Multiple solutions for critical Choquard-Kirchhoff type equations
In this article, we investigate multiplicity results for Choquard-Kirchhoff type equations, with Hardy-Littlewood-Sobolev critical exponents, where > 0, ≥ 0, 0 < < , ≥ 3, and are positive real parameters, is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality, ∈ (ℝ ),...
Saved in:
Published in | Advances in nonlinear analysis Vol. 10; no. 1; pp. 400 - 419 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
De Gruyter
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2191-9496 2191-950X |
DOI | 10.1515/anona-2020-0119 |
Cover
Loading…
Abstract | In this article, we investigate multiplicity results for Choquard-Kirchhoff type equations, with Hardy-Littlewood-Sobolev critical exponents,
where
> 0,
≥ 0, 0 <
<
,
≥ 3,
and
are positive real parameters,
is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality,
∈
(ℝ
), with
= 2
/(2
−
) if 1 <
< 2
and
= ∞ if
≥ 2
. According to the different range of
, we discuss the multiplicity of solutions to the above equation, using variational methods under suitable conditions. In order to overcome the lack of compactness, we appeal to the concentration compactness principle in the Choquard-type setting. |
---|---|
AbstractList | In this article, we investigate multiplicity results for Choquard-Kirchhoff type equations, with Hardy-Littlewood-Sobolev critical exponents,
where
> 0,
≥ 0, 0 <
<
,
≥ 3,
and
are positive real parameters,
is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality,
∈
(ℝ
), with
= 2
/(2
−
) if 1 <
< 2
and
= ∞ if
≥ 2
. According to the different range of
, we discuss the multiplicity of solutions to the above equation, using variational methods under suitable conditions. In order to overcome the lack of compactness, we appeal to the concentration compactness principle in the Choquard-type setting. In this article, we investigate multiplicity results for Choquard-Kirchhoff type equations, with Hardy-Littlewood-Sobolev critical exponents, − a + b ∫ R N | ∇ u | 2 d x Δ u = α k ( x ) | u | q − 2 u + β ∫ R N | u ( y ) | 2 μ ∗ | x − y | μ d y | u | 2 μ ∗ − 2 u , x ∈ R N , $$\begin{array}{} \displaystyle -\left(a + b\int\limits_{\mathbb{R}^N} |\nabla u|^2 dx\right){\it\Delta} u = \alpha k(x)|u|^{q-2}u + \beta\left(\,\,\displaystyle\int\limits_{\mathbb{R}^N}\frac{|u(y)|^{2^*_{\mu}}}{|x-y|^{\mu}}dy\right)|u|^{2^*_{\mu}-2}u, \quad x \in \mathbb{R}^N, \end{array}$$ where a > 0, b ≥ 0, 0 < μ < N , N ≥ 3, α and β are positive real parameters, 2 μ ∗ = ( 2 N − μ ) / ( N − 2 ) $\begin{array}{} 2^*_{\mu} = (2N-\mu)/(N-2) \end{array}$ is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality, k ∈ L r (ℝ N ), with r = 2 ∗ /(2 ∗ − q ) if 1 < q < 2 * and r = ∞ if q ≥ 2 ∗ . According to the different range of q , we discuss the multiplicity of solutions to the above equation, using variational methods under suitable conditions. In order to overcome the lack of compactness, we appeal to the concentration compactness principle in the Choquard-type setting. In this article, we investigate multiplicity results for Choquard-Kirchhoff type equations, with Hardy-Littlewood-Sobolev critical exponents, |
