Smoothed particle hydrodynamics modelling of multiphase flows: an overview

Smoothed particle hydrodynamics (SPH) is a meshless, particle-based approach that has been increasingly applied for modelling of various fluid-flow phenomena. Concerning multiphase flow computations, an advantage of the Lagrangian SPH over Eulerian approaches is that the advection step is straightfo...

Full description

Saved in:
Bibliographic Details
Published inActa mechanica Vol. 235; no. 4; pp. 1685 - 1714
Main Authors Pozorski, Jacek, Olejnik, Michał
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.04.2024
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Smoothed particle hydrodynamics (SPH) is a meshless, particle-based approach that has been increasingly applied for modelling of various fluid-flow phenomena. Concerning multiphase flow computations, an advantage of the Lagrangian SPH over Eulerian approaches is that the advection step is straightforward. Consequently, the interphasial surface can be explicitly determined from the positions of particles representing different phases; therefore, there is no need for the interface reconstruction step. In this review paper, we briefly recall the basics of the SPH approach, and in particular the physical modelling and numerical implementation issues. We also mention the weaknesses of the approach and some remedies to overcome them. Then, we demonstrate the applicability of SPH to selected interfacial flow cases, including the liquid column break-up, gas–liquid flow regimes in a channel capturing the transitions between them and the wetting phenomena. Concerning the two-fluid modelling, it is illustrated with sediment transport in the presence of surface waves. Various other applications are briefly recalled from the rich and growing literature on the subject, followed by a tentative list of challenges in multiphase SPH.
AbstractList Smoothed particle hydrodynamics (SPH) is a meshless, particle-based approach that has been increasingly applied for modelling of various fluid-flow phenomena. Concerning multiphase flow computations, an advantage of the Lagrangian SPH over Eulerian approaches is that the advection step is straightforward. Consequently, the interphasial surface can be explicitly determined from the positions of particles representing different phases; therefore, there is no need for the interface reconstruction step. In this review paper, we briefly recall the basics of the SPH approach, and in particular the physical modelling and numerical implementation issues. We also mention the weaknesses of the approach and some remedies to overcome them. Then, we demonstrate the applicability of SPH to selected interfacial flow cases, including the liquid column break-up, gas–liquid flow regimes in a channel capturing the transitions between them and the wetting phenomena. Concerning the two-fluid modelling, it is illustrated with sediment transport in the presence of surface waves. Various other applications are briefly recalled from the rich and growing literature on the subject, followed by a tentative list of challenges in multiphase SPH.
Audience Academic
Author Pozorski, Jacek
Olejnik, Michał
Author_xml – sequence: 1
  givenname: Jacek
  orcidid: 0000-0002-8162-272X
  surname: Pozorski
  fullname: Pozorski, Jacek
  email: jp@imp.gda.pl
  organization: Institute of Fluid-Flow Machinery, Polish Academy of Sciences
– sequence: 2
  givenname: Michał
  surname: Olejnik
  fullname: Olejnik, Michał
  organization: Institute of Fluid-Flow Machinery, Polish Academy of Sciences
BookMark eNp9kF1rHCEUhqWk0E3aP9CrgVxPevxYHXsXQj4aAr1oey1Wj7uGGd3obML--5pOIJCLcMCD8j5HznNMjlJOSMhXCmcUQH2r7QDVA-M9cCV5Lz6QFZVU91JzdURWAED7tVbwiRzXet9uTAm6Ire_ppznLfpuZ8sc3Yjd9uBL9odkp-hqN2WP4xjTpsuhm_bjHHdbW7ELY36q3zubuvyI5THi02fyMdix4peXfkL-XF3-vrjp735e_7g4v-udADb3iiuhqfoL0lEupR9QC44wUK8FUvSS8QBasMCD0-gdE8KvQVtgVCiQnp-Q02XuruSHPdbZ3Od9Se1Lw0HwNXDGaEudLamNHdHEFPJcrGvlse3V7IXY3s-VpnQYuHwGhgVwJddaMBgXZzvHnBoYR0PBPKs2i2rTVJv_qo1oKHuD7kqcbDm8D_EFqi2cNlhe13iH-gdiLZHk
CitedBy_id crossref_primary_10_1002_nme_70020
crossref_primary_10_3390_en18051302
crossref_primary_10_1063_5_0253589
crossref_primary_10_1007_s00707_024_04002_0
crossref_primary_10_1007_s00707_024_04068_w
crossref_primary_10_1007_s40571_025_00932_1
crossref_primary_10_1016_j_renene_2024_121177
crossref_primary_10_1016_j_oceaneng_2025_120662
crossref_primary_10_1007_s41745_024_00430_y
crossref_primary_10_1016_j_jcp_2024_113717
crossref_primary_10_1080_10916466_2024_2391467
crossref_primary_10_3390_w17020152
crossref_primary_10_1016_j_compfluid_2025_106580
Cites_doi 10.1016/j.ces.2017.10.042
10.1016/j.camwa.2018.06.002
10.1016/j.cma.2015.05.014
10.1088/1742-6596/2367/1/012030
10.1016/j.camwa.2018.05.036
10.1016/j.oceaneng.2013.02.007
10.1007/s10494-019-00048-6
10.1016/j.compgeo.2020.103803
10.1002/fld.4380
10.3390/en15218276
10.1016/j.cma.2023.116103
10.1016/j.cma.2016.10.028
10.1063/5.0150347
10.1016/j.apm.2022.10.037
10.1002/cav.2138
10.1093/mnras/stv195
10.1146/annurev-fluid-122316-045034
10.1016/j.apnum.2005.02.012
10.1016/j.cpc.2009.06.002
10.1103/PhysRevE.108.025302
10.1080/02786826.2016.1206654
10.1007/s42241-022-0052-1
10.1016/S0021-9991(03)00324-3
10.1016/j.jcp.2022.111079
10.1016/j.mechrescom.2016.12.001
10.1016/j.ijmultiphaseflow.2023.104472
10.1080/21664250.2018.1436243
10.1007/s10409-022-22185-x
10.3390/fluids6090317
10.1088/1742-6596/2367/1/012027
10.1007/s10409-022-22045-w
10.1016/j.camwa.2013.05.012
10.1016/0010-4655(94)00174-Z
10.1016/j.cma.2020.113189
10.1016/j.compfluid.2021.105055
10.1002/fld.4889
10.1002/aic.690220607
10.1007/s40571-015-0072-5
10.1016/j.apm.2021.06.029
10.1016/j.cpc.2017.11.016
10.1515/ijnsns-2012-0019
10.1016/j.pnucene.2014.01.018
10.1063/1.5030458
10.1016/j.jher.2017.09.001
10.1002/aic.690210212
10.1063/1.1761178
10.1103/PhysRevE.104.055308
10.1016/j.jcp.2016.02.039
10.1016/j.compfluid.2021.105193
10.1016/j.jcp.2018.12.007
10.1016/j.jcp.2007.07.013
10.1016/j.ijmultiphaseflow.2018.03.006
10.1080/18811248.2011.9711690
10.1016/j.coastaleng.2020.103690
10.1007/s11831-018-9283-2
10.1016/j.advwatres.2013.04.009
10.1002/nme.4339
10.1016/S0021-9991(03)00280-8
10.1002/1097-0363(20000615)33:3<333::AID-FLD11>3.0.CO;2-7
10.1016/j.cpc.2008.12.004
10.1016/j.apm.2016.05.021
10.1002/nme.2010
10.1016/j.jcp.2013.02.038
10.1016/j.compfluid.2016.05.029
10.1016/j.euromechflu.2016.10.007
10.1016/S1001-6058(09)60199-2
10.1002/fld.3666
10.1063/5.0134102
10.1038/s41467-019-10505-5
10.1007/s40571-022-00510-9
10.1016/j.jfluidstructs.2019.06.004
10.1016/j.cpc.2013.08.015
10.1016/j.cpc.2017.08.024
10.1016/j.ijmultiphaseflow.2012.11.004
10.1016/j.jcp.2014.03.055
10.1016/j.jcp.2015.06.040
10.1016/j.advwatres.2017.11.007
10.1006/jcph.1999.6246
10.15632/jtam-pl.56.3.675
10.1007/s40571-021-00404-2
10.1063/1.5068697
10.1016/j.jcp.2012.05.005
10.1007/s10494-020-00165-7
10.1016/j.oceaneng.2013.05.010
10.1002/nme.4904
10.1016/j.cpc.2014.10.004
10.1007/s10035-016-0684-3
10.1088/1742-6596/530/1/012019
10.1016/j.jcp.2022.111172
10.1016/j.apm.2016.06.030
10.1063/1.4923424
10.1103/PhysRevE.67.026705
10.1016/j.jcp.2023.112339
10.1016/j.oceaneng.2022.113456
10.1016/j.jcp.2019.04.038
10.1146/annurev-fluid-120710-101220
10.1111/j.1365-2966.2011.20202.x
10.1016/0021-9991(81)90145-5
10.1016/j.jcp.2022.111716
10.1016/j.jcp.2022.110999
10.1016/j.apor.2021.102734
10.1063/5.0138858
10.1006/jcph.1997.5776
10.1007/s10494-023-00443-0
10.1142/S0218202599000117
10.1016/j.cpc.2021.108066
10.1063/1.4978274
10.1016/j.jcp.2018.10.021
10.1016/j.jcp.2005.09.001
10.1016/j.ces.2010.03.043
10.1016/j.cma.2023.115915
10.1016/j.jcp.2005.02.012
10.1016/0021-9991(92)90240-Y
10.1016/j.ijmultiphaseflow.2015.02.004
10.1016/j.cma.2015.11.021
10.1017/jfm.2016.246
10.1006/jcph.1994.1034
10.1088/1742-6596/2367/1/012008
10.1016/j.cma.2020.113425
10.1016/j.ijmultiphaseflow.2018.11.007
10.1016/j.compfluid.2018.07.006
10.1145/800186.810616
10.1007/s11069-019-03800-3
10.1007/s40571-020-00354-1
10.1146/annurev.fluid.010908.165243
10.1016/j.compfluid.2018.11.023
10.1016/j.camwa.2023.03.003
10.1016/j.cma.2023.115907
10.1006/jcph.2002.7152
10.1002/fld.1292
10.1016/j.cma.2018.08.004
10.1016/j.compfluid.2018.10.018
10.1146/annurev.aa.30.090192.002551
10.1016/j.jcp.2022.111762
10.1145/3460773
10.1098/rspa.2019.0801
10.1016/j.icheatmasstransfer.2020.104519
10.1016/j.oceaneng.2020.108552
10.1063/5.0133782
10.1007/s00707-021-02951-4
10.1016/j.ijheatmasstransfer.2011.06.034
10.1111/j.1365-2966.2012.21439.x
10.3390/en15239000
10.1007/s10409-022-22158-x
10.1063/1.4993474
10.1080/00221686.2015.1119209
10.1016/j.jcp.2021.110539
10.1016/j.cpc.2022.108593
10.1016/j.jcp.2017.10.041
10.1093/acprof:oso/9780199655526.001.0001
10.1017/CBO9780511807169
10.1016/j.cpc.2017.12.014
10.1016/j.jcp.2017.07.023
10.1016/j.euromechflu.2011.12.005
10.1007/s00707-017-1803-x
10.1016/j.coastaleng.2022.104146
10.1016/j.cma.2010.12.016
10.1016/j.compfluid.2020.104540
10.1016/j.jcp.2013.02.002
10.1016/j.oceaneng.2023.115681
10.1016/j.nucengdes.2023.112228
10.1016/j.cma.2021.114184
10.1007/978-3-031-56093-4_23
10.1061/(ASCE)HY.1943-7900.0001599
10.1016/j.oceaneng.2023.114514
10.1016/j.jcp.2012.09.029
10.1016/j.jcp.2019.109092
10.1016/j.jcp.2013.04.019
10.1016/j.advwatres.2019.05.006
10.1016/j.compfluid.2018.10.004
10.1016/j.jcp.2022.111895
10.1016/j.ijmultiphaseflow.2017.06.002
10.1016/j.jcp.2014.05.040
10.1016/j.ijheatmasstransfer.2018.10.119
10.1006/jcph.2000.6537
10.1016/j.camwa.2021.11.022
10.1103/PhysRevE.62.4968
10.1016/j.jcp.2015.08.037
10.1016/j.jcp.2009.03.014
10.1103/PhysRevE.87.013309
10.1016/j.apor.2014.02.005
10.1016/j.apm.2010.02.012
10.1007/978-3-319-41567-3
10.1103/PhysRevFluids.7.053601
10.1016/j.oceaneng.2021.108925
10.1016/j.camwa.2022.06.016
10.1006/jcph.1994.1155
10.1016/j.triboint.2018.05.034
10.1007/978-3-319-41567-3_3
10.1016/j.apor.2021.102905
10.1016/j.jcp.2004.11.039
10.1016/S0301-9322(98)00050-0
10.1016/j.compfluid.2018.11.020
10.1007/BF02123482
10.1371/journal.pone.0281424
10.1016/j.ijmultiphaseflow.2022.104355
ContentType Journal Article
Copyright The Author(s) 2023
COPYRIGHT 2024 Springer
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: COPYRIGHT 2024 Springer
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7TB
7XB
88I
8AO
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
GUQSH
HCIFZ
KR7
L6V
M2O
M2P
M7S
MBDVC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1007/s00707-023-03763-4
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection (ProQuest)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (New)
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Research Library
Science Database
Engineering Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Research Library Prep

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1619-6937
EndPage 1714
ExternalDocumentID A791188361
10_1007_s00707_023_03763_4
GrantInformation_xml – fundername: Horizon 2020 Framework Programme
  grantid: ITN-EID project No. 813948
  funderid: http://dx.doi.org/10.13039/100010661
– fundername: Narodowe Centrum Nauki
  grantid: project PRELUDIUM No. 2018/29/N/ST8/00267
  funderid: http://dx.doi.org/10.13039/501100004281
GroupedDBID --Z
-5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
88I
8AO
8FE
8FG
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M2O
M2P
M4Y
M7S
MA-
MK~
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9P
PF-
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
T9H
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z92
_50
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
7TB
7XB
8FD
8FK
ABRTQ
FR3
KR7
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c402t-7374917b06c1366d8e943e081d94e1ed623f0942f3fc9edc244d509a0214706d3
