Multiple solutions for critical Choquard-Kirchhoff type equations

In this article, we investigate multiplicity results for Choquard-Kirchhoff type equations, with Hardy-Littlewood-Sobolev critical exponents, where > 0, ≥ 0, 0 < < , ≥ 3, and are positive real parameters, is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality, ∈ (ℝ ),...

Full description

Saved in:
Bibliographic Details
Published inAdvances in nonlinear analysis Vol. 10; no. 1; pp. 400 - 419
Main Authors Liang, Sihua, Pucci, Patrizia, Zhang, Binlin
Format Journal Article
LanguageEnglish
Published De Gruyter 01.01.2021
Subjects
Online AccessGet full text
ISSN2191-9496
2191-950X
DOI10.1515/anona-2020-0119

Cover

Loading…
Abstract In this article, we investigate multiplicity results for Choquard-Kirchhoff type equations, with Hardy-Littlewood-Sobolev critical exponents, where > 0, ≥ 0, 0 < < , ≥ 3, and are positive real parameters, is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality, ∈ (ℝ ), with = 2 /(2 − ) if 1 < < 2 and = ∞ if ≥ 2 . According to the different range of , we discuss the multiplicity of solutions to the above equation, using variational methods under suitable conditions. In order to overcome the lack of compactness, we appeal to the concentration compactness principle in the Choquard-type setting.
AbstractList In this article, we investigate multiplicity results for Choquard-Kirchhoff type equations, with Hardy-Littlewood-Sobolev critical exponents, where > 0, ≥ 0, 0 < < , ≥ 3, and are positive real parameters, is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality, ∈ (ℝ ), with = 2 /(2 − ) if 1 < < 2 and = ∞ if ≥ 2 . According to the different range of , we discuss the multiplicity of solutions to the above equation, using variational methods under suitable conditions. In order to overcome the lack of compactness, we appeal to the concentration compactness principle in the Choquard-type setting.
In this article, we investigate multiplicity results for Choquard-Kirchhoff type equations, with Hardy-Littlewood-Sobolev critical exponents, − a + b ∫ R N | ∇ u | 2 d x Δ u = α k ( x ) | u | q − 2 u + β ∫ R N | u ( y ) | 2 μ ∗ | x − y | μ d y | u | 2 μ ∗ − 2 u , x ∈ R N , $$\begin{array}{} \displaystyle -\left(a + b\int\limits_{\mathbb{R}^N} |\nabla u|^2 dx\right){\it\Delta} u = \alpha k(x)|u|^{q-2}u + \beta\left(\,\,\displaystyle\int\limits_{\mathbb{R}^N}\frac{|u(y)|^{2^*_{\mu}}}{|x-y|^{\mu}}dy\right)|u|^{2^*_{\mu}-2}u, \quad x \in \mathbb{R}^N, \end{array}$$ where a > 0, b ≥ 0, 0 < μ < N , N ≥ 3, α and β are positive real parameters, 2 μ ∗ = ( 2 N − μ ) / ( N − 2 ) $\begin{array}{} 2^*_{\mu} = (2N-\mu)/(N-2) \end{array}$ is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality, k ∈ L r (ℝ N ), with r = 2 ∗ /(2 ∗ − q ) if 1 < q < 2 * and r = ∞ if q ≥ 2 ∗ . According to the different range of q , we discuss the multiplicity of solutions to the above equation, using variational methods under suitable conditions. In order to overcome the lack of compactness, we appeal to the concentration compactness principle in the Choquard-type setting.