Author | Pucci, Patrizia Liang, Sihua Zhang, Binlin |
Author_xml | – sequence: 1 givenname: Sihua surname: Liang fullname: Liang, Sihua email: liangsihua@163.com organization: College of Mathematics and Informatics, Fujian Normal University, Qishan Campus, Fuzhou, 350108, P.R. China – sequence: 2 givenname: Patrizia surname: Pucci fullname: Pucci, Patrizia email: patrizia.pucci@unipg.it organization: Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, via Vanvitelli 1, 06123, Perugia, Italy – sequence: 3 givenname: Binlin surname: Zhang fullname: Zhang, Binlin email: zhangbinlin2012@163.com organization: College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, 266590, P.R. China |
BookMark | eNp9kD1PwzAQhi1UJErpzJo_EHrnxHEyMFQVHxVFLCCxWY5jt65CXJxEqP8eNwUGJPDiu5Of96znnIwa12hCLhGukCGbydDLmAKFGBCLEzKmWGBcMHgdfddpkZ2RadtuIZycIecwJvPHvu7srtZR6-q-s65pI-N8pLztrJJ1tNi49176Kn6wXm02zpio2-90pMN0eH5BTo2sWz39uifk5fbmeXEfr57ulov5KlYp0C7OKK_yLM85ppUGJXOJuWG6ghJR8kwxKDkwBmg4ZsxQpZPUyJIZg5CWOU0mZHnMrZzcip23b9LvhZNWDAPn10L68OdaiyoHg0XCywRomvCwVesqK1WJPCwoipA1O2Yp79rWa_OThyAOQsUgVByEioPQQLBfhLLdIKDz0tb_cNdH7kPWnfaVXvt-Hwqxdb1vgq-_SARMAZJP3beRFw |
CitedBy_id | crossref_primary_10_1007_s00030_022_00829_5 crossref_primary_10_14232_ejqtde_2024_1_3 crossref_primary_10_1007_s12220_021_00747_5 crossref_primary_10_14232_ejqtde_2022_1_39 crossref_primary_10_1080_17476933_2021_1885387 crossref_primary_10_1007_s41980_021_00676_7 crossref_primary_10_1007_s12220_023_01207_y crossref_primary_10_1186_s13661_024_01954_z crossref_primary_10_1002_mma_8652 crossref_primary_10_1002_mma_7169 crossref_primary_10_1007_s12346_023_00859_z crossref_primary_10_1007_s12220_022_00908_0 crossref_primary_10_1080_00036811_2021_1947499 crossref_primary_10_1016_j_aml_2021_107204 crossref_primary_10_1515_anona_2022_0282 crossref_primary_10_1007_s12220_023_01266_1 crossref_primary_10_1007_s00030_021_00730_7 crossref_primary_10_1080_17476933_2022_2045976 crossref_primary_10_1016_j_jde_2021_02_017 crossref_primary_10_3390_math11173754 crossref_primary_10_1002_mma_7873 crossref_primary_10_1007_s12215_022_00833_9 crossref_primary_10_1002_mma_8449 crossref_primary_10_1177_09217134241308455 crossref_primary_10_1515_anona_2022_0270 crossref_primary_10_1016_j_jde_2023_01_023 crossref_primary_10_1007_s13540_023_00181_0 crossref_primary_10_1007_s00245_021_09783_7 crossref_primary_10_3233_ASY_231827 crossref_primary_10_3390_fractalfract9030136 