IEDL.DBID C6C
ISSN 0001-5970
IngestDate Sat Aug 23 13:07:01 EDT 2025
Tue Jun 10 20:57:58 EDT 2025
Tue Jul 01 03:37:54 EDT 2025
Thu Apr 24 23:04:54 EDT 2025
Fri Feb 21 02:40:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-7374917b06c1366d8e943e081d94e1ed623f0942f3fc9edc244d509a0214706d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8162-272X
OpenAccessLink https://doi.org/10.1007/s00707-023-03763-4
PQID 3043503221
PQPubID 47448
PageCount 30
ParticipantIDs proquest_journals_3043503221
gale_infotracacademiconefile_A791188361
crossref_citationtrail_10_1007_s00707_023_03763_4
crossref_primary_10_1007_s00707_023_03763_4
springer_journals_10_1007_s00707_023_03763_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240400
2024-04-00
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 4
  year: 2024
  text: 20240400
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Acta mechanica
PublicationTitleAbbrev Acta Mech
PublicationYear 2024
Publisher Springer Vienna
Springer
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer
– name: Springer Nature B.V
References Tran-DucTPhan-ThienNKhooBCA smoothed particle hydrodynamics (SPH) study of sediment dispersion on the seafloorPhys. Fluids201729083302
Ates, C., Gundonglu, C., Okraschevski, M., Bürkle, N., Koch, R.: Characterization of flow-blurring atomization with Smoothed Particle Hydrodynamics (SPH)
KhayyerAGotohHEnhancement of performance and stability of MPS mesh-free particle method for multiphase flows characterized by high density ratiosJ. Comput. Phys.20132422112333062032
WangZBChenRWangHLiaoQZhuXLiSZAn overview of smoothed particle hydrodynamics for simulating multiphase flowAppl. Math. Mod.201640962596553563103
XuWJDongXYSimulation and verification of landslide tsunamis using a 3D SPH-DEM coupling methodComp. Geotechn.2021129103803
XiongHBZhangCYYuZSMultiphase SPH modeling of water boiling on hydrophilic and hydrophobic surfacesInt. J. Heat Mass Transf.2019130680692
KajzerAPozorskiJThe mass diffusive model of Svärd simpified to simulate nearly incompressible flowsComp. Math. Appl.20221211829
MonaghanJJSmoothed Particle HydrodynamicsAnn. Rev. Astron. Astrophys.199230543574
JiZStanicMHartonoEAChernorayVNumerical simulations of oil flow inside a gearbox by Smoothed Particle Hydrodynamics (SPH) methodTribol. Int.20181274758
SunPNColagrossiAMarroneSZhangAMThe δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}plus-SPH model: simple procedures for a further improvement of the SPH schemeComp. Meth. App. Mech. Eng.201731525493595246
BrennenCEFundamentals of Multiphase Flow2005CambridgeCambridge University Press
FontyTFerrandMLeroyAJolyAVioleauDMixture model for two-phase flows with high density ratios: a conservative and realizable SPH formulationInt. J. Multiphase Flow20191111581743882909
KorczykPMvan SteijnVBłońskiSZarembaDBeattieDAGarsteckiPAccounting for corner flow unifies the understanding of droplet formation in microfluidic channelsNature Comm.2019102528
DaiMSchmidtSPAdaptive tetrahedral meshing in free-surface flowJ. Comput. Phys.2005208228252
Spricigo, E., Pozorski, J.: Simulation of sloshing in the moon pool with Smoothed Particle Hydrodynamics. J. Phys.: Conf. Ser. 2367 p. 012030 (2022)
Douillet-GrellierTDe VuystFCalandraHRicouxPSimulations of intermittent two-phase flows in pipes using SPHComp. Fluids2018177101122
HuXYAdamsNAA multi-phase SPH method for macroscopic and mesoscopic flowsJ. Comput. Phys.20062138448612208381
BalachandarSEatonJTurbulent dispersed multiphase flowAnnu. Rev. Fluid Mech.201042111133
GotohHKhayyerAOn the state-of-the-art of particle methods for coastal and ocean engineeringCoast. Eng. J.20186979103
ShadlooMSOgerGLe TouzéDSPH method for fluid flows, towards industrial applications: motivations, current state, and challengesComp. Fluids20161361134
DeySAliSZAdvances in modeling of bed particle entrainment sheared by turbulent flowPhys. Fluids201830061301
SussmanMPuckettEGA coupled level-set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flowsJ. Comput. Phys.20001623013371774261
YangXKongSCLiuQSmoothed particle hydrodynamics with adaptive spatial resolution for multiphase flows with large density ratioPhys. Rev. E20211040553084355675
FeldmanJBonetJDynamic refinement and boundary contact forces in SPH with applications in fluid flow problemsInt. J. Num. Meth. Eng.2007722953242355177
ZhangCXiangGMWangBHuXYAdamsNAA weakly compressible SPH method with WENO reconstructionJ. Comput. Phys.20193921183944233
MonaghanJJKocharyanASPH simulation of multi-phase flowComp. Phys. Comm.199587225235
ShiHXipingYDalrympleRADevelopment of a two-phase SPH model for sediment laden flowsComput. Phys. Comm.20172212592723712825
BreinlingerTPolferPHashibonAKraftTSurface tension and wetting effects with smoothed particle hydrodynamicsJ. Comput. Phys.20132431427
RamírezLEirísACouceiroIParísJNogueiraXAn arbitrary Lagrangian-Eulerian SPH-MLS method for the computation of compressible viscous flowsJ. Comput. Phys.20224641111724432254
DehnenWAlyHImproving convergence in smoothed particle hydrodynamics simulations without pairing instabilityMon. Not. R. Astron. Soc.201242510681082
FinnJRMingLApteSVParticle based modelling and simulation of natural sand dynamics in the wave bottom boundary layerJ. Fluid Mech.20167963403853831068
SunPNColagrossiALe TouzéDZhangAMExtension of the δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-Plus-SPH model for simulating vortex-induced-vibration problemsJ. Fluids Struct.2019901942
ScarboloLBiancoFSoldatiACoalescence and breakup of large droplets in turbulent channel flowPhys. Fluids201527073302
WendlandHPiecewise polynomial, positive definite and compactly supported radial functions of minimal degreeAdv. Comput. Math.199543893961366510
MolteniDColagrossiAA simple procedure to improve the pressure evaluation in hydrodynamic context using the SPHComp. Phys. Comm.20091808618722678329
BruggerMTraxlRLacknerREnergy-conserving formulation of the CSF model for the simulation of surface tension at fluid-fluid interfaces with smoothed particle hydrodynamicsJ. Comput. Phys.20234761118954536160
ChaniotisAKPoulikakosDKoumoutsakosPRemeshed smoothed particle hydrodynamics for the simulation of viscous and heat conducting flowsJ. Comput. Phys.20021826790
KlappJAreu-RangelOSCruchagaMAránguizRBonasiaRGodoyMJSilva-CasarinRTsunami hydrodynamic force on a building using a SPH real-scale numerical simulationNat. Hazards202010089109
ClausenJREntropically damped form of artificial compressibility for explicit simulation of incompressible flowPhys. Rev. E201387013309
TazakiTHaradaEGotohHNumerical investigation of sediment transport mechanism under breaking waves by DEM-MPS coupling schemeCoastal Eng.2022175104146
PozorskiJMinierJPPozorskiJModels of turbulent flows and particle dynamicsParticles in Wall-Bounded Turbulent Flows: Deposition, Re-Suspension and Agglomeration2017BerlinSpringer97150
KhayyerAGotohHShimizuYA projection-based particle method with optimized particle shifting for multiphase flows with large density ratios and discontinuous density fieldsComp. Fluids20191293563713880066
Kajzer, A.: Conservative weakly compressible smoothed particle hydrodynamics applied to flows with high vorticity. J. Phys.: Conf. Ser. 2367, 012008 (2022)
LiuMBLiuGRRestoring particle consistency in smoothed particle hydrodynamicsAppl. Num. Math.20065619362186429
ShiHSiPDongPXipingYA two-phase SPH model for massive sediment motion in free surface flowsAdv. Water Resour.20191298098
GaoTQiuHFuLMulti-level adaptive particle refinement method with large refinement scale ratio and new free-surface detection algorithm for complex fluid-structure interaction problemsJ. Comput. Phys.20234731117624511354
SubediKKKongSCParticle-based approach for modeling phase change and drop/wall impact at thermal spray conditionsInt. J. Multiphase Flow2023165104472
ZengLVelezDLuJTryggvasonGNumerical studies of disperse three-phase fluid flowsFluids20216317
SzewcKTanièreAPozorskiJMinierJ-PA study on application of Smoothed Particle Hydrodynamics to multi-phase flowsInt. J. Nonlin. Sci. Num. Sim.2012133833953110469
VowinckelBIncorporating grain-scale processes in macroscopic sediment transport models: a review and perspectives for environmental and geophysical applicationsActa Mech.2021232202320504273220
VioleauDRogersBDSPH for free-surface flows: past, present and futureJ. Hydr. Res.201654126
BergantzGWNiJA numerical study of sedimentation by dripping instabilities in viscous fluidsInt. J. Multiphase Flow199925307320
RamezanzadehSOzbulutMYildizMA numerical investigation of the energy efficiency enhancement of oscillating water column wave energy converter systemsEnergies2022158276
KwonJMonaghanJJSedimentation in homogeneous and inhomogeneous fluids using SPHInt. J. Multiphase Flow2015721551643337917
LaibeGPriceDJDusty gas with smoothed particle hydrodynamics– I. Algorithm and test suiteMon. Not. R. Astron. Soc.201142023452364
OlejnikMSzewcKPozorskiJSPH with dynamical smoothing length adjustment based on the local flow kinematicsJ. Comput. Phys.201734823443689622
CoyajeeEBoersmaJNumerical simulation of drop impact on a liquid-liquid interface with a multiple marker front-capturing methodJ. Comput. Phys.200922844444467
YeganehdoustFYaghoubiMEmdadHOrdoubadiMNumerical study of multiphase droplet dynamics and contact angles by smoothed particle hydrodynamicsAppl. Math. Mod.201640849385123540398
LuoMKhayyerALinPParticle methods in ocean and coastal engineeringAppl. Ocean Res.2021114102734
WuJZhangGSunZYanHZhouBAn improved MPS method for simulating multiphase flows characterized by high-density ratios and violent deformation of interfaceComput. Meth. Appl. Mech. Eng.20234121161034591284
MonaghanJJSimulating free surface flows with SPHJ. Comput. Phys.1994110399406
Olejnik, M., Pozorski, J.: Embracing the inevitable-on single particles in SPH of two-phase flows. In XXIV Fluid Mechanics Conference, Rzeszów, 1–3 July (cancelled), extended abstract (2020)
DuanGYamajiASakaiMAn incompressible-compressible Lagrangian particle method for bubble flows with a sharp density jump and boiling phase changeComput. Meth. Appl. Mech. Eng.20203721134254154377
KwonJThree-dimensional simulation of a solid-liquid flow by the DEM-SPH methodJ. Comput. Phys.20132481471763066147
ColagrossiALandriniMNumerical simulation of interfacial flows by smoothed particle hydrodynamicsJ. Comput. Phys.2003191448475
Le TouzéDMarshAOgerGGuilcherPMKhaddaj-MallatCAlessandriniBFerrantPSPH simulation of green water and ship flooding scenariosJ. Hydrodyn.201022231236
LyuHGSunPNHuangXTSPHydro: promoting smoothed particle hydrodynamics method toward extensive applications in ocean engineeringPhys. Fluids202335017116
MonaghanJJSmoot
B Vowinckel (3763_CR23) 2021; 232
AK Chaniotis (3763_CR79) 2002; 182
JP Morris (3763_CR89) 2000; 33
MB Liu (3763_CR59) 2006; 56
H Shi (3763_CR29) 2019; 129
I Hammani (3763_CR120) 2020; 368
M Olejnik (3763_CR64) 2020; 104
L Li (3763_CR177) 2022; 34
G Tryggvason (3763_CR2) 2011
A Kajzer (3763_CR174) 2018; 76
JB Kajtar (3763_CR196) 2012; 33
L Zeng (3763_CR8) 2021; 6
HB Xiong (3763_CR157) 2019; 130
SJ Lind (3763_CR43) 2020; 476
S Geara (3763_CR112) 2022; 232
F Mangani (3763_CR19) 2022; 7
F Xu (3763_CR47) 2023; 39
PN Sun (3763_CR178) 2021; 221
A Khayyer (3763_CR84) 2023; 116
D Violeau (3763_CR30) 2007; 53
T Tran-Duc (3763_CR145) 2017; 29
A Ghaïtanellis (3763_CR25) 2018; 111
JU Brackbill (3763_CR97) 1992; 100
3763_CR193
T Ye (3763_CR32) 2019; 31
A Zhang (3763_CR105) 2015; 294
K Szewc (3763_CR24) 2017; 19
JJ Monaghan (3763_CR148) 2005; 206
AM Tartakovsky (3763_CR94) 2016; 305
M Sussman (3763_CR11) 1994; 114
PW Cleary (3763_CR149) 2005; 34
