_C9NJ05642D
crossref_primary_10_1111_bcpt_14120
crossref_primary_10_3109_15376511003690307
crossref_primary_10_1097_PCC_0b013e3182191dc4
crossref_primary_10_2133_dmpk_DMPK_11_RG_004
crossref_primary_10_1007_s10552_005_9011_8
crossref_primary_10_3389_fendo_2020_623038
crossref_primary_10_3109_03602532_2014_921190
crossref_primary_10_3390_plants13223134
crossref_primary_10_1016_S0214_9168_09_72688_9
crossref_primary_10_1002_med_21628
crossref_primary_10_1158_1940_6207_CAPR_09_0162
crossref_primary_10_1111_jpi_12293
crossref_primary_10_1248_bpb_b22_00885
crossref_primary_10_3390_nu14193934
crossref_primary_10_1039_C8RA08594C
crossref_primary_10_3390_cancers14225641
crossref_primary_10_1016_j_taap_2015_04_010
crossref_primary_10_1080_03602530600570107
crossref_primary_10_1111_jpi_12849
crossref_primary_10_1177_1178646920978245
crossref_primary_10_3390_ijms23031835
crossref_primary_10_1080_03602530701836662
crossref_primary_10_1007_s00228_007_0438_6
crossref_primary_10_1128_MCB_00856_13
crossref_primary_10_3389_fphys_2018_00528
crossref_primary_10_1080_03602532_2016_1221960
crossref_primary_10_1002_fft2_180
crossref_primary_10_1016_j_mrfmmm_2024_111881
crossref_primary_10_3389_fncel_2014_00335
crossref_primary_10_1007_s00204_021_03111_2
crossref_primary_10_1021_acs_jpcb_2c07200
crossref_primary_10_1007_s00109_021_02163_2
crossref_primary_10_1016_j_pharmthera_2006_11_005
crossref_primary_10_1016_j_bmcl_2010_07_089
crossref_primary_10_1111_jpi_12758
crossref_primary_10_1111_j_1600_079X_2009_00724_x
crossref_primary_10_1016_j_phrs_2020_105407
crossref_primary_10_3389_fonc_2021_643983
crossref_primary_10_1016_j_neulet_2009_12_008
crossref_primary_10_1038_s41598_021_03244_5
crossref_primary_10_3390_molecules28196961
crossref_primary_10_1371_journal_pone_0241902
crossref_primary_10_1210_er_2018_00084
crossref_primary_10_1371_journal_pone_0186469
crossref_primary_10_1016_j_jbc_2023_105035
crossref_primary_10_3390_ijms20236065
crossref_primary_10_1615_CritRevOncog_2023048934
crossref_primary_10_1074_jbc_RA119_010727
crossref_primary_10_1002_pul2_70054
crossref_primary_10_1007_s00204_008_0332_8
crossref_primary_10_1111_j_1742_7843_2006_pto_491_x
crossref_primary_10_3390_nu14163420
crossref_primary_10_1177_1178646919855942
crossref_primary_10_1111_bph_13612
crossref_primary_10_1074_jbc_M109_003459
crossref_primary_10_1111_j_1600_079X_2010_00771_x
crossref_primary_10_1016_j_xphs_2015_11_044
crossref_primary_10_1074_jbc_M114_550004
crossref_primary_10_1016_j_smrv_2021_101431
crossref_primary_10_1016_j_jchromb_2021_122938
crossref_primary_10_3390_cells12091237
crossref_primary_10_1177_0269881108089871
crossref_primary_10_1016_j_biopha_2021_111397
crossref_primary_10_1016_j_jpba_2014_03_018
crossref_primary_10_1002_csc2_21126
crossref_primary_10_1111_j_1600_079X_2006_00321_x
crossref_primary_10_3390_ijms151017705
crossref_primary_10_1016_j_pharmr_2025_100045
crossref_primary_10_1134_S0022093021010038
crossref_primary_10_3389_fpls_2022_847175
crossref_primary_10_1016_j_msom_2019_12_187
crossref_primary_10_1111_rda_12378
crossref_primary_10_1016_j_apsb_2019_11_016
crossref_primary_10_1124_mol_113_087700
crossref_primary_10_1074_jbc_M109_072629
crossref_primary_10_1208_s12248_023_00863_w
crossref_primary_10_1111_j_1600_079X_2006_00356_x
crossref_primary_10_1146_annurev_pharmtox_48_061807_154729
crossref_primary_10_1093_ckj_sfz198
crossref_primary_10_1111_j_1600_079X_2012_01012_x
crossref_primary_10_4103_jfmpc_jfmpc_1839_21
crossref_primary_10_1210_en_2007_1412
crossref_primary_10_1080_10408398_2014_962686
crossref_primary_10_1155_2016_5341081
crossref_primary_10_1016_j_encep_2020_08_010
crossref_primary_10_1111_cts_13263
crossref_primary_10_1016_j_lfs_2022_120368
crossref_primary_10_1016_j_mce_2012_01_004
crossref_primary_10_1016_j_actaastro_2022_10_020
crossref_primary_10_1111_jpi_12557
crossref_primary_10_1111_jpi_12554
crossref_primary_10_3390_molecules22071143
crossref_primary_10_2174_0115680266253465230920114223
