Smoothed particle hydrodynamics modelling of multiphase flows: an overview
Smoothed particle hydrodynamics (SPH) is a meshless, particle-based approach that has been increasingly applied for modelling of various fluid-flow phenomena. Concerning multiphase flow computations, an advantage of the Lagrangian SPH over Eulerian approaches is that the advection step is straightfo...
Saved in:
Published in | Acta mechanica Vol. 235; no. 4; pp. 1685 - 1714 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Vienna
Springer Vienna
01.04.2024
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Smoothed particle hydrodynamics (SPH) is a meshless, particle-based approach that has been increasingly applied for modelling of various fluid-flow phenomena. Concerning multiphase flow computations, an advantage of the Lagrangian SPH over Eulerian approaches is that the advection step is straightforward. Consequently, the interphasial surface can be explicitly determined from the positions of particles representing different phases; therefore, there is no need for the interface reconstruction step. In this review paper, we briefly recall the basics of the SPH approach, and in particular the physical modelling and numerical implementation issues. We also mention the weaknesses of the approach and some remedies to overcome them. Then, we demonstrate the applicability of SPH to selected interfacial flow cases, including the liquid column break-up, gas–liquid flow regimes in a channel capturing the transitions between them and the wetting phenomena. Concerning the two-fluid modelling, it is illustrated with sediment transport in the presence of surface waves. Various other applications are briefly recalled from the rich and growing literature on the subject, followed by a tentative list of challenges in multiphase SPH. |
---|---|
AbstractList | Smoothed particle hydrodynamics (SPH) is a meshless, particle-based approach that has been increasingly applied for modelling of various fluid-flow phenomena. Concerning multiphase flow computations, an advantage of the Lagrangian SPH over Eulerian approaches is that the advection step is straightforward. Consequently, the interphasial surface can be explicitly determined from the positions of particles representing different phases; therefore, there is no need for the interface reconstruction step. In this review paper, we briefly recall the basics of the SPH approach, and in particular the physical modelling and numerical implementation issues. We also mention the weaknesses of the approach and some remedies to overcome them. Then, we demonstrate the applicability of SPH to selected interfacial flow cases, including the liquid column break-up, gas–liquid flow regimes in a channel capturing the transitions between them and the wetting phenomena. Concerning the two-fluid modelling, it is illustrated with sediment transport in the presence of surface waves. Various other applications are briefly recalled from the rich and growing literature on the subject, followed by a tentative list of challenges in multiphase SPH. |
Audience | Academic |
Author | Pozorski, Jacek Olejnik, Michał |
Author_xml | – sequence: 1 givenname: Jacek orcidid: 0000-0002-8162-272X surname: Pozorski fullname: Pozorski, Jacek email: jp@imp.gda.pl organization: Institute of Fluid-Flow Machinery, Polish Academy of Sciences – sequence: 2 givenname: Michał surname: Olejnik fullname: Olejnik, Michał organization: Institute of Fluid-Flow Machinery, Polish Academy of Sciences |
BookMark | eNp9kF1rHCEUhqWk0E3aP9CrgVxPevxYHXsXQj4aAr1oey1Wj7uGGd3obML--5pOIJCLcMCD8j5HznNMjlJOSMhXCmcUQH2r7QDVA-M9cCV5Lz6QFZVU91JzdURWAED7tVbwiRzXet9uTAm6Ire_ppznLfpuZ8sc3Yjd9uBL9odkp-hqN2WP4xjTpsuhm_bjHHdbW7ELY36q3zubuvyI5THi02fyMdix4peXfkL-XF3-vrjp735e_7g4v-udADb3iiuhqfoL0lEupR9QC44wUK8FUvSS8QBasMCD0-gdE8KvQVtgVCiQnp-Q02XuruSHPdbZ3Od9Se1Lw0HwNXDGaEudLamNHdHEFPJcrGvlse3V7IXY3s-VpnQYuHwGhgVwJddaMBgXZzvHnBoYR0PBPKs2i2rTVJv_qo1oKHuD7kqcbDm8D_EFqi2cNlhe13iH-gdiLZHk |
CitedBy_id | crossref_primary_10_1002_nme_70020 crossref_primary_10_3390_en18051302 crossref_primary_10_1063_5_0253589 crossref_primary_10_1007_s00707_024_04002_0 crossref_primary_10_1007_s00707_024_04068_w crossref_primary_10_1007_s40571_025_00932_1 crossref_primary_10_1016_j_renene_2024_121177 crossref_primary_10_1016_j_oceaneng_2025_120662 crossref_primary_10_1007_s41745_024_00430_y crossref_primary_10_1016_j_jcp_2024_113717 crossref_primary_10_1080_10916466_2024_2391467 crossref_primary_10_3390_w17020152 crossref_primary_10_1016_j_compfluid_2025_106580 |
Cites_doi | 10.1016/j.ces.2017.10.042 10.1016/j.camwa.2018.06.002 10.1016/j.cma.2015.05.014 10.1088/1742-6596/2367/1/012030 10.1016/j.camwa.2018.05.036 10.1016/j.oceaneng.2013.02.007 10.1007/s10494-019-00048-6 10.1016/j.compgeo.2020.103803 10.1002/fld.4380 10.3390/en15218276 10.1016/j.cma.2023.116103 10.1016/j.cma.2016.10.028 10.1063/5.0150347 10.1016/j.apm.2022.10.037 10.1002/cav.2138 10.1093/mnras/stv195 10.1146/annurev-fluid-122316-045034 10.1016/j.apnum.2005.02.012 10.1016/j.cpc.2009.06.002 10.1103/PhysRevE.108.025302 10.1080/02786826.2016.1206654 10.1007/s42241-022-0052-1 10.1016/S0021-9991(03)00324-3 10.1016/j.jcp.2022.111079 10.1016/j.mechrescom.2016.12.001 10.1016/j.ijmultiphaseflow.2023.104472 10.1080/21664250.2018.1436243 10.1007/s10409-022-22185-x 10.3390/fluids6090317 10.1088/1742-6596/2367/1/012027 10.1007/s10409-022-22045-w 10.1016/j.camwa.2013.05.012 10.1016/0010-4655(94)00174-Z 10.1016/j.cma.2020.113189 10.1016/j.compfluid.2021.105055 10.1002/fld.4889 10.1002/aic.690220607 10.1007/s40571-015-0072-5 10.1016/j.apm.2021.06.029 10.1016/j.cpc.2017.11.016 10.1515/ijnsns-2012-0019 10.1016/j.pnucene.2014.01.018 10.1063/1.5030458 10.1016/j.jher.2017.09.001 10.1002/aic.690210212 10.1063/1.1761178 10.1103/PhysRevE.104.055308 10.1016/j.jcp.2016.02.039 10.1016/j.compfluid.2021.105193 10.1016/j.jcp.2018.12.007 10.1016/j.jcp.2007.07.013 10.1016/j.ijmultiphaseflow.2018.03.006 10.1080/18811248.2011.9711690 10.1016/j.coastaleng.2020.103690 10.1007/s11831-018-9283-2 10.1016/j.advwatres.2013.04.009 10.1002/nme.4339 10.1016/S0021-9991(03)00280-8 10.1002/1097-0363(20000615)33:3<333::AID-FLD11>3.0.CO;2-7 10.1016/j.cpc.2008.12.004 10.1016/j.apm.2016.05.021 10.1002/nme.2010 10.1016/j.jcp.2013.02.038 10.1016/j.compfluid.2016.05.029 10.1016/j.euromechflu.2016.10.007 10.1016/S1001-6058(09)60199-2 10.1002/fld.3666 10.1063/5.0134102 10.1038/s41467-019-10505-5 10.1007/s40571-022-00510-9 10.1016/j.jfluidstructs.2019.06.004 10.1016/j.cpc.2013.08.015 10.1016/j.cpc.2017.08.024 10.1016/j.ijmultiphaseflow.2012.11.004 10.1016/j.jcp.2014.03.055 10.1016/j.jcp.2015.06.040 10.1016/j.advwatres.2017.11.007 10.1006/jcph.1999.6246 10.15632/jtam-pl.56.3.675 10.1007/s40571-021-00404-2 10.1063/1.5068697 10.1016/j.jcp.2012.05.005 10.1007/s10494-020-00165-7 10.1016/j.oceaneng.2013.05.010 10.1002/nme.4904 10.1016/j.cpc.2014.10.004 10.1007/s10035-016-0684-3 10.1088/1742-6596/530/1/012019 10.1016/j.jcp.2022.111172 10.1016/j.apm.2016.06.030 10.1063/1.4923424 10.1103/PhysRevE.67.026705 10.1016/j.jcp.2023.112339 10.1016/j.oceaneng.2022.113456 10.1016/j.jcp.2019.04.038 10.1146/annurev-fluid-120710-101220 10.1111/j.1365-2966.2011.20202.x 10.1016/0021-9991(81)90145-5 10.1016/j.jcp.2022.111716 10.1016/j.jcp.2022.110999 10.1016/j.apor.2021.102734 10.1063/5.0138858 10.1006/jcph.1997.5776 10.1007/s10494-023-00443-0 10.1142/S0218202599000117 10.1016/j.cpc.2021.108066 10.1063/1.4978274 10.1016/j.jcp.2018.10.021 10.1016/j.jcp.2005.09.001 10.1016/j.ces.2010.03.043 10.1016/j.cma.2023.115915 10.1016/j.jcp.2005.02.012 10.1016/0021-9991(92)90240-Y 10.1016/j.ijmultiphaseflow.2015.02.004 10.1016/j.cma.2015.11.021 10.1017/jfm.2016.246 10.1006/jcph.1994.1034 10.1088/1742-6596/2367/1/012008 10.1016/j.cma.2020.113425 10.1016/j.ijmultiphaseflow.2018.11.007 10.1016/j.compfluid.2018.07.006 10.1145/800186.810616 10.1007/s11069-019-03800-3 10.1007/s40571-020-00354-1 10.1146/annurev.fluid.010908.165243 10.1016/j.compfluid.2018.11.023 10.1016/j.camwa.2023.03.003 10.1016/j.cma.2023.115907 10.1006/jcph.2002.7152 10.1002/fld.1292 10.1016/j.cma.2018.08.004 10.1016/j.compfluid.2018.10.018 10.1146/annurev.aa.30.090192.002551 10.1016/j.jcp.2022.111762 10.1145/3460773 10.1098/rspa.2019.0801 10.1016/j.icheatmasstransfer.2020.104519 10.1016/j.oceaneng.2020.108552 10.1063/5.0133782 10.1007/s00707-021-02951-4 10.1016/j.ijheatmasstransfer.2011.06.034 10.1111/j.1365-2966.2012.21439.x 10.3390/en15239000 10.1007/s10409-022-22158-x 10.1063/1.4993474 10.1080/00221686.2015.1119209 10.1016/j.jcp.2021.110539 10.1016/j.cpc.2022.108593 10.1016/j.jcp.2017.10.041 10.1093/acprof:oso/9780199655526.001.0001 10.1017/CBO9780511807169 10.1016/j.cpc.2017.12.014 10.1016/j.jcp.2017.07.023 10.1016/j.euromechflu.2011.12.005 10.1007/s00707-017-1803-x 10.1016/j.coastaleng.2022.104146 10.1016/j.cma.2010.12.016 10.1016/j.compfluid.2020.104540 10.1016/j.jcp.2013.02.002 10.1016/j.oceaneng.2023.115681 10.1016/j.nucengdes.2023.112228 10.1016/j.cma.2021.114184 10.1007/978-3-031-56093-4_23 10.1061/(ASCE)HY.1943-7900.0001599 10.1016/j.oceaneng.2023.114514 10.1016/j.jcp.2012.09.029 10.1016/j.jcp.2019.109092 10.1016/j.jcp.2013.04.019 10.1016/j.advwatres.2019.05.006 10.1016/j.compfluid.2018.10.004 10.1016/j.jcp.2022.111895 10.1016/j.ijmultiphaseflow.2017.06.002 10.1016/j.jcp.2014.05.040 10.1016/j.ijheatmasstransfer.2018.10.119 10.1006/jcph.2000.6537 10.1016/j.camwa.2021.11.022 10.1103/PhysRevE.62.4968 10.1016/j.jcp.2015.08.037 10.1016/j.jcp.2009.03.014 10.1103/PhysRevE.87.013309 10.1016/j.apor.2014.02.005 10.1016/j.apm.2010.02.012 10.1007/978-3-319-41567-3 10.1103/PhysRevFluids.7.053601 10.1016/j.oceaneng.2021.108925 10.1016/j.camwa.2022.06.016 10.1006/jcph.1994.1155 10.1016/j.triboint.2018.05.034 10.1007/978-3-319-41567-3_3 10.1016/j.apor.2021.102905 10.1016/j.jcp.2004.11.039 10.1016/S0301-9322(98)00050-0 10.1016/j.compfluid.2018.11.020 10.1007/BF02123482 10.1371/journal.pone.0281424 10.1016/j.ijmultiphaseflow.2022.104355 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 COPYRIGHT 2024 Springer The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: COPYRIGHT 2024 Springer – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7TB 7XB 88I 8AO 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ GUQSH HCIFZ KR7 L6V M2O M2P M7S MBDVC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
DOI | 10.1007/s00707-023-03763-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection (ProQuest) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (New) Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student ProQuest Research Library SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Research Library Science Database Engineering Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Research Library Prep |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1619-6937 |
EndPage | 1714 |
ExternalDocumentID | A791188361 10_1007_s00707_023_03763_4 |
GrantInformation_xml | – fundername: Horizon 2020 Framework Programme grantid: ITN-EID project No. 813948 funderid: http://dx.doi.org/10.13039/100010661 – fundername: Narodowe Centrum Nauki grantid: project PRELUDIUM No. 2018/29/N/ST8/00267 funderid: http://dx.doi.org/10.13039/501100004281 |
GroupedDBID | --Z -5B -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 88I 8AO 8FE 8FG 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M2O M2P M4Y M7S MA- MK~ ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9P PF- PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 T9H TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 Y6R YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8W Z92 _50 ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT AEIIB PMFND 7TB 7XB 8FD 8FK ABRTQ FR3 KR7 MBDVC PKEHL PQEST PQGLB PQUKI PRINS PUEGO Q9U |