G Oger (3763_CR204) 2016; 313
L Ramírez (3763_CR209) 2022; 464
HG Lyu (3763_CR172) 2023; 35
PN Sun (3763_CR115) 2017; 315
X Cui (3763_CR150) 2021; 229
C Ulrich (3763_CR74) 2013; 64
C Zhang (3763_CR46) 2022; 34
Q Yang (3763_CR162) 2023; 279
AM Tartakovsky (3763_CR93) 2009; 180
A Rahmat (3763_CR199) 2018; 105
JP Minier (3763_CR5) 2017
W Dehnen (3763_CR60) 2012; 425
K Szewc (3763_CR103) 2013; 50
J Feldman (3763_CR72) 2007; 72
P Ramachandran (3763_CR171) 2019; 179
H Gotoh (3763_CR179) 2014; 46
QQ Yuan (3763_CR189) 2019; 145
R Koch (3763_CR192) 2017; 61
JP Vila (3763_CR52) 1999; 9
F Harlow (3763_CR7) 1965; 8
L Chiron (3763_CR71) 2018; 354
S Adami (3763_CR65) 2012; 231
J Kwon (3763_CR26) 2015; 72
JJ Monaghan (3763_CR92) 1995; 87
JM Domínguez (3763_CR169) 2022; 9
M Brugger (3763_CR99) 2023; 476
D Violeau (3763_CR31) 2016; 54
3763_CR160
CW Hirt (3763_CR9) 1981; 39
X Bian (3763_CR127) 2014; 185
S Koshizuka (3763_CR85) 2011; 48
3763_CR147
3763_CR146
M Blank (3763_CR106) 2023; 406
X Liu (3763_CR81) 2021; 387
PF Hopkins (3763_CR164) 2015; 450
T Breinlinger (3763_CR139) 2013; 243
R Zha (3763_CR155) 2023; 286
JJ Monaghan (3763_CR91) 1995; 87
M Rezavand (3763_CR87) 2020; 402
P Ramachandran (3763_CR170) 2021; 47
K Szewc (3763_CR57) 2012; 92
J Klapp (3763_CR190) 2020; 100
J Kwon (3763_CR202) 2013; 248
D Le Touzé (3763_CR184) 2010; 22
WJ Xu (3763_CR22) 2021; 129
J Kordilla (3763_CR95) 2013; 59
A Monteleone (3763_CR198) 2023; 18
AK Das (3763_CR138) 2010; 65
3763_CR176
3763_CR175
M Ishii (3763_CR136) 1975; 21
PN Sun (3763_CR116) 2018; 224
J Wu (3763_CR83) 2023; 412
N Tofighi (3763_CR140) 2013; 66
H Shi (3763_CR28) 2017; 221
3763_CR182
X Yang (3763_CR77) 2021; 104
MD Green (3763_CR119) 2019; 179
L Yang (3763_CR208) 2022; 458
JJ Monaghan (3763_CR110) 1994; 110
3763_CR165
N Grenier (3763_CR101) 2013; 69
EA Patiño-Nariño (3763_CR104) 2023; 162
H Gotoh (3763_CR33) 2018; 69
SJ Cummins (3763_CR54) 1999; 152
MS Shadloo (3763_CR36) 2016; 136
RW Hockney (3763_CR62) 1981
M Ferrand (3763_CR66) 2013; 71
A Kajzer (3763_CR15) 2022; 106
J Wang (3763_CR154) 2020; 113
YB Jo (3763_CR37) 2023; 405
A Khayyer (3763_CR206) 2019; 129
R Vacondio (3763_CR75) 2016; 300
P Nair (3763_CR142) 2018; 176
WK Sun (3763_CR111) 2021; 100
JR Finn (3763_CR144) 2016; 796
JP Morris (3763_CR51) 1997; 136
C Lüthi (3763_CR73) 2023; 139
G Tripepi (3763_CR121) 2020; 158
DA Barcarolo (3763_CR70) 2014; 273
AJC Crespo (3763_CR168) 2015; 187
D Violeau (3763_CR39) 2012
Z Ji (3763_CR191) 2018; 127
LW Zhang (3763_CR197) 2019; 26
C Marchioli (3763_CR4) 2017; 228
MD Green (3763_CR181) 2021; 229
E Coyajee (3763_CR12) 2009; 228
CE Brennen (3763_CR1) 2005
3763_CR109
S Nugent (3763_CR90) 2000; 62
A Tafuni (3763_CR68) 2018; 342
K Szewc (3763_CR100) 2015; 103
VE Badalassi (3763_CR14) 2003; 190
H Wendland (3763_CR50) 1995; 4
XS Guan (3763_CR35) 2022; 15
ZX Zhao (3763_CR186) 2023; 269
3763_CR130
3763_CR132
3763_CR131
P Español (3763_CR48) 2003; 67
C Zhang (3763_CR167) 2021; 267
M Olejnik (3763_CR58) 2018; 56
X Zheng (3763_CR183) 2021; 93
D Molteni (3763_CR113) 2009; 180
M Dai (3763_CR133) 2005; 208
A Mayrhofer (3763_CR67) 2015; 115
JR Clausen (3763_CR173) 2013; 87
3763_CR122
J Kwon (3763_CR125) 2017; 85
JJ Monaghan (3763_CR44) 1992; 30
PN Sun (3763_CR118) 2019; 90
C Zhang (3763_CR205) 2019; 392
XY Hu (3763_CR56) 2007; 227
M Okraschevski (3763_CR194) 2023; 111
A Colagrossi (3763_CR88) 2003; 191
D Wu (3763_CR210) 2023; 407
KK Subedi (3763_CR151) 2023; 165
A Kajzer (3763_CR166) 2024; 498
A Kajzer (3763_CR123) 2022; 121
T Tran-Duc (3763_CR152) 2023; 35
HG Lyu (3763_CR158) 2023; 39
R Akhunov (3763_CR200) 2023
E Shishova (3763_CR153) 2023; 10
T Fonty (3763_CR40) 2019; 111
L Scarbolo (3763_CR17) 2015; 27
C Zöller (3763_CR98) 2023; 472
PN Sun (3763_CR117) 2018; 224
A Vázquez-Quesada (3763_CR128) 2016; 3
PM Korczyk (3763_CR143) 2019; 10
S Khorasanizade (3763_CR195) 2016; 50
J Michel (3763_CR207) 2022; 459
E Arai (3763_CR96) 2020; 203
S Ramezanzadeh (3763_CR187) 2022; 15
S Popinet (3763_CR10) 2018; 50
M Hirschler (3763_CR107) 2017; 95
K Puri (3763_CR203) 2014; 270
G Duan (3763_CR156) 2020; 372
T Fonty (3763_CR188) 2020; 105
R Vacondio (3763_CR69) 2021; 8
3763_CR27
M Paprota (3763_CR185) 2018; 19
T Douillet-Grellier (3763_CR134) 2018; 177
F Yeganehdoust (3763_CR141) 2016; 40
X Yang (3763_CR76) 2021; 443
S Marrone (3763_CR114) 2011; 200
O Kincl (3763_CR211) 2023; 284
XY Hu (3763_CR49) 2006; 213
J Kwon (3763_CR126) 2019; 384
X Zhang (3763_CR108) 2023; 108
M Sussman (3763_CR13) 2000; 162
D Winkler (3763_CR63) 2018; 225
J Pozorski (3763_CR55) 2002; 40
Y Shimizu (3763_CR82) 2018; 76
ZX Zhao (3763_CR163) 2023; 490
K Szewc (3763_CR53) 2011; 54
T Tazaki (3763_CR21) 2022; 175
MB Liu (3763_CR42) 2003
JJ Monaghan (3763_CR45) 2012; 44
E Harada (3763_CR86) 2021; 117
C Wang (3763_CR129) 2017; 79
GW Bergantz (3763_CR41) 1999; 25
A Khayyer (3763_CR80) 2013; 242
J Pozorski (3763_CR6) 2017
K Szewc (3763_CR102) 2012; 13
DD Meringolo (3763_CR161) 2023; 35
S Dey (3763_CR201) 2018; 30
M Olejnik (3763_CR61) 2017; 348
T Wacławczyk (3763_CR16) 2022; 38
G Soligo (3763_CR18) 2019; 376
ZB Wang (3763_CR38) 2016; 40
C Berna (3763_CR135) 2015; 74
MD Green (3763_CR180) 2018; 174
M Luo (3763_CR34) 2021; 114
G Laibe (3763_CR124) 2011; 420
WH Henstock (3763_CR137) 1976; 22
S Balachandar (3763_CR3) 2010; 42
T Gao (3763_CR78) 2023; 473
A Di Mascio (3763_CR159) 2017; 29
L Scarbolo (3763_CR20) 2013; 234
References_xml – reference: KajzerAPozorskiJOn the inconsistency of particle weighted methods and its consequences for weakly-compressible flow modelsJ. Comput. Phys. J. Comput. Phys.2024498
– reference: BianXElleroMA splitting integration scheme for the SPH simulation of concentrated particle suspensionsComp. Phys. Comm.201418553623129482
– reference: Kwon, J., Monaghan, J.J.: A novel SPH method for sedimentation in a turbulent fluid. J. Comp. Phys. 300, 520–532 (2015)
– reference: TartakovskyAMFerrisKFMeakinPLagrangian particle model for multiphase flowsComp. Phys. Comm.2009180187418812678462
– reference: SzewcKPozorskiJMinierJ-PAnalysis of the incompressibility constraint in the SPH methodInt. J. Num. Meth. Eng.201292343369
– reference: Kajzer, A.: Conservative weakly compressible smoothed particle hydrodynamics applied to flows with high vorticity. J. Phys.: Conf. Ser. 2367, 012008 (2022)
– reference: RamírezLEirísACouceiroIParísJNogueiraXAn arbitrary Lagrangian-Eulerian SPH-MLS method for the computation of compressible viscous flowsJ. Comput. Phys.20224641111724432254
– reference: FinnJRMingLApteSVParticle based modelling and simulation of natural sand dynamics in the wave bottom boundary layerJ. Fluid Mech.20167963403853831068
– reference: OgerGMarroneSLe TouzéDde LeffeMSPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalismsJ. Comput. Phys.201631376983481006
– reference: ZengLVelezDLuJTryggvasonGNumerical studies of disperse three-phase fluid flowsFluids20216317
– reference: VacondioRAltomareCde LeffeMHuXYLe TouzéDLindSMarongiuJCMarroneSRogersBDSouto-IglesiasAGrand challenges for Smoothed Particle Hydrodynamics numerical schemesComput. Part. Mech.20218575588
– reference: XuWJDongXYSimulation and verification of landslide tsunamis using a 3D SPH-DEM coupling methodComp. Geotechn.2021129103803
– reference: LaibeGPriceDJDusty gas with smoothed particle hydrodynamics– I. Algorithm and test suiteMon. Not. R. Astron. Soc.201142023452364
– reference: SzewcKTanièreAPozorskiJMinierJ-PA study on application of Smoothed Particle Hydrodynamics to multi-phase flowsInt. J. Nonlin. Sci. Num. Sim.2012133833953110469
– reference: Olejnik, M., Pozorski, J.: Sediment transport in a free-surface flows using δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-like two-fluid SPH. In 13th International SPHERIC Workshop, Galway, Ireland, Proceedings, pp. 353-358 (2018)
– reference: TazakiTHaradaEGotohHNumerical investigation of sediment transport mechanism under breaking waves by DEM-MPS coupling schemeCoastal Eng.2022175104146
– reference: SubediKKKongSCParticle-based approach for modeling phase change and drop/wall impact at thermal spray conditionsInt. J. Multiphase Flow2023165104472
– reference: RamachandranPPuriKEntropically damped artificial compressibility for SPHComp. Fluids20191795795943881703
– reference: WacławczykTOn differences between deterministic and statistical models of the interphase regionActa. Mech. Sin.2022387220454443068
– reference: ChaniotisAKPoulikakosDKoumoutsakosPRemeshed smoothed particle hydrodynamics for the simulation of viscous and heat conducting flowsJ. Comput. Phys.20021826790
– reference: Olejnik, M., Szewc, K., Pozorski, J.: Modelling of the flow regime transition with the Smoothed Particle Hydrodynamics. In 9th International Conference on Multiphase Flow, Firenze, Italy, 22–27 May. Proceedings on USB-pendrive, art. 1037 (2016)
– reference: BergantzGWNiJA numerical study of sedimentation by dripping instabilities in viscous fluidsInt. J. Multiphase Flow199925307320
– reference: Kajzer, A., Pozorski, J., Szewc, K.: Large-eddy simulations of 3D Taylor-Green vortex: comparison of Smoothed Particle Hydrodynamics, Lattice Boltzmann and finite volume methods. J. Phys.: Conf. Ser. 530, 012019 (2014)
– reference: HirtCWNicholsBDVolume of fluid (VOF) method for the dynamics of free boundariesJ. Comput. Phys.198139201225
– reference: DasAKDasPKEquilibrium shape and contact angle of sessile drops of different volumes–computation by SPH and its further improvement by DIChem. Eng. Sci.20106540274037
– reference: BadalassiVECenicerosHDBanerjeeSComputation of multiphase systems with phase field modelsJ. Comput. Phys.20031903713972013023
– reference: EspañolPRevengaMSmoothed dissipative particle dynamicsPhys. Rev. E200367026705
– reference: PaprotaMStaroszczykRSuliszWEulerian and Lagrangian modelling of a solitary wave attack on a seawallJ. Hydro-Env. Res.201819189197
– reference: KwonJMonaghanJJSedimentation in homogeneous and inhomogeneous fluids using SPHInt. J. Multiphase Flow2015721551643337917
– reference: BarcaroloDALe TouzéDOgerGde VuystFAdaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics methodJ. Comput. Phys.2014273640657
– reference: KhayyerAGotohHEnhancement of performance and stability of MPS mesh-free particle method for multiphase flows characterized by high density ratiosJ. Comput. Phys.20132422112333062032
– reference: SzewcKSmoothed particle hydrodynamics modelling of granular column collapseGranul. Matter201719113
– reference: CumminsSJRudmanMAn SPH projection methodJ. Comput. Phys.19991525846071699711
– reference: LindSJRogersBDStansbyPKReview of smoothed particle hydrodynamics: towards converged Lagrangian flow modellingProc. R. Soc. A2020476201908014172518
– reference: YangQXuFYangYDaiZWangJA GPU-accelerated adaptive particle refinement for multi-phase flow and fluid-structure coupling SPHOcean Eng.2023279114514
– reference: ChironLOgerGde LeffeMLe TouzéDAnalysis and improvements of adaptive particle refinement (APR) through CPU time, accuracy and robustness considerationsJ. Comput. Phys.20183545525753738122
– reference: MonaghanJJSmoothed Particle Hydrodynamics and its diverse applicationsAnn. Rev. Fluid Mech.2012443233462882600
– reference: NugentSPoschHALiquid drops and surface tension with smoothed particle applied mechanicsPhys. Rev. E20006249684975
– reference: HopkinsPFA new class of accurate, mesh-free hydrodynamic simulation methodsMon. Not. R. Astron. Soc.201545053110
– reference: OkraschevskiMMesquitaLCCKochRMastorakosEBauerHJA numerical study of aero engine sub-idle operation: from a realistic representation of spray injection to detailed chemistry LES-CMCFlow Turb. Combust.2023111493530