crossref_primary_10_3389_fendo_2023_1123999
crossref_primary_10_3390_molecules22112015
crossref_primary_10_1111_bcp_12092
crossref_primary_10_1080_09291010802066983
crossref_primary_10_31083_j_fbl2812355
crossref_primary_10_1111_dom_12523
crossref_primary_10_1111_j_1742_4658_2006_05322_x
crossref_primary_10_3109_07420528_2015_1112396
crossref_primary_10_3748_wjg_v25_i23_2846
crossref_primary_10_1016_j_smrv_2013_12_001
crossref_primary_10_1039_C4MB00360H
crossref_primary_10_3389_fpsyt_2020_00872
crossref_primary_10_3390_membranes12030303
crossref_primary_10_3390_biom13121779
crossref_primary_10_1016_j_biochi_2007_10_007
crossref_primary_10_1124_dmd_109_026997
crossref_primary_10_3390_ijms23137438
crossref_primary_10_1155_2012_510764
crossref_primary_10_1155_2017_3204504
crossref_primary_10_1590_s2175_97902024e23493
crossref_primary_10_1016_S1734_1140_09_70081_7
crossref_primary_10_1016_j_pharmthera_2017_03_007
crossref_primary_10_1002_rmv_2109
crossref_primary_10_1016_j_ijporl_2020_109861
crossref_primary_10_1124_dmd_105_006502
crossref_primary_10_3390_pharmaceutics16121511
crossref_primary_10_1080_03602532_2020_1858856
crossref_primary_10_1096_fj_05_5227fje
crossref_primary_10_31083_j_fbl2901024
crossref_primary_10_1016_j_jid_2022_08_056
crossref_primary_10_1111_j_1600_079X_2008_00630_x
crossref_primary_10_1007_s11845_021_02828_4
crossref_primary_10_1111_head_13828
crossref_primary_10_3390_ijms24043651
crossref_primary_10_3390_nu14194087
crossref_primary_10_1016_j_tox_2009_09_010
crossref_primary_10_1042_CS20200310
crossref_primary_10_1111_jphp_12749
crossref_primary_10_1007_s12272_021_01306_w
crossref_primary_10_3390_ijms24010311
crossref_primary_10_1016_j_gene_2023_147171
crossref_primary_10_1016_j_lfs_2006_09_011
crossref_primary_10_1016_j_abb_2013_01_007
crossref_primary_10_1007_s10725_023_01011_2
crossref_primary_10_1097_JCP_0000000000001775
crossref_primary_10_2174_1381612825666190920114611
crossref_primary_10_1016_j_jchromb_2025_124520
crossref_primary_10_1016_j_ijpharm_2018_05_063
crossref_primary_10_3109_03602532_2011_624103
crossref_primary_10_1007_s40262_019_00783_z
crossref_primary_10_1134_S1819712419030036
crossref_primary_10_4236_as_2015_61005
crossref_primary_10_1111_jpi_12478
crossref_primary_10_1111_tpj_14915
crossref_primary_10_1002_jmr_2537
crossref_primary_10_3390_ijms23137094
crossref_primary_10_1016_j_jpba_2015_09_028
crossref_primary_10_1093_pcmedi_pbaf004
crossref_primary_10_1111_are_15308
crossref_primary_10_1016_j_ridd_2018_02_017
crossref_primary_10_1002_jat_2968
crossref_primary_10_1096_fj_10_154450
crossref_primary_10_1007_s00018_022_04390_3
crossref_primary_10_3389_fchem_2023_1229199
crossref_primary_10_1080_10715762_2019_1702656
crossref_primary_10_1002_mc_20459
crossref_primary_10_1111_jpi_12220
crossref_primary_10_1124_mol_106_032748
crossref_primary_10_1111_jgh_12055
crossref_primary_10_1155_2016_5198743
crossref_primary_10_1021_ci200523f
Cites_doi 10.1097/00004714-200104000-00008
10.1016/S0003-9861(03)00174-7
10.1097/00008571-200303000-00007
10.1210/endo.140.10.7074
10.1016/0277-5379(89)90122-3
10.1046/j.1600-079X.2003.00096.x
10.1210/jcem-60-1-114
10.1080/07448489809596003
10.1016/S0027-5107(02)00333-0
10.1007/s00204-003-0488-1
10.1046/j.1365-2826.2003.01016.x
10.1007/BF03345194
10.1177/112067219200200203
10.1080/0049825021000023978
10.1002/14651858.CD001520
10.1097/01.ijg.0000133150.44686.0b
10.1007/BF02253360
10.1093/sleep/22.5.625
10.1111/j.1600-079X.2004.00120.x
10.1034/j.1600-079X.2001.310408.x
10.1007/BF03168221
10.1067/mcp.2001.116512
10.1007/s007020070014
10.1111/j.1600-079X.1997.tb00322.x
10.1111/j.1600-079X.1999.tb00583.x
10.1007/s002280050729
10.1177/002215540104900210
10.1124/dmd.31.3.259
10.1093/sleep/26.7.893
10.1097/00007611-199704000-00020
10.1034/j.1600-079X.2003.2e114.x
ContentType Journal Article
Copyright 2005 American Society for Pharmacology and Experimental Therapeutics
2005 INIST-CNRS