In this article, we investigate multiplicity results for Choquard-Kirchhoff type equations, with Hardy-Littlewood-Sobolev critical exponents,
Author Pucci, Patrizia
Liang, Sihua
Zhang, Binlin
Author_xml – sequence: 1
  givenname: Sihua
  surname: Liang
  fullname: Liang, Sihua
  email: liangsihua@163.com
  organization: College of Mathematics and Informatics, Fujian Normal University, Qishan Campus, Fuzhou, 350108, P.R. China
– sequence: 2
  givenname: Patrizia
  surname: Pucci
  fullname: Pucci, Patrizia
  email: patrizia.pucci@unipg.it
  organization: Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, via Vanvitelli 1, 06123, Perugia, Italy
– sequence: 3
  givenname: Binlin
  surname: Zhang
  fullname: Zhang, Binlin
  email: zhangbinlin2012@163.com
  organization: College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, 266590, P.R. China
BookMark eNp9kD1PwzAQhi1UJErpzJo_EHrnxHEyMFQVHxVFLCCxWY5jt65CXJxEqP8eNwUGJPDiu5Of96znnIwa12hCLhGukCGbydDLmAKFGBCLEzKmWGBcMHgdfddpkZ2RadtuIZycIecwJvPHvu7srtZR6-q-s65pI-N8pLztrJJ1tNi49176Kn6wXm02zpio2-90pMN0eH5BTo2sWz39uifk5fbmeXEfr57ulov5KlYp0C7OKK_yLM85ppUGJXOJuWG6ghJR8kwxKDkwBmg4ZsxQpZPUyJIZg5CWOU0mZHnMrZzcip23b9LvhZNWDAPn10L68OdaiyoHg0XCywRomvCwVesqK1WJPCwoipA1O2Yp79rWa_OThyAOQsUgVByEioPQQLBfhLLdIKDz0tb_cNdH7kPWnfaVXvt-Hwqxdb1vgq-_SARMAZJP3beRFw
CitedBy_id crossref_primary_10_1007_s00030_022_00829_5
crossref_primary_10_14232_ejqtde_2024_1_3
crossref_primary_10_1007_s12220_021_00747_5
crossref_primary_10_14232_ejqtde_2022_1_39
crossref_primary_10_1080_17476933_2021_1885387
crossref_primary_10_1007_s41980_021_00676_7
crossref_primary_10_1007_s12220_023_01207_y
crossref_primary_10_1186_s13661_024_01954_z
crossref_primary_10_1002_mma_8652
crossref_primary_10_1002_mma_7169
crossref_primary_10_1007_s12346_023_00859_z
crossref_primary_10_1007_s12220_022_00908_0
crossref_primary_10_1080_00036811_2021_1947499
crossref_primary_10_1016_j_aml_2021_107204
crossref_primary_10_1515_anona_2022_0282
crossref_primary_10_1007_s12220_023_01266_1
crossref_primary_10_1007_s00030_021_00730_7
crossref_primary_10_1080_17476933_2022_2045976
crossref_primary_10_1016_j_jde_2021_02_017
crossref_primary_10_3390_math11173754
crossref_primary_10_1002_mma_7873
crossref_primary_10_1007_s12215_022_00833_9
crossref_primary_10_1002_mma_8449
crossref_primary_10_1177_09217134241308455
crossref_primary_10_1515_anona_2022_0270
crossref_primary_10_1016_j_jde_2023_01_023
crossref_primary_10_1007_s13540_023_00181_0
crossref_primary_10_1007_s00245_021_09783_7
crossref_primary_10_3233_ASY_231827
crossref_primary_10_3390_fractalfract9030136