– reference: LiuXZhangSDevelopment of adaptive multi-resolution MPS method for multiphase flow simulationComput. Meth. Appl. Mech. Eng.20213871141844321289
– reference: ZhangCRezavandMZhuYYuYWuDZhangWWangJHuXYSPHinXsys: an open-source multi-physics and multi-resolution library based on smoothed particle hydrodynamicsComp. Phys. Comm.20212671080664277078
– reference: LyuHGSunPNColagrossiAZhangAMTowards SPH simulations of cavitating flows with an EoSB cavitation modelActa. Mech. Sin.2023397221584507129
– reference: ShiHSiPDongPXipingYA two-phase SPH model for massive sediment motion in free surface flowsAdv. Water Resour.20191298098
– reference: KwonJSmoothed particle hydrodynamics model for simulating miscible multi-fluid flowJ. Comput. Phys.20193841141333920915
– reference: Patiño-NariñoEAGalvisAFPavanelloRGongora-RubioMRModeling of co-axial bubbles coalescence under moderate Reynolds regimes: a Bi-phase SPH approachInt. J. Multiphase Flow20231621043554551905
– reference: BlankMNairPPöschelTModeling surface tension in Smoothed Particle Hydrodynamics using Young-Laplace pressure boundary conditionComp. Meth. Appl. Mech. Eng.20234064539090
– reference: WangCWangYPengCMengXTwo-fluid smoothed particle hydrodynamics simulation of submerged granular column collapseMech. Res. Comm.2017791523
– reference: Tran-DucTPhan-ThienNKhooBCA smoothed particle hydrodynamics (SPH) study of sediment dispersion on the seafloorPhys. Fluids201729083302
– reference: ZhaRZhaoWWanDNumerical study of wave-ice floe interactions and overwash by a meshfree particle methodOcean Eng.2023286115681
– reference: GhaïtanellisAVioleauDFerrandMEl Kadi AbderrezzakKLeroyAJolyAA SPH elastic-viscoplastic model for granular flows and bed-load transportAdv. Water Res.2018111156173
– reference: OlejnikMSzewcKPozorskiJSPH with dynamical smoothing length adjustment based on the local flow kinematicsJ. Comput. Phys.201734823443689622
– reference: OlejnikMSzewcKSmoothed Particle Hydrodynamics modelling of the Rayleigh-Plateau instabilityJ. Theor. Appl. Mech.201856675686
– reference: YuanQQWangCWangYQPengCMengXNInvestigation of submerged soil excavation by high-velocity water jet using two-fluid Smoothed Particle Hydrodynamics methodJ. Hydraul. Eng.201914504019016
– reference: PuriKRamachandranPApproximate Riemann solvers for the Godunov SPH (GSPH)J. Comput. Phys.20142704324583209395
– reference: FerrandMLaurenceDRRogersBDVioleauDKassiotisCUnified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH methodInt. J. Num. Meth. Fluids2013714464723009848
– reference: GreenMDZhouYDomínguezJMGesteiraMGPeiróJSmooth particle hydrodynamics simulations of long-duration violent three-dimensional sloshing in tanksOcean Eng.2021229108925
– reference: ZhangASunPMinFAn SPH modeling of bubble rising and coalescing in three dimensionsComput. Meth. Appl. Mech. Eng.20152941892093373446
– reference: MonaghanJJSimulating free surface flows with SPHJ. Comput. Phys.1994110399406
– reference: MorrisJPSimulating surface tension with smoothed particle hydrodynamicsInt. J. Num. Meth. Fluids200033333353
– reference: YangLRakhshaMHuWNegrutDA consistent multiphase flow model with a generalized particle shifting scheme resolved via incompressible SPHJ. Comput. Phys.20224581110794389743
– reference: MonaghanJJSmoothed particle hydrodynamics model for simulating miscible multi-fluid flowComp. Phys. Comm.199587225235
– reference: Olejnik, M., Pozorski, J.: Embracing the inevitable-on single particles in SPH of two-phase flows. In XXIV Fluid Mechanics Conference, Rzeszów, 1–3 July (cancelled), extended abstract (2020)
– reference: SzewcKPozorskiJMinierJ-POn the problem of spurious fragmentation of interfaces in the multiphase Smoothed Particle Hydrodynamics methodInt. J. Num. Meth. Eng.2015103625649
– reference: SunPNColagrossiALe TouzéDZhangAMExtension of the δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-Plus-SPH model for simulating vortex-induced-vibration problemsJ. Fluids Struct.2019901942
– reference: ShishovaEPanzerFWerzMEberhardPReversible inter-particle bonding in SPH for improved simulation of friction stir weldingComput. Part. Mech.202310555564
– reference: TofighiNYildizMNumerical simulation of single droplet dynamics in three-phase flows using ISPHComp. Math. Appl.2013665255363079755
– reference: MonteleoneAViolaANapoliEBurriesciGModelling of thrombus formation using smoothed particle hydrodynamics methodPLoS ONE202318e0281424
– reference: HenstockWHHanrattyTJThe interfacial drag and the height of the wall layer in annular flowsAIChE J.1976229901000
– reference: HarlowFWelchJENumerical calculation of time-dependent viscous incompressible flow of fluid with a free surfacePhys. Fluids19658218221893155392
– reference: Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the ACM National Conference, Las Vegas, NV, pp. 517–524. (1968)
– reference: MonaghanJJHuppertHEWorsterMGSolidification using smoothed particle hydrodynamicsJ. Comput. Phys.2005206684705
– reference: MayrhoferALaurenceDRogersBDVioleauDDNS and LES of 3-D wall-bounded turbulence using Smoothed Particle HydrodynamicsInt. J. Heat Fluid Flow201511585973342547
– reference: OlejnikMPozorskiJA robust method for wetting phenomena within Smoothed Particle HydrodynamicsFlow Turb. Combust.2020104115137
– reference: GaoTQiuHFuLMulti-level adaptive particle refinement method with large refinement scale ratio and new free-surface detection algorithm for complex fluid-structure interaction problemsJ. Comput. Phys.20234731117624511354
– reference: HockneyRWEastwoodJWComputer Simulations Using Particles1981New YorkMcGraw-Hill
– reference: SunWKZhangLWLiewKMFast detection of free surface and surface tension modelling via single-phase SPHAppl. Math. Mod.202110033544302055
– reference: Olejnik, M.: Modelling of interfacial flows with the Smoothed Particle Hydrodynamics method. PhD thesis, IMP PAN Gdańsk, Poland (2019)
– reference: DuanGYamajiASakaiMAn incompressible-compressible Lagrangian particle method for bubble flows with a sharp density jump and boiling phase changeComput. Meth. Appl. Mech. Eng.20203721134254154377
– reference: LiLJiangBWeiGLiXZhuZMultiscale multiphase flow simulations using interface capturing and Lagrangian particle trackingPhys. Fluids202234121801
– reference: MonaghanJJKocharyanASPH simulation of multi-phase flowComp. Phys. Comm.199587225235
– reference: LiuMBLiuGRRestoring particle consistency in smoothed particle hydrodynamicsAppl. Num. Math.20065619362186429
– reference: LyuHGSunPNHuangXTSPHydro: promoting smoothed particle hydrodynamics method toward extensive applications in ocean engineeringPhys. Fluids202335017116
– reference: RamezanzadehSOzbulutMYildizMA numerical investigation of the energy efficiency enhancement of oscillating water column wave energy converter systemsEnergies2022158276
– reference: KajzerAPozorskiJApplication of the entropically damped artificial compressibility model to direct numerical simulation of turbulent channel flowComp. Math. Appl.20187699710133846249
– reference: RamachandranPBhosaleAPuriKNegiPMutaADineshAPySPH: a python-based framework for smoothed particle hydrodynamicsACM Trans. Math. Software2021471384199498
– reference: UlrichCLeonardiMRungTMulti-physics SPH simulation of complex marine-engineering hydrodynamic problemsOcean Eng.201364109121
– reference: KajtarJBMonaghanJJOn the swimming of fish like bodies near free and fixed boundariesEur. J. Mech. B-Fluids2012331132896727
– reference: SussmanMPuckettEGA coupled level-set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flowsJ. Comput. Phys.20001623013371774261
– reference: PozorskiJWawreńczukASPH computation of incompresible viscous flowsJ. Theor. Appl. Mech.200240917937
– reference: BalachandarSEatonJTurbulent dispersed multiphase flowAnnu. Rev. Fluid Mech.201042111133
– reference: ZhangCXiangGMWangBHuXYAdamsNAA weakly compressible SPH method with WENO reconstructionJ. Comput. Phys.20193921183944233
– reference: YangXKongSCLiuQSmoothed particle hydrodynamics with adaptive spatial resolution for multiphase flows with large density ratioPhys. Rev. E20211040553084355675
– reference: GreenMDVacondioRPeiróJA smoothed particle hydrodynamics numerical scheme with a consistent diffusion term for the continuity equationComp. Fluids20191796326443884703
– reference: VioleauDRogersBDSPH for free-surface flows: past, present and futureJ. Hydr. Res.201654126
– reference: GotohHKhayyerAIkariHArikawaTShimosakoKOn enhancement of incompressible SPH method for simulation of violent sloshing flowsAppl. Ocean Res.201446104115
– reference: ShiHXipingYDalrympleRADevelopment of a two-phase SPH model for sediment laden flowsComput. Phys. Comm.20172212592723712825
– reference: ZhangCZhuYJWuDAdamsNAHuXYSmoothed particle hydrodynamics: methodology development and recent achievementJ. Hydrodyn.202234767805
– reference: Vázquez-QuesadaABianXElleroMThree-dimensional simulations of dilute and concentrated suspensions using smoothed particle hydrodynamicsComput. Part. Mech.20163167178
– reference: SunPNLe TouzéDOgerGZhangAMAn accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensionsOcean Eng.2021221108552
– reference: WangJZhangXCoupled solid-liquid phase change and thermal flow simulation by particle methodInt. Comm. Heat Mass Transf.2020113104519
– reference: VioleauDFluid Mechanics and the SPH Method2012OxfordOxford University Press
– reference: LiuMBLiuGRSmoothed Particle Hydrodynamics: A Meshfree Particle Method2003SingaporeWorld Scientific Publishing
– reference: KoshizukaSCurrent achievements and future perspectives on particle simulation technologies for fluid dynamics and heat transferJ. Nucl. Sci. Technol.201148155168
– reference: KwonJThree-dimensional simulation of a solid-liquid flow by the DEM-SPH methodJ. Comput. Phys.20132481471763066147
– reference: BrackbillJUKotheDBZemachCA continuum method for modelling surface tensionJ. Comput. Phys.19921003353541167749
– reference: HammaniIMarroneSColagrossiAOgerGLe TouzéDDetailed study on the extension of the δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-SPH model to multi-phase flowComput. Meth. Appl. Mech. Eng.20203681131894108275
– reference: NairPPöschelTDynamic capillary phenomena using incompressible SPHChem. Eng. Sci.2018176192204
– reference: MichelJVergnaudAOgerGHermangeCLe TouzéDOn particle shifting techniques (PSTs): analysis of existing laws and proposition of a convergent and multi-invariant lawJ. Comput. Phys.20224591109994402595
– reference: Szewc, K., Walczewska-Szewc, K., Olejnik, M.: Is the motion of a single SPH particle droplet/solid physically correct?. arXiv preprint, arXiv:1602.07902 (2016)
– reference: BruggerMTraxlRLacknerREnergy-conserving formulation of the CSF model for the simulation of surface tension at fluid-fluid interfaces with smoothed particle hydrodynamicsJ. Comput. Phys.20234761118954536160
– reference: HuXYAdamsNAAn incompressible multi-phase SPH methodJ. Comput. Phys.2007227264278
– reference: MarchioliCLarge-eddy simulation of turbulent dispersed flows: a review of modelling approachesActa Mech.2017228741771
– reference: DeySAliSZAdvances in modeling of bed particle entrainment sheared by turbulent flowPhys. Fluids201830061301
– reference: ZhaoZXBilottaGYuanQEGongZXLiuHMulti-GPU multi-resolution SPH framework towards massive hydrodynamics simulations and its applications in high-speed water entryJ. Comput. Phys.20234901123394614569
– reference: KhayyerAGotohHShimizuYA projection-based particle method with optimized particle shifting for multiphase flows with large density ratios and discontinuous density fieldsComp. Fluids20191293563713880066
– reference: FontyTFerrandMLeroyAJolyAVioleauDMixture model for two-phase flows with high density ratios: a conservative and realizable SPH formulationInt. J. Multiphase Flow20191111581743882909