Copyright_xml – notice: 2005 American Society for Pharmacology and Experimental Therapeutics
– notice: 2005 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1124/dmd.104.002410
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1521-009X
EndPage 494
ExternalDocumentID 15616152
16654961
10_1124_dmd_104_002410
33_4_489
S0090955624031404
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.GJ
0R~
18M
2WC
4.4
53G
5GY
5RE
5VS
AAXUO
ABJNI
ABSQV
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
AENEX
AERNN
AFFNX
AFOSN
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
FDB
GX1
H13
HZ~
IH2
INIJC
KQ8
LSO
M41
O9-
OK1
P2P
R0Z
RHI
ROL
RPT
SJN
TR2
VH1
W8F
WH7
WOQ
YCJ
YHG
ZGI
ZXP
~KM
-
08R
0R
AAPBV
AAWZA
ABFLS
ABSGY
ADACO
FH7
FRP
GJ
HZ
KM
O0-
RHF
W2D
AALRI
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c402t-7700bd1ae4e1b47423fd9aa29f0c3cbfd9a8191a1c3ee98f2ec7c666dcb0b6c53
ISSN 0090-9556
IngestDate Fri Jul 11 15:28:23 EDT 2025
Mon Jul 21 05:43:50 EDT 2025
Mon Jul 21 09:16:03 EDT 2025
Tue Jul 01 05:42:38 EDT 2025
Thu Apr 24 23:02:50 EDT 2025
Tue Jan 05 21:17:01 EST 2021
Sun Apr 06 06:52:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Human
Melatonin
Enzyme
Cytochrome P450
Pharmacokinetics
Metabolism
Pineal hormone
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c402t-7700bd1ae4e1b47423fd9aa29f0c3cbfd9a8191a1c3ee98f2ec7c666dcb0b6c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 15616152
PQID 67531684
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_67531684
pubmed_primary_15616152
pascalfrancis_primary_16654961
crossref_citationtrail_10_1124_dmd_104_002410
crossref_primary_10_1124_dmd_104_002410
highwire_pharmacology_33_4_489
elsevier_sciencedirect_doi_10_1124_dmd_104_002410
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-04-01
PublicationDateYYYYMMDD 2005-04-01
PublicationDate_xml – month: 04
  year: 2005
  text: 2005-04-01
  day: 01
PublicationDecade 2000
PublicationPlace Bethesda, MD
PublicationPlace_xml – name: Bethesda, MD
– name: United States
PublicationTitle Drug metabolism and disposition
PublicationTitleAlternate Drug Metab Dispos
PublicationYear 2005
Publisher Elsevier Inc
American Society for Pharmacology and Experimental Therapeutics
Publisher_xml – name: Elsevier Inc
– name: American Society for Pharmacology and Experimental Therapeutics
References Skene, Papagiannidou, Hashemi, Snelling, Lewis, Fernandez, Ioannides (bib28) 2001; 31
Thomas, Mohanakumar (bib31) 2004; 36
Ng, Liu, Zhao (bib20) 2000; 107
von Bahr, Ursing, Yasui, Tybring, Bertilsson, Rojdmark (bib33) 2000; 56
Reiter, Tan (bib22) 2003; 34
Serle, Wang, Peterson, Plourde, Yerxa (bib25) 2004; 13
Skinner, Malpaux (bib29) 1999; 140
Heiligenstein, Guenther (bib11) 1998; 46
Hartter, Wang, Weigmann, Friedberg, Arand, Oesch, Hiemke (bib10) 2001; 21
Muskhelishvili, Thompson, Kusewitt, Wang, Kadlubar (bib19) 2001; 49
Martin, Malina, Brennan, Hendrickson, Lichter (bib18) 1992; 2
Arendt, Middleton, Stone, Skene (bib1) 1999; 22
Granberg, Ostergren, Brandt, Brittebo (bib7) 2003; 31
Holliman, Chyka (bib13) 1997; 90
Lissoni, Barni, Crispino, Tancini, Fraschini (bib17) 1989; 25
Herxheimer, Petrie (bib12) 2002
Hartter, Ursing, Morita, Tybring, von Bahr, Christensen, Rojdmark, Bertilsson (bib9) 2001; 70
Yu, Idle, Byrd, Krausz, Küpfer, Gonzalez (bib36) 2003; 13
Delagrange, Atkinson, Boutin, Casteilla, Lesieur, Misslin, Pellissier, Penicaud, Renard (bib6) 2003; 15
Singer, Tractenberg, Kaye, Schafer, Gamst, Grundman, Thomas, Thal (bib27) 2003; 26
Yeleswaram, Vachharajani, Santone (bib34) 1999; 26
Barrenetxe, Delagrange, Martinez (bib2) 2004; 60
Reiter, Tan, Osuna, Gitto (bib23) 2000; 7
Lahiri, Ge, Sharman, Bondy (bib16) 2004; 36
Panzer, Viljoen (bib21) 1997; 22
Reiter, Tan, Qi (bib24) 1998; 19
Skwarlo-Sonta (bib30) 2002; 23
Iba, Storch, Ghosal, Bennett, Reuhl, Lowndes (bib14) 2003; 77
Chun, Kim, Kim, Lee, Guengerich (bib5) 2001; 61
Chen, Chua, Gao, Hamdy, Chua (bib3) 2003; 284
Krusekopf, Roots, Hildebrandt, Kleeberg (bib15) 2003; 33