crossref_primary_10_1007_s00033_023_02123_5 crossref_primary_10_1007_s12220_020_00546_4 crossref_primary_10_1080_17476933_2023_2236970 crossref_primary_10_1007_s00009_023_02422_1 crossref_primary_10_1063_5_0079166 crossref_primary_10_1080_17476933_2022_2040022 crossref_primary_10_1515_ans_2022_0059 crossref_primary_10_1007_s00526_021_02065_8 crossref_primary_10_1016_j_nonrwa_2023_103914 crossref_primary_10_1186_s13661_022_01657_3 crossref_primary_10_1515_anona_2021_0203 crossref_primary_10_1080_17476933_2023_2193741 crossref_primary_10_1007_s13324_022_00658_w crossref_primary_10_1016_j_cnsns_2023_107522 crossref_primary_10_1186_s13661_021_01566_x crossref_primary_10_1515_anona_2022_0255 crossref_primary_10_1007_s12220_022_00959_3 crossref_primary_10_1007_s40840_024_01735_y crossref_primary_10_1515_anona_2020_0186 crossref_primary_10_14232_ejqtde_2021_1_37 crossref_primary_10_1515_math_2021_0125 |
Cites_doi | 10.1007/s00033-019-1239-3 10.1007/s00009-018-1287-5 10.1007/s00033-017-0805-9 10.1016/j.jfa.2013.04.007 10.1016/0362-546X(92)90210-6 10.1007/BF02418013 10.1515/anona-2018-0134 10.1007/s11425-016-9067-5 10.1006/jdeq.1997.3375 10.1098/rsta.1998.0256 10.1016/0362-546X(80)90016-4 10.1007/BF01187898 10.1142/S0219199718500049 10.1016/0022-1236(73)90051-7 10.7153/dea-02-25 10.1016/0362-546X(94)E0070-W 10.1016/j.jmaa.2012.12.053 10.1090/gsm/014 10.1007/s10231-016-0555-x 10.1002/sapm197757293 10.1007/s00033-017-0806-8 10.1017/prm.2018.131 10.1016/j.na.2012.12.003 10.1007/978-1-4757-2061-7 10.1142/S0219199715500054 10.1088/0951-7715/29/10/3186 10.12775/TMNA.2019.038 10.1515/9783112649305 10.1016/S0294-1449(16)30422-X 10.1007/BF01459140 10.1016/j.jfa.2005.04.005 10.1016/j.na.2019.02.022 10.1016/j.jmaa.2018.07.035 10.1016/j.nonrwa.2013.10.011 10.1515/acv-2016-0049 10.1016/j.jmaa.2016.11.015 10.1016/S0022-247X(02)00398-0 10.1007/s13324-017-0174-8 10.1090/S0002-9947-1982-0675067-X 10.1090/S0002-9947-2014-06289-2 10.1016/0362-546X(94)00324-B 10.1016/j.jde.2010.11.017 10.1515/anona-2020-0021 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1515/anona-2020-0119 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2191-950X |
EndPage | 419 |
ExternalDocumentID | oai_doaj_org_article_d80f1937b302437688eed6bcb1750199 10_1515_anona_2020_0119 10_1515_anona_2020_0119101400 |
GroupedDBID | 0R~ 0~D 4.4 AAFPC AAFWJ AAQCX AASOL AASQH AAWFC ABAOT ABAQN ABFKT ABIQR ABSOE ABUVI ABXMZ ACGFS ACXLN ACZBO ADGQD ADGYE ADJVZ ADOZN AEJTT AENEX AEQDQ AEXIE AFBAA AFBDD AFCXV AFPKN AFQUK AHGSO AIERV AJATJ AKXKS ALMA_UNASSIGNED_HOLDINGS AMVHM BAKPI BBCWN CFGNV EBS GROUPED_DOAJ HZ~ IY9 J9A M48 O9- OK1 QD8 SA. SLJYH AAYXX CITATION |
ID | FETCH-LOGICAL-c402t-627d8688714de0ca8a18f5ed0b11a76c50b705501f7165f2ce34fab5ff104b823 |
IEDL.DBID | DOA |
ISSN | 2191-9496 |