ID | FETCH-LOGICAL-c402t-7374917b06c1366d8e943e081d94e1ed623f0942f3fc9edc244d509a0214706d3 |
IEDL.DBID | C6C |
ISSN | 0001-5970 |
IngestDate | Sat Aug 23 13:07:01 EDT 2025 Tue Jun 10 20:57:58 EDT 2025 Tue Jul 01 03:37:54 EDT 2025 Thu Apr 24 23:04:54 EDT 2025 Fri Feb 21 02:40:22 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-7374917b06c1366d8e943e081d94e1ed623f0942f3fc9edc244d509a0214706d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8162-272X |
OpenAccessLink | https://doi.org/10.1007/s00707-023-03763-4 |
PQID | 3043503221 |
PQPubID | 47448 |
PageCount | 30 |
ParticipantIDs | proquest_journals_3043503221 gale_infotracacademiconefile_A791188361 crossref_citationtrail_10_1007_s00707_023_03763_4 crossref_primary_10_1007_s00707_023_03763_4 springer_journals_10_1007_s00707_023_03763_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240400 2024-04-00 20240401 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 4 year: 2024 text: 20240400 |
PublicationDecade | 2020 |
PublicationPlace | Vienna |
PublicationPlace_xml | – name: Vienna – name: Wien |
PublicationTitle | Acta mechanica |
PublicationTitleAbbrev | Acta Mech |
PublicationYear | 2024 |
Publisher | Springer Vienna Springer Springer Nature B.V |
Publisher_xml | – name: Springer Vienna – name: Springer – name: Springer Nature B.V |
References | Tran-DucTPhan-ThienNKhooBCA smoothed particle hydrodynamics (SPH) study of sediment dispersion on the seafloorPhys. Fluids201729083302 Ates, C., Gundonglu, C., Okraschevski, M., Bürkle, N., Koch, R.: Characterization of flow-blurring atomization with Smoothed Particle Hydrodynamics (SPH) KhayyerAGotohHEnhancement of performance and stability of MPS mesh-free particle method for multiphase flows characterized by high density ratiosJ. Comput. Phys.20132422112333062032 WangZBChenRWangHLiaoQZhuXLiSZAn overview of smoothed particle hydrodynamics for simulating multiphase flowAppl. Math. Mod.201640962596553563103 XuWJDongXYSimulation and verification of landslide tsunamis using a 3D SPH-DEM coupling methodComp. Geotechn.2021129103803 XiongHBZhangCYYuZSMultiphase SPH modeling of water boiling on hydrophilic and hydrophobic surfacesInt. J. Heat Mass Transf.2019130680692 KajzerAPozorskiJThe mass diffusive model of Svärd simpified to simulate nearly incompressible flowsComp. Math. Appl.20221211829 MonaghanJJSmoothed Particle HydrodynamicsAnn. Rev. Astron. Astrophys.199230543574 JiZStanicMHartonoEAChernorayVNumerical simulations of oil flow inside a gearbox by Smoothed Particle Hydrodynamics (SPH) methodTribol. Int.20181274758 SunPNColagrossiAMarroneSZhangAMThe δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}plus-SPH model: simple procedures for a further improvement of the SPH schemeComp. Meth. App. Mech. Eng.201731525493595246 BrennenCEFundamentals of Multiphase Flow2005CambridgeCambridge University Press FontyTFerrandMLeroyAJolyAVioleauDMixture model for two-phase flows with high density ratios: a conservative and realizable SPH formulationInt. J. Multiphase Flow20191111581743882909 KorczykPMvan SteijnVBłońskiSZarembaDBeattieDAGarsteckiPAccounting for corner flow unifies the understanding of droplet formation in microfluidic channelsNature Comm.2019102528 DaiMSchmidtSPAdaptive tetrahedral meshing in free-surface flowJ. Comput. Phys.2005208228252 Spricigo, E., Pozorski, J.: Simulation of sloshing in the moon pool with Smoothed Particle Hydrodynamics. J. Phys.: Conf. Ser. 2367 p. 012030 (2022) Douillet-GrellierTDe VuystFCalandraHRicouxPSimulations of intermittent two-phase flows in pipes using SPHComp. Fluids2018177101122 HuXYAdamsNAA multi-phase SPH method for macroscopic and mesoscopic flowsJ. Comput. Phys.20062138448612208381 BalachandarSEatonJTurbulent dispersed multiphase flowAnnu. Rev. Fluid Mech.201042111133 GotohHKhayyerAOn the state-of-the-art of particle methods for coastal and ocean engineeringCoast. Eng. J.20186979103 ShadlooMSOgerGLe TouzéDSPH method for fluid flows, towards industrial applications: motivations, current state, and challengesComp. Fluids20161361134 DeySAliSZAdvances in modeling of bed particle entrainment sheared by turbulent flowPhys. Fluids201830061301 SussmanMPuckettEGA coupled level-set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flowsJ. Comput. Phys.20001623013371774261 YangXKongSCLiuQSmoothed particle hydrodynamics with adaptive spatial resolution for multiphase flows with large density ratioPhys. Rev. E20211040553084355675 FeldmanJBonetJDynamic refinement and boundary contact forces in SPH with applications in fluid flow problemsInt. J. Num. Meth. Eng.2007722953242355177 ZhangCXiangGMWangBHuXYAdamsNAA weakly compressible SPH method with WENO reconstructionJ. Comput. Phys.20193921183944233 MonaghanJJKocharyanASPH simulation of multi-phase flowComp. Phys. Comm.199587225235 ShiHXipingYDalrympleRADevelopment of a two-phase SPH model for sediment laden flowsComput. Phys. Comm.20172212592723712825 BreinlingerTPolferPHashibonAKraftTSurface tension and wetting effects with smoothed particle hydrodynamicsJ. Comput. Phys.20132431427 RamírezLEirísACouceiroIParísJNogueiraXAn arbitrary Lagrangian-Eulerian SPH-MLS method for the computation of compressible viscous flowsJ. Comput. Phys.20224641111724432254 DehnenWAlyHImproving convergence in smoothed particle hydrodynamics simulations without pairing instabilityMon. Not. R. Astron. Soc.201242510681082 FinnJRMingLApteSVParticle based modelling and simulation of natural sand dynamics in the wave bottom boundary layerJ. Fluid Mech.20167963403853831068 SunPNColagrossiALe TouzéDZhangAMExtension of the δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-Plus-SPH model for simulating vortex-induced-vibration problemsJ. Fluids Struct.2019901942 ScarboloLBiancoFSoldatiACoalescence and breakup of large droplets in turbulent channel flowPhys. Fluids201527073302 WendlandHPiecewise polynomial, positive definite and compactly supported radial functions of minimal degreeAdv. Comput. Math.199543893961366510 MolteniDColagrossiAA simple procedure to improve the pressure evaluation in hydrodynamic context using the SPHComp. Phys. Comm.20091808618722678329 BruggerMTraxlRLacknerREnergy-conserving formulation of the CSF model for the simulation of surface tension at fluid-fluid interfaces with smoothed particle hydrodynamicsJ. Comput. Phys.20234761118954536160 ChaniotisAKPoulikakosDKoumoutsakosPRemeshed smoothed particle hydrodynamics for the simulation of viscous and heat conducting flowsJ. Comput. Phys.20021826790 KlappJAreu-RangelOSCruchagaMAránguizRBonasiaRGodoyMJSilva-CasarinRTsunami hydrodynamic force on a building using a SPH real-scale numerical simulationNat. Hazards202010089109 ClausenJREntropically damped form of artificial compressibility for explicit simulation of incompressible flowPhys. Rev. E201387013309 TazakiTHaradaEGotohHNumerical investigation of sediment transport mechanism under breaking waves by DEM-MPS coupling schemeCoastal Eng.2022175104146 PozorskiJMinierJPPozorskiJModels of turbulent flows and particle dynamicsParticles in Wall-Bounded Turbulent Flows: Deposition, Re-Suspension and Agglomeration2017BerlinSpringer97150 KhayyerAGotohHShimizuYA projection-based particle method with optimized particle shifting for multiphase flows with large density ratios and discontinuous density fieldsComp. Fluids20191293563713880066 Kajzer, A.: Conservative weakly compressible smoothed particle hydrodynamics applied to flows with high vorticity. J. Phys.: Conf. Ser. 2367, 012008 (2022) LiuMBLiuGRRestoring particle consistency in smoothed particle hydrodynamicsAppl. Num. Math.20065619362186429 ShiHSiPDongPXipingYA two-phase SPH model for massive sediment motion in free surface flowsAdv. Water Resour.20191298098 GaoTQiuHFuLMulti-level adaptive particle refinement method with large refinement scale ratio and new free-surface detection algorithm for complex fluid-structure interaction problemsJ. Comput. Phys.20234731117624511354 SubediKKKongSCParticle-based approach for modeling phase change and drop/wall impact at thermal spray conditionsInt. J. Multiphase Flow2023165104472 ZengLVelezDLuJTryggvasonGNumerical studies of disperse three-phase fluid flowsFluids20216317 SzewcKTanièreAPozorskiJMinierJ-PA study on application of Smoothed Particle Hydrodynamics to multi-phase flowsInt. J. Nonlin. Sci. Num. Sim.2012133833953110469 VowinckelBIncorporating grain-scale processes in macroscopic sediment transport models: a review and perspectives for environmental and geophysical applicationsActa Mech.2021232202320504273220 VioleauDRogersBDSPH for free-surface flows: past, present and futureJ. Hydr. Res.201654126 BergantzGWNiJA numerical study of sedimentation by dripping instabilities in viscous fluidsInt. J. Multiphase Flow199925307320 RamezanzadehSOzbulutMYildizMA numerical investigation of the energy efficiency enhancement of oscillating water column wave energy converter systemsEnergies2022158276 KwonJMonaghanJJSedimentation in homogeneous and inhomogeneous fluids using SPHInt. J. Multiphase Flow2015721551643337917 LaibeGPriceDJDusty gas with smoothed particle hydrodynamics– I. Algorithm and test suiteMon. Not. R. Astron. Soc.201142023452364 OlejnikMSzewcKPozorskiJSPH with dynamical smoothing length adjustment based on the local flow kinematicsJ. Comput. Phys.201734823443689622 CoyajeeEBoersmaJNumerical simulation of drop impact on a liquid-liquid interface with a multiple marker front-capturing methodJ. Comput. Phys.200922844444467 YeganehdoustFYaghoubiMEmdadHOrdoubadiMNumerical study of multiphase droplet dynamics and contact angles by smoothed particle hydrodynamicsAppl. Math. Mod.201640849385123540398 LuoMKhayyerALinPParticle methods in ocean and coastal engineeringAppl. Ocean Res.2021114102734 WuJZhangGSunZYanHZhouBAn improved MPS method for simulating multiphase flows characterized by high-density ratios and violent deformation of interfaceComput. Meth. Appl. Mech. Eng.20234121161034591284 MonaghanJJSimulating free surface flows with SPHJ. Comput. Phys.1994110399406 Olejnik, M., Pozorski, J.: Embracing the inevitable-on single particles in SPH of two-phase flows. In XXIV Fluid Mechanics Conference, Rzeszów, 1–3 July (cancelled), extended abstract (2020) DuanGYamajiASakaiMAn incompressible-compressible Lagrangian particle method for bubble flows with a sharp density jump and boiling phase changeComput. Meth. Appl. Mech. Eng.20203721134254154377 KwonJThree-dimensional simulation of a solid-liquid flow by the DEM-SPH methodJ. Comput. Phys.20132481471763066147 ColagrossiALandriniMNumerical simulation of interfacial flows by smoothed particle hydrodynamicsJ. Comput. Phys.2003191448475 Le TouzéDMarshAOgerGGuilcherPMKhaddaj-MallatCAlessandriniBFerrantPSPH simulation of green water and ship flooding scenariosJ. Hydrodyn.201022231236 LyuHGSunPNHuangXTSPHydro: promoting smoothed particle hydrodynamics method toward extensive applications in ocean engineeringPhys. Fluids202335017116 MonaghanJJSmoot B Vowinckel (3763_CR23) 2021; 232 AK Chaniotis (3763_CR79) 2002; 182 JP Morris (3763_CR89) 2000; 33 MB Liu (3763_CR59) 2006; 56 H Shi (3763_CR29) 2019; 129 I Hammani (3763_CR120) 2020; 368 M Olejnik (3763_CR64) 2020; 104 L Li (3763_CR177) 2022; 34 G Tryggvason (3763_CR2) 2011 A Kajzer (3763_CR174) 2018; 76 JB Kajtar (3763_CR196) 2012; 33 L Zeng (3763_CR8) 