Drag, lift and torque correlations for non-spherical particles from Stokes limit to high Reynolds numbers
•Hydrodynamic drag, lift and torque correlations for non-spherical particles.•Three types of axisymmetric non-spherical particles are investigated.•Correlations take into account expected physics at low and high Reynolds number.•Correlations are valid in a larger range of Reynolds numbers than previ...
Saved in:
Published in | International journal of multiphase flow Vol. 106; pp. 325 - 337 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0301-9322 1879-3533 |
DOI | 10.1016/j.ijmultiphaseflow.2018.05.011 |
Cover
Loading…
Abstract | •Hydrodynamic drag, lift and torque correlations for non-spherical particles.•Three types of axisymmetric non-spherical particles are investigated.•Correlations take into account expected physics at low and high Reynolds number.•Correlations are valid in a larger range of Reynolds numbers than previous works.
Accurate direct numerical simulations are performed to determine the drag, lift and torque coefficients of non-spherical particles. The numerical simulations are performed using the lattice Boltzmann method with multi-relaxation time. The motivation for this work is the need for accurate drag, lift and torque correlations for high Re regimes, which are encountered in Euler-Lagrangian simulations of fluidization and pneumatic conveying of larger non-spherical particles. The simulations are performed in the Reynolds number range 0.1 ≤ Re ≤ 2000 for different incident angles ϕ. Different tests are performed to analyse the influence of grid resolution and confinement effects for different Re. The measured drag, lift and torque coefficients are utilized to derive accurate correlations for specific non-spherical particle shapes, which can be used in unresolved simulations. The functional forms for the correlations are chosen to agree with the expected physics at Stokes flow as well as the observed leveling off of the drag coefficient at high Re flows. Therefore the fits can be extended to regimes outside the Re regimes simulated. We observe sine-squared scaling of the drag coefficient for the particles tested even at Re=2000 with CD,ϕ=CD,ϕ=0∘+(CD,ϕ=90∘−CD,ϕ=0∘)sin2ϕ. Furthermore, we also observe that the lift coefficient approximately scales as CL,ϕ=(CD,ϕ=90∘−CD,ϕ=0∘)sinϕcosϕ for the elongated particles. The current work would greatly improve the accuracy of Euler-Lagrangian simulations of larger non-spherical particles considering the existing literature is mainly limited to steady flow regimes and lower Re. |
---|---|
AbstractList | •Hydrodynamic drag, lift and torque correlations for non-spherical particles.•Three types of axisymmetric non-spherical particles are investigated.•Correlations take into account expected physics at low and high Reynolds number.•Correlations are valid in a larger range of Reynolds numbers than previous works.
Accurate direct numerical simulations are performed to determine the drag, lift and torque coefficients of non-spherical particles. The numerical simulations are performed using the lattice Boltzmann method with multi-relaxation time. The motivation for this work is the need for accurate drag, lift and torque correlations for high Re regimes, which are encountered in Euler-Lagrangian simulations of fluidization and pneumatic conveying of larger non-spherical particles. The simulations are performed in the Reynolds number range 0.1 ≤ Re ≤ 2000 for different incident angles ϕ. Different tests are performed to analyse the influence of grid resolution and confinement effects for different Re. The measured drag, lift and torque coefficients are utilized to derive accurate correlations for specific non-spherical particle shapes, which can be used in unresolved simulations. The functional forms for the correlations are chosen to agree with the expected physics at Stokes flow as well as the observed leveling off of the drag coefficient at high Re flows. Therefore the fits can be extended to regimes outside the Re regimes simulated. We observe sine-squared scaling of the drag coefficient for the particles tested even at Re=2000 with CD,ϕ=CD,ϕ=0∘+(CD,ϕ=90∘−CD,ϕ=0∘)sin2ϕ. Furthermore, we also observe that the lift coefficient approximately scales as CL,ϕ=(CD,ϕ=90∘−CD,ϕ=0∘)sinϕcosϕ for the elongated particles. The current work would greatly improve the accuracy of Euler-Lagrangian simulations of larger non-spherical particles considering the existing literature is mainly limited to steady flow regimes and lower Re. |
Author | Sanjeevi, Sathish K.P. Padding, Johan T. Kuipers, J.A.M. |