Choudhary, Jansson, Schenkman, Sarfarazi, Stoilov (bib4) 2003; 414
Guengerich, Chun, Kim, Gillam, Shimada (bib8) 2003; 523-524
Shimada, Gillam, Sutter, Strickland, Guengerich, Yamazaki (bib26) 1997; 25
Ursing, Wikner, Brismar, Rojdmark (bib32) 2003; 26
Young, Leone, Francis, Stovell, Silman (bib35) 1985; 60
Singer (10.1124/dmd.104.002410_bib27) 2003; 26
Hartter (10.1124/dmd.104.002410_bib10) 2001; 21
Hartter (10.1124/dmd.104.002410_bib9) 2001; 70
Yu (10.1124/dmd.104.002410_bib36) 2003; 13
Muskhelishvili (10.1124/dmd.104.002410_bib19) 2001; 49
Guengerich (10.1124/dmd.104.002410_bib8) 2003; 523-524
Holliman (10.1124/dmd.104.002410_bib13) 1997; 90
Chen (10.1124/dmd.104.002410_bib3) 2003; 284
von Bahr (10.1124/dmd.104.002410_bib33) 2000; 56
Barrenetxe (10.1124/dmd.104.002410_bib2) 2004; 60
Panzer (10.1124/dmd.104.002410_bib21) 1997; 22
Skene (10.1124/dmd.104.002410_bib28) 2001; 31
Thomas (10.1124/dmd.104.002410_bib31) 2004; 36
Iba (10.1124/dmd.104.002410_bib14) 2003; 77
Granberg (10.1124/dmd.104.002410_bib7) 2003; 31
Skinner (10.1124/dmd.104.002410_bib29) 1999; 140
Choudhary (10.1124/dmd.104.002410_bib4) 2003; 414
Reiter (10.1124/dmd.104.002410_bib23) 2000; 7
Krusekopf (10.1124/dmd.104.002410_bib15) 2003; 33
Reiter (10.1124/dmd.104.002410_bib22) 2003; 34
Heiligenstein (10.1124/dmd.104.002410_bib11) 1998; 46
Martin (10.1124/dmd.104.002410_bib18) 1992; 2
Serle (10.1124/dmd.104.002410_bib25) 2004; 13
Skwarlo-Sonta (10.1124/dmd.104.002410_bib30) 2002; 23
Reiter (10.1124/dmd.104.002410_bib24) 1998; 19
Herxheimer (10.1124/dmd.104.002410_bib12) 2002
Lissoni (10.1124/dmd.104.002410_bib17) 1989; 25
Ursing (10.1124/dmd.104.002410_bib32) 2003; 26
Young (10.1124/dmd.104.002410_bib35) 1985; 60
Arendt (10.1124/dmd.104.002410_bib1) 1999; 22
Delagrange (10.1124/dmd.104.002410_bib6) 2003; 15
Lahiri (10.1124/dmd.104.002410_bib16) 2004; 36
Yeleswaram (10.1124/dmd.104.002410_bib34) 1999; 26
Ng (10.1124/dmd.104.002410_bib20) 2000; 107
Shimada (10.1124/dmd.104.002410_bib26) 1997; 25
Chun (10.1124/dmd.104.002410_bib5) 2001; 61
References_xml – volume: 284
  start-page: H1618
  year: 2003
  end-page: H1624
  ident: bib3
  article-title: Protective effect of melatonin on myocardial infarction.
  publication-title: Am J Physiol
– volume: 22
  start-page: 625
  year: 1999
  end-page: 635
  ident: bib1
  article-title: Complex effects of melatonin: evidence for photoperiodic responses in humans?
  publication-title: Sleep
– volume: 31
  start-page: 259
  year: 2003
  end-page: 265
  ident: bib7
  article-title: CYP1A1 and CYP1B1 in blood-brain interfaces: CYP1A1-dependent bioactivation of 7,12-dimethylbenz(a)anthracene in endothelial cells.
  publication-title: Drug Metab Dispos
– volume: 523-524
  start-page: 173
  year: 2003
  end-page: 182
  ident: bib8
  article-title: Cytochrome P450 1B1: a target for inhibition in anticarcinogenesis strategies.
  publication-title: Mutat Res
– volume: 7
  start-page: 444
  year: 2000
  end-page: 458
  ident: bib23
  article-title: Actions of melatonin in the reduction of oxidative stress. A review.
  publication-title: J Biomed Sci
– volume: 13
  start-page: 385
  year: 2004
  end-page: 388
  ident: bib25
  article-title: Effect of 5-MCA-NAT, a putative melatonin MT3 receptor agonist, on intraocular pressure in glaucomatous monkey eyes.
  publication-title: J Glaucoma
– volume: 31
  start-page: 333
  year: 2001
  end-page: 342
  ident: bib28
  article-title: Contribution of CYP1A2 in the hepatic metabolism of melatonin: studies with isolated microsomal preparations and liver slices.
  publication-title: J Pineal Res
– volume: 22
  start-page: 184
  year: 1997
  end-page: 202
  ident: bib21
  article-title: The validity of melatonin as an oncostatic agent.
  publication-title: J Pineal Res
– volume: 70
  start-page: 10
  year: 2001
  end-page: 16
  ident: bib9
  article-title: Orally given melatonin may serve as a probe drug for cytochrome P450 1A2 activity in vivo: a pilot study.