crossref_primary_10_1007_s00033_023_02123_5
crossref_primary_10_1007_s12220_020_00546_4
crossref_primary_10_1080_17476933_2023_2236970
crossref_primary_10_1007_s00009_023_02422_1
crossref_primary_10_1063_5_0079166
crossref_primary_10_1080_17476933_2022_2040022
crossref_primary_10_1515_ans_2022_0059
crossref_primary_10_1007_s00526_021_02065_8
crossref_primary_10_1016_j_nonrwa_2023_103914
crossref_primary_10_1186_s13661_022_01657_3
crossref_primary_10_1515_anona_2021_0203
crossref_primary_10_1080_17476933_2023_2193741
crossref_primary_10_1007_s13324_022_00658_w
crossref_primary_10_1016_j_cnsns_2023_107522
crossref_primary_10_1186_s13661_021_01566_x
crossref_primary_10_1515_anona_2022_0255
crossref_primary_10_1007_s12220_022_00959_3
crossref_primary_10_1007_s40840_024_01735_y
crossref_primary_10_1515_anona_2020_0186
crossref_primary_10_14232_ejqtde_2021_1_37
crossref_primary_10_1515_math_2021_0125
Cites_doi 10.1007/s00033-019-1239-3
10.1007/s00009-018-1287-5
10.1007/s00033-017-0805-9
10.1016/j.jfa.2013.04.007
10.1016/0362-546X(92)90210-6
10.1007/BF02418013
10.1515/anona-2018-0134
10.1007/s11425-016-9067-5
10.1006/jdeq.1997.3375
10.1098/rsta.1998.0256
10.1016/0362-546X(80)90016-4
10.1007/BF01187898
10.1142/S0219199718500049
10.1016/0022-1236(73)90051-7
10.7153/dea-02-25
10.1016/0362-546X(94)E0070-W
10.1016/j.jmaa.2012.12.053
10.1090/gsm/014
10.1007/s10231-016-0555-x
10.1002/sapm197757293
10.1007/s00033-017-0806-8
10.1017/prm.2018.131
10.1016/j.na.2012.12.003
10.1007/978-1-4757-2061-7
10.1142/S0219199715500054
10.1088/0951-7715/29/10/3186
10.12775/TMNA.2019.038
10.1515/9783112649305
10.1016/S0294-1449(16)30422-X
10.1007/BF01459140
10.1016/j.jfa.2005.04.005
10.1016/j.na.2019.02.022
10.1016/j.jmaa.2018.07.035
10.1016/j.nonrwa.2013.10.011
10.1515/acv-2016-0049
10.1016/j.jmaa.2016.11.015
10.1016/S0022-247X(02)00398-0
10.1007/s13324-017-0174-8
10.1090/S0002-9947-1982-0675067-X
10.1090/S0002-9947-2014-06289-2
10.1016/0362-546X(94)00324-B
10.1016/j.jde.2010.11.017
10.1515/anona-2020-0021
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1515/anona-2020-0119
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-950X
EndPage 419
ExternalDocumentID oai_doaj_org_article_d80f1937b302437688eed6bcb1750199
10_1515_anona_2020_0119
10_1515_anona_2020_0119101400
GroupedDBID 0R~
0~D
4.4
AAFPC
AAFWJ
AAQCX
AASOL
AASQH
AAWFC
ABAOT
ABAQN
ABFKT
ABIQR
ABSOE
ABUVI
ABXMZ
ACGFS
ACXLN
ACZBO
ADGQD
ADGYE
ADJVZ
ADOZN
AEJTT
AENEX
AEQDQ
AEXIE
AFBAA
AFBDD
AFCXV
AFPKN
AFQUK
AHGSO
AIERV
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BAKPI
BBCWN
CFGNV
EBS
GROUPED_DOAJ
HZ~
IY9
J9A
M48
O9-
OK1
QD8
SA.