2021; 6 HB Xiong (3763_CR157) 2019; 130 SJ Lind (3763_CR43) 2020; 476 S Geara (3763_CR112) 2022; 232 F Mangani (3763_CR19) 2022; 7 F Xu (3763_CR47) 2023; 39 PN Sun (3763_CR178) 2021; 221 A Khayyer (3763_CR84) 2023; 116 D Violeau (3763_CR30) 2007; 53 T Tran-Duc (3763_CR145) 2017; 29 A Ghaïtanellis (3763_CR25) 2018; 111 JU Brackbill (3763_CR97) 1992; 100 3763_CR193 T Ye (3763_CR32) 2019; 31 A Zhang (3763_CR105) 2015; 294 K Szewc (3763_CR24) 2017; 19 JJ Monaghan (3763_CR148) 2005; 206 AM Tartakovsky (3763_CR94) 2016; 305 M Sussman (3763_CR11) 1994; 114 PW Cleary (3763_CR149) 2005; 34 G Oger (3763_CR204) 2016; 313 L Ramírez (3763_CR209) 2022; 464 HG Lyu (3763_CR172) 2023; 35 PN Sun (3763_CR115) 2017; 315 X Cui (3763_CR150) 2021; 229 C Ulrich (3763_CR74) 2013; 64 C Zhang (3763_CR46) 2022; 34 Q Yang (3763_CR162) 2023; 279 AM Tartakovsky (3763_CR93) 2009; 180 A Rahmat (3763_CR199) 2018; 105 JP Minier (3763_CR5) 2017 W Dehnen (3763_CR60) 2012; 425 K Szewc (3763_CR103) 2013; 50 J Feldman (3763_CR72) 2007; 72 P Ramachandran (3763_CR171) 2019; 179 H Gotoh (3763_CR179) 2014; 46 QQ Yuan (3763_CR189) 2019; 145 R Koch (3763_CR192) 2017; 61 JP Vila (3763_CR52) 1999; 9 F Harlow (3763_CR7) 1965; 8 L Chiron (3763_CR71) 2018; 354 S Adami (3763_CR65) 2012; 231 J Kwon (3763_CR26) 2015; 72 JJ Monaghan (3763_CR92) 1995; 87 JM Domínguez (3763_CR169) 2022; 9 M Brugger (3763_CR99) 2023; 476 D Violeau (3763_CR31) 2016; 54 3763_CR160 CW Hirt (3763_CR9) 1981; 39 X Bian (3763_CR127) 2014; 185 S Koshizuka (3763_CR85) 2011; 48 3763_CR147 3763_CR146 M Blank (3763_CR106) 2023; 406 X Liu (3763_CR81) 2021; 387 PF Hopkins (3763_CR164) 2015; 450 T Breinlinger (3763_CR139) 2013; 243 R Zha (3763_CR155) 2023; 286 JJ Monaghan (3763_CR91) 1995; 87 M Rezavand (3763_CR87) 2020; 402 P Ramachandran (3763_CR170) 2021; 47 K Szewc (3763_CR57) 2012; 92 J Klapp (3763_CR190) 2020; 100 J Kwon (3763_CR202) 2013; 248 D Le Touzé (3763_CR184) 2010; 22 WJ Xu (3763_CR22) 2021; 129 J Kordilla (3763_CR95) 2013; 59 A Monteleone (3763_CR198) 2023; 18 AK Das (3763_CR138) 2010; 65 3763_CR176 3763_CR175 M Ishii (3763_CR136) 1975; 21 PN Sun (3763_CR116) 2018; 224 J Wu (3763_CR83) 2023; 412 N Tofighi (3763_CR140) 2013; 66 H Shi (3763_CR28) 2017; 221 3763_CR182 X Yang (3763_CR77) 2021; 104 MD Green (3763_CR119) 2019; 179 L Yang (3763_CR208) 2022; 458 JJ Monaghan (3763_CR110) 1994; 110 3763_CR165 N Grenier (3763_CR101) 2013; 69 EA Patiño-Nariño (3763_CR104) 2023; 162 H Gotoh (3763_CR33) 2018; 69 SJ Cummins (3763_CR54) 1999; 152 MS Shadloo (3763_CR36) 2016; 136 RW Hockney (3763_CR62) 1981 M Ferrand (3763_CR66) 2013; 71 A Kajzer (3763_CR15) 2022; 106 J Wang (3763_CR154) 2020; 113 YB Jo (3763_CR37) 2023; 405 A Khayyer (3763_CR206) 2019; 129 R Vacondio (3763_CR75) 2016; 300 P Nair (3763_CR142) 2018; 176 WK Sun (3763_CR111) 2021; 100 JR Finn (3763_CR144) 2016; 796 JP Morris (3763_CR51) 1997; 136 C Lüthi (3763_CR73) 2023; 139 G Tripepi (3763_CR121) 2020; 158 DA Barcarolo (3763_CR70) 2014; 273 AJC Crespo (3763_CR168) 2015; 187 D Violeau (3763_CR39) 2012 Z Ji (3763_CR191) 2018; 127 LW Zhang (3763_CR197) 2019; 26 C Marchioli (3763_CR4) 2017; 228 MD Green (3763_CR181) 2021; 229 E Coyajee (3763_CR12) 2009; 228 CE Brennen (3763_CR1) 2005 3763_CR109 S Nugent (3763_CR90) 2000; 62 A Tafuni (3763_CR68) 2018; 342 K Szewc (3763_CR100) 2015; 103 VE Badalassi (3763_CR14) 2003; 190 H Wendland (3763_CR50) 1995; 4 XS Guan (3763_CR35) 2022; 15 ZX Zhao (3763_CR186) 2023; 269 3763_CR130 3763_CR132 3763_CR131 P Español (3763_CR48) 2003; 67 C Zhang (3763_CR167) 2021; 267 M Olejnik (3763_CR58) 2018; 56 X Zheng (3763_CR183) 2021; 93 D Molteni (3763_CR113) 2009; 180 M Dai (3763_CR133) 2005; 208 A Mayrhofer (3763_CR67) 2015; 115 JR Clausen (3763_CR173) 2013; 87 3763_CR122 J Kwon (3763_CR125) 2017; 85 JJ Monaghan (3763_CR44) 1992; 30 PN Sun (3763_CR118) 2019; 90 C Zhang (3763_CR205) 2019; 392 XY Hu (3763_CR56) 2007; 227 M Okraschevski (3763_CR194) 2023; 111 A Colagrossi (3763_CR88) 2003; 191 D Wu (3763_CR210) 2023; 407 KK Subedi (3763_CR151) 2023; 165 A Kajzer (3763_CR166) 2024; 498 A Kajzer (3763_CR123) 2022; 121 T Tran-Duc (3763_CR152) 2023; 35 HG Lyu (3763_CR158) 2023; 39 R Akhunov (3763_CR200) 2023 E Shishova (3763_CR153) 2023; 10 T Fonty (3763_CR40) 2019; 111 L Scarbolo (3763_CR17) 2015; 27 C Zöller (3763_CR98) 2023; 472 PN Sun (3763_CR117) 2018; 224 A Vázquez-Quesada (3763_CR128) 2016; 3 PM Korczyk (3763_CR143) 2019; 10 S Khorasanizade (3763_CR195) 2016; 50 J Michel (3763_CR207) 2022; 459 E Arai (3763_CR96) 2020; 203 S Ramezanzadeh (3763_CR187) 2022; 15 S Popinet (3763_CR10) 2018; 50 M Hirschler (3763_CR107) 2017; 95 K Puri (3763_CR203) 2014; 270 G Duan (3763_CR156) 2020; 372 T Fonty (3763_CR188) 2020; 105 R Vacondio (3763_CR69) 2021; 8 3763_CR27 M Paprota (3763_CR185) 2018; 19 T Douillet-Grellier (3763_CR134) 2018; 177 F Yeganehdoust (3763_CR141) 2016; 40 X Yang (3763_CR76) 2021; 443 S Marrone (3763_CR114) 2011; 200 O Kincl (3763_CR211) 2023; 284 XY Hu (3763_CR49) 2006; 213 J Kwon (3763_CR126) 2019; 384 X Zhang (3763_CR108) 2023; 108 M Sussman (3763_CR13) 2000; 162 D Winkler (3763_CR63) 2018; 225 J Pozorski (3763_CR55) 2002; 40 Y Shimizu (3763_CR82) 2018; 76 ZX Zhao (3763_CR163) 2023; 490 K Szewc (3763_CR53) 2011; 54 T Tazaki (3763_CR21) 2022; 175 MB Liu (3763_CR42) 2003 JJ Monaghan (3763_CR45) 2012; 44 E Harada (3763_CR86) 2021; 117 C Wang (3763_CR129) 2017; 79 GW Bergantz (3763_CR41) 1999; 25 A Khayyer (3763_CR80) 2013; 242 J Pozorski (3763_CR6) 2017 K Szewc (3763_CR102) 2012; 13 DD Meringolo (3763_CR161) 2023; 35 S Dey (3763_CR201) 2018; 30 M Olejnik (3763_CR61) 2017; 348 T Wacławczyk (3763_CR16) 2022; 38 G Soligo (3763_CR18) 2019; 376 ZB Wang (3763_CR38) 2016; 40 C Berna (3763_CR135) 2015; 74 MD Green (3763_CR180) 2018; 174 M Luo (3763_CR34) 2021; 114 G Laibe (3763_CR124) 2011; 420 WH Henstock (3763_CR137) 1976; 22 S Balachandar (3763_CR3) 2010; 42 T Gao (3763_CR78) 2023; 473 A Di Mascio (3763_CR159) 2017; 29 L Scarbolo (3763_CR20) 2013; 234 |
References_xml | – reference: KajzerAPozorskiJOn the inconsistency of particle weighted methods and its consequences for weakly-compressible flow modelsJ. Comput. Phys. J. Comput. Phys.2024498 – reference: BianXElleroMA splitting integration scheme for the SPH simulation of concentrated particle suspensionsComp. Phys. Comm.201418553623129482 – reference: Kwon, J., Monaghan, J.J.: A novel SPH method for sedimentation in a turbulent fluid. J. Comp. Phys. 300, 520–532 (2015) – reference: TartakovskyAMFerrisKFMeakinPLagrangian particle model for multiphase flowsComp. Phys. Comm.2009180187418812678462 – reference: SzewcKPozorskiJMinierJ-PAnalysis of the incompressibility constraint in the SPH methodInt. J. Num. Meth. Eng.201292343369 – reference: Kajzer, A.: Conservative weakly compressible smoothed particle hydrodynamics applied to flows with high vorticity. J. Phys.: Conf. Ser. 2367, 012008 (2022) – reference: RamírezLEirísACouceiroIParísJNogueiraXAn arbitrary Lagrangian-Eulerian SPH-MLS method for the computation of compressible viscous flowsJ. Comput. Phys.20224641111724432254 – reference: FinnJRMingLApteSVParticle based modelling and simulation of natural sand dynamics in the wave bottom boundary layerJ. Fluid Mech.20167963403853831068 – reference: OgerGMarroneSLe TouzéDde LeffeMSPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalismsJ. Comput. Phys.201631376983481006 – reference: ZengLVelezDLuJTryggvasonGNumerical studies of disperse three-phase fluid flowsFluids20216317 – reference: VacondioRAltomareCde LeffeMHuXYLe TouzéDLindSMarongiuJCMarroneSRogersBDSouto-IglesiasAGrand challenges for Smoothed Particle Hydrodynamics numerical schemesComput. Part. Mech.20218575588 – reference: XuWJDongXYSimulation and verification of landslide tsunamis using a 3D SPH-DEM coupling methodComp. Geotechn.2021129103803 – reference: LaibeGPriceDJDusty gas with smoothed particle hydrodynamics– I. Algorithm and test suiteMon. Not. R. Astron. Soc.201142023452364 – reference: SzewcKTanièreAPozorskiJMinierJ-PA study on application of Smoothed Particle Hydrodynamics to multi-phase flowsInt. J. Nonlin. Sci. Num. Sim.2012133833953110469 – reference: Olejnik, M., Pozorski, J.: Sediment transport in a free-surface flows using δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-like two-fluid SPH. In 13th International SPHERIC Workshop, Galway, Ireland, Proceedings, pp. 353-358 (2018) – reference: TazakiTHaradaEGotohHNumerical investigation of sediment transport mechanism under breaking waves by DEM-MPS coupling schemeCoastal Eng.2022175104146 – reference: SubediKKKongSCParticle-based approach for modeling phase change and drop/wall impact at thermal spray conditionsInt. J. Multiphase Flow2023165104472 – reference: RamachandranPPuriKEntropically damped artificial compressibility for SPHComp. Fluids20191795795943881703 – reference: WacławczykTOn differences between deterministic and statistical models of the interphase regionActa. Mech. Sin.2022387220454443068 – reference: ChaniotisAKPoulikakosDKoumoutsakosPRemeshed smoothed particle hydrodynamics for the simulation of viscous and heat conducting flowsJ. Comput. Phys.20021826790 – reference: Olejnik, M., Szewc, K., Pozorski, J.: Modelling of the flow regime transition with the Smoothed Particle Hydrodynamics. In 9th International Conference on Multiphase Flow, Firenze, Italy, 22–27 May. Proceedings on USB-pendrive, art. 1037 (2016) – reference: BergantzGWNiJA numerical study of sedimentation by dripping instabilities in viscous fluidsInt. J. Multiphase Flow199925307320 – reference: Kajzer, A., Pozorski, J., Szewc, K.: Large-eddy simulations of 3D Taylor-Green vortex: comparison of Smoothed Particle Hydrodynamics, Lattice Boltzmann and finite volume methods. J. Phys.: Conf. Ser. 530, 012019 (2014) – reference: HirtCWNicholsBDVolume of fluid (VOF) method for the dynamics of free boundariesJ. Comput. Phys.198139201225 – reference: DasAKDasPKEquilibrium shape and contact angle of sessile drops of different volumes–computation by SPH and its further improvement by DIChem. Eng. Sci.20106540274037 – reference: BadalassiVECenicerosHDBanerjeeSComputation of multiphase systems with phase field modelsJ. Comput. Phys.20031903713972013023 – reference: EspañolPRevengaMSmoothed dissipative particle dynamicsPhys. Rev. E200367026705 – reference: PaprotaMStaroszczykRSuliszWEulerian and Lagrangian modelling of a solitary wave attack on a seawallJ. Hydro-Env. Res.201819189197 – reference: KwonJMonaghanJJSedimentation in homogeneous and inhomogeneous fluids using SPHInt. J. Multiphase Flow2015721551643337917 – reference: BarcaroloDALe TouzéDOgerGde VuystFAdaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics methodJ. Comput. Phys.2014273640657 – reference: KhayyerAGotohHEnhancement of performance and stability of MPS mesh-free particle method for multiphase flows characterized by high density ratiosJ. Comput. Phys.20132422112333062032 – reference: SzewcKSmoothed particle hydrodynamics modelling of granular column collapseGranul. Matter201719113 – reference: CumminsSJRudmanMAn SPH projection methodJ. Comput. Phys.19991525846071699711 – reference: LindSJRogersBDStansbyPKReview of smoothed particle hydrodynamics: towards converged Lagrangian flow modellingProc. R. Soc. A2020476201908014172518 – reference: YangQXuFYangYDaiZWangJA GPU-accelerated adaptive particle refinement for multi-phase flow and fluid-structure coupling SPHOcean Eng.2023279114514 – reference: ChironLOgerGde LeffeMLe TouzéDAnalysis and improvements of adaptive particle refinement (APR) through