– reference: KwonJChoHA novel method to calculate the pressure interaction between dust and fluid using SPHInt. J. Num. Meth. Fluids2017852672873696957
– reference: CoyajeeEBoersmaJNumerical simulation of drop impact on a liquid-liquid interface with a multiple marker front-capturing methodJ. Comput. Phys.200922844444467
– reference: ColagrossiALandriniMNumerical simulation of interfacial flows by smoothed particle hydrodynamicsJ. Comput. Phys.2003191448475
– reference: WendlandHPiecewise polynomial, positive definite and compactly supported radial functions of minimal degreeAdv. Comput. Math.199543893961366510
– reference: GreenMDPeiróJLong duration SPH simulations of sloshing in tanks with a low fill ratio and high stretchingComp. Fluids20181741791993853096
– reference: Olejnik, M., Szewc, K., Pozorski, J.: Modelling of the dispersed phase motion in free-surface flows with the two-fluid SPH. In Proceeding of 5th International Conference Particle Based Methods, Hannover, pp. 21–32 (2017). Available at: http://congress.cimne.com/particles2017/frontal/doc/Ebook%20PARTICLES%202017.pdf
– reference: Douillet-GrellierTDe VuystFCalandraHRicouxPSimulations of intermittent two-phase flows in pipes using SPHComp. Fluids2018177101122
– reference: DaiMSchmidtSPAdaptive tetrahedral meshing in free-surface flowJ. Comput. Phys.2005208228252
– reference: AkhunovRWinchenbachRKolbAEvaluation of particle-based smoothed particle hydrodynamics boundary handling approaches in computer animationComp. Anim. Virtual Worlds202310.1002/cav.2138
– reference: HaradaEIkariHTazakiTGotohHNumerical simulation for coastal morphodynamics using MPS-DEM methodAppl. Ocean Res.2021117102905
– reference: WuJZhangGSunZYanHZhouBAn improved MPS method for simulating multiphase flows characterized by high-density ratios and violent deformation of interfaceComput. Meth. Appl. Mech. Eng.20234121161034591284
– reference: Pozorski, J., Kajzer, A.: Density diffusion in low mach number flows. J. Phys.: Conf. Ser. 2367, 012027 (2022)
– reference: XiongHBZhangCYYuZSMultiphase SPH modeling of water boiling on hydrophilic and hydrophobic surfacesInt. J. Heat Mass Transf.2019130680692
– reference: KajzerAPozorskiJA weakly compressible, diffuse-interface model for two-phase flows: numerical development and validationComp. Math. Appl.202210674914355809
– reference: BreinlingerTPolferPHashibonAKraftTSurface tension and wetting effects with smoothed particle hydrodynamicsJ. Comput. Phys.20132431427
– reference: PopinetSNumerical models of surface tensionAnnu. Rev. Fluid Mech.20185049753753203
– reference: Tran-DucTMeylanMHThamwattanaNSmoothed particle hydrodynamics simulations for wave induced ice floe meltingPhys. Fluids202335046604
– reference: Di MascioAAntuonoMColagrossiAMarroneSSmoothed particle hydrodynamics method from a large eddy simulation perspectivePhys. Fluids201729035102
– reference: SzewcKPozorskiJMinierJ-PSimulations of single bubbles rising through viscous liquids using Smoothed Particle HydrodynamicsInt. J. Multiphase Flow20135098105
– reference: FontyTFerrandMLeroyAVioleauDAir entrainment modeling in the SPH method: a two-phase mixture formulation with open boundariesFlow Turb. Combust.202010511491195
– reference: JiZStanicMHartonoEAChernorayVNumerical simulations of oil flow inside a gearbox by Smoothed Particle Hydrodynamics (SPH) methodTribol. Int.20181274758
– reference: JoYBParkSHKimESLagrangian computational fluid dynamics for nuclear thermal-hydraulics & safetyNucl. Engrg. Design2023405112228
– reference: Ates, C., Gundonglu, C., Okraschevski, M., Bürkle, N., Koch, R.: Characterization of flow-blurring atomization with Smoothed Particle Hydrodynamics (SPH)
– reference: MinierJPMinierJPPozorskiJA general introduction to particle depositionParticles in Wall-Bounded Turbulent Flows: Deposition, Re-Suspension and Agglomeration2017BerlinSpringer136
– reference: LuoMKhayyerALinPParticle methods in ocean and coastal engineeringAppl. Ocean Res.2021114102734
– reference: TafuniADominguezJMVacondioRCrespoAJCA versatile algorithm for the treatment of open boundary conditions in smoothed particle hydrodynamics GPU modelsComput. Meth. Appl. Mech. Eng.20183426046243855154
– reference: ZhengXSunLChenZChengCLiuCFMultiphase smoothed particle hydrodynamics modeling of forced liquid sloshingInt. J. Num. Meth. Fl.2021934114284202924
– reference: MonaghanJJSmoothed Particle HydrodynamicsAnn. Rev. Astron. Astrophys.199230543574
– reference: WinklerDRezavandMRauchWNeighbour lists for smoothed particle hydrodynamics on GPUsComp. Phys. Comm.2018225140148
– reference: VioleauDIssaRNumerical modelling of complex turbulent free-surface flows with the SPH method: an overviewInt. J. Num. Meth. Fluids2007532773042283853
– reference: CuiXHabashiWGSPH simulation of supercooled large droplets impacting hydrophobic and superhydrophobic surfacesComp. Fluids20212291050554304760
– reference: KordillaJTartakovskyAMGeyerTA smoothed particle hydrodynamics model for droplet and film flow on smooth and rough fracture surfacesAdv. Water Res.201359114
– reference: AdamiSHuXYAdamsNAA generalized wall boundary condition for smoothed particle hydrodynamicsJ. Comput. Phys.2012231705770752969701
– reference: HirschlerMOgerGNiekenULe TouzéDModeling of droplet collisions using Smoothed Particle HydrodynamicsInt. J. Multiphase Flow2017951751873670686
– reference: Le TouzéDMarshAOgerGGuilcherPMKhaddaj-MallatCAlessandriniBFerrantPSPH simulation of green water and ship flooding scenariosJ. Hydrodyn.201022231236
– reference: HuXYAdamsNAA multi-phase SPH method for macroscopic and mesoscopic flowsJ. Comput. Phys.20062138448612208381
– reference: MeringoloDDLauriaAAristodemoFFilanotiPFLarge eddy simulation within the smoothed particle hydrodynamics: applications to multiphase flowsPhys. Fluids202335063312
– reference: SunPNColagrossiAMarroneSZhangAMThe δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}plus-SPH model: simple procedures for a further improvement of the SPH schemeComp. Meth. App. Mech. Eng.201731525493595246
– reference: ClausenJREntropically damped form of artificial compressibility for explicit simulation of incompressible flowPhys. Rev. E201387013309
– reference: VilaJPOn particle weighted method and smoothed particle hydrodynamicsMath. Models Methods Appl. Sci.199991612091674540
– reference: KlappJAreu-RangelOSCruchagaMAránguizRBonasiaRGodoyMJSilva-CasarinRTsunami hydrodynamic force on a building using a SPH real-scale numerical simulationNat. Hazards202010089109
– reference: SoligoGRocconASoldatiACoalescence of surfactant-laden drops by phase field methodJ. Comput. Phys.2019376129213113875568
– reference: GrenierNLe TouzéDColagrossiAAntuonoMColicchioGViscous bubbly flows simulation with an interface SPH modelOcean Eng.20136988102
– reference: KajzerAPozorskiJThe mass diffusive model of Svärd simpified to simulate nearly incompressible flowsComp. Math. Appl.20221211829
– reference: PozorskiJMinierJPPozorskiJModels of turbulent flows and particle dynamicsParticles in Wall-Bounded Turbulent Flows: Deposition, Re-Suspension and Agglomeration2017BerlinSpringer97150
– reference: Spricigo, E., Pozorski, J.: Simulation of sloshing in the moon pool with Smoothed Particle Hydrodynamics. J. Phys.: Conf. Ser. 2367 p. 012030 (2022)
– reference: LüthiCAfrasiabiMBambachMAn adaptive smoothed particle hydrodynamics (SPH) scheme for efficient melt pool simulations in additive manufacturingComp. Math. Appl.20231397274561598
– reference: YangXKongSCLiuMBLiuQSmoothed particle hydrodynamics with adaptive spatial resolution (SPH-ASR) for free surface flowsJ. Comput. Phys.20214431105394285009
– reference: KhayyerAShimizuYGotohTGotohHEnhanced resolution of the continuity equation in explicit weakly compressible SPH simulations of incompressible free-surface fluid flowsAppl. Math. Mod.2023116841214514653
– reference: KorczykPMvan SteijnVBłońskiSZarembaDBeattieDAGarsteckiPAccounting for corner flow unifies the understanding of droplet formation in microfluidic channelsNature Comm.2019102528
– reference: ZöllerCAdamsNAAdamiSA partitioned continuous surface stress model for multiphase smoothed particle hydrodynamicsJ. Comput. Phys.20234721117164502220
– reference: RahmatAYildizMA multiphase ISPH method for simulation of droplet coalescence and electro-coalescenceInt. J. Multiphase Flow201810532443812600
– reference: Olejnik, M., Pozorski, J.: Multiphase flow modelling using Smoothed Particle Hydrodynamics: considerations on sediment transport. In: Rowiński, P., Kalinowska, M., Mrokowska, M. (eds.) Advances in Hydraulic Research. Springer, Berlin (2024) (in print)
– reference: MorrisJPFoxPJZhuYModeling low Reynolds number incompressible flows using SPHJ. Comput. Phys.1997136214226
– reference: GotohHKhayyerAOn the state-of-the-art of particle methods for coastal and ocean engineeringCoast. Eng. J.20186979103
– reference: WuDZhangCTangXHuXAn essentially non-hourglass formulation for total Lagrangian smoothed particle hydrodynamicsComput. Meth. Appl. Mech. Eng.20234071159154544058
– reference: AraiETartakovskyAHoltRGGraceSRyanEComparison of surface tension generation methods in smoothed particle hydrodynamics for dynamic systemsComp. Fluids20202031045404093678
– reference: SussmanMSmerekaPOsherSJA level-set approach for computing solution to incompressible two-phase flowJ. Comput. Phys.1994114146159
– reference: YeganehdoustFYaghoubiMEmdadHOrdoubadiMNumerical study of multiphase droplet dynamics and contact angles by smoothed particle hydrodynamicsAppl. Math. Mod.201640849385123540398
– reference: TripepiGHuXYAdamsNAHydrodynamic forces induced by a solitary wave interacting with a submerged square barrier: physical tests and δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-LES-SPH simulationsCoast. Eng.2020158103690
– reference: WangZBChenRWangHLiaoQZhuXLiSZAn overview of smoothed particle hydrodynamics for simulating multiphase flowAppl. Math. Mod.201640962596553563103
– reference: BernaCEscriváAMuñoz-CoboJLHerranzLEReview of droplet entrainment in annular flow: interfacial waves and onset of entrainmentProg. Nucl. Energy2015741443
– reference: MolteniDColagrossiAA simple procedure to improve the pressure evaluation in hydrodynamic context using the SPHComp. Phys. Comm.20091808618722678329
– reference: GuanXSSunPNLyuHGLiuNNPengYXHuangXTXuYResearch progress of SPH simulations for complex multiphase flows in ocean engineeringEnergies2022159000
– reference: ZhaoZXHongYGongZXLiuHNumerical analysis of cavity deformation of oblique water entry using a multi-resolution two-phase SPH methodOcean Eng.2023269113456
– reference: ShimizuYGotohHKhayyerAAn MPS-based particle method for simulation of multiphase flows characterized by high density ratios by incorporation of space potential particle conceptComp. Math. Appl.201876110811293846257
– reference: KochRBraunSWiethLChaussonnetGDauchTBauerH-JPrediction of primary atomization using smoothed particle hydrodynamicsEur. J. Mech. B-Fluids201761271278
– reference: KinclOPavelkaMGlobally time-reversible fluid simulations with smoothed particle hydrodynamicsComp. Phys. Comm.2023284108593
– reference: TryggvasonGScardovelliRZaleskiSDirect Numerical Simulations of Gas-Liquid Multiphase Flows2011CambridgeCambridge University Press
– reference: SunPNColagrossiAMarroneSAntuonoMZhangAMMulti-resolution delta-plus-SPH with tensile instability control: towards high Reynolds number flowsComp. Phys. Comm.201822463803758441
– reference: ManganiFSoligoGRocconASoldatiAInfluence of density and viscosity on deformation, breakage, and coalescence of bubbles in turbulencePhys. Rev. Fluids20227053601