  publication-title: Clin Pharmacol Ther
– volume: 25
  start-page: 789
  year: 1989
  end-page: 795
  ident: bib17
  article-title: Endocrine and immune effects of melatonin therapy in metastatic cancer patients.
  publication-title: Eur J Cancer Clin Oncol
– volume: 107
  start-page: 1243
  year: 2000
  end-page: 1251
  ident: bib20
  article-title: Antioxidative and free radical scavenging activities of pineal indoles.
  publication-title: J Neural Transm
– volume: 25
  start-page: 617
  year: 1997
  end-page: 622
  ident: bib26
  article-title: Oxidation of xenobiotics by recombinant human cytochrome P450 1B1.
  publication-title: Drug Metab Dispos
– year: 2002
  ident: bib12
  article-title: Melatonin for the prevention and treatment of jet lag.
  publication-title: Cochrane Database Syst Rev
– volume: 34
  start-page: 79
  year: 2003
  end-page: 80
  ident: bib22
  article-title: What constitutes a physiological concentration of melatonin?
  publication-title: J Pineal Res
– volume: 140
  start-page: 4399
  year: 1999
  end-page: 4405
  ident: bib29
  article-title: High melatonin concentrations in third ventricular cerebrospinal fluid are not due to Galen vein blood recirculating through the choroid plexus.
  publication-title: Endocrinology
– volume: 26
  start-page: 893
  year: 2003
  end-page: 901
  ident: bib27
  article-title: A multicenter, placebo-controlled trial of melatonin for sleep disturbance in Alzheimer’s disease.
  publication-title: Sleep
– volume: 26
  start-page: 403
  year: 2003
  end-page: 406
  ident: bib32
  article-title: Caffeine raises the serum melatonin level in healthy subjects: an indication of melatonin metabolism by cytochrome P450(CYP)1A2.
  publication-title: J Endocrinol Investig
– volume: 26
  start-page: 190
  year: 1999
  end-page: 191
  ident: bib34
  article-title: Involvement of cytochrome P-450 isozymes in melatonin metabolism and clinical implications.
  publication-title: J Pineal Res
– volume: 2
  start-page: 67
  year: 1992
  end-page: 72
  ident: bib18
  article-title: The ciliary body—the third organ found to synthesize indoleamines in humans.
  publication-title: Eur J Ophthalmol
– volume: 15
  start-page: 442
  year: 2003
  end-page: 448
  ident: bib6
  article-title: Therapeutic perspectives for melatonin agonists and antagonists.
  publication-title: J Neuroendocrinol
– volume: 33
  start-page: 107
  year: 2003
  end-page: 118
  ident: bib15
  article-title: Time-dependent transcriptional induction of CYP1A1, CYP1A2 and CYP1B1 mRNAs by H+/K+-ATPase inhibitors and other xenobiotics.
  publication-title: Xenobiotica
– volume: 13
  start-page: 173
  year: 2003
  end-page: 181
  ident: bib36
  article-title: Regeneration of serotonin from 5-methoxytryptamine by polymorphic human CYP2D6.
  publication-title: Pharmacogenetics
– volume: 77
  start-page: 547
  year: 2003
  end-page: 554
  ident: bib14
  article-title: Constitutive and inducible levels of CYP1A1 and CYP1A2 in rat cerebral cortex and cerebellum.
  publication-title: Arch Toxicol
– volume: 56
  start-page: 123
  year: 2000
  end-page: 127
  ident: bib33
  article-title: Fluvoxamine but not citalopram increases serum melatonin in healthy subjects—an indication that cytochrome P450 CYP1A2 and CYP2C19 hydroxylate melatonin.
  publication-title: Eur J Clin Pharmacol
– volume: 414
  start-page: 91
  year: 2003
  end-page: 100
  ident: bib4
  article-title: Comparative expression profiling of 40 mouse cytochrome P450 genes in embryonic and adult tissues.
  publication-title: Arch Biochem Biophys
– volume: 36
  start-page: 25
  year: 2004
  end-page: 32
  ident: bib31
  article-title: Melatonin protects against oxidative stress caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the mouse nigrostriatum.
  publication-title: J Pineal Res
– volume: 21
  start-page: 167
  year: 2001
  end-page: 174
  ident: bib10
  article-title: Differential effects of fluvoxamine and other antidepressants on the biotransformation of melatonin.
  publication-title: J Clin Psychopharmacol
– volume: 60
  start-page: 114
  year: 1985
  end-page: 119
  ident: bib35
  article-title: Melatonin is metabolized to N-acetyl serotonin and 6-hydroxymelatonin in man.
  publication-title: J Clin Endocrinol Metab
– volume: 90
  start-page: 451
  year: 1997
  end-page: 453
  ident: bib13
  article-title: Problems in assessment of acute melatonin overdose.
  publication-title: South Med J
– volume: 49
  start-page: 229
  year: 2001
  end-page: 236
  ident: bib19
  article-title: In situ hybridization and immunohistochemical analysis of cytochrome P450 1B1 expression in human normal tissues.
  publication-title: J Histochem Cytochem
– volume: 46
  start-page: 271
  year: 1998
  end-page: 276
  ident: bib11
  article-title: Over-the-counter psychotropics: a review of melatonin, St John’s wort, valerian and kava-kava.
  publication-title: J Am Coll Health
– volume: 19
  start-page: 575
  year: 1998
  end-page: 581
  ident: bib24
  article-title: Suppression of oxygen toxicity by melatonin.