CPU time, accuracy and robustness considerationsJ. Comput. Phys.20183545525753738122 – reference: MonaghanJJSmoothed Particle Hydrodynamics and its diverse applicationsAnn. Rev. Fluid Mech.2012443233462882600 – reference: NugentSPoschHALiquid drops and surface tension with smoothed particle applied mechanicsPhys. Rev. E20006249684975 – reference: HopkinsPFA new class of accurate, mesh-free hydrodynamic simulation methodsMon. Not. R. Astron. Soc.201545053110 – reference: OkraschevskiMMesquitaLCCKochRMastorakosEBauerHJA numerical study of aero engine sub-idle operation: from a realistic representation of spray injection to detailed chemistry LES-CMCFlow Turb. Combust.2023111493530 – reference: LiuXZhangSDevelopment of adaptive multi-resolution MPS method for multiphase flow simulationComput. Meth. Appl. Mech. Eng.20213871141844321289 – reference: ZhangCRezavandMZhuYYuYWuDZhangWWangJHuXYSPHinXsys: an open-source multi-physics and multi-resolution library based on smoothed particle hydrodynamicsComp. Phys. Comm.20212671080664277078 – reference: LyuHGSunPNColagrossiAZhangAMTowards SPH simulations of cavitating flows with an EoSB cavitation modelActa. Mech. Sin.2023397221584507129 – reference: ShiHSiPDongPXipingYA two-phase SPH model for massive sediment motion in free surface flowsAdv. Water Resour.20191298098 – reference: KwonJSmoothed particle hydrodynamics model for simulating miscible multi-fluid flowJ. Comput. Phys.20193841141333920915 – reference: Patiño-NariñoEAGalvisAFPavanelloRGongora-RubioMRModeling of co-axial bubbles coalescence under moderate Reynolds regimes: a Bi-phase SPH approachInt. J. Multiphase Flow20231621043554551905 – reference: BlankMNairPPöschelTModeling surface tension in Smoothed Particle Hydrodynamics using Young-Laplace pressure boundary conditionComp. Meth. Appl. Mech. Eng.20234064539090 – reference: WangCWangYPengCMengXTwo-fluid smoothed particle hydrodynamics simulation of submerged granular column collapseMech. Res. Comm.2017791523 – reference: Tran-DucTPhan-ThienNKhooBCA smoothed particle hydrodynamics (SPH) study of sediment dispersion on the seafloorPhys. Fluids201729083302 – reference: ZhaRZhaoWWanDNumerical study of wave-ice floe interactions and overwash by a meshfree particle methodOcean Eng.2023286115681 – reference: GhaïtanellisAVioleauDFerrandMEl Kadi AbderrezzakKLeroyAJolyAA SPH elastic-viscoplastic model for granular flows and bed-load transportAdv. Water Res.2018111156173 – reference: OlejnikMSzewcKPozorskiJSPH with dynamical smoothing length adjustment based on the local flow kinematicsJ. Comput. Phys.201734823443689622 – reference: OlejnikMSzewcKSmoothed Particle Hydrodynamics modelling of the Rayleigh-Plateau instabilityJ. Theor. Appl. Mech.201856675686 – reference: YuanQQWangCWangYQPengCMengXNInvestigation of submerged soil excavation by high-velocity water jet using two-fluid Smoothed Particle Hydrodynamics methodJ. Hydraul. Eng.201914504019016 – reference: PuriKRamachandranPApproximate Riemann solvers for the Godunov SPH (GSPH)J. Comput. Phys.20142704324583209395 – reference: FerrandMLaurenceDRRogersBDVioleauDKassiotisCUnified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH methodInt. J. Num. Meth. Fluids2013714464723009848 – reference: GreenMDZhouYDomínguezJMGesteiraMGPeiróJSmooth particle hydrodynamics simulations of long-duration violent three-dimensional sloshing in tanksOcean Eng.2021229108925 – reference: ZhangASunPMinFAn SPH modeling of bubble rising and coalescing in three dimensionsComput. Meth. Appl. Mech. Eng.20152941892093373446 – reference: MonaghanJJSimulating free surface flows with SPHJ. Comput. Phys.1994110399406 – reference: MorrisJPSimulating surface tension with smoothed particle hydrodynamicsInt. J. Num. Meth. Fluids200033333353 – reference: YangLRakhshaMHuWNegrutDA consistent multiphase flow model with a generalized particle shifting scheme resolved via incompressible SPHJ. Comput. Phys.20224581110794389743 – reference: MonaghanJJSmoothed particle hydrodynamics model for simulating miscible multi-fluid flowComp. Phys. Comm.199587225235 – reference: Olejnik, M., Pozorski, J.: Embracing the inevitable-on single particles in SPH of two-phase flows. In XXIV Fluid Mechanics Conference, Rzeszów, 1–3 July (cancelled), extended abstract (2020) – reference: SzewcKPozorskiJMinierJ-POn the problem of spurious fragmentation of interfaces in the multiphase Smoothed Particle Hydrodynamics methodInt. J. Num. Meth. Eng.2015103625649 – reference: SunPNColagrossiALe TouzéDZhangAMExtension of the δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-Plus-SPH model for simulating vortex-induced-vibration problemsJ. Fluids Struct.2019901942 – reference: ShishovaEPanzerFWerzMEberhardPReversible inter-particle bonding in SPH for improved simulation of friction stir weldingComput. Part. Mech.202310555564 – reference: TofighiNYildizMNumerical simulation of single droplet dynamics in three-phase flows using ISPHComp. Math. Appl.2013665255363079755 – reference: MonteleoneAViolaANapoliEBurriesciGModelling of thrombus formation using smoothed particle hydrodynamics methodPLoS ONE202318e0281424 – reference: HenstockWHHanrattyTJThe interfacial drag and the height of the wall layer in annular flowsAIChE J.1976229901000 – reference: HarlowFWelchJENumerical calculation of time-dependent viscous incompressible flow of fluid with a free surfacePhys. Fluids19658218221893155392 – reference: Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the ACM National Conference, Las Vegas, NV, pp. 517–524. (1968) – reference: MonaghanJJHuppertHEWorsterMGSolidification using smoothed particle hydrodynamicsJ. Comput. Phys.2005206684705 – reference: MayrhoferALaurenceDRogersBDVioleauDDNS and LES of 3-D wall-bounded turbulence using Smoothed Particle HydrodynamicsInt. J. Heat Fluid Flow201511585973342547 – reference: OlejnikMPozorskiJA robust method for wetting phenomena within Smoothed Particle HydrodynamicsFlow Turb. Combust.2020104115137 – reference: GaoTQiuHFuLMulti-level adaptive particle refinement method with large refinement scale ratio and new free-surface detection algorithm for complex fluid-structure interaction problemsJ. Comput. Phys.20234731117624511354 – reference: HockneyRWEastwoodJWComputer Simulations Using Particles1981New YorkMcGraw-Hill – reference: SunWKZhangLWLiewKMFast detection of free surface and surface tension modelling via single-phase SPHAppl. Math. Mod.202110033544302055 – reference: Olejnik, M.: Modelling of interfacial flows with the Smoothed Particle Hydrodynamics method. PhD thesis, IMP PAN Gdańsk, Poland (2019) – reference: DuanGYamajiASakaiMAn incompressible-compressible Lagrangian particle method for bubble flows with a sharp density jump and boiling phase changeComput. Meth. Appl. Mech. Eng.20203721134254154377 – reference: LiLJiangBWeiGLiXZhuZMultiscale multiphase flow simulations using interface capturing and Lagrangian particle trackingPhys. Fluids202234121801 – reference: MonaghanJJKocharyanASPH simulation of multi-phase flowComp. Phys. Comm.199587225235 – reference: LiuMBLiuGRRestoring particle consistency in smoothed particle hydrodynamicsAppl. Num. Math.20065619362186429 – reference: LyuHGSunPNHuangXTSPHydro: promoting smoothed particle hydrodynamics method toward extensive applications in ocean engineeringPhys. Fluids202335017116 – reference: RamezanzadehSOzbulutMYildizMA numerical investigation of the energy efficiency enhancement of oscillating water column wave energy converter systemsEnergies2022158276 – reference: KajzerAPozorskiJApplication of the entropically damped artificial compressibility model to direct numerical simulation of turbulent channel flowComp. Math. Appl.20187699710133846249 – reference: RamachandranPBhosaleAPuriKNegiPMutaADineshAPySPH: a python-based framework for smoothed particle hydrodynamicsACM Trans. Math. Software2021471384199498 – reference: UlrichCLeonardiMRungTMulti-physics SPH simulation of complex marine-engineering hydrodynamic problemsOcean Eng.201364109121 – reference: KajtarJBMonaghanJJOn the swimming of fish like bodies near free and fixed boundariesEur. J. Mech. B-Fluids2012331132896727 – reference: SussmanMPuckettEGA coupled level-set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flowsJ. Comput. Phys.20001623013371774261 – reference: PozorskiJWawreńczukASPH computation of incompresible viscous flowsJ. Theor. Appl. Mech.200240917937 – reference: BalachandarSEatonJTurbulent dispersed multiphase flowAnnu. Rev. Fluid Mech.201042111133 – reference: ZhangCXiangGMWangBHuXYAdamsNAA weakly compressible SPH method with WENO reconstructionJ. Comput. Phys.20193921183944233 – reference: YangXKongSCLiuQSmoothed particle hydrodynamics with adaptive spatial resolution for multiphase flows with large density ratioPhys. Rev. E20211040553084355675 – reference: GreenMDVacondioRPeiróJA smoothed particle hydrodynamics numerical scheme with a consistent diffusion term for the continuity equationComp. Fluids20191796326443884703 – reference: VioleauDRogersBDSPH for free-surface flows: past, present and futureJ. Hydr. Res.201654126 – reference: GotohHKhayyerAIkariHArikawaTShimosakoKOn enhancement of incompressible SPH method for simulation of violent sloshing flowsAppl. Ocean Res.201446104115 – reference: ShiHXipingYDalrympleRADevelopment of a two-phase SPH model for sediment laden flowsComput. Phys. Comm.20172212592723712825 – reference: ZhangCZhuYJWuDAdamsNAHuXYSmoothed particle hydrodynamics: methodology development and recent achievementJ. Hydrodyn.202234767805 – reference: Vázquez-QuesadaABianXElleroMThree-dimensional simulations of dilute and concentrated suspensions using smoothed particle hydrodynamicsComput. Part. Mech.20163167178 – reference: SunPNLe TouzéDOgerGZhangAMAn accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensionsOcean Eng.2021221108552 – reference: WangJZhangXCoupled solid-liquid phase change and thermal flow simulation by particle methodInt. Comm. Heat Mass Transf.2020113104519 – reference: VioleauDFluid Mechanics and the SPH Method2012OxfordOxford University Press – reference: LiuMBLiuGRSmoothed Particle Hydrodynamics: A Meshfree Particle Method2003SingaporeWorld Scientific Publishing – reference: KoshizukaSCurrent achievements and future perspectives on particle simulation technologies for fluid dynamics and heat transferJ. Nucl. Sci. Technol.201148155168 – reference: KwonJThree-dimensional simulation of a solid-liquid flow by the DEM-SPH methodJ. Comput. Phys.20132481471763066147 – reference: BrackbillJUKotheDBZemachCA continuum method for modelling surface tensionJ. Comput. Phys.19921003353541167749 – reference: HammaniIMarroneSColagrossiAOgerGLe TouzéDDetailed study on the extension of the δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-SPH model to multi-phase flowComput. Meth. Appl. Mech. Eng.20203681131894108275 – reference: NairPPöschelTDynamic capillary phenomena using incompressible SPHChem. Eng. Sci.2018176192204 – reference: MichelJVergnaudAOgerGHermangeCLe TouzéDOn particle shifting techniques (PSTs): analysis of existing laws and proposition of a convergent and multi-invariant lawJ. Comput. Phys.20224591109994402595 – reference: Szewc, K., Walczewska-Szewc, K., Olejnik, M.: Is the motion of a single SPH particle droplet/solid physically correct?. arXiv preprint, arXiv:1602.07902 (2016) – reference: BruggerMTraxlRLacknerREnergy-conserving formulation of the CSF model for the simulation of surface tension at fluid-fluid interfaces with smoothed particle