– reference: ZhangXYangXSimulation of binary collision of liquid drops using smoothed particle hydrodynamics with adaptive spatial resolutionPhys. Rev. E20231080253024648366
– reference: ScarboloLMolinDPerlekarPSbragagliaMSoldatiAToschiFUnified framework for a side-by-side comparison of different multicomponent algorithms: lattice Boltzmann vs. phase field modelJ. Comput. Phys.20132342632792999777
– reference: TartakovskyAMPanchenkoAPairwise force smoothed particle hydrodynamics model for multiphase flow: surface tension and contact line dynamicsJ. Comput. Phys.2016305111911463429621
– reference: KhorasanizadeSSousaJMMUsing a fully-Lagrangian meshless method for the study of aerosol dispersion and depositionAerosol Sci. Techn.201650926936
– reference: FeldmanJBonetJDynamic refinement and boundary contact forces in SPH with applications in fluid flow problemsInt. J. Num. Meth. Eng.2007722953242355177
– reference: YeTPanDYHuangCLiuMBSmoothed particle hydrodynamics (SPH) for complex fluid flows: recent developments in methodology and applicationsPhys. Fluids201931011301
– reference: ShadlooMSOgerGLe TouzéDSPH method for fluid flows, towards industrial applications: motivations, current state, and challengesComp. Fluids20161361134
– reference: VowinckelBIncorporating grain-scale processes in macroscopic sediment transport models: a review and perspectives for environmental and geophysical applicationsActa Mech.2021232202320504273220
– reference: DehnenWAlyHImproving convergence in smoothed particle hydrodynamics simulations without pairing instabilityMon. Not. R. Astron. Soc.201242510681082
– reference: VacondioRRogersBDStansbyPKMignosaPVariable resolution for SPH in three dimensions: towards optimal splitting and coalescing for dynamic adaptivityComput. Meth. Appl. Mech. Eng.20163004424603452780
– reference: XuFWangJYangYWangLDaiZHanROn methodology and application of smoothed particle hydrodynamics in fluid, solid and biomechanicsActa. Mech. Sin.2023397221854545243
– reference: MarroneSAntuonoMColagrossiAColicchioGLe TouzéDGrazianiGδ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-SPH model for simulating violent impact flowsComp. Meth. App. Mech. Eng.2011200152615422774763
– reference: ZhangLWAdemiloyeASLiewKMMeshfree and particle methods in biomechanics: prospects and challengesArch. Comp. Meth. Eng.201926154715764019286
– reference: ScarboloLBiancoFSoldatiACoalescence and breakup of large droplets in turbulent channel flowPhys. Fluids201527073302
– reference: IshiiMGrolmesMAInception criteria for droplet entrainment in two-phase concurrent film flowAIChE J.197521308318
– reference: DomínguezJMFourtakasGAltomareCCancelasRBTafuniAGarcia-FealODualSPHysics: from fluid dynamics to multiphysics problemsComput. Part. Mech.20229867895
– reference: GearaSMartinSAdamiSPetryWAllenouJStepnikBBonnefoyYA new SPH density formulation for 3D free-surface flowsComp. Fluids20222321051934330875
– reference: RezavandMZhangCHuXYA weakly compressible SPH method for violent multi-phase flows with high density ratioJ. Comput. Phys.20204021090924040736
– reference: BrennenCEFundamentals of Multiphase Flow2005CambridgeCambridge University Press
– reference: SzewcKPozorskiJTanièreAModeling of natural convection with Smoothed Particle Hydrodynamics: non-Boussinesq formulationInt. J. Heat Mass Transf.20115448074816
– reference: ClearyPWExtension of SPH to predict feeding, freezing and defect creation in low pressure die castingAppl. Math. Model.20053431893201
– reference: CrespoAJCDomínguezJMRogersBDGómez-GesteiraMLongshawSCanelasRVacondioRBarreiroAGarcía-FealODualSPHysics: open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH)Comp. Phys. Comm.2015187204216
– reference: SunPNColagrossiAMarroneSAntuonoMZhangAMδ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-SPH model for simulating violent impact flowsComp. Phys. Comm.20182246380
– volume: 176
  start-page: 192
  year: 2018
  ident: 3763_CR142
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2017.10.042
– volume: 76
  start-page: 1108
  year: 2018
  ident: 3763_CR82
  publication-title: Comp. Math. Appl.
  doi: 10.1016/j.camwa.2018.06.002
– volume: 294
  start-page: 189
  year: 2015
  ident: 3763_CR105
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2015.05.014
– volume-title: Direct Numerical Simulations of Gas-Liquid Multiphase Flows
  year: 2011
  ident: 3763_CR2
– ident: 3763_CR182
  doi: 10.1088/1742-6596/2367/1/012030
– volume: 40
  start-page: 917
  year: 2002
  ident: 3763_CR55
  publication-title: J. Theor. Appl. Mech.
– volume: 76
  start-page: 997
  year: 2018
  ident: 3763_CR174
  publication-title: Comp. Math. Appl.
  doi: 10.1016/j.camwa.2018.05.036
– volume: 64
  start-page: 109
  year: 2013
  ident: 3763_CR74
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2013.02.007
– volume: 104
  start-page: 115
  year: 2020
  ident: 3763_CR64
  publication-title: Flow Turb. Combust.
  doi: 10.1007/s10494-019-00048-6
– volume: 129
  start-page: 103803
  year: 2021
  ident: 3763_CR22
  publication-title: Comp. Geotechn.
  doi: 10.1016/j.compgeo.2020.103803
– volume: 85
  start-page: 267
  year: 2017
  ident: 3763_CR125
  publication-title: Int. J. Num. Meth. Fluids
  doi: 10.1002/fld.4380
– volume: 115
  start-page: 85
  year: 2015
  ident: 3763_CR67
  publication-title: Int. J. Heat Fluid Flow
– volume: 15
  start-page: 8276
  year: 2022
  ident: 3763_CR187
  publication-title: Energies
  doi: 10.3390/en15218276
– volume: 412
  start-page: 116103
  year: 2023
  ident: 3763_CR83
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2023.116103
– volume: 315
  start-page: 25
  year: 2017
  ident: 3763_CR115
  publication-title: Comp. Meth. App. Mech. Eng.
  doi: 10.1016/j.cma.2016.10.028
– volume: 35
  start-page: 063312
  year: 2023
  ident: 3763_CR161
  publication-title: Phys. Fluids
  doi: 10.1063/5.0150347
– volume: 116
  start-page: 84
  year: 2023
  ident: 3763_CR84
  publication-title: Appl. Math. Mod.
  doi: 10.1016/j.apm.2022.10.037
– year: 2023
  ident: 3763_CR200
  publication-title: Comp. Anim. Virtual Worlds
  doi: 10.1002/cav.2138
– volume: 450
  start-page: 53
  year: 2015
  ident: 3763_CR164
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stv195
– volume: 50
  start-page: 49
  year: 2018
  ident: 3763_CR10
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-122316-045034
– volume: 56
  start-page: 19
  year: 2006
  ident: 3763_CR59
  publication-title: Appl. Num. Math.
  doi: 10.1016/j.apnum.2005.02.012
– volume: 180
  start-page: 1874
  year: 2009
  ident: 3763_CR93
  publication-title: Comp. Phys. Comm.
  doi: 10.1016/j.cpc.2009.06.002
– volume: 108
  start-page: 025302
  year: 2023
  ident: 3763_CR108
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.108.025302
– volume: 50
  start-page: 926
  year: 2016
  ident: 3763_CR195
  publication-title: Aerosol Sci. Techn.
  doi: 10.1080/02786826.2016.1206654
– volume: 34
  start-page: 767
  year: 2022
  ident: 3763_CR46
  publication-title: J. Hydrodyn.
  doi: 10.1007/s42241-022-0052-1
– volume: 191
  start-page: 448
  year: 2003
  ident: 3763_CR88
  publication-title: J. Comput. Phys.
  doi: 10.1016/S0021-9991(03)00324-3
– volume: 458
  start-page: 111079
  year: 2022
  ident: 3763_CR208
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2022.111079
– volume: 79
  start-page: 15
  year: 2017
  ident: 3763_CR129
  publication-title: Mech. Res. Comm.
  doi: 10.1016/j.mechrescom.2016.12.001
– volume: 165
  start-page: 104472
  year: 2023
  ident: 3763_CR151
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2023.104472
– volume: 69
  start-page: 79
  year: 2018
  ident: 3763_CR33
  publication-title: Coast. Eng. J.
  doi: 10.1080/21664250.2018.1436243
– volume: 39
  start-page: 722185
  year: 2023
  ident: 3763_CR47
  publication-title: Acta. Mech. Sin.
  doi: 10.1007/s10409-022-22185-x
– volume: 6
  start-page: 317
  year: 2021
  ident: 3763_CR8
  publication-title: Fluids
  doi: 10.3390/fluids6090317
– ident: 3763_CR122
  doi: 10.1088/1742-6596/2367/1/012027
– volume: 38
  start-page: 722045
  year: 2022
  ident: 3763_CR16
  publication-title: Acta. Mech. Sin.
  doi: 10.1007/s10409-022-22045-w
– volume: 66
  start-page: 525
  year: 2013
  ident: 3763_CR140
  publication-title: Comp. Math. Appl.
  doi: 10.1016/j.camwa.2013.05.012
– volume: 87
  start-page: 225
  year: 1995
  ident: 3763_CR92
  publication-title: Comp. Phys. Comm.
  doi: 10.1016/0010-4655(94)00174-Z
– volume: 368
  start-page: 113189
  year: 2020
  ident: 3763_CR120
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113189
– volume: 229
  start-page: 105055
  year: 2021
  ident: 3763_CR150
  publication-title: Comp. Fluids
  doi: 10.1016/j.compfluid.2021.105055
– volume: 93
  start-page: 411
  year: 2021
  ident: 3763_CR183
  publication-title: Int. J. Num. Meth. Fl.
  doi: 10.1002/fld.4889
– volume: 22
  start-page: 990
  year: 1976
  ident: 3763_CR137
  publication-title: AIChE J.
  doi: 10.1002/aic.690220607
– volume: 3
  start-page: 167
  year: 2016
  ident: 3763_CR128
  publication-title: Comput. Part. Mech.
  doi: 10.1007/s40571-015-0072-5
– volume: 100
  start-page: 33
  year: 2021
  ident: 3763_CR111
  publication-title: Appl. Math. Mod.
  doi: 10.1016/j.apm.2021.06.029
– volume: 224
  start-page: 63
  year: 2018
  ident: 3763_CR116
  publication-title: Comp. Phys. Comm.
  doi: 10.1016/j.cpc.2017.11.016
– volume: 13
  start-page: 383
  year: 2012
  ident: 3763_CR102
  publication-title: Int. J. Nonlin. Sci. Num. Sim.
  doi: 10.1515/ijnsns-2012-0019
– volume: 74
  start-page: 14
  year: 2015
  ident: 3763_CR135
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2014.01.018
– volume: 30
  start-page: 061301
  year: 2018
  ident: 3763_CR201
  publication-title: Phys. Fluids
  doi: 10.1063/1.5030458
– volume: 19
  start-page: 189
  year: 2018
  ident: 3763_CR185
  publication-title: J. Hydro-Env. Res.
  doi: 10.1016/j.jher.2017.09.001
– volume: 21
  start-page: 308
  year: 1975
  ident: 3763_CR136
  publication-title: AIChE J.
  doi: 10.1002/aic.690210212
– volume: 8
  start-page: 2182
  year: 1965
  ident: 3763_CR7
  publication-title: Phys. Fluids
  doi: 10.1063/1.1761178
– volume: 104
  start-page: 055308
  year: 2021
  ident: 3763_CR77
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.104.055308
– volume: 313
  start-page: 76
  year: 2016
  ident: 3763_CR204
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.02.039
– volume: 232
  start-page: 105193
  year: 2022
  ident: 3763_CR112
  publication-title: Comp. Fluids
  doi: 10.1016/j.compfluid.2021.105193
– volume: 384
  start-page: 114
  year: 2019
  ident: 3763_CR126
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.12.007
– volume: 227
  start-page: 264
  year: 2007
  ident: 3763_CR56
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.07.013
– volume: 105
  start-page: 32
  year: 2018
  ident: 3763_CR199
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2018.03.006
– volume: 48
  start-page: 155
  year: 2011
  ident: 3763_CR85
  publication-title: J. Nucl. Sci. Technol.
  doi: 10.1080/18811248.2011.9711690
– volume: 158
  start-page: 103690
  year: 2020
  ident: 3763_CR121
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2020.103690
– ident: 3763_CR175
– volume: 26
  start-page: 1547
  year: 2019
  ident: 3763_CR197
  publication-title: Arch. Comp. Meth. Eng.
  doi: 10.1007/s11831-018-9283-2
– volume: 59
  start-page: 1
  year: 2013
  ident: 3763_CR95
  publication-title: Adv. Water Res.
  doi: 10.1016/j.advwatres.2013.04.009
– volume: 92
  start-page: 343
  year: 2012
  ident: 3763_CR57
  publication-title: Int. J. Num. Meth. Eng.