SLJYH
AAYXX
CITATION
ID FETCH-LOGICAL-c402t-627d8688714de0ca8a18f5ed0b11a76c50b705501f7165f2ce34fab5ff104b823
IEDL.DBID DOA
ISSN 2191-9496
IngestDate Wed Aug 27 01:30:53 EDT 2025
Tue Jul 01 00:37:48 EDT 2025
Thu Apr 24 23:04:22 EDT 2025
Thu Jul 10 10:36:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-627d8688714de0ca8a18f5ed0b11a76c50b705501f7165f2ce34fab5ff104b823
OpenAccessLink https://doaj.org/article/d80f1937b302437688eed6bcb1750199
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_d80f1937b302437688eed6bcb1750199
crossref_primary_10_1515_anona_2020_0119
crossref_citationtrail_10_1515_anona_2020_0119
walterdegruyter_journals_10_1515_anona_2020_0119101400
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Advances in nonlinear analysis
PublicationYear 2021
Publisher De Gruyter
Publisher_xml – name: De Gruyter
References 2021061922062539177_j_anona-2020-0119_ref_018
2021061922062539177_j_anona-2020-0119_ref_017
2021061922062539177_j_anona-2020-0119_ref_039
2021061922062539177_j_anona-2020-0119_ref_019
2021061922062539177_j_anona-2020-0119_ref_010
2021061922062539177_j_anona-2020-0119_ref_032
2021061922062539177_j_anona-2020-0119_ref_031
2021061922062539177_j_anona-2020-0119_ref_012
2021061922062539177_j_anona-2020-0119_ref_034
2021061922062539177_j_anona-2020-0119_ref_011
2021061922062539177_j_anona-2020-0119_ref_033
2021061922062539177_j_anona-2020-0119_ref_014
2021061922062539177_j_anona-2020-0119_ref_036
2021061922062539177_j_anona-2020-0119_ref_013
2021061922062539177_j_anona-2020-0119_ref_035
2021061922062539177_j_anona-2020-0119_ref_016
2021061922062539177_j_anona-2020-0119_ref_038
2021061922062539177_j_anona-2020-0119_ref_015
2021061922062539177_j_anona-2020-0119_ref_037
2021061922062539177_j_anona-2020-0119_ref_030
2021061922062539177_j_anona-2020-0119_ref_007
2021061922062539177_j_anona-2020-0119_ref_029
2021061922062539177_j_anona-2020-0119_ref_006
2021061922062539177_j_anona-2020-0119_ref_028
2021061922062539177_j_anona-2020-0119_ref_009
2021061922062539177_j_anona-2020-0119_ref_008
2021061922062539177_j_anona-2020-0119_ref_021
2021061922062539177_j_anona-2020-0119_ref_043
2021061922062539177_j_anona-2020-0119_ref_020
2021061922062539177_j_anona-2020-0119_ref_042
2021061922062539177_j_anona-2020-0119_ref_001
2021061922062539177_j_anona-2020-0119_ref_023
2021061922062539177_j_anona-2020-0119_ref_045
2021061922062539177_j_anona-2020-0119_ref_022
2021061922062539177_j_anona-2020-0119_ref_044
2021061922062539177_j_anona-2020-0119_ref_003
2021061922062539177_j_anona-2020-0119_ref_025
2021061922062539177_j_anona-2020-0119_ref_047
2021061922062539177_j_anona-2020-0119_ref_002
2021061922062539177_j_anona-2020-0119_ref_024
2021061922062539177_j_anona-2020-0119_ref_046
2021061922062539177_j_anona-2020-0119_ref_005
2021061922062539177_j_anona-2020-0119_ref_027
2021061922062539177_j_anona-2020-0119_ref_004
2021061922062539177_j_anona-2020-0119_ref_026
2021061922062539177_j_anona-2020-0119_ref_048
2021061922062539177_j_anona-2020-0119_ref_041
2021061922062539177_j_anona-2020-0119_ref_040
References_xml – ident: 2021061922062539177_j_anona-2020-0119_ref_037
  doi: 10.1007/s00033-019-1239-3
– ident: 2021061922062539177_j_anona-2020-0119_ref_003
  doi: 10.1007/s00009-018-1287-5
– ident: 2021061922062539177_j_anona-2020-0119_ref_026
  doi: 10.1007/s00033-017-0805-9
– ident: 2021061922062539177_j_anona-2020-0119_ref_036
  doi: 10.1016/j.jfa.2013.04.007
– ident: 2021061922062539177_j_anona-2020-0119_ref_046
  doi: 10.1016/0362-546X(92)90210-6
– ident: 2021061922062539177_j_anona-2020-0119_ref_044
  doi: 10.1007/BF02418013
– ident: 2021061922062539177_j_anona-2020-0119_ref_033