  publication-title: Zhongguo Yaoli Xuebao
– volume: 36
  start-page: 217
  year: 2004
  end-page: 223
  ident: bib16
  article-title: Age-related changes in serum melatonin in mice: higher levels of combined melatonin and 6-hydroxymelatonin sulfate in the cerebral cortex than serum, heart, liver and kidney tissues.
  publication-title: J Pineal Res
– volume: 23
  start-page: 61
  year: 2002
  end-page: 66
  ident: bib30
  article-title: Melatonin in immunity: comparative aspects.
  publication-title: Neuroendocrinol Lett
– volume: 60
  start-page: 61
  year: 2004
  end-page: 72
  ident: bib2
  article-title: Physiological and metabolic functions of melatonin.
  publication-title: J Physiol Biochem
– volume: 61
  start-page: 8164
  year: 2001
  end-page: 8170
  ident: bib5
  article-title: A new selective and potent inhibitor of human cytochrome P450 1B1 and its application to antimutagenesis.
  publication-title: Cancer Res
– volume: 21
  start-page: 167
  year: 2001
  ident: 10.1124/dmd.104.002410_bib10
  article-title: Differential effects of fluvoxamine and other antidepressants on the biotransformation of melatonin.
  publication-title: J Clin Psychopharmacol
  doi: 10.1097/00004714-200104000-00008
– volume: 414
  start-page: 91
  year: 2003
  ident: 10.1124/dmd.104.002410_bib4
  article-title: Comparative expression profiling of 40 mouse cytochrome P450 genes in embryonic and adult tissues.
  publication-title: Arch Biochem Biophys
  doi: 10.1016/S0003-9861(03)00174-7
– volume: 61
  start-page: 8164
  year: 2001
  ident: 10.1124/dmd.104.002410_bib5
  article-title: A new selective and potent inhibitor of human cytochrome P450 1B1 and its application to antimutagenesis.
  publication-title: Cancer Res
– volume: 13
  start-page: 173
  year: 2003
  ident: 10.1124/dmd.104.002410_bib36
  article-title: Regeneration of serotonin from 5-methoxytryptamine by polymorphic human CYP2D6.
  publication-title: Pharmacogenetics
  doi: 10.1097/00008571-200303000-00007
– volume: 140
  start-page: 4399
  year: 1999
  ident: 10.1124/dmd.104.002410_bib29
  article-title: High melatonin concentrations in third ventricular cerebrospinal fluid are not due to Galen vein blood recirculating through the choroid plexus.
  publication-title: Endocrinology
  doi: 10.1210/endo.140.10.7074
– volume: 25
  start-page: 789
  year: 1989
  ident: 10.1124/dmd.104.002410_bib17
  article-title: Endocrine and immune effects of melatonin therapy in metastatic cancer patients.
  publication-title: Eur J Cancer Clin Oncol
  doi: 10.1016/0277-5379(89)90122-3
– volume: 36
  start-page: 25
  year: 2004
  ident: 10.1124/dmd.104.002410_bib31
  article-title: Melatonin protects against oxidative stress caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the mouse nigrostriatum.
  publication-title: J Pineal Res
  doi: 10.1046/j.1600-079X.2003.00096.x
– volume: 60
  start-page: 114
  year: 1985
  ident: 10.1124/dmd.104.002410_bib35
  article-title: Melatonin is metabolized to N-acetyl serotonin and 6-hydroxymelatonin in man.
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jcem-60-1-114
– volume: 284
  start-page: H1618
  year: 2003
  ident: 10.1124/dmd.104.002410_bib3
  article-title: Protective effect of melatonin on myocardial infarction.
  publication-title: Am J Physiol
– volume: 46
  start-page: 271
  year: 1998
  ident: 10.1124/dmd.104.002410_bib11
  article-title: Over-the-counter psychotropics: a review of melatonin, St John’s wort, valerian and kava-kava.
  publication-title: J Am Coll Health
  doi: 10.1080/07448489809596003
– volume: 19
  start-page: 575
  year: 1998
  ident: 10.1124/dmd.104.002410_bib24
  article-title: Suppression of oxygen toxicity by melatonin.
  publication-title: Zhongguo Yaoli Xuebao
– volume: 523-524
  start-page: 173
  year: 2003
  ident: 10.1124/dmd.104.002410_bib8
  article-title: Cytochrome P450 1B1: a target for inhibition in anticarcinogenesis strategies.
  publication-title: Mutat Res
  doi: 10.1016/S0027-5107(02)00333-0
– volume: 77
  start-page: 547
  year: 2003
  ident: 10.1124/dmd.104.002410_bib14
  article-title: Constitutive and inducible levels of CYP1A1 and CYP1A2 in rat cerebral cortex and cerebellum.
  publication-title: Arch Toxicol
  doi: 10.1007/s00204-003-0488-1
– volume: 15
  start-page: 442
  year: 2003
  ident: 10.1124/dmd.104.002410_bib6
  article-title: Therapeutic perspectives for melatonin agonists and antagonists.
  publication-title: J Neuroendocrinol
  doi: 10.1046/j.1365-2826.2003.01016.x
– volume: 26
  start-page: 403
  year: 2003
  ident: 10.1124/dmd.104.002410_bib32
  article-title: Caffeine raises the serum melatonin level in healthy subjects: an indication of melatonin metabolism by cytochrome P450(CYP)1A2.