IngestDate | Wed Aug 27 01:30:53 EDT 2025 Tue Jul 01 00:37:48 EDT 2025 Thu Apr 24 23:04:22 EDT 2025 Thu Jul 10 10:36:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-627d8688714de0ca8a18f5ed0b11a76c50b705501f7165f2ce34fab5ff104b823 |
OpenAccessLink | https://doaj.org/article/d80f1937b302437688eed6bcb1750199 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d80f1937b302437688eed6bcb1750199 crossref_primary_10_1515_anona_2020_0119 crossref_citationtrail_10_1515_anona_2020_0119 walterdegruyter_journals_10_1515_anona_2020_0119101400 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Advances in nonlinear analysis |
PublicationYear | 2021 |
Publisher | De Gruyter |
Publisher_xml | – name: De Gruyter |
References | 2021061922062539177_j_anona-2020-0119_ref_018 2021061922062539177_j_anona-2020-0119_ref_017 2021061922062539177_j_anona-2020-0119_ref_039 2021061922062539177_j_anona-2020-0119_ref_019 2021061922062539177_j_anona-2020-0119_ref_010 2021061922062539177_j_anona-2020-0119_ref_032 2021061922062539177_j_anona-2020-0119_ref_031 2021061922062539177_j_anona-2020-0119_ref_012 2021061922062539177_j_anona-2020-0119_ref_034 2021061922062539177_j_anona-2020-0119_ref_011 2021061922062539177_j_anona-2020-0119_ref_033 2021061922062539177_j_anona-2020-0119_ref_014 2021061922062539177_j_anona-2020-0119_ref_036 2021061922062539177_j_anona-2020-0119_ref_013 2021061922062539177_j_anona-2020-0119_ref_035 2021061922062539177_j_anona-2020-0119_ref_016 2021061922062539177_j_anona-2020-0119_ref_038 2021061922062539177_j_anona-2020-0119_ref_015 2021061922062539177_j_anona-2020-0119_ref_037 2021061922062539177_j_anona-2020-0119_ref_030 2021061922062539177_j_anona-2020-0119_ref_007 2021061922062539177_j_anona-2020-0119_ref_029 2021061922062539177_j_anona-2020-0119_ref_006 2021061922062539177_j_anona-2020-0119_ref_028 2021061922062539177_j_anona-2020-0119_ref_009 2021061922062539177_j_anona-2020-0119_ref_008 2021061922062539177_j_anona-2020-0119_ref_021 2021061922062539177_j_anona-2020-0119_ref_043 2021061922062539177_j_anona-2020-0119_ref_020 2021061922062539177_j_anona-2020-0119_ref_042 2021061922062539177_j_anona-2020-0119_ref_001 2021061922062539177_j_anona-2020-0119_ref_023 2021061922062539177_j_anona-2020-0119_ref_045 2021061922062539177_j_anona-2020-0119_ref_022 2021061922062539177_j_anona-2020-0119_ref_044 2021061922062539177_j_anona-2020-0119_ref_003 2021061922062539177_j_anona-2020-0119_ref_025 2021061922062539177_j_anona-2020-0119_ref_047 2021061922062539177_j_anona-2020-0119_ref_002 2021061922062539177_j_anona-2020-0119_ref_024 2021061922062539177_j_anona-2020-0119_ref_046 2021061922062539177_j_anona-2020-0119_ref_005 2021061922062539177_j_anona-2020-0119_ref_027 2021061922062539177_j_anona-2020-0119_ref_004 2021061922062539177_j_anona-2020-0119_ref_026 2021061922062539177_j_anona-2020-0119_ref_048 2021061922062539177_j_anona-2020-0119_ref_041 2021061922062539177_j_anona-2020-0119_ref_040 |