  doi: 10.1515/anona-2018-0134
– ident: 2021061922062539177_j_anona-2020-0119_ref_014
– ident: 2021061922062539177_j_anona-2020-0119_ref_016
  doi: 10.1007/s11425-016-9067-5
– ident: 2021061922062539177_j_anona-2020-0119_ref_019
  doi: 10.1006/jdeq.1997.3375
– ident: 2021061922062539177_j_anona-2020-0119_ref_038
  doi: 10.1098/rsta.1998.0256
– ident: 2021061922062539177_j_anona-2020-0119_ref_030
  doi: 10.1016/0362-546X(80)90016-4
– ident: 2021061922062539177_j_anona-2020-0119_ref_008
  doi: 10.1007/BF01187898
– ident: 2021061922062539177_j_anona-2020-0119_ref_032
  doi: 10.1142/S0219199718500049
– ident: 2021061922062539177_j_anona-2020-0119_ref_001
  doi: 10.1016/0022-1236(73)90051-7
– ident: 2021061922062539177_j_anona-2020-0119_ref_009
– ident: 2021061922062539177_j_anona-2020-0119_ref_002
  doi: 10.7153/dea-02-25
– ident: 2021061922062539177_j_anona-2020-0119_ref_006
  doi: 10.1016/0362-546X(94)E0070-W
– ident: 2021061922062539177_j_anona-2020-0119_ref_012
  doi: 10.1016/j.jmaa.2012.12.053
– ident: 2021061922062539177_j_anona-2020-0119_ref_028
  doi: 10.1090/gsm/014
– ident: 2021061922062539177_j_anona-2020-0119_ref_007
  doi: 10.1007/s10231-016-0555-x
– ident: 2021061922062539177_j_anona-2020-0119_ref_027
  doi: 10.1002/sapm197757293
– ident: 2021061922062539177_j_anona-2020-0119_ref_043
  doi: 10.1007/s00033-017-0806-8
– ident: 2021061922062539177_j_anona-2020-0119_ref_017
  doi: 10.1017/prm.2018.131
– ident: 2021061922062539177_j_anona-2020-0119_ref_024
  doi: 10.1016/j.na.2012.12.003
– ident: 2021061922062539177_j_anona-2020-0119_ref_031
  doi: 10.1007/978-1-4757-2061-7
– ident: 2021061922062539177_j_anona-2020-0119_ref_035
  doi: 10.1142/S0219199715500054
– ident: 2021061922062539177_j_anona-2020-0119_ref_048
  doi: 10.1088/0951-7715/29/10/3186
– ident: 2021061922062539177_j_anona-2020-0119_ref_018
  doi: 10.12775/TMNA.2019.038
– ident: 2021061922062539177_j_anona-2020-0119_ref_041
  doi: 10.1515/9783112649305
– ident: 2021061922062539177_j_anona-2020-0119_ref_029
  doi: 10.1016/S0294-1449(16)30422-X
– ident: 2021061922062539177_j_anona-2020-0119_ref_022
  doi: 10.1007/BF01459140
– ident: 2021061922062539177_j_anona-2020-0119_ref_021
  doi: 10.1016/j.jfa.2005.04.005
– ident: 2021061922062539177_j_anona-2020-0119_ref_039
  doi: 10.1016/j.na.2019.02.022
– ident: 2021061922062539177_j_anona-2020-0119_ref_013
– ident: 2021061922062539177_j_anona-2020-0119_ref_020
  doi: 10.1016/j.jmaa.2018.07.035
– ident: 2021061922062539177_j_anona-2020-0119_ref_025
  doi: 10.1016/j.nonrwa.2013.10.011
– ident: 2021061922062539177_j_anona-2020-0119_ref_040
  doi: 10.1515/acv-2016-0049
– ident: 2021061922062539177_j_anona-2020-0119_ref_015
  doi: 10.1016/j.jmaa.2016.11.015
– ident: 2021061922062539177_j_anona-2020-0119_ref_011
  doi: 10.1016/S0022-247X(02)00398-0
– ident: 2021061922062539177_j_anona-2020-0119_ref_045
  doi: 10.1007/s13324-017-0174-8
– ident: 2021061922062539177_j_anona-2020-0119_ref_004
  doi: 10.1090/S0002-9947-1982-0675067-X
– ident: 2021061922062539177_j_anona-2020-0119_ref_034
  doi: 10.1090/S0002-9947-2014-06289-2
– ident: 2021061922062539177_j_anona-2020-0119_ref_005
  doi: 10.1016/0362-546X(94)00324-B
– ident: 2021061922062539177_j_anona-2020-0119_ref_042
– ident: 2021061922062539177_j_anona-2020-0119_ref_010
  doi: 10.1016/j.jde.2010.11.017
– ident: 2021061922062539177_j_anona-2020-0119_ref_047
  doi: 10.1515/anona-2020-0021
– ident: 2021061922062539177_j_anona-2020-0119_ref_023
SSID ssj0000851770
Score 2.4366612
Snippet In this article, we investigate multiplicity results for Choquard-Kirchhoff type equations, with Hardy-Littlewood-Sobolev critical exponents, where > 0, ≥ 0, 0...