hydrodynamicsJ. Comput. Phys.20234761118954536160 – reference: HuXYAdamsNAAn incompressible multi-phase SPH methodJ. Comput. Phys.2007227264278 – reference: MarchioliCLarge-eddy simulation of turbulent dispersed flows: a review of modelling approachesActa Mech.2017228741771 – reference: DeySAliSZAdvances in modeling of bed particle entrainment sheared by turbulent flowPhys. Fluids201830061301 – reference: ZhaoZXBilottaGYuanQEGongZXLiuHMulti-GPU multi-resolution SPH framework towards massive hydrodynamics simulations and its applications in high-speed water entryJ. Comput. Phys.20234901123394614569 – reference: KhayyerAGotohHShimizuYA projection-based particle method with optimized particle shifting for multiphase flows with large density ratios and discontinuous density fieldsComp. Fluids20191293563713880066 – reference: FontyTFerrandMLeroyAJolyAVioleauDMixture model for two-phase flows with high density ratios: a conservative and realizable SPH formulationInt. J. Multiphase Flow20191111581743882909 – reference: KwonJChoHA novel method to calculate the pressure interaction between dust and fluid using SPHInt. J. Num. Meth. Fluids2017852672873696957 – reference: CoyajeeEBoersmaJNumerical simulation of drop impact on a liquid-liquid interface with a multiple marker front-capturing methodJ. Comput. Phys.200922844444467 – reference: ColagrossiALandriniMNumerical simulation of interfacial flows by smoothed particle hydrodynamicsJ. Comput. Phys.2003191448475 – reference: WendlandHPiecewise polynomial, positive definite and compactly supported radial functions of minimal degreeAdv. Comput. Math.199543893961366510 – reference: GreenMDPeiróJLong duration SPH simulations of sloshing in tanks with a low fill ratio and high stretchingComp. Fluids20181741791993853096 – reference: Olejnik, M., Szewc, K., Pozorski, J.: Modelling of the dispersed phase motion in free-surface flows with the two-fluid SPH. In Proceeding of 5th International Conference Particle Based Methods, Hannover, pp. 21–32 (2017). Available at: http://congress.cimne.com/particles2017/frontal/doc/Ebook%20PARTICLES%202017.pdf – reference: Douillet-GrellierTDe VuystFCalandraHRicouxPSimulations of intermittent two-phase flows in pipes using SPHComp. Fluids2018177101122 – reference: DaiMSchmidtSPAdaptive tetrahedral meshing in free-surface flowJ. Comput. Phys.2005208228252 – reference: AkhunovRWinchenbachRKolbAEvaluation of particle-based smoothed particle hydrodynamics boundary handling approaches in computer animationComp. Anim. Virtual Worlds202310.1002/cav.2138 – reference: HaradaEIkariHTazakiTGotohHNumerical simulation for coastal morphodynamics using MPS-DEM methodAppl. Ocean Res.2021117102905 – reference: WuJZhangGSunZYanHZhouBAn improved MPS method for simulating multiphase flows characterized by high-density ratios and violent deformation of interfaceComput. Meth. Appl. Mech. Eng.20234121161034591284 – reference: Pozorski, J., Kajzer, A.: Density diffusion in low mach number flows. J. Phys.: Conf. Ser. 2367, 012027 (2022) – reference: XiongHBZhangCYYuZSMultiphase SPH modeling of water boiling on hydrophilic and hydrophobic surfacesInt. J. Heat Mass Transf.2019130680692 – reference: KajzerAPozorskiJA weakly compressible, diffuse-interface model for two-phase flows: numerical development and validationComp. Math. Appl.202210674914355809 – reference: BreinlingerTPolferPHashibonAKraftTSurface tension and wetting effects with smoothed particle hydrodynamicsJ. Comput. Phys.20132431427 – reference: PopinetSNumerical models of surface tensionAnnu. Rev. Fluid Mech.20185049753753203 – reference: Tran-DucTMeylanMHThamwattanaNSmoothed particle hydrodynamics simulations for wave induced ice floe meltingPhys. Fluids202335046604 – reference: Di MascioAAntuonoMColagrossiAMarroneSSmoothed particle hydrodynamics method from a large eddy simulation perspectivePhys. Fluids201729035102 – reference: SzewcKPozorskiJMinierJ-PSimulations of single bubbles rising through viscous liquids using Smoothed Particle HydrodynamicsInt. J. Multiphase Flow20135098105 – reference: FontyTFerrandMLeroyAVioleauDAir entrainment modeling in the SPH method: a two-phase mixture formulation with open boundariesFlow Turb. Combust.202010511491195 – reference: JiZStanicMHartonoEAChernorayVNumerical simulations of oil flow inside a gearbox by Smoothed Particle Hydrodynamics (SPH) methodTribol. Int.20181274758 – reference: JoYBParkSHKimESLagrangian computational fluid dynamics for nuclear thermal-hydraulics & safetyNucl. Engrg. Design2023405112228 – reference: Ates, C., Gundonglu, C., Okraschevski, M., Bürkle, N., Koch, R.: Characterization of flow-blurring atomization with Smoothed Particle Hydrodynamics (SPH) – reference: MinierJPMinierJPPozorskiJA general introduction to particle depositionParticles in Wall-Bounded Turbulent Flows: Deposition, Re-Suspension and Agglomeration2017BerlinSpringer136 – reference: LuoMKhayyerALinPParticle methods in ocean and coastal engineeringAppl. Ocean Res.2021114102734 – reference: TafuniADominguezJMVacondioRCrespoAJCA versatile algorithm for the treatment of open boundary conditions in smoothed particle hydrodynamics GPU modelsComput. Meth. Appl. Mech. Eng.20183426046243855154 – reference: ZhengXSunLChenZChengCLiuCFMultiphase smoothed particle hydrodynamics modeling of forced liquid sloshingInt. J. Num. Meth. Fl.2021934114284202924 – reference: MonaghanJJSmoothed Particle HydrodynamicsAnn. Rev. Astron. Astrophys.199230543574 – reference: WinklerDRezavandMRauchWNeighbour lists for smoothed particle hydrodynamics on GPUsComp. Phys. Comm.2018225140148 – reference: VioleauDIssaRNumerical modelling of complex turbulent free-surface flows with the SPH method: an overviewInt. J. Num. Meth. Fluids2007532773042283853 – reference: CuiXHabashiWGSPH simulation of supercooled large droplets impacting hydrophobic and superhydrophobic surfacesComp. Fluids20212291050554304760 – reference: KordillaJTartakovskyAMGeyerTA smoothed particle hydrodynamics model for droplet and film flow on smooth and rough fracture surfacesAdv. Water Res.201359114 – reference: AdamiSHuXYAdamsNAA generalized wall boundary condition for smoothed particle hydrodynamicsJ. Comput. Phys.2012231705770752969701 – reference: HirschlerMOgerGNiekenULe TouzéDModeling of droplet collisions using Smoothed Particle HydrodynamicsInt. J. Multiphase Flow2017951751873670686 – reference: Le TouzéDMarshAOgerGGuilcherPMKhaddaj-MallatCAlessandriniBFerrantPSPH simulation of green water and ship flooding scenariosJ. Hydrodyn.201022231236 – reference: HuXYAdamsNAA multi-phase SPH method for macroscopic and mesoscopic flowsJ. Comput. Phys.20062138448612208381 – reference: MeringoloDDLauriaAAristodemoFFilanotiPFLarge eddy simulation within the smoothed particle hydrodynamics: applications to multiphase flowsPhys. Fluids202335063312 – reference: SunPNColagrossiAMarroneSZhangAMThe δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}plus-SPH model: simple procedures for a further improvement of the SPH schemeComp. Meth. App. Mech. Eng.201731525493595246 – reference: ClausenJREntropically damped form of artificial compressibility for explicit simulation of incompressible flowPhys. Rev. E201387013309 – reference: VilaJPOn particle weighted method and smoothed particle hydrodynamicsMath. Models Methods Appl. Sci.199991612091674540 – reference: KlappJAreu-RangelOSCruchagaMAránguizRBonasiaRGodoyMJSilva-CasarinRTsunami hydrodynamic force on a building using a SPH real-scale numerical simulationNat. Hazards202010089109 – reference: SoligoGRocconASoldatiACoalescence of surfactant-laden drops by phase field methodJ. Comput. Phys.2019376129213113875568 – reference: GrenierNLe TouzéDColagrossiAAntuonoMColicchioGViscous bubbly flows simulation with an interface SPH modelOcean Eng.20136988102 – reference: KajzerAPozorskiJThe mass diffusive model of Svärd simpified to simulate nearly incompressible flowsComp. Math. Appl.20221211829 – reference: PozorskiJMinierJPPozorskiJModels of turbulent flows and particle dynamicsParticles in Wall-Bounded Turbulent Flows: Deposition, Re-Suspension and Agglomeration2017BerlinSpringer97150 – reference: Spricigo, E., Pozorski, J.: Simulation of sloshing in the moon pool with Smoothed Particle Hydrodynamics. J. Phys.: Conf. Ser. 2367 p. 012030 (2022) – reference: LüthiCAfrasiabiMBambachMAn adaptive smoothed particle hydrodynamics (SPH) scheme for efficient melt pool simulations in additive manufacturingComp. Math. Appl.20231397274561598 – reference: YangXKongSCLiuMBLiuQSmoothed particle hydrodynamics with adaptive spatial resolution (SPH-ASR) for free surface flowsJ. Comput. Phys.20214431105394285009 – reference: KhayyerAShimizuYGotohTGotohHEnhanced resolution of the continuity equation in explicit weakly compressible SPH simulations of incompressible free-surface fluid flowsAppl. Math. Mod.2023116841214514653 – reference: KorczykPMvan SteijnVBłońskiSZarembaDBeattieDAGarsteckiPAccounting for corner flow unifies the understanding of droplet formation in microfluidic channelsNature Comm.2019102528 – reference: ZöllerCAdamsNAAdamiSA partitioned continuous surface stress model for multiphase smoothed particle hydrodynamicsJ. Comput. Phys.20234721117164502220 – reference: RahmatAYildizMA multiphase ISPH method for simulation of droplet coalescence and electro-coalescenceInt. J. Multiphase Flow201810532443812600 – reference: Olejnik, M., Pozorski, J.: Multiphase flow modelling using Smoothed Particle Hydrodynamics: considerations on sediment transport. In: Rowiński, P., Kalinowska, M., Mrokowska, M. (eds.) Advances in Hydraulic Research. Springer, Berlin (2024) (in print) – reference: MorrisJPFoxPJZhuYModeling low Reynolds number incompressible flows using SPHJ. Comput. Phys.1997136214226 – reference: GotohHKhayyerAOn the state-of-the-art of particle methods for coastal and ocean engineeringCoast. Eng. J.20186979103 – reference: WuDZhangCTangXHuXAn essentially non-hourglass formulation for total Lagrangian smoothed particle hydrodynamicsComput. Meth. Appl. Mech. Eng.20234071159154544058 – reference: AraiETartakovskyAHoltRGGraceSRyanEComparison of surface tension generation methods in smoothed particle hydrodynamics for dynamic systemsComp. Fluids20202031045404093678 – reference: SussmanMSmerekaPOsherSJA level-set approach for computing solution to incompressible two-phase flowJ. Comput. Phys.1994114146159 – reference: YeganehdoustFYaghoubiMEmdadHOrdoubadiMNumerical study of multiphase droplet dynamics and contact angles by smoothed particle hydrodynamicsAppl. Math. Mod.201640849385123540398 – reference: TripepiGHuXYAdamsNAHydrodynamic forces induced by a solitary wave interacting with a submerged square barrier: physical tests and δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-LES-SPH simulationsCoast. Eng.2020158103690 – reference: WangZBChenRWangHLiaoQZhuXLiSZAn overview of smoothed particle hydrodynamics for simulating multiphase flowAppl. Math. Mod.201640962596553563103 – reference: BernaCEscriváAMuñoz-CoboJLHerranzLEReview of droplet entrainment in annular flow: interfacial waves and onset of entrainmentProg. Nucl. Energy2015741443 – reference: MolteniDColagrossiAA simple procedure to improve the pressure evaluation in hydrodynamic context using the SPHComp. Phys. Comm.20091808618722678329 – reference: GuanXSSunPNLyuHGLiuNNPengYXHuangXTXuYResearch progress of SPH simulations for complex multiphase flows in ocean engineeringEnergies2022159000 – reference: ZhaoZXHongYGongZXLiuHNumerical analysis of cavity deformation of oblique