  publication-title: J Endocrinol Investig
  doi: 10.1007/BF03345194
– volume: 2
  start-page: 67
  year: 1992
  ident: 10.1124/dmd.104.002410_bib18
  article-title: The ciliary body—the third organ found to synthesize indoleamines in humans.
  publication-title: Eur J Ophthalmol
  doi: 10.1177/112067219200200203
– volume: 33
  start-page: 107
  year: 2003
  ident: 10.1124/dmd.104.002410_bib15
  article-title: Time-dependent transcriptional induction of CYP1A1, CYP1A2 and CYP1B1 mRNAs by H+/K+-ATPase inhibitors and other xenobiotics.
  publication-title: Xenobiotica
  doi: 10.1080/0049825021000023978
– year: 2002
  ident: 10.1124/dmd.104.002410_bib12
  article-title: Melatonin for the prevention and treatment of jet lag.
  publication-title: Cochrane Database Syst Rev
  doi: 10.1002/14651858.CD001520
– volume: 13
  start-page: 385
  year: 2004
  ident: 10.1124/dmd.104.002410_bib25
  article-title: Effect of 5-MCA-NAT, a putative melatonin MT3 receptor agonist, on intraocular pressure in glaucomatous monkey eyes.
  publication-title: J Glaucoma
  doi: 10.1097/01.ijg.0000133150.44686.0b
– volume: 7
  start-page: 444
  year: 2000
  ident: 10.1124/dmd.104.002410_bib23
  article-title: Actions of melatonin in the reduction of oxidative stress. A review.
  publication-title: J Biomed Sci
  doi: 10.1007/BF02253360
– volume: 22
  start-page: 625
  year: 1999
  ident: 10.1124/dmd.104.002410_bib1
  article-title: Complex effects of melatonin: evidence for photoperiodic responses in humans?
  publication-title: Sleep
  doi: 10.1093/sleep/22.5.625
– volume: 36
  start-page: 217
  year: 2004
  ident: 10.1124/dmd.104.002410_bib16
  article-title: Age-related changes in serum melatonin in mice: higher levels of combined melatonin and 6-hydroxymelatonin sulfate in the cerebral cortex than serum, heart, liver and kidney tissues.
  publication-title: J Pineal Res
  doi: 10.1111/j.1600-079X.2004.00120.x
– volume: 31
  start-page: 333
  year: 2001
  ident: 10.1124/dmd.104.002410_bib28
  article-title: Contribution of CYP1A2 in the hepatic metabolism of melatonin: studies with isolated microsomal preparations and liver slices.
  publication-title: J Pineal Res
  doi: 10.1034/j.1600-079X.2001.310408.x
– volume: 60
  start-page: 61
  year: 2004
  ident: 10.1124/dmd.104.002410_bib2
  article-title: Physiological and metabolic functions of melatonin.
  publication-title: J Physiol Biochem
  doi: 10.1007/BF03168221
– volume: 70
  start-page: 10
  year: 2001
  ident: 10.1124/dmd.104.002410_bib9
  article-title: Orally given melatonin may serve as a probe drug for cytochrome P450 1A2 activity in vivo: a pilot study.
  publication-title: Clin Pharmacol Ther
  doi: 10.1067/mcp.2001.116512
– volume: 25
  start-page: 617
  year: 1997
  ident: 10.1124/dmd.104.002410_bib26
  article-title: Oxidation of xenobiotics by recombinant human cytochrome P450 1B1.
  publication-title: Drug Metab Dispos
– volume: 107
  start-page: 1243
  year: 2000
  ident: 10.1124/dmd.104.002410_bib20
  article-title: Antioxidative and free radical scavenging activities of pineal indoles.
  publication-title: J Neural Transm
  doi: 10.1007/s007020070014
– volume: 22
  start-page: 184
  year: 1997
  ident: 10.1124/dmd.104.002410_bib21
  article-title: The validity of melatonin as an oncostatic agent.
  publication-title: J Pineal Res
  doi: 10.1111/j.1600-079X.1997.tb00322.x
– volume: 26
  start-page: 190
  year: 1999
  ident: 10.1124/dmd.104.002410_bib34
  article-title: Involvement of cytochrome P-450 isozymes in melatonin metabolism and clinical implications.
  publication-title: J Pineal Res
  doi: 10.1111/j.1600-079X.1999.tb00583.x
– volume: 56
  start-page: 123
  year: 2000
  ident: 10.1124/dmd.104.002410_bib33
  article-title: Fluvoxamine but not citalopram increases serum melatonin in healthy subjects—an indication that cytochrome P450 CYP1A2 and CYP2C19 hydroxylate melatonin.
  publication-title: Eur J Clin Pharmacol
  doi: 10.1007/s002280050729
– volume: 49
  start-page: 229
  year: 2001
  ident: 10.1124/dmd.104.002410_bib19
  article-title: In situ hybridization and immunohistochemical analysis of cytochrome P450 1B1 expression in human normal tissues.
  publication-title: J Histochem Cytochem
  doi: 10.1177/002215540104900210
– volume: 31
  start-page: 259
  year: 2003
  ident: 10.1124/dmd.104.002410_bib7
  article-title: CYP1A1 and CYP1B1 in blood-brain interfaces: CYP1A1-dependent bioactivation of 7,12-dimethylbenz(a)anthracene in endothelial cells.