  doi: 10.1002/nme.4339
– volume: 190
  start-page: 371
  year: 2003
  ident: 3763_CR14
  publication-title: J. Comput. Phys.
  doi: 10.1016/S0021-9991(03)00280-8
– volume: 33
  start-page: 333
  year: 2000
  ident: 3763_CR89
  publication-title: Int. J. Num. Meth. Fluids
  doi: 10.1002/1097-0363(20000615)33:3<333::AID-FLD11>3.0.CO;2-7
– volume: 180
  start-page: 861
  year: 2009
  ident: 3763_CR113
  publication-title: Comp. Phys. Comm.
  doi: 10.1016/j.cpc.2008.12.004
– volume: 40
  start-page: 8493
  year: 2016
  ident: 3763_CR141
  publication-title: Appl. Math. Mod.
  doi: 10.1016/j.apm.2016.05.021
– volume: 72
  start-page: 295
  year: 2007
  ident: 3763_CR72
  publication-title: Int. J. Num. Meth. Eng.
  doi: 10.1002/nme.2010
– volume: 243
  start-page: 14
  year: 2013
  ident: 3763_CR139
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.02.038
– volume: 136
  start-page: 11
  year: 2016
  ident: 3763_CR36
  publication-title: Comp. Fluids
  doi: 10.1016/j.compfluid.2016.05.029
– volume: 61
  start-page: 271
  year: 2017
  ident: 3763_CR192
  publication-title: Eur. J. Mech. B-Fluids
  doi: 10.1016/j.euromechflu.2016.10.007
– volume: 22
  start-page: 231
  year: 2010
  ident: 3763_CR184
  publication-title: J. Hydrodyn.
  doi: 10.1016/S1001-6058(09)60199-2
– ident: 3763_CR132
– volume: 71
  start-page: 446
  year: 2013
  ident: 3763_CR66
  publication-title: Int. J. Num. Meth. Fluids
  doi: 10.1002/fld.3666
– volume: 34
  start-page: 121801
  year: 2022
  ident: 3763_CR177
  publication-title: Phys. Fluids
  doi: 10.1063/5.0134102
– volume: 10
  start-page: 2528
  year: 2019
  ident: 3763_CR143
  publication-title: Nature Comm.
  doi: 10.1038/s41467-019-10505-5
– volume: 10
  start-page: 555
  year: 2023
  ident: 3763_CR153
  publication-title: Comput. Part. Mech.
  doi: 10.1007/s40571-022-00510-9
– volume: 90
  start-page: 19
  year: 2019
  ident: 3763_CR118
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2019.06.004
– volume: 185
  start-page: 53
  year: 2014
  ident: 3763_CR127
  publication-title: Comp. Phys. Comm.
  doi: 10.1016/j.cpc.2013.08.015
– volume: 498
  year: 2024
  ident: 3763_CR166
  publication-title: J. Comput. Phys. J. Comput. Phys.
– volume: 221
  start-page: 259
  year: 2017
  ident: 3763_CR28
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2017.08.024
– volume: 50
  start-page: 98
  year: 2013
  ident: 3763_CR103
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2012.11.004
– volume: 270
  start-page: 432
  year: 2014
  ident: 3763_CR203
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.03.055
– ident: 3763_CR27
  doi: 10.1016/j.jcp.2015.06.040
– volume: 111
  start-page: 156
  year: 2018
  ident: 3763_CR25
  publication-title: Adv. Water Res.
  doi: 10.1016/j.advwatres.2017.11.007
– volume: 152
  start-page: 584
  year: 1999
  ident: 3763_CR54
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1999.6246
– volume: 56
  start-page: 675
  year: 2018
  ident: 3763_CR58
  publication-title: J. Theor. Appl. Mech.
  doi: 10.15632/jtam-pl.56.3.675
– volume: 9
  start-page: 867
  year: 2022
  ident: 3763_CR169
  publication-title: Comput. Part. Mech.
  doi: 10.1007/s40571-021-00404-2
– volume: 31
  start-page: 011301
  year: 2019
  ident: 3763_CR32
  publication-title: Phys. Fluids
  doi: 10.1063/1.5068697
– volume: 231
  start-page: 7057
  year: 2012
  ident: 3763_CR65
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.05.005
– volume: 105
  start-page: 1149
  year: 2020
  ident: 3763_CR188
  publication-title: Flow Turb. Combust.
  doi: 10.1007/s10494-020-00165-7
– ident: 3763_CR131
– volume-title: Smoothed Particle Hydrodynamics: A Meshfree Particle Method
  year: 2003
  ident: 3763_CR42
– ident: 3763_CR193
– volume: 69
  start-page: 88
  year: 2013
  ident: 3763_CR101
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2013.05.010
– volume: 103
  start-page: 625
  year: 2015
  ident: 3763_CR100
  publication-title: Int. J. Num. Meth. Eng.
  doi: 10.1002/nme.4904
– volume: 187
  start-page: 204
  year: 2015
  ident: 3763_CR168
  publication-title: Comp. Phys. Comm.
  doi: 10.1016/j.cpc.2014.10.004
– volume: 19
  start-page: 1
  year: 2017
  ident: 3763_CR24
  publication-title: Granul. Matter
  doi: 10.1007/s10035-016-0684-3
– ident: 3763_CR160
  doi: 10.1088/1742-6596/530/1/012019
– ident: 3763_CR176
– volume: 464
  start-page: 111172
  year: 2022
  ident: 3763_CR209
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2022.111172
– volume: 40
  start-page: 9625
  year: 2016
  ident: 3763_CR38
  publication-title: Appl. Math. Mod.
  doi: 10.1016/j.apm.2016.06.030
– volume: 27
  start-page: 073302
  year: 2015
  ident: 3763_CR17
  publication-title: Phys. Fluids
  doi: 10.1063/1.4923424
– volume: 67
  start-page: 026705
  year: 2003
  ident: 3763_CR48
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.67.026705
– volume: 490
  start-page: 112339
  year: 2023
  ident: 3763_CR163
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2023.112339
– volume: 269
  start-page: 113456
  year: 2023
  ident: 3763_CR186
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.113456
– volume: 392
  start-page: 1
  year: 2019
  ident: 3763_CR205
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.04.038
– volume: 44
  start-page: 323
  year: 2012
  ident: 3763_CR45
  publication-title: Ann. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-120710-101220
– volume: 420
  start-page: 2345
  year: 2011
  ident: 3763_CR124
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1111/j.1365-2966.2011.20202.x
– volume: 39
  start-page: 201
  year: 1981
  ident: 3763_CR9
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(81)90145-5
– volume: 472
  start-page: 111716
  year: 2023
  ident: 3763_CR98
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2022.111716
– volume: 459
  start-page: 110999
  year: 2022
  ident: 3763_CR207
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2022.110999
– volume: 114
  start-page: 102734
  year: 2021
  ident: 3763_CR34
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2021.102734
– volume: 35
  start-page: 046604
  year: 2023
  ident: 3763_CR152
  publication-title: Phys. Fluids
  doi: 10.1063/5.0138858
– volume: 136
  start-page: 214
  year: 1997
  ident: 3763_CR51
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1997.5776
– volume: 111
  start-page: 493
  year: 2023
  ident: 3763_CR194
  publication-title: Flow Turb. Combust.
  doi: 10.1007/s10494-023-00443-0
– volume: 9
  start-page: 161
  year: 1999
  ident: 3763_CR52
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202599000117
– volume: 267
  start-page: 108066
  year: 2021
  ident: 3763_CR167
  publication-title: Comp. Phys. Comm.
  doi: 10.1016/j.cpc.2021.108066
– volume: 29
  start-page: 035102
  year: 2017
  ident: 3763_CR159
  publication-title: Phys. Fluids
  doi: 10.1063/1.4978274
– volume: 376
  start-page: 1292
  year: 2019
  ident: 3763_CR18
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.021
– volume: 213
  start-page: 844
  year: 2006
  ident: 3763_CR49
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.09.001
– volume: 65
  start-page: 4027
  year: 2010
  ident: 3763_CR138
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2010.03.043
– volume: 407
  start-page: 115915
  year: 2023
  ident: 3763_CR210
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2023.115915
– volume: 208
  start-page: 228
  year: 2005
  ident: 3763_CR133
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.02.012
– volume: 100
  start-page: 335
  year: 1992
  ident: 3763_CR97
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(92)90240-Y
– volume: 72
  start-page: 155
  year: 2015
  ident: 3763_CR26
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2015.02.004
– volume: 300
  start-page: 442
  year: 2016
  ident: 3763_CR75
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2015.11.021
– volume: 796
  start-page: 340
  year: 2016
  ident: 3763_CR144
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2016.246
– volume: 110
  start-page: 399
  year: 1994
  ident: 3763_CR110
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1994.1034
– ident: 3763_CR165
  doi: 10.1088/1742-6596/2367/1/012008
– volume: 372
  start-page: 113425
  year: 2020
  ident: 3763_CR156
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113425
– volume: 87
  start-page: 225
  year: 1995
  ident: 3763_CR91
  publication-title: Comp. Phys. Comm.
  doi: 10.1016/0010-4655(94)00174-Z
– volume: 111
  start-page: 158
  year: 2019
  ident: 3763_CR40
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2018.11.007
– volume: 174
  start-page: 179
  year: 2018
  ident: 3763_CR180
  publication-title: Comp. Fluids
  doi: 10.1016/j.compfluid.2018.07.006
– ident: 3763_CR109
  doi: 10.1145/800186.810616
– volume: 100
  start-page: 89
  year: 2020
  ident: 3763_CR190
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-019-03800-3
– volume: 8
  start-page: 575
  year: 2021
  ident: 3763_CR69
  publication-title: Comput. Part. Mech.
  doi: 10.1007/s40571-020-00354-1
– volume: 42
  start-page: 111
  year: 2010
  ident: 3763_CR3
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.010908.165243
– volume: 179
  start-page: 579
  year: 2019
  ident: 3763_CR171
  publication-title: Comp. Fluids
  doi: 10.1016/j.compfluid.2018.11.023
– volume: 139
  start-page: 7
  year: 2023
  ident: 3763_CR73
  publication-title: Comp. Math. Appl.
  doi: 10.1016/j.camwa.2023.03.003
– volume: 406
  year: 2023
  ident: 3763_CR106
  publication-title: Comp. Meth. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2023.115907
– volume: 182
  start-page: 67
  year: 2002
  ident: 3763_CR79
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2002.7152
– volume: 53
  start-page: 277
  year: 2007
  ident: 3763_CR30
  publication-title: Int. J. Num. Meth. Fluids
  doi: 10.1002/fld.1292
– volume: 342
  start-page: 604
  year: 2018
  ident: 3763_CR68
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.08.004
– volume: 129
  start-page: 356
  year: 2019
  ident: 3763_CR206
  publication-title: Comp. Fluids
  doi: 10.1016/j.compfluid.2018.10.018
– volume: 30
  start-page: 543
  year: 1992
  ident: 3763_CR44
  publication-title: Ann. Rev. Astron. Astrophys.
  doi: 10.1146/annurev.aa.30.090192.002551
– volume: 473
  start-page: 111762
  year: 2023
  ident: 3763_CR78
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2022.111762
– volume: 47
  start-page: 1
  year: 2021
  ident: 3763_CR170
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/3460773
– volume: 476
  start-page: 20190801
  year: 2020
  ident: 3763_CR43
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2019.0801
– volume: 113
  start-page: 104519
  year: 2020
  ident: 3763_CR154
  publication-title: Int. Comm. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2020.104519
– volume: 221
  start-page: 108552
  year: 2021
  ident: 3763_CR178
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.108552
– volume: 35
  start-page: 017116
  year: 2023
  ident: 3763_CR172
  publication-title: Phys. Fluids
  doi: 10.1063/5.0133782
– volume: 232
  start-page: 2023
  year: 2021
  ident: 3763_CR23
  publication-title: Acta Mech.
  doi: 10.1007/s00707-021-02951-4
– ident: 3763_CR130
– volume: 54
  start-page: 4807
  year: 2011
  ident: 3763_CR53
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2011.06.034
– volume: 425
  start-page: 1068
  year: 2012
  ident: 3763_CR60
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1111/j.1365-2966.2012.21439.x
– volume: 15
  start-page: 9000
  year: 2022
  ident: 3763_CR35
  publication-title: Energies
  doi: 10.3390/en15239000
– volume: 39
  start-page: 722158
  year: 2023
  ident: 3763_CR158
  publication-title: Acta. Mech. Sin.
  doi: 10.1007/s10409-022-22158-x
– volume-title: Computer Simulations Using Particles
  year: 1981
  ident: 3763_CR62
– volume: 29
  start-page: 083302
  year: 2017
  ident: 3763_CR145
  publication-title: Phys. Fluids
  doi: 10.1063/1.4993474
– volume: 54
  start-page: 1
  year: 2016
  ident: 3763_CR31
  publication-title: J. Hydr. Res.
  doi: 10.1080/00221686.2015.1119209
– volume: 443
  start-page: 110539
  year: 2021
  ident: 3763_CR76
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110539
– volume: 284
  start-page: 108593
  year: 2023
  ident: 3763_CR211
  publication-title: Comp. Phys. Comm.
  doi: 10.1016/j.cpc.2022.108593
– volume: 224
  start-page: 63
  year: 2018
  ident: 3763_CR117
  publication-title: Comp. Phys. Comm.