In this article, we investigate multiplicity results for Choquard-Kirchhoff type equations, with Hardy-Littlewood-Sobolev critical exponents, − a + b ∫ R N | ∇...
In this article, we investigate multiplicity results for Choquard-Kirchhoff type equations, with Hardy-Littlewood-Sobolev critical exponents,
SourceID doaj
crossref
walterdegruyter
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 400
SubjectTerms 35A15
35B33
35J20
35J60
Choquard nonlinearity
Concentraction compactness principle
Hardy-Littlewood-Sobolev critical exponent
Kirchhoff equation
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQWehQ8RTlpQwMLCl2Hk46IFQqqgpUJip1i2LHbkEVpWkq6L_nznHLQ-3GGjm2cmfnvstdvo-QS6EBBEnhuRKCEyQoIdZ3FSQrTMdNHmhGY_zfuffEu_3gYRAOvuWArAFna1M71JPq5-PG53RxCwf-xqj3sPA6hUQ5BXd72GKFFKDbEJYiPKU9i_Vfy4YsFhnxODikKC3f5JbqZ80cv6KUIfOvktqHKWBnapjPF8WyYGriUGeX1CyAdFqlx_fIlnrbJ9UftIIHpNWzXYLOamM5gE0daWUNnPYIwgF2yz6-wDYfTbR28FOso6Yl8ffskPQ798_trmulElwJCWDhci_KYg4vDBZkiso0TlmsQ5VRwVgacRlSgbQ5lGnIj0LtSeUHOhWhBmcEIvb8I1IBC6hj4tDQVO8U4IAsyGQsfCkycClXUgde5NVJY2maRFoecZSzGCeYT4AtE2PLBG2ZoC3r5Gp1w3tJobF56B3aejUMua_NhUk-TOxRSrKYaoCdkfANmyI8NcR5LqQAJASAFSbhfzyVLLfVpnVRsJjSk_9Y_ZTseNj2Yr7SnJFKkc_VOeCWQlyY_fgFZXfpXw
  priority: 102
  providerName: Scholars Portal
Title Multiple solutions for critical Choquard-Kirchhoff type equations
URI https://www.degruyter.com/doi/10.1515/anona-2020-0119
https://doaj.org/article/d80f1937b302437688eed6bcb1750199
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJzpUPEV5yQMDS6iTOI47lgpUgcpEpW5W7NgUhHi0qRD_njvHrSKkioUlQ-TI0Xdn353v_B0hF9qBE2R0EhkwThCgZJjftRCsxE72BXcxk3jfefwgRhN-N82mjVZfWBNW0wPXwPVKyRw4GblOPXeekBJ2daGNBrsH7om_ugc2rxFMvdTVV3HuO8XBisQ-8n0ReH3AfvcKiKwL0I8Ea7KQY6dhkjxzf5t0vny2urRP8-V3tcqOeqNzu0M6wVukg_ovd8mWfdsj7QaH4D4ZjENJIF1rEQVHlJrQw4AOZ7D3Y2ns_TPo9OzdOYrnrtR-1izfiwMyub15HI6i0BchMhDtVZFI8lICEHnMS8tMIYtYusyWTMdxkQuTMY0cOSx2EAxlLjE25a7QmQPkuZZJekhagIA9IpRlPlVnweiXvDRSp0aXID9hjeNJnnTJ1QoaZQJpOPaueFUYPACWymOpEEuFWHbJ5fqDj5ovY_PQa8R6PQyJrv0LEL8K4ld_ib9LxC9JqbAIF5vmxe7EjB3_x-wnZDvBGhd_JHNKWtV8ac_ASan0uddHeI65_AGlEeHr