References_xml | – ident: 2021061922062539177_j_anona-2020-0119_ref_037 doi: 10.1007/s00033-019-1239-3 – ident: 2021061922062539177_j_anona-2020-0119_ref_003 doi: 10.1007/s00009-018-1287-5 – ident: 2021061922062539177_j_anona-2020-0119_ref_026 doi: 10.1007/s00033-017-0805-9 – ident: 2021061922062539177_j_anona-2020-0119_ref_036 doi: 10.1016/j.jfa.2013.04.007 – ident: 2021061922062539177_j_anona-2020-0119_ref_046 doi: 10.1016/0362-546X(92)90210-6 – ident: 2021061922062539177_j_anona-2020-0119_ref_044 doi: 10.1007/BF02418013 – ident: 2021061922062539177_j_anona-2020-0119_ref_033 doi: 10.1515/anona-2018-0134 – ident: 2021061922062539177_j_anona-2020-0119_ref_014 – ident: 2021061922062539177_j_anona-2020-0119_ref_016 doi: 10.1007/s11425-016-9067-5 – ident: 2021061922062539177_j_anona-2020-0119_ref_019 doi: 10.1006/jdeq.1997.3375 – ident: 2021061922062539177_j_anona-2020-0119_ref_038 doi: 10.1098/rsta.1998.0256 – ident: 2021061922062539177_j_anona-2020-0119_ref_030 doi: 10.1016/0362-546X(80)90016-4 – ident: 2021061922062539177_j_anona-2020-0119_ref_008 doi: 10.1007/BF01187898 – ident: 2021061922062539177_j_anona-2020-0119_ref_032 doi: 10.1142/S0219199718500049 – ident: 2021061922062539177_j_anona-2020-0119_ref_001 doi: 10.1016/0022-1236(73)90051-7 – ident: 2021061922062539177_j_anona-2020-0119_ref_009 – ident: 2021061922062539177_j_anona-2020-0119_ref_002 doi: 10.7153/dea-02-25 – ident: 2021061922062539177_j_anona-2020-0119_ref_006 doi: 10.1016/0362-546X(94)E0070-W – ident: 2021061922062539177_j_anona-2020-0119_ref_012 doi: 10.1016/j.jmaa.2012.12.053 – ident: 2021061922062539177_j_anona-2020-0119_ref_028 doi: 10.1090/gsm/014 – ident: 2021061922062539177_j_anona-2020-0119_ref_007 doi: 10.1007/s10231-016-0555-x – ident: 2021061922062539177_j_anona-2020-0119_ref_027 doi: 10.1002/sapm197757293 – ident: 2021061922062539177_j_anona-2020-0119_ref_043 doi: 10.1007/s00033-017-0806-8 – ident: 2021061922062539177_j_anona-2020-0119_ref_017 doi: 10.1017/prm.2018.131 – ident: 2021061922062539177_j_anona-2020-0119_ref_024 doi: 10.1016/j.na.2012.12.003 – ident: 2021061922062539177_j_anona-2020-0119_ref_031 doi: 10.1007/978-1-4757-2061-7 – ident: 2021061922062539177_j_anona-2020-0119_ref_035 doi: 10.1142/S0219199715500054 – ident: 2021061922062539177_j_anona-2020-0119_ref_048 doi: 10.1088/0951-7715/29/10/3186 – ident: 2021061922062539177_j_anona-2020-0119_ref_018 doi: 10.12775/TMNA.2019.038 – ident: 2021061922062539177_j_anona-2020-0119_ref_041 doi: 10.1515/9783112649305 – ident: 2021061922062539177_j_anona-2020-0119_ref_029 doi: 10.1016/S0294-1449(16)30422-X – ident: 2021061922062539177_j_anona-2020-0119_ref_022 doi: 10.1007/BF01459140 – ident: 2021061922062539177_j_anona-2020-0119_ref_021 doi: 10.1016/j.jfa.2005.04.005 – ident: 2021061922062539177_j_anona-2020-0119_ref_039 doi: 10.1016/j.na.2019.02.022 – ident: 2021061922062539177_j_anona-2020-0119_ref_013 – ident: 2021061922062539177_j_anona-2020-0119_ref_020 doi: 10.1016/j.jmaa.2018.07.035 – ident: 2021061922062539177_j_anona-2020-0119_ref_025 doi: 10.1016/j.nonrwa.2013.10.011 – ident: 2021061922062539177_j_anona-2020-0119_ref_040 doi: 10.1515/acv-2016-0049 – ident: 2021061922062539177_j_anona-2020-0119_ref_015 doi: 10.1016/j.jmaa.2016.11.015 – ident: 2021061922062539177_j_anona-2020-0119_ref_011 doi: 10.1016/S0022-247X(02)00398-0 – ident: 2021061922062539177_j_anona-2020-0119_ref_045 doi: 10.1007/s13324-017-0174-8 – ident: 2021061922062539177_j_anona-2020-0119_ref_004 doi: 10.1090/S0002-9947-1982-0675067-X – ident: 2021061922062539177_j_anona-2020-0119_ref_034 doi: 10.1090/S0002-9947-2014-06289-2 – ident: 2021061922062539177_j_anona-2020-0119_ref_005 doi: 10.1016/0362-546X(94)00324-B – ident: 2021061922062539177_j_anona-2020-0119_ref_042 – ident: 2021061922062539177_j_anona-2020-0119_ref_010 doi: 10.1016/j.jde.2010.11.017 – ident: 2021061922062539177_j_anona-2020-0119_ref_047 doi: 10.1515/anona-2020-0021 – ident: 2021061922062539177_j_anona-2020-0119_ref_023 |
SSID | ssj0000851770 |
Score | 2.4366612 |
Snippet | In this article, we investigate multiplicity results for Choquard-Kirchhoff type equations, with Hardy-Littlewood-Sobolev critical exponents,
where
> 0,
≥ 0, 0... In this article, we investigate multiplicity results for Choquard-Kirchhoff type equations, with Hardy-Littlewood-Sobolev critical exponents, − a + b ∫ R N | ∇... In this article, we investigate multiplicity results for Choquard-Kirchhoff type equations, with Hardy-Littlewood-Sobolev critical exponents, |
SourceID | doaj crossref walterdegruyter |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 400 |
SubjectTerms | 35A15 35B33 35J20 35J60 Choquard nonlinearity Concentraction compactness principle Hardy-Littlewood-Sobolev critical exponent Kirchhoff equation |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQWehQ8RTlpQwMLCl2Hk46IFQqqgpUJip1i2LHbkEVpWkq6L_nznHLQ-3GGjm2cmfnvstdvo-QS6EBBEnhuRKCEyQoIdZ3FSQrTMdNHmhGY_zfuffEu_3gYRAOvuWArAFna1M71JPq5-PG53RxCwf-xqj3sPA6hUQ5BXd72GKFFKDbEJYiPKU9i_Vfy4YsFhnxODikKC3f5JbqZ80cv6KUIfOvktqHKWBnapjPF8WyYGriUGeX1CyAdFqlx_fIlnrbJ9UftIIHpNWzXYLOamM5gE0daWUNnPYIwgF2yz6-wDYfTbR28FOso6Yl8ffskPQ798_trmulElwJCWDhci_KYg4vDBZkiso0TlmsQ5VRwVgacRlSgbQ5lGnIj0LtSeUHOhWhBmcEIvb8I1IBC6hj4tDQVO8U4IAsyGQsfCkycClXUgde5NVJY2maRFoecZSzGCeYT4AtE2PLBG2ZoC3r5Gp1w3tJobF56B3aejUMua_NhUk-TOxRSrKYaoCdkfANmyI8NcR5LqQAJASAFSbhfzyVLLfVpnVRsJjSk_9Y_ZTseNj2Yr7SnJFKkc_VOeCWQlyY_fgFZXfpXw priority: 102 providerName: Scholars Portal |