  doi: 10.1016/j.cpc.2017.11.016
– ident: 3763_CR146
– volume: 354
  start-page: 552
  year: 2018
  ident: 3763_CR71
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.10.041
– volume-title: Fluid Mechanics and the SPH Method
  year: 2012
  ident: 3763_CR39
  doi: 10.1093/acprof:oso/9780199655526.001.0001
– volume-title: Fundamentals of Multiphase Flow
  year: 2005
  ident: 3763_CR1
  doi: 10.1017/CBO9780511807169
– volume: 225
  start-page: 140
  year: 2018
  ident: 3763_CR63
  publication-title: Comp. Phys. Comm.
  doi: 10.1016/j.cpc.2017.12.014
– volume: 348
  start-page: 23
  year: 2017
  ident: 3763_CR61
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.07.023
– volume: 33
  start-page: 1
  year: 2012
  ident: 3763_CR196
  publication-title: Eur. J. Mech. B-Fluids
  doi: 10.1016/j.euromechflu.2011.12.005
– volume: 228
  start-page: 741
  year: 2017
  ident: 3763_CR4
  publication-title: Acta Mech.
  doi: 10.1007/s00707-017-1803-x
– volume: 175
  start-page: 104146
  year: 2022
  ident: 3763_CR21
  publication-title: Coastal Eng.
  doi: 10.1016/j.coastaleng.2022.104146
– volume: 200
  start-page: 1526
  year: 2011
  ident: 3763_CR114
  publication-title: Comp. Meth. App. Mech. Eng.
  doi: 10.1016/j.cma.2010.12.016
– volume: 203
  start-page: 104540
  year: 2020
  ident: 3763_CR96
  publication-title: Comp. Fluids
  doi: 10.1016/j.compfluid.2020.104540
– volume: 242
  start-page: 211
  year: 2013
  ident: 3763_CR80
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.02.002
– volume: 286
  start-page: 115681
  year: 2023
  ident: 3763_CR155
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.115681
– volume: 405
  start-page: 112228
  year: 2023
  ident: 3763_CR37
  publication-title: Nucl. Engrg. Design
  doi: 10.1016/j.nucengdes.2023.112228
– volume: 387
  start-page: 114184
  year: 2021
  ident: 3763_CR81
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.114184
– ident: 3763_CR147
  doi: 10.1007/978-3-031-56093-4_23
– volume: 145
  start-page: 04019016
  year: 2019
  ident: 3763_CR189
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)HY.1943-7900.0001599
– volume: 279
  start-page: 114514
  year: 2023
  ident: 3763_CR162
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.114514
– volume: 234
  start-page: 263
  year: 2013
  ident: 3763_CR20
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.09.029
– volume: 402
  start-page: 109092
  year: 2020
  ident: 3763_CR87
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.109092
– volume: 248
  start-page: 147
  year: 2013
  ident: 3763_CR202
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.04.019
– volume: 129
  start-page: 80
  year: 2019
  ident: 3763_CR29
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2019.05.006
– volume: 177
  start-page: 101
  year: 2018
  ident: 3763_CR134
  publication-title: Comp. Fluids
  doi: 10.1016/j.compfluid.2018.10.004
– volume: 476
  start-page: 111895
  year: 2023
  ident: 3763_CR99
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2022.111895
– volume: 95
  start-page: 175
  year: 2017
  ident: 3763_CR107
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2017.06.002
– volume: 273
  start-page: 640
  year: 2014
  ident: 3763_CR70
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.05.040
– volume: 130
  start-page: 680
  year: 2019
  ident: 3763_CR157
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.10.119
– volume: 162
  start-page: 301
  year: 2000
  ident: 3763_CR13
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6537
– volume: 106
  start-page: 74
  year: 2022
  ident: 3763_CR15
  publication-title: Comp. Math. Appl.
  doi: 10.1016/j.camwa.2021.11.022
– volume: 62
  start-page: 4968
  year: 2000
  ident: 3763_CR90
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.62.4968
– volume: 305
  start-page: 1119
  year: 2016
  ident: 3763_CR94
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.08.037
– volume: 228
  start-page: 4444
  year: 2009
  ident: 3763_CR12
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.03.014
– volume: 87
  start-page: 013309
  year: 2013
  ident: 3763_CR173
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.87.013309
– volume: 46
  start-page: 104
  year: 2014
  ident: 3763_CR179
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2014.02.005
– volume: 34
  start-page: 3189
  year: 2005
  ident: 3763_CR149
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2010.02.012
– start-page: 1
  volume-title: Particles in Wall-Bounded Turbulent Flows: Deposition, Re-Suspension and Agglomeration
  year: 2017
  ident: 3763_CR5
  doi: 10.1007/978-3-319-41567-3
– volume: 7
  start-page: 053601
  year: 2022
  ident: 3763_CR19
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.7.053601
– volume: 229
  start-page: 108925
  year: 2021
  ident: 3763_CR181
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.108925
– volume: 121
  start-page: 18
  year: 2022
  ident: 3763_CR123
  publication-title: Comp. Math. Appl.
  doi: 10.1016/j.camwa.2022.06.016
– volume: 114
  start-page: 146
  year: 1994
  ident: 3763_CR11
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1994.1155
– volume: 127
  start-page: 47
  year: 2018
  ident: 3763_CR191
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2018.05.034
– start-page: 97
  volume-title: Particles in Wall-Bounded Turbulent Flows: Deposition, Re-Suspension and Agglomeration
  year: 2017
  ident: 3763_CR6
  doi: 10.1007/978-3-319-41567-3_3
– volume: 117
  start-page: 102905
  year: 2021
  ident: 3763_CR86
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2021.102905
– volume: 206
  start-page: 684
  year: 2005
  ident: 3763_CR148
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2004.11.039
– volume: 25
  start-page: 307
  year: 1999
  ident: 3763_CR41
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/S0301-9322(98)00050-0
– volume: 179
  start-page: 632
  year: 2019
  ident: 3763_CR119
  publication-title: Comp. Fluids
  doi: 10.1016/j.compfluid.2018.11.020
– volume: 4
  start-page: 389
  year: 1995
  ident: 3763_CR50
  publication-title: Adv. Comput. Math.
  doi: 10.1007/BF02123482
– volume: 18
  start-page: e0281424
  year: 2023
  ident: 3763_CR198
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0281424
– volume: 162
  start-page: 104355
  year: 2023
  ident: 3763_CR104
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2022.104355
SSID ssj0012741
Score 2.498434
SecondaryResourceType review_article
Snippet Smoothed particle hydrodynamics (SPH) is a meshless, particle-based approach that has been increasingly applied for modelling of various fluid-flow phenomena....
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1685
SubjectTerms Analysis
Classical and Continuum Physics
Control
Dynamical Systems
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Fluid dynamics
Fluid flow
Fluid mechanics
Heat and Mass Transfer
Liquid flow
Multiphase flow
Review and Perspective in Mechanics
Sediment transport
Smooth particle hydrodynamics
Solid Mechanics
Surface waves
Theoretical and Applied Mechanics
Vibration
SummonAdditionalLinks – databaseName: ProQuest Central (New)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgu8AB8RTjpRyQOEBE02ZpywUBGkJITAiYtFvU5qEdYB1sCPHvcdp04yF2bptWjmN_ru3PAIftVCvLwpyyyGKAkjNLE_QklAtrVRBnOS9TMXddcdPjt_123_9wG_uyytomloZaF8r9Iz_FsDtqB6h-7Hz0St3UKJdd9SM0FqGJJjhJGtC87HTvH6Z5BEfOUgFgRhE6B75tpmyeK5luKPosGrhTRvkP1_TbQP_JlJYO6HoVVjxyJBfVVq_Bghmuw_I3PsENuH18KVxHlSYjrxFk8KnRRFZj58eknHvjGtBJYUlVSzhAN0bsc_ExPiPZkLiKTieJTehdd56ubqgflkAVhoATGkcxx9ArD4RikRA6MSmPDDp8nXLDjEaYYzGUC21kVWq0QreuESxkjjMtDoSOtqAxLIZmG0iQC4HIwYgwSxBfpbljC1UaAyeO0YVSLWC1nKTyTOJuoMWznHIgl7KVKFtZylbyFhxPnxlVPBpz7z5y4pfukOHKKvO9Avh9jq5KXsRoo5MkEqwFe_UOSX_6xnKmKy04qXdtdvn_9-7MX20XlkLENFXhzh40Jm_vZh8xySQ_8Ir3Bbpf2eQ
  priority: 102
  providerName: ProQuest
Title Smoothed particle hydrodynamics modelling of multiphase flows: an overview
URI https://link.springer.com/article/10.1007/s00707-023-03763-4
https://www.proquest.com/docview/3043503221
Volume 235
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6x7QUOq-UlypbKByQOYCmOXSfZW1v6UBEVAiqVk5X4oR66bUW7Wu2_35kkLVAeEpf4YMeJZmLPNxnPNwCvu5mzQcQFFzKgg1KIwFO0JFzpEGyU5IUqQzEfZ3oyV9NFd1HT5FAuzEn8nsg-E_qZFkse0Vrg6gyaXSETKtMw0INjxIBoWCqoKziC5KhOkPnzHL8YodOt-LeYaGlqRhdwXmNE1quU-hge-PUTePQTc-BTmH653lDulGPbWvdseedwM6wKzO9YWeGGUs3ZJrDq1OASDRYLq83t7orla0ZnNyku8Azmo-HXwYTXZRG4RWdvzxOZKHSyikhbIbV2qc-U9GjaXaa88A4BTUCnLQ4y2Mw7iwbcISzIiR0tibSTz6Gx3qz9C2BRoTViBK_jPEUklRXEC2odukgK_QhrWyAOcjK25gyn0hUrc2Q7LmVrULamlK1RLXh7vGdbMWb8c_QbEr-h5YQz27zOCsD3I2Iq00twN05TqUUL2gcNmXqd7YyMEO5FuClh97uD1n50__25L_9v-CU8jBHNVEd22tDYf7_xrxCN7IsOnKWjcQeavf77_oja8bcPQ2z7w9mnz53yI8XrPO7dA9sI19Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcKuhDLC3gQxEHsBrHXidBQqiiLNvnhVbqzU38UA9ls-0uqvqn-I3MOMm2FLW3npM40Xjs75uM5xuAjX7hbBBpxYUMGKBUIvAckYQrHYJNsrJSMRVzcKiHx2r3pH8yB3-6Whg6VtntiXGjdrWlf-SbGHbLfoLuJ76OLzh1jaLsatdCo3GLPX99hSHb5MvONs7v-zQdfD_6NuRtVwFuMVaa8kxmCmOUKtFWSK1d7gslPSKjK5QX3iEfCBjzpEEGW3hnEf8compJ4mJZop3EcZ_AgpKI5FSZPvgxy1qQFExDtwVHop60RTqxVC_q6nBESJ7QmubqHyC8Cwf_5WUj3A1ewGLLU9lW41gvYc6PluD5LfXCZdj9-aum-i3Hxq3_sbNrhxty0-R-wmKXHSp3Z3VgzcnFMwRNFs7rq8lnVo4YnR8lu6_A8aMYcRXmR_XIvwKWVFojT_E6LXNkc0VF2qTWYZimMJaxtgeis5OxrW45tc84NzPF5Whbg7Y10bZG9eDj7Jlxo9rx4N0fyPyGljSObMu2MgG_j8SxzFaGiJDnUoserHczZNq1PjE3ntmDT92s3Vy-_72vHx7tHTwdHh3sm_2dw701eJYim2qODK3D_PTyt3-DbGhavY0uyOD0sX3-LziJE1s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTgUEEBddsFfGjFAazGiddJkBAqtKu-WFVApd7cxA_toWy23a2q_Wv8OmYSZ8tD9NZzEicaj_3NF898A7DZz63xIi65SDwSlFJ4niGScKm8N1FalLI-ivkyVPun8vCsf7YEP9taGEqrbPfEeqO2laF_5NtIu5N-hO4ntn1IizjZHXycXHLqIEUnrW07jcZFjtz8Bunb9MPBLs71VhwP9r5_3uehwwA3yJtmPE1SiXyljJQRiVI2c7lMHKKkzaUTzmJs4JH_xD7xJnfWIBZaRNiChMbSSNkEx30Ayymxog4sf9obnnxdnGGQMEwTfAuOYXsUSnbqwr1aZYcjXvKIVjiXf8Di3-DwzyltDX6DJ7ASola207jZU1hy41V4_JuW4TM4_PajomouyybBG9lobnF7blreT1ndc4eK31nlWZPHOEIIZf6iupm-Z8WYUTYpzcJzOL0XM76AzrgauzVgUakURi1OxUWGsV1eklKpsUjaJDIbY7ogWjtpE1TMqZnGhV7oL9e21WhbXdtWyy68XTwzaTQ87rz7DZlf0wLHkU0R6hTw-0gqS--kiA9ZlijRhV47Qzqs_Km-9dMuvGtn7fby_9-7fvdor-Eh-rs-PhgebcCjGEOrJn-oB53Z1bV7iaHRrHwVfJDB-X27_S8OShjt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smoothed+particle+hydrodynamics+modelling+of+multiphase+flows%3A+an+overview&rft.jtitle=Acta+mechanica&rft.au=Pozorski%2C+Jacek&rft.au=Olejnik%2C+Micha%C5%82&rft.date=2024-04-01&rft.issn=0001-5970&rft.eissn=1619-6937&rft.volume=235&rft.issue=4&rft.spage=1685&rft.epage=1714&rft_id=info:doi/10.1007%2Fs00707-023-03763-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00707_023_03763_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-5970&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-5970&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-5970&client=summon