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYAB8RRvMjCwlDpp4rhjqSjl0TLQSmxW_KJIQKGkQvx77lITAYKFNfIjubNz353P3wEcKocgSKuoqtE4oYOS0PmuRWcldKLBYxcyQfeduz3eGcQXt8ntDLQ-78JQWqWxd-PJez5lSK2ZkZ5QoKzkGkALXMvQN85QwxFlVYWN2jB_fJiFOY7wX1Rgrtk5u7kuQy2EKtKibBxuTyoq3-Ce5OeXob7Zp4LGfxGW3oqj6_K9vlig9jIseegYNKe6XoEZ-7QKi18IBdeg2fX5gUG5pAJEpYH2BQ2C1hANAeXJXt7jAh-OnAsoCBvYlynl9-s6DNqn_Van6oskVDW6fnmVR6kRHH8VYWws05nIQuESa5gKwyzlOmGKCHNY6NAzSlykbT12mUocqiFWIqpvQAUlYDchYElxbmcRAZjYaKHqWhlUJrfaxVEabcHxp2ik9gziVMjiQZIngbKUhSwlyVKSLLfgqOzwPCXP-LvpCcm6bEas18WD0fhO-k0kjWAOAWeq6gWPIn41WniutEIMhFAVB-E_NCX9jnz9a14qVczY9n87HsB8p9-9klfnvcsdWIgo4aWIz-xCJR9P7B4illzt-xX5Adh-5jc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BkRAcKlaxkwMHLqXO5iTHUihlRwIkbla8tUiIli5C_D0zqYkKggvXyEsyY2fejMdvAA6kRRCkZFBTaJzQQYnpfNegs-LbNOOR9VlK952vb3j7Mbp4ip-m7sJQWqU2ncH4YzRhSK3rnhpToKzkGkALXM_RN85RwwFlVflZva_tLMxxnoVRBeYa7bP72zLSQqAiKarG4e6kmvIZdxw_v4z0zTwVLP6LUH0vTq7L15oyQK0lqDrk6DUmql6GGfO6AotTfIKr0Lh26YFeuaI8BKWecvUMvGYX7QClyV4-4_ru9qz1KAbrmbcJ4_dwDR5bpw_Nds3VSKgp9PxGNR4kOuX4p_AjbZjK09xPbWw0k76fJ1zFTBJfDvMtOkaxDZQJI5vL2KIWIpkG4TpUUAJmAzwWF8d2BgGAjrRKZaikRl1yo2wUJMEmHH2JRihHIE51LF4EORIoS1HIUpAsBclyEw7LDv0Jd8bfTY9J1mUzIr0uHvQGHeH2kNAps4g3ExkWNIr41WjguVQSIRAiVRyE_9CUcBty-Ne8VKmYsa3_dtyH-buTlrg6v7nchoWA0l2K6MwOVEaDsdlFvDKSe25BfgJ-dOVd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+solutions+for+critical+Choquard-Kirchhoff+type+equations&rft.jtitle=Advances+in+nonlinear+analysis&rft.au=Liang+Sihua&rft.au=Pucci+Patrizia&rft.au=Zhang+Binlin&rft.date=2021-01-01&rft.pub=De+Gruyter&rft.issn=2191-9496&rft.eissn=2191-950X&rft.volume=10&rft.issue=1&rft.spage=400&rft.epage=419&rft_id=info:doi/10.1515%2Fanona-2020-0119&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d80f1937b302437688eed6bcb1750199
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2191-9496&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2191-9496&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2191-9496&client=summon