water entry using a multi-resolution two-phase SPH methodOcean Eng.2023269113456 – reference: ShimizuYGotohHKhayyerAAn MPS-based particle method for simulation of multiphase flows characterized by high density ratios by incorporation of space potential particle conceptComp. Math. Appl.201876110811293846257 – reference: KochRBraunSWiethLChaussonnetGDauchTBauerH-JPrediction of primary atomization using smoothed particle hydrodynamicsEur. J. Mech. B-Fluids201761271278 – reference: KinclOPavelkaMGlobally time-reversible fluid simulations with smoothed particle hydrodynamicsComp. Phys. Comm.2023284108593 – reference: TryggvasonGScardovelliRZaleskiSDirect Numerical Simulations of Gas-Liquid Multiphase Flows2011CambridgeCambridge University Press – reference: SunPNColagrossiAMarroneSAntuonoMZhangAMMulti-resolution delta-plus-SPH with tensile instability control: towards high Reynolds number flowsComp. Phys. Comm.201822463803758441 – reference: ManganiFSoligoGRocconASoldatiAInfluence of density and viscosity on deformation, breakage, and coalescence of bubbles in turbulencePhys. Rev. Fluids20227053601 – reference: ZhangXYangXSimulation of binary collision of liquid drops using smoothed particle hydrodynamics with adaptive spatial resolutionPhys. Rev. E20231080253024648366 – reference: ScarboloLMolinDPerlekarPSbragagliaMSoldatiAToschiFUnified framework for a side-by-side comparison of different multicomponent algorithms: lattice Boltzmann vs. phase field modelJ. Comput. Phys.20132342632792999777 – reference: TartakovskyAMPanchenkoAPairwise force smoothed particle hydrodynamics model for multiphase flow: surface tension and contact line dynamicsJ. Comput. Phys.2016305111911463429621 – reference: KhorasanizadeSSousaJMMUsing a fully-Lagrangian meshless method for the study of aerosol dispersion and depositionAerosol Sci. Techn.201650926936 – reference: FeldmanJBonetJDynamic refinement and boundary contact forces in SPH with applications in fluid flow problemsInt. J. Num. Meth. Eng.2007722953242355177 – reference: YeTPanDYHuangCLiuMBSmoothed particle hydrodynamics (SPH) for complex fluid flows: recent developments in methodology and applicationsPhys. Fluids201931011301 – reference: ShadlooMSOgerGLe TouzéDSPH method for fluid flows, towards industrial applications: motivations, current state, and challengesComp. Fluids20161361134 – reference: VowinckelBIncorporating grain-scale processes in macroscopic sediment transport models: a review and perspectives for environmental and geophysical applicationsActa Mech.2021232202320504273220 – reference: DehnenWAlyHImproving convergence in smoothed particle hydrodynamics simulations without pairing instabilityMon. Not. R. Astron. Soc.201242510681082 – reference: VacondioRRogersBDStansbyPKMignosaPVariable resolution for SPH in three dimensions: towards optimal splitting and coalescing for dynamic adaptivityComput. Meth. Appl. Mech. Eng.20163004424603452780 – reference: XuFWangJYangYWangLDaiZHanROn methodology and application of smoothed particle hydrodynamics in fluid, solid and biomechanicsActa. Mech. Sin.2023397221854545243 – reference: MarroneSAntuonoMColagrossiAColicchioGLe TouzéDGrazianiGδ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-SPH model for simulating violent impact flowsComp. Meth. App. Mech. Eng.2011200152615422774763 – reference: ZhangLWAdemiloyeASLiewKMMeshfree and particle methods in biomechanics: prospects and challengesArch. Comp. Meth. Eng.201926154715764019286 – reference: ScarboloLBiancoFSoldatiACoalescence and breakup of large droplets in turbulent channel flowPhys. Fluids201527073302 – reference: IshiiMGrolmesMAInception criteria for droplet entrainment in two-phase concurrent film flowAIChE J.197521308318 – reference: DomínguezJMFourtakasGAltomareCCancelasRBTafuniAGarcia-FealODualSPHysics: from fluid dynamics to multiphysics problemsComput. Part. Mech.20229867895 – reference: GearaSMartinSAdamiSPetryWAllenouJStepnikBBonnefoyYA new SPH density formulation for 3D free-surface flowsComp. Fluids20222321051934330875 – reference: RezavandMZhangCHuXYA weakly compressible SPH method for violent multi-phase flows with high density ratioJ. Comput. Phys.20204021090924040736 – reference: BrennenCEFundamentals of Multiphase Flow2005CambridgeCambridge University Press – reference: SzewcKPozorskiJTanièreAModeling of natural convection with Smoothed Particle Hydrodynamics: non-Boussinesq formulationInt. J. Heat Mass Transf.20115448074816 – reference: ClearyPWExtension of SPH to predict feeding, freezing and defect creation in low pressure die castingAppl. Math. Model.20053431893201 – reference: CrespoAJCDomínguezJMRogersBDGómez-GesteiraMLongshawSCanelasRVacondioRBarreiroAGarcía-FealODualSPHysics: open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH)Comp. Phys. Comm.2015187204216 – reference: SunPNColagrossiAMarroneSAntuonoMZhangAMδ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-SPH model for simulating violent impact flowsComp. Phys. Comm.20182246380 – volume: 176 start-page: 192 year: 2018 ident: 3763_CR142 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2017.10.042 – volume: 76 start-page: 1108 year: 2018 ident: 3763_CR82 publication-title: Comp. Math. Appl. doi: 10.1016/j.camwa.2018.06.002 – volume: 294 start-page: 189 year: 2015 ident: 3763_CR105 publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/j.cma.2015.05.014 – volume-title: Direct Numerical Simulations of Gas-Liquid Multiphase Flows year: 2011 ident: 3763_CR2 – ident: 3763_CR182 doi: 10.1088/1742-6596/2367/1/012030 – volume: 40 start-page: 917 year: 2002 ident: 3763_CR55 publication-title: J. Theor. Appl. Mech. – volume: 76 start-page: 997 year: 2018 ident: 3763_CR174 publication-title: Comp. Math. Appl. doi: 10.1016/j.camwa.2018.05.036 – volume: 64 start-page: 109 year: 2013 ident: 3763_CR74 publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2013.02.007 – volume: 104 start-page: 115 year: 2020 ident: 3763_CR64 publication-title: Flow Turb. Combust. doi: 10.1007/s10494-019-00048-6 – volume: 129 start-page: 103803 year: 2021 ident: 3763_CR22 publication-title: Comp. Geotechn. doi: 10.1016/j.compgeo.2020.103803 – volume: 85 start-page: 267 year: 2017 ident: 3763_CR125 publication-title: Int. J. Num. Meth. Fluids doi: 10.1002/fld.4380 – volume: 115 start-page: 85 year: 2015 ident: 3763_CR67 publication-title: Int. J. Heat Fluid Flow – volume: 15 start-page: 8276 year: 2022 ident: 3763_CR187 publication-title: Energies doi: 10.3390/en15218276 – volume: 412 start-page: 116103 year: 2023 ident: 3763_CR83 publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/j.cma.2023.116103 – volume: 315 start-page: 25 year: 2017 ident: 3763_CR115 publication-title: Comp. Meth. App. Mech. Eng. doi: 10.1016/j.cma.2016.10.028 – volume: 35 start-page: 063312 year: 2023 ident: 3763_CR161 publication-title: Phys. Fluids doi: 10.1063/5.0150347 – volume: 116 start-page: 84 year: 2023 ident: 3763_CR84 publication-title: Appl. Math. Mod. doi: 10.1016/j.apm.2022.10.037 – year: 2023 ident: 3763_CR200 publication-title: Comp. Anim. Virtual Worlds doi: 10.1002/cav.2138 – volume: 450 start-page: 53 year: 2015 ident: 3763_CR164 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/stv195 – volume: 50 start-page: 49 year: 2018 ident: 3763_CR10 publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-122316-045034 – volume: 56 start-page: 19 year: 2006 ident: 3763_CR59 publication-title: Appl. Num. Math. doi: 10.1016/j.apnum.2005.02.012 – volume: 180 start-page: 1874 year: 2009 ident: 3763_CR93 publication-title: Comp. Phys. Comm. doi: 10.1016/j.cpc.2009.06.002 – volume: 108 start-page: 025302 year: 2023 ident: 3763_CR108 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.108.025302 – volume: 50 start-page: 926 year: 2016 ident: 3763_CR195 publication-title: Aerosol Sci. Techn. doi: 10.1080/02786826.2016.1206654 – volume: 34 start-page: 767 year: 2022 ident: 3763_CR46 publication-title: J. Hydrodyn. doi: 10.1007/s42241-022-0052-1 – volume: 191 start-page: 448 year: 2003 ident: 3763_CR88 publication-title: J. Comput. Phys. doi: 10.1016/S0021-9991(03)00324-3 – volume: 458 start-page: 111079 year: 2022 ident: 3763_CR208 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2022.111079 – volume: 79 start-page: 15 year: 2017 ident: 3763_CR129 publication-title: Mech. Res. Comm. doi: 10.1016/j.mechrescom.2016.12.001 – volume: 165 start-page: 104472 year: 2023 ident: 3763_CR151 publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2023.104472 – volume: 69 start-page: 79 year: 2018 ident: 3763_CR33 publication-title: Coast. Eng. J. doi: 10.1080/21664250.2018.1436243 – volume: 39 start-page: 722185 year: 2023 ident: 3763_CR47 publication-title: Acta. Mech. Sin. doi: 10.1007/s10409-022-22185-x – volume: 6 start-page: 317 year: 2021 ident: 3763_CR8 publication-title: Fluids doi: 10.3390/fluids6090317 – ident: 3763_CR122 doi: 10.1088/1742-6596/2367/1/012027 – volume: 38 start-page: 722045 year: 2022 ident: 3763_CR16 publication-title: Acta. Mech. Sin. doi: 10.1007/s10409-022-22045-w – volume: 66 start-page: 525 year: 2013 ident: 3763_CR140 publication-title: Comp. Math. Appl. doi: 10.1016/j.camwa.2013.05.012 – volume: 87 start-page: 225 year: 1995 ident: 3763_CR92 publication-title: Comp. Phys. Comm. doi: 10.1016/0010-4655(94)00174-Z – volume: 368 start-page: 113189 year: 2020 ident: 3763_CR120 publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113189 – volume: 229 start-page: 105055 year: 2021 ident: 3763_CR150 publication-title: Comp. Fluids doi: 10.1016/j.compfluid.2021.105055 – volume: 93 start-page: 411 year: 2021 ident: 3763_CR183 publication-title: Int. J. Num. Meth. Fl. doi: 10.1002/fld.4889 – volume: 22 start-page: 990 year: 1976 ident: 3763_CR137 publication-title: AIChE J. doi: 10.1002/aic.690220607 – volume: 3 start-page: 167 year: 2016 ident: 3763_CR128 publication-title: Comput. Part. Mech. doi: 10.1007/s40571-015-0072-5 – volume: 100 start-page: 33 year: 2021 ident: 3763_CR111 publication-title: Appl. Math. Mod. doi: 10.1016/j.apm.2021.06.029 – volume: 224 start-page: 63 year: 2018 ident: 3763_CR116 publication-title: Comp. Phys. Comm. doi: 10.1016/j.cpc.2017.11.016 – volume: 13 start-page: 383 year: 2012 ident: 3763_CR102 publication-title: Int. J. Nonlin. Sci. Num. Sim. doi: 10.1515/ijnsns-2012-0019 – volume: 74 start-page: 14 year: 2015 ident: 3763_CR135 publication-title: Prog. Nucl. Energy doi: 10.1016/j.pnucene.2014.01.018 – volume: 30 start-page: 061301 year: 2018 ident: 3763_CR201 publication-title: Phys. Fluids doi: 10.1063/1.5030458 – volume: 19 start-page: 189 year: 2018 ident: 3763_CR185 publication-title: J. Hydro-Env. Res. doi: 10.1016/j.jher.2017.09.001 – volume: 21 start-page: 308 year: 1975 ident: 3763_CR136 publication-title: AIChE J. doi: 10.1002/aic.690210212 – volume: 8 start-page: 2182 year: 1965 ident: 3763_CR7 publication-title: Phys. Fluids doi: 10.1063/1.1761178 – volume: 104 start-page: 055308 year: 2021 ident: 3763_CR77 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.104.055308 – volume: 313 start-page: 76 year: 2016 ident: 3763_CR204 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.02.039 – volume: 232 start-page: 105193 year: 2022 ident: 3763_CR112 publication-title: Comp. Fluids doi: 10.1016/j.compfluid.2021.105193 – volume: 384 start-page: 114 year: 2019 ident: 3763_CR126 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.12.007 – volume: 227 start-page: 264 year: 2007 ident: 3763_CR56 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2007.07.013 – volume: 