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.31.3.259
– volume: 26
  start-page: 893
  year: 2003
  ident: 10.1124/dmd.104.002410_bib27
  article-title: A multicenter, placebo-controlled trial of melatonin for sleep disturbance in Alzheimer’s disease.
  publication-title: Sleep
  doi: 10.1093/sleep/26.7.893
– volume: 23
  start-page: 61
  issue: Suppl 1
  year: 2002
  ident: 10.1124/dmd.104.002410_bib30
  article-title: Melatonin in immunity: comparative aspects.
  publication-title: Neuroendocrinol Lett
– volume: 90
  start-page: 451
  year: 1997
  ident: 10.1124/dmd.104.002410_bib13
  article-title: Problems in assessment of acute melatonin overdose.
  publication-title: South Med J
  doi: 10.1097/00007611-199704000-00020
– volume: 34
  start-page: 79
  year: 2003
  ident: 10.1124/dmd.104.002410_bib22
  article-title: What constitutes a physiological concentration of melatonin?
  publication-title: J Pineal Res
  doi: 10.1034/j.1600-079X.2003.2e114.x
SSID ssj0014439
Score 2.225307
Snippet In humans, the pineal hormone melatonin (MEL) is principally metabolized to 6-hydroxymelatonin (6-HMEL), which is further conjugated with sulfate and excreted...
In humans, the pineal hormone melatonin (MEL) is principally metabolized to 6-hydroxymelatonin (6-HMEL), which is further conjugated with sulfate and excreted...
SourceID proquest
pubmed
pascalfrancis
crossref
highwire
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 489
SubjectTerms Animals
Aryl Hydrocarbon Hydroxylases - genetics
Aryl Hydrocarbon Hydroxylases - metabolism
Biological and medical sciences
Brain - enzymology
Brain - metabolism
Chromatography, Liquid
Cytochrome P-450 CYP1B1
Cytochrome P-450 Enzyme System - genetics
Cytochrome P-450 Enzyme System - metabolism
DNA, Complementary - genetics
Humans
Hydroxylation
In Vitro Techniques
Isoenzymes - metabolism
Male
Mass Spectrometry
Medical sciences
Melatonin - metabolism
Mice
Mice, Knockout
Pharmacology. Drug treatments
Title METABOLISM OF MELATONIN BY HUMAN CYTOCHROMES P450
URI https://dx.doi.org/10.1124/dmd.104.002410
http://dmd.aspetjournals.org/content/33/4/489.abstract
https://www.ncbi.nlm.nih.gov/pubmed/15616152
https://www.proquest.com/docview/67531684
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgvPCCxr0Mhh_QeNgCieOm8SPiNjENDamT-mb5FpjomqpNH9pfzzmxE3eCSsBLlIvjRP6-OOf43Ah5VTBbMsuKpBBcJ1wLnZRFNUp0oZjLrRqVFmOHz78Wp5f8y2Q4idU22-iSRr8xmz_GlfwPqnAOcMUo2X9Atu8UTsA-4AtbQBi2f4XxuWsAwynWuWjN5FPQoDFZKoiUvvaeWTe1-YEZCZbHc-5zr3ai6IfF6jsWkO56wBV0e9V7ccWlakRhcqWgI1X3TLLeDTkEgkW3w7OFWi03_fTRZi047tdxPtezDfyRNp3I_DNYpbplh-GWt0qYSkWaiKHPCt5NpT6nRaAM35oXua8T9Pt8zTgMsr22aGvGxS3unVy3wJtft-iBnonCKYv_rd6bsLt0m9xhoCxgHYuzb9GWxHnulaDwwiF1Jzz67c0HtyWafFe7pJQ-iTT60KolfEaVr3-yW0FpBZXxPrkXNAz6ztPlPrnlZg_I0YVPUb4-oeMYcbc8oUf0IiYvXz8kWeQUrSvac4rqNW05Rbc4RZFTj8jlp4_j96dJKKuRGJ6yBvSpNNU2U467THO01FdWKMVElZrcaDxALV5lJndOlBVzZmRAy7VGp7oww_wx2ZvVM_eU0KJEdd3lphKGl0MrXKrSsqpAyLR8NBIDknTDKE3IOY-lT6ay1T0Zl4AA7HPpERiQ1337uc-2srNl1qEig6zoZUAJ1Np5z2EHn5xvja3Mc8klUBQa3AA1vgPW6BZFNiAvO5QlTMNoW1MzV6-WEvRuLAHHB-SJBz_eGyj1bOeVA3I3fmHPyV6zWLkXIOo2-rBl8i9WxaUq
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolism+of+melatonin+by+human+cytochromes+p450&rft.jtitle=Drug+metabolism+and+disposition&rft.au=Ma%2C+Xiaochao&rft.au=Idle%2C+Jeffrey+R&rft.au=Krausz%2C+Kristopher+W&rft.au=Gonzalez%2C+Frank+J&rft.date=2005-04-01&rft.issn=0090-9556&rft.volume=33&rft.issue=4&rft.spage=489&rft_id=info:doi/10.1124%2Fdmd.104.002410&rft_id=info%3Apmid%2F15616152&rft.externalDocID=15616152
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-9556&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-9556&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-9556&client=summon