Title | Multiple solutions for critical Choquard-Kirchhoff type equations |
URI | https://www.degruyter.com/doi/10.1515/anona-2020-0119 https://doaj.org/article/d80f1937b302437688eed6bcb1750199 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJzpUPEV5yQMDS6iTOI47lgpUgcpEpW5W7NgUhHi0qRD_njvHrSKkioUlQ-TI0Xdn353v_B0hF9qBE2R0EhkwThCgZJjftRCsxE72BXcxk3jfefwgRhN-N82mjVZfWBNW0wPXwPVKyRw4GblOPXeekBJ2daGNBrsH7om_ugc2rxFMvdTVV3HuO8XBisQ-8n0ReH3AfvcKiKwL0I8Ea7KQY6dhkjxzf5t0vny2urRP8-V3tcqOeqNzu0M6wVukg_ovd8mWfdsj7QaH4D4ZjENJIF1rEQVHlJrQw4AOZ7D3Y2ns_TPo9OzdOYrnrtR-1izfiwMyub15HI6i0BchMhDtVZFI8lICEHnMS8tMIYtYusyWTMdxkQuTMY0cOSx2EAxlLjE25a7QmQPkuZZJekhagIA9IpRlPlVnweiXvDRSp0aXID9hjeNJnnTJ1QoaZQJpOPaueFUYPACWymOpEEuFWHbJ5fqDj5ovY_PQa8R6PQyJrv0LEL8K4ld_ib9LxC9JqbAIF5vmxe7EjB3_x-wnZDvBGhd_JHNKWtV8ac_ASan0uddHeI65_AGlEeHr |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYAB8RRvMjCwlDpp4rhjqSjl0TLQSmxW_KJIQKGkQvx77lITAYKFNfIjubNz353P3wEcKocgSKuoqtE4oYOS0PmuRWcldKLBYxcyQfeduz3eGcQXt8ntDLQ-78JQWqWxd-PJez5lSK2ZkZ5QoKzkGkALXMvQN85QwxFlVYWN2jB_fJiFOY7wX1Rgrtk5u7kuQy2EKtKibBxuTyoq3-Ce5OeXob7Zp4LGfxGW3oqj6_K9vlig9jIseegYNKe6XoEZ-7QKi18IBdeg2fX5gUG5pAJEpYH2BQ2C1hANAeXJXt7jAh-OnAsoCBvYlynl9-s6DNqn_Van6oskVDW6fnmVR6kRHH8VYWws05nIQuESa5gKwyzlOmGKCHNY6NAzSlykbT12mUocqiFWIqpvQAUlYDchYElxbmcRAZjYaKHqWhlUJrfaxVEabcHxp2ik9gziVMjiQZIngbKUhSwlyVKSLLfgqOzwPCXP-LvpCcm6bEas18WD0fhO-k0kjWAOAWeq6gWPIn41WniutEIMhFAVB-E_NCX9jnz9a14qVczY9n87HsB8p9-9klfnvcsdWIgo4aWIz-xCJR9P7B4illzt-xX5Adh-5jc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BkRAcKlaxkwMHLqXO5iTHUihlRwIkbla8tUiIli5C_D0zqYkKggvXyEsyY2fejMdvAA6kRRCkZFBTaJzQQYnpfNegs-LbNOOR9VlK952vb3j7Mbp4ip-m7sJQWqU2ncH4YzRhSK3rnhpToKzkGkALXM_RN85RwwFlVflZva_tLMxxnoVRBeYa7bP72zLSQqAiKarG4e6kmvIZdxw_v4z0zTwVLP6LUH0vTq7L15oyQK0lqDrk6DUmql6GGfO6AotTfIKr0Lh26YFeuaI8BKWecvUMvGYX7QClyV4-4_ru9qz1KAbrmbcJ4_dwDR5bpw_Nds3VSKgp9PxGNR4kOuX4p_AjbZjK09xPbWw0k76fJ1zFTBJfDvMtOkaxDZQJI5vL2KIWIpkG4TpUUAJmAzwWF8d2BgGAjrRKZaikRl1yo2wUJMEmHH2JRihHIE51LF4EORIoS1HIUpAsBclyEw7LDv0Jd8bfTY9J1mUzIr0uHvQGHeH2kNAps4g3ExkWNIr41WjguVQSIRAiVRyE_9CUcBty-Ne8VKmYsa3_dtyH-buTlrg6v7nchoWA0l2K6MwOVEaDsdlFvDKSe25BfgJ-dOVd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+solutions+for+critical+Choquard-Kirchhoff+type+equations&rft.jtitle=Advances+in+nonlinear+analysis&rft.au=Liang+Sihua&rft.au=Pucci+Patrizia&rft.au=Zhang+Binlin&rft.date=2021-01-01&rft.pub=De+Gruyter&rft.issn=2191-9496&rft.eissn=2191-950X&rft.volume=10&rft.issue=1&rft.spage=400&rft.epage=419&rft_id=info:doi/10.1515%2Fanona-2020-0119&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d80f1937b302437688eed6bcb1750199 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2191-9496&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2191-9496&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2191-9496&client=summon |