105 start-page: 32 year: 2018 ident: 3763_CR199 publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2018.03.006 – volume: 48 start-page: 155 year: 2011 ident: 3763_CR85 publication-title: J. Nucl. Sci. Technol. doi: 10.1080/18811248.2011.9711690 – volume: 158 start-page: 103690 year: 2020 ident: 3763_CR121 publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2020.103690 – ident: 3763_CR175 – volume: 26 start-page: 1547 year: 2019 ident: 3763_CR197 publication-title: Arch. Comp. Meth. Eng. doi: 10.1007/s11831-018-9283-2 – volume: 59 start-page: 1 year: 2013 ident: 3763_CR95 publication-title: Adv. Water Res. doi: 10.1016/j.advwatres.2013.04.009 – volume: 92 start-page: 343 year: 2012 ident: 3763_CR57 publication-title: Int. J. Num. Meth. Eng. doi: 10.1002/nme.4339 – volume: 190 start-page: 371 year: 2003 ident: 3763_CR14 publication-title: J. Comput. Phys. doi: 10.1016/S0021-9991(03)00280-8 – volume: 33 start-page: 333 year: 2000 ident: 3763_CR89 publication-title: Int. J. Num. Meth. Fluids doi: 10.1002/1097-0363(20000615)33:3<333::AID-FLD11>3.0.CO;2-7 – volume: 180 start-page: 861 year: 2009 ident: 3763_CR113 publication-title: Comp. Phys. Comm. doi: 10.1016/j.cpc.2008.12.004 – volume: 40 start-page: 8493 year: 2016 ident: 3763_CR141 publication-title: Appl. Math. Mod. doi: 10.1016/j.apm.2016.05.021 – volume: 72 start-page: 295 year: 2007 ident: 3763_CR72 publication-title: Int. J. Num. Meth. Eng. doi: 10.1002/nme.2010 – volume: 243 start-page: 14 year: 2013 ident: 3763_CR139 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.02.038 – volume: 136 start-page: 11 year: 2016 ident: 3763_CR36 publication-title: Comp. Fluids doi: 10.1016/j.compfluid.2016.05.029 – volume: 61 start-page: 271 year: 2017 ident: 3763_CR192 publication-title: Eur. J. Mech. B-Fluids doi: 10.1016/j.euromechflu.2016.10.007 – volume: 22 start-page: 231 year: 2010 ident: 3763_CR184 publication-title: J. Hydrodyn. doi: 10.1016/S1001-6058(09)60199-2 – ident: 3763_CR132 – volume: 71 start-page: 446 year: 2013 ident: 3763_CR66 publication-title: Int. J. Num. Meth. Fluids doi: 10.1002/fld.3666 – volume: 34 start-page: 121801 year: 2022 ident: 3763_CR177 publication-title: Phys. Fluids doi: 10.1063/5.0134102 – volume: 10 start-page: 2528 year: 2019 ident: 3763_CR143 publication-title: Nature Comm. doi: 10.1038/s41467-019-10505-5 – volume: 10 start-page: 555 year: 2023 ident: 3763_CR153 publication-title: Comput. Part. Mech. doi: 10.1007/s40571-022-00510-9 – volume: 90 start-page: 19 year: 2019 ident: 3763_CR118 publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2019.06.004 – volume: 185 start-page: 53 year: 2014 ident: 3763_CR127 publication-title: Comp. Phys. Comm. doi: 10.1016/j.cpc.2013.08.015 – volume: 498 year: 2024 ident: 3763_CR166 publication-title: J. Comput. Phys. J. Comput. Phys. – volume: 221 start-page: 259 year: 2017 ident: 3763_CR28 publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2017.08.024 – volume: 50 start-page: 98 year: 2013 ident: 3763_CR103 publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2012.11.004 – volume: 270 start-page: 432 year: 2014 ident: 3763_CR203 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.03.055 – ident: 3763_CR27 doi: 10.1016/j.jcp.2015.06.040 – volume: 111 start-page: 156 year: 2018 ident: 3763_CR25 publication-title: Adv. Water Res. doi: 10.1016/j.advwatres.2017.11.007 – volume: 152 start-page: 584 year: 1999 ident: 3763_CR54 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1999.6246 – volume: 56 start-page: 675 year: 2018 ident: 3763_CR58 publication-title: J. Theor. Appl. Mech. doi: 10.15632/jtam-pl.56.3.675 – volume: 9 start-page: 867 year: 2022 ident: 3763_CR169 publication-title: Comput. Part. Mech. doi: 10.1007/s40571-021-00404-2 – volume: 31 start-page: 011301 year: 2019 ident: 3763_CR32 publication-title: Phys. Fluids doi: 10.1063/1.5068697 – volume: 231 start-page: 7057 year: 2012 ident: 3763_CR65 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.05.005 – volume: 105 start-page: 1149 year: 2020 ident: 3763_CR188 publication-title: Flow Turb. Combust. doi: 10.1007/s10494-020-00165-7 – ident: 3763_CR131 – volume-title: Smoothed Particle Hydrodynamics: A Meshfree Particle Method year: 2003 ident: 3763_CR42 – ident: 3763_CR193 – volume: 69 start-page: 88 year: 2013 ident: 3763_CR101 publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2013.05.010 – volume: 103 start-page: 625 year: 2015 ident: 3763_CR100 publication-title: Int. J. Num. Meth. Eng. doi: 10.1002/nme.4904 – volume: 187 start-page: 204 year: 2015 ident: 3763_CR168 publication-title: Comp. Phys. Comm. doi: 10.1016/j.cpc.2014.10.004 – volume: 19 start-page: 1 year: 2017 ident: 3763_CR24 publication-title: Granul. Matter doi: 10.1007/s10035-016-0684-3 – ident: 3763_CR160 doi: 10.1088/1742-6596/530/1/012019 – ident: 3763_CR176 – volume: 464 start-page: 111172 year: 2022 ident: 3763_CR209 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2022.111172 – volume: 40 start-page: 9625 year: 2016 ident: 3763_CR38 publication-title: Appl. Math. Mod. doi: 10.1016/j.apm.2016.06.030 – volume: 27 start-page: 073302 year: 2015 ident: 3763_CR17 publication-title: Phys. Fluids doi: 10.1063/1.4923424 – volume: 67 start-page: 026705 year: 2003 ident: 3763_CR48 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.67.026705 – volume: 490 start-page: 112339 year: 2023 ident: 3763_CR163 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2023.112339 – volume: 269 start-page: 113456 year: 2023 ident: 3763_CR186 publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.113456 – volume: 392 start-page: 1 year: 2019 ident: 3763_CR205 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.04.038 – volume: 44 start-page: 323 year: 2012 ident: 3763_CR45 publication-title: Ann. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-120710-101220 – volume: 420 start-page: 2345 year: 2011 ident: 3763_CR124 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1111/j.1365-2966.2011.20202.x – volume: 39 start-page: 201 year: 1981 ident: 3763_CR9 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(81)90145-5 – volume: 472 start-page: 111716 year: 2023 ident: 3763_CR98 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2022.111716 – volume: 459 start-page: 110999 year: 2022 ident: 3763_CR207 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2022.110999 – volume: 114 start-page: 102734 year: 2021 ident: 3763_CR34 publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2021.102734 – volume: 35 start-page: 046604 year: 2023 ident: 3763_CR152 publication-title: Phys. Fluids doi: 10.1063/5.0138858 – volume: 136 start-page: 214 year: 1997 ident: 3763_CR51 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1997.5776 – volume: 111 start-page: 493 year: 2023 ident: 3763_CR194 publication-title: Flow Turb. Combust. doi: 10.1007/s10494-023-00443-0 – volume: 9 start-page: 161 year: 1999 ident: 3763_CR52 publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202599000117 – volume: 267 start-page: 108066 year: 2021 ident: 3763_CR167 publication-title: Comp. Phys. Comm. doi: 10.1016/j.cpc.2021.108066 – volume: 29 start-page: 035102 year: 2017 ident: 3763_CR159 publication-title: Phys. Fluids doi: 10.1063/1.4978274 – volume: 376 start-page: 1292 year: 2019 ident: 3763_CR18 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.021 – volume: 213 start-page: 844 year: 2006 ident: 3763_CR49 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.09.001 – volume: 65 start-page: 4027 year: 2010 ident: 3763_CR138 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2010.03.043 – volume: 407 start-page: 115915 year: 2023 ident: 3763_CR210 publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/j.cma.2023.115915 – volume: 208 start-page: 228 year: 2005 ident: 3763_CR133 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.02.012 – volume: 100 start-page: 335 year: 1992 ident: 3763_CR97 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(92)90240-Y – volume: 72 start-page: 155 year: 2015 ident: 3763_CR26 publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2015.02.004 – volume: 300 start-page: 442 year: 2016 ident: 3763_CR75 publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/j.cma.2015.11.021 – volume: 796 start-page: 340 year: 2016 ident: 3763_CR144 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2016.246 – volume: 110 start-page: 399 year: 1994 ident: 3763_CR110 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1994.1034 – ident: 3763_CR165 doi: 10.1088/1742-6596/2367/1/012008 – volume: 372 start-page: 113425 year: 2020 ident: 3763_CR156 publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113425 – volume: 87 start-page: 225 year: 1995 ident: 3763_CR91 publication-title: Comp. Phys. Comm. doi: 10.1016/0010-4655(94)00174-Z – volume: 111 start-page: 158 year: 2019 ident: 3763_CR40 publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2018.11.007 – volume: 174 start-page: 179 year: 2018 ident: 3763_CR180 publication-title: Comp. Fluids doi: 10.1016/j.compfluid.2018.07.006 – ident: 3763_CR109 doi: 10.1145/800186.810616 – volume: 100 start-page: 89 year: 2020 ident: 3763_CR190 publication-title: Nat. Hazards doi: 10.1007/s11069-019-03800-3 – volume: 8 start-page: 575 year: 2021 ident: 3763_CR69 publication-title: Comput. Part. Mech. doi: 10.1007/s40571-020-00354-1 – volume: 42 start-page: 111 year: 2010 ident: 3763_CR3 publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.010908.165243 – volume: 179 start-page: 579 year: 2019 ident: 3763_CR171 publication-title: Comp. Fluids doi: 10.1016/j.compfluid.2018.11.023 – volume: 139 start-page: 7 year: 2023 ident: 3763_CR73 publication-title: Comp. Math. Appl. doi: 10.1016/j.camwa.2023.03.003 – volume: 406 year: 2023 ident: 3763_CR106 publication-title: Comp. Meth. Appl. Mech. Eng. doi: 10.1016/j.cma.2023.115907 – volume: 182 start-page: 67 year: 2002 ident: 3763_CR79 publication-title: J. Comput. Phys. doi: 10.1006/jcph.2002.7152 – volume: 53 start-page: 277 year: 2007 ident: 3763_CR30 publication-title: Int. J. Num. Meth. Fluids doi: 10.1002/fld.1292 – volume: 342 start-page: 604 year: 2018 ident: 3763_CR68 publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/j.cma.2018.08.004 – volume: 129 start-page: 356 year: 2019 ident: 3763_CR206 publication-title: Comp. Fluids doi: 10.1016/j.compfluid.2018.10.018 – volume: 30 start-page: 543 year: 1992 ident: 3763_CR44 publication-title: Ann. Rev. Astron. Astrophys. doi: 10.1146/annurev.aa.30.090192.002551 – volume: 473 start-page: 111762 year: 2023 ident: 3763_CR78 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2022.111762 – volume: 47 start-page: 1 year: 2021 ident: 3763_CR170 publication-title: ACM Trans. Math. Software doi: 10.1145/3460773 – volume: 476 start-page: 20190801 year: 2020 ident: 3763_CR43 publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2019.0801 – volume: 113 start-page: 104519 year: 2020 ident: 3763_CR154 publication-title: Int. Comm. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2020.104519 – volume: 221 start-page: 108552 year: 2021 ident: 3763_CR178 publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.108552 – volume: 35 start-page: 017116 year: 2023 ident: 3763_CR172 publication-title: Phys. Fluids doi: 10.1063/5.0133782 – volume: 232 start-page: 2023 year: 2021 ident: 3763_CR23 publication-title: Acta Mech. doi: 10.1007/s00707-021-02951-4 – ident: 3763_CR130 – volume: 54 start-page: 4807 year: 2011 ident: 3763_CR53 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2011.06.034 – volume: 425 start-page: 1068 year: 2012 ident: 3763_CR60 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1111/j.1365-2966.2012.21439.x – volume: 15 start-page: 9000 year: 2022 ident: 3763_CR35 publication-title: Energies doi: 10.3390/en15239000 – volume: 39 start-page: 722158 year: 2023 ident: 3763_CR158 publication-title: Acta. Mech. Sin. doi: 10.1007/s10409-022-22158-x – volume-title: Computer Simulations Using Particles year: 1981 ident: 3763_CR62 – volume: 29 start-page: 083302 year: 2017 ident: 3763_CR145 publication-title: Phys. Fluids doi: 10.1063/1.4993474 – volume: 54 start-page: 1 year: 2016 ident: 3763_CR31 publication-title: J. Hydr. Res. doi: 10.1080/00221686.2015.1119209 – volume: 443 start-page: 110539 year: 2021 ident: 3763_CR76 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2021.110539 – volume: 284 start-page: 108593 year: 2023 ident: 3763_CR211 publication-title: Comp. Phys. Comm. doi: 10.1016/j.cpc.2022.108593 – volume: 224 start-page: 63 year: 2018 ident: 3763_CR117 publication-title: Comp. Phys. Comm. doi: 10.1016/j.cpc.2017.11.016 – ident: 3763_CR146 – volume: 354 start-page: 552 year: 2018 ident: 3763_CR71 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.10.041 – volume-title: Fluid Mechanics and the SPH Method year: 2012 ident: 3763_CR39 doi: 10.1093/acprof:oso/9780199655526.001.0001 – volume-title: Fundamentals of Multiphase Flow year: 2005 ident: 3763_CR1 doi: 10.1017/CBO9780511807169 – volume: 225 start-page: 140 year: 2018 ident: 3763_CR63 publication-title: Comp. Phys. Comm. doi: 10.1016/j.cpc.2017.12.014 – volume: 348 start-page: 23 year: 2017 ident: 3763_CR61 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.07.023 – volume: 33 start-page: 1 year: 2012 ident: 3763_CR196 publication-title: Eur. J. Mech. B-Fluids doi: 10.1016/j.euromechflu.2011.12.005 – volume: 228 start-page: 741 year: 2017 ident: 3763_CR4 publication-title: Acta Mech. doi: 10.1007/s00707-017-1803-x – volume: 175 start-page: 104146 year: 2022 ident: 3763_CR21 publication-title: Coastal Eng. doi: 10.1016/j.coastaleng.2022.104146 – volume: 200 start-page: 1526 year: 2011 ident: 3763_CR114 publication-title: Comp. Meth. App. Mech. Eng. doi: 10.1016/j.cma.2010.12.016 – volume: 203 start-page: 104540 year: 2020 ident: 3763_CR96 publication-title: Comp. Fluids doi: 10.1016/j.compfluid.2020.104540 – volume: 242 start-page: 211 year: 2013 ident: 3763_CR80 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.02.002 – volume: 286 start-page: 115681 year: 2023 ident: 3763_CR155 publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.115681 – volume: 405 start-page: 112228 year: 2023 ident: 3763_CR37 publication-title: Nucl. Engrg. Design doi: 10.1016/j.nucengdes.2023.112228 – volume: 387 start-page: 114184 year: 2021 ident: 3763_CR81 publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/j.cma.2021.114184 – ident: 3763_CR147 doi: 10.1007/978-3-031-56093-4_23 – volume: 145 start-page: 04019016 year: 2019 ident: 3763_CR189 publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)HY.1943-7900.0001599 – volume: 279 start-page: 114514 year: 2023 ident: 3763_CR162 publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.114514 – volume: 234 start-page: 263 year: 2013 ident: 3763_CR20 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.09.029 – volume: 402 start-page: 109092 year: 2020 ident: 3763_CR87 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.109092 – volume: 248 start-page: 147 year: 2013 ident: 3763_CR202 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.04.019 – volume: 129 start-page: 80 year: 2019 ident: 3763_CR29 publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2019.05.006 – volume: 177 start-page: 101 year: 2018 ident: 3763_CR134 publication-title: Comp. Fluids doi: 10.1016/j.compfluid.2018.10.004 – volume: 476 start-page: 111895 year: 2023 ident: 3763_CR99 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2022.111895 – volume: 95 start-page: 175 year: 2017 ident: 3763_CR107 publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2017.06.002 – volume: 273 start-page: 640 year: 2014 ident: 3763_CR70 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.05.040 – volume: 130 start-page: 680 year: 2019 ident: 3763_CR157 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.10.119 – volume: 162 start-page: 301 year: 2000 ident: 3763_CR13 publication-title: J. Comput. Phys. doi: 10.1006/jcph.2000.6537 – volume: 106 start-page: 74 year: 2022 ident: 3763_CR15 publication-title: Comp. Math. Appl. doi: 10.1016/j.camwa.2021.11.022 – volume: 62 start-page: 4968 year: 2000 ident: 3763_CR90 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.62.4968 – volume: 305 start-page: 1119 year: 2016 ident: 3763_CR94 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.08.037 – volume: 228 start-page: 4444 year: 2009 ident: 3763_CR12 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.03.014 – volume: 87 start-page: 013309 year: 2013 ident: 3763_CR173 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.87.013309 – volume: 46 start-page: 104 year: 2014 ident: 3763_CR179 publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2014.02.005 – volume: 34 start-page: 3189 year: 2005 ident: 3763_CR149 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2010.02.012 – start-page: 1 volume-title: Particles in Wall-Bounded Turbulent Flows: Deposition, Re-Suspension and Agglomeration year: 2017 ident: 3763_CR5 doi: 10.1007/978-3-319-41567-3 – volume: 7 start-page: 053601 year: 2022 ident: 3763_CR19 publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.7.053601 – volume: 229 start-page: 108925 year: 2021 ident: 3763_CR181 publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.108925 – volume: 121 start-page: 18 year: 2022 ident: 3763_CR123 publication-title: Comp. Math. Appl. doi: 10.1016/j.camwa.2022.06.016 – volume: 114 start-page: 146 year: 1994 ident: 3763_CR11 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1994.1155 – volume: 127 start-page: 47 year: 2018 ident: 3763_CR191 publication-title: Tribol. Int. doi: 10.1016/j.triboint.2018.05.034 – start-page: 97 volume-title: Particles in Wall-Bounded Turbulent Flows: Deposition, Re-Suspension and Agglomeration year: 2017 ident: 3763_CR6 doi: 10.1007/978-3-319-41567-3_3 – volume: 117 start-page: 102905 year: 2021 ident: 3763_CR86 publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2021.102905 – volume: 206 start-page: 684 year: 2005 ident: 3763_CR148 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2004.11.039 – volume: 25 start-page: 307 year: 1999 ident: 3763_CR41 publication-title: Int. J. Multiphase Flow doi: 10.1016/S0301-9322(98)00050-0 – volume: 179 start-page: 632 year: 2019 ident: 3763_CR119 publication-title: Comp. Fluids doi: 10.1016/j.compfluid.2018.11.020 – volume: 4 start-page: 389 year: 1995 ident: 3763_CR50 publication-title: Adv. Comput. Math. doi: 10.1007/BF02123482 – volume: 18 start-page: e0281424 year: 2023 ident: 3763_CR198 publication-title: PLoS ONE doi: 10.1371/journal.pone.0281424 – volume: 162 start-page: 104355 year: 2023 ident: 3763_CR104 publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2022.104355 |
SSID | ssj0012741 |
Score | 2.498434 |
SecondaryResourceType | review_article |
Snippet | Smoothed particle hydrodynamics (SPH) is a meshless, particle-based approach that has been increasingly applied for modelling of various fluid-flow phenomena.... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1685 |
SubjectTerms | Analysis Classical and Continuum Physics Control Dynamical Systems Engineering Engineering Fluid Dynamics Engineering Thermodynamics Fluid dynamics Fluid flow Fluid mechanics Heat and Mass Transfer Liquid flow Multiphase flow Review and Perspective in Mechanics Sediment transport Smooth particle hydrodynamics Solid Mechanics Surface waves Theoretical and Applied Mechanics Vibration |
SummonAdditionalLinks | – databaseName: ProQuest Central (New) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgu8AB8RTjpRyQOEBE02ZpywUBGkJITAiYtFvU5qEdYB1sCPHvcdp04yF2bptWjmN_ru3PAIftVCvLwpyyyGKAkjNLE_QklAtrVRBnOS9TMXddcdPjt_123_9wG_uyytomloZaF8r9Iz_FsDtqB6h-7Hz0St3UKJdd9SM0FqGJJjhJGtC87HTvH6Z5BEfOUgFgRhE6B75tpmyeK5luKPosGrhTRvkP1_TbQP_JlJYO6HoVVjxyJBfVVq_Bghmuw_I3PsENuH18KVxHlSYjrxFk8KnRRFZj58eknHvjGtBJYUlVSzhAN0bsc_ExPiPZkLiKTieJTehdd56ubqgflkAVhoATGkcxx9ArD4RikRA6MSmPDDp8nXLDjEaYYzGUC21kVWq0QreuESxkjjMtDoSOtqAxLIZmG0iQC4HIwYgwSxBfpbljC1UaAyeO0YVSLWC1nKTyTOJuoMWznHIgl7KVKFtZylbyFhxPnxlVPBpz7z5y4pfukOHKKvO9Avh9jq5KXsRoo5MkEqwFe_UOSX_6xnKmKy04qXdtdvn_9-7MX20XlkLENFXhzh40Jm_vZh8xySQ_8Ir3Bbpf2eQ priority: 102 providerName: ProQuest |
Title | Smoothed particle hydrodynamics modelling of multiphase flows: an overview |
URI | https://link.springer.com/article/10.1007/s00707-023-03763-4 https://www.proquest.com/docview/3043503221 |
Volume | 235 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6x7QUOq-UlypbKByQOYCmOXSfZW1v6UBEVAiqVk5X4oR66bUW7Wu2_35kkLVAeEpf4YMeJZmLPNxnPNwCvu5mzQcQFFzKgg1KIwFO0JFzpEGyU5IUqQzEfZ3oyV9NFd1HT5FAuzEn8nsg-E_qZFkse0Vrg6gyaXSETKtMw0INjxIBoWCqoKziC5KhOkPnzHL8YodOt-LeYaGlqRhdwXmNE1quU-hge-PUTePQTc-BTmH653lDulGPbWvdseedwM6wKzO9YWeGGUs3ZJrDq1OASDRYLq83t7orla0ZnNyku8Azmo-HXwYTXZRG4RWdvzxOZKHSyikhbIbV2qc-U9GjaXaa88A4BTUCnLQ4y2Mw7iwbcISzIiR0tibSTz6Gx3qz9C2BRoTViBK_jPEUklRXEC2odukgK_QhrWyAOcjK25gyn0hUrc2Q7LmVrULamlK1RLXh7vGdbMWb8c_QbEr-h5YQz27zOCsD3I2Iq00twN05TqUUL2gcNmXqd7YyMEO5FuClh97uD1n50__25L_9v-CU8jBHNVEd22tDYf7_xrxCN7IsOnKWjcQeavf77_oja8bcPQ2z7w9mnz53yI8XrPO7dA9sI19Q |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcKuhDLC3gQxEHsBrHXidBQqiiLNvnhVbqzU38UA9ls-0uqvqn-I3MOMm2FLW3npM40Xjs75uM5xuAjX7hbBBpxYUMGKBUIvAckYQrHYJNsrJSMRVzcKiHx2r3pH8yB3-6Whg6VtntiXGjdrWlf-SbGHbLfoLuJ76OLzh1jaLsatdCo3GLPX99hSHb5MvONs7v-zQdfD_6NuRtVwFuMVaa8kxmCmOUKtFWSK1d7gslPSKjK5QX3iEfCBjzpEEGW3hnEf8compJ4mJZop3EcZ_AgpKI5FSZPvgxy1qQFExDtwVHop60RTqxVC_q6nBESJ7QmubqHyC8Cwf_5WUj3A1ewGLLU9lW41gvYc6PluD5LfXCZdj9-aum-i3Hxq3_sbNrhxty0-R-wmKXHSp3Z3VgzcnFMwRNFs7rq8lnVo4YnR8lu6_A8aMYcRXmR_XIvwKWVFojT_E6LXNkc0VF2qTWYZimMJaxtgeis5OxrW45tc84NzPF5Whbg7Y10bZG9eDj7Jlxo9rx4N0fyPyGljSObMu2MgG_j8SxzFaGiJDnUoserHczZNq1PjE3ntmDT92s3Vy-_72vHx7tHTwdHh3sm_2dw701eJYim2qODK3D_PTyt3-DbGhavY0uyOD0sX3-LziJE1s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTgUEEBddsFfGjFAazGiddJkBAqtKu-WFVApd7cxA_toWy23a2q_Wv8OmYSZ8tD9NZzEicaj_3NF898A7DZz63xIi65SDwSlFJ4niGScKm8N1FalLI-ivkyVPun8vCsf7YEP9taGEqrbPfEeqO2laF_5NtIu5N-hO4ntn1IizjZHXycXHLqIEUnrW07jcZFjtz8Bunb9MPBLs71VhwP9r5_3uehwwA3yJtmPE1SiXyljJQRiVI2c7lMHKKkzaUTzmJs4JH_xD7xJnfWIBZaRNiChMbSSNkEx30Ayymxog4sf9obnnxdnGGQMEwTfAuOYXsUSnbqwr1aZYcjXvKIVjiXf8Di3-DwzyltDX6DJ7ASola207jZU1hy41V4_JuW4TM4_PajomouyybBG9lobnF7blreT1ndc4eK31nlWZPHOEIIZf6iupm-Z8WYUTYpzcJzOL0XM76AzrgauzVgUakURi1OxUWGsV1eklKpsUjaJDIbY7ogWjtpE1TMqZnGhV7oL9e21WhbXdtWyy68XTwzaTQ87rz7DZlf0wLHkU0R6hTw-0gqS--kiA9ZlijRhV47Qzqs_Km-9dMuvGtn7fby_9-7fvdor-Eh-rs-PhgebcCjGEOrJn-oB53Z1bV7iaHRrHwVfJDB-X27_S8OShjt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smoothed+particle+hydrodynamics+modelling+of+multiphase+flows%3A+an+overview&rft.jtitle=Acta+mechanica&rft.au=Pozorski%2C+Jacek&rft.au=Olejnik%2C+Micha%C5%82&rft.date=2024-04-01&rft.issn=0001-5970&rft.eissn=1619-6937&rft.volume=235&rft.issue=4&rft.spage=1685&rft.epage=1714&rft_id=info:doi/10.1007%2Fs00707-023-03763-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00707_023_03763_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-5970&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-5970&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-5970&client=summon |