Author_xml | – sequence: 1 givenname: Sathish K.P. surname: Sanjeevi fullname: Sanjeevi, Sathish K.P. organization: Process and Energy Department, Delft University of Technology, Leeghwaterstraat 39, Delft 2628 CB, The Netherlands – sequence: 2 givenname: J.A.M. surname: Kuipers fullname: Kuipers, J.A.M. organization: Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands – sequence: 3 givenname: Johan T. surname: Padding fullname: Padding, Johan T. email: J.T.Padding@tudelft.nl organization: Process and Energy Department, Delft University of Technology, Leeghwaterstraat 39, Delft 2628 CB, The Netherlands |
BookMark | eNqN0EtLAzEQwPEgFayP75CTJ3dNNvu8CFKfIAg-ziHJzrZTs5uapEq_vVvryVNPExj4hfkfk8ngBiDknLOUM15eLlNc9msbcbVQATrrvtOM8TplRco4PyBTXldNIgohJmTKBONJI7LsiByHsGSMFVUupgRvvJpfUItdpGpoaXT-cw3UOO_BqohuCLRzno5_J2G1AI9GWbpSPqKxMO686-lrdB_j22KPcRToAucL-gKbwdk20GHda_DhlBx2ygY4-5sn5P3u9m32kDw93z_Orp8Sk7MsJiVvcw28VHlWVLoz2rRC6KZgbWGUYA3UVVGrutPaNKbsmNbbM8sqy0tlmiwXJ-Rq5xrvQvDQyZXHXvmN5Exuw8ml_B9ObsNJVsgx3Ajc_AMMxt8U0Su0-zMPOwbGY78QvAwGYTDQogcTZetwX-oHOqmehA |
CitedBy_id | crossref_primary_10_1002_aic_18162 crossref_primary_10_1016_j_powtec_2022_117972 crossref_primary_10_1007_s00162_022_00627_w crossref_primary_10_5194_acp_22_12727_2022 crossref_primary_10_1016_j_powtec_2019_09_088 crossref_primary_10_1063_5_0241431 crossref_primary_10_1103_PhysRevFluids_6_044306 crossref_primary_10_1016_j_apt_2021_02_016 crossref_primary_10_1016_j_powtec_2024_120068 crossref_primary_10_1016_j_cej_2024_155192 crossref_primary_10_3390_pr12112473 crossref_primary_10_1016_j_ces_2022_118335 crossref_primary_10_2139_ssrn_3971350 crossref_primary_10_1016_j_ces_2022_118299 crossref_primary_10_1016_j_powtec_2022_117170 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120730 crossref_primary_10_3390_ma15124215 crossref_primary_10_1002_aic_16895 crossref_primary_10_1016_j_cesx_2020_100079 crossref_primary_10_1103_PhysRevFluids_7_074401 crossref_primary_10_1007_s10013_021_00477_9 crossref_primary_10_1016_j_powtec_2024_119749 crossref_primary_10_1515_cppm_2020_0103 crossref_primary_10_1016_j_powtec_2020_11_083 crossref_primary_10_1063_5_0082653 crossref_primary_10_1016_j_ijheatmasstransfer_2019_118742 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104283 crossref_primary_10_1016_j_jksues_2021_10_003 crossref_primary_10_1103_PhysRevE_105_015306 crossref_primary_10_1016_j_powtec_2022_117727 crossref_primary_10_1016_j_ces_2024_120145 crossref_primary_10_1016_j_powtec_2020_11_003 crossref_primary_10_1103_PhysRevFluids_6_024302 crossref_primary_10_1016_j_applthermaleng_2024_123815 crossref_primary_10_1063_5_0209670 crossref_primary_10_1016_j_cej_2022_136325 crossref_primary_10_1016_j_compfluid_2019_104323 crossref_primary_10_1017_jfm_2023_942 crossref_primary_10_1002_aic_17211 crossref_primary_10_1016_j_tsep_2023_101721 crossref_primary_10_1017_jfm_2023_420 crossref_primary_10_1016_j_cma_2024_116994 crossref_primary_10_1016_j_powtec_2022_117553 crossref_primary_10_1016_j_oceaneng_2023_113789 crossref_primary_10_3390_pr11051369 crossref_primary_10_1016_j_ces_2019_08_003 crossref_primary_10_1016_j_ijmultiphaseflow_2020_103519 crossref_primary_10_1016_j_powtec_2024_120241 crossref_primary_10_1017_jfm_2024_562 crossref_primary_10_1016_j_ijmultiphaseflow_2020_103238 crossref_primary_10_1103_PhysRevE_103_023304 crossref_primary_10_1016_j_ces_2022_117540 crossref_primary_10_1063_5_0086310 crossref_primary_10_1063_5_0093232 crossref_primary_10_1002_aic_16594 crossref_primary_10_1016_j_fuel_2024_131743 crossref_primary_10_1016_j_partic_2024_12_006 crossref_primary_10_1016_j_cej_2019_05_194 crossref_primary_10_1002_admi_201902169 crossref_primary_10_1007_s11440_024_02472_z crossref_primary_10_1016_j_ijmultiphaseflow_2024_105111 crossref_primary_10_1002_aic_17040 crossref_primary_10_1016_j_apt_2023_104136 crossref_primary_10_1016_j_powtec_2021_05_012 crossref_primary_10_1063_5_0025816 crossref_primary_10_1088_2631_8695_adc074 crossref_primary_10_1021_acsomega_1c02053 crossref_primary_10_3390_w17050736 crossref_primary_10_1002_aic_17157 crossref_primary_10_1063_5_0223428 crossref_primary_10_1063_5_0234031 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104996 crossref_primary_10_1016_j_powtec_2021_07_050 crossref_primary_10_1016_j_cherd_2023_10_030 crossref_primary_10_1016_j_proci_2022_07_138 crossref_primary_10_2139_ssrn_4159665 crossref_primary_10_1017_jfm_2019_516 crossref_primary_10_1109_ACCESS_2025_3550720 crossref_primary_10_1115_1_4057019 crossref_primary_10_1016_j_renene_2019_04_074 crossref_primary_10_1016_j_enganabound_2019_08_020 crossref_primary_10_1017_jfm_2023_610 crossref_primary_10_1016_j_addr_2022_114461 crossref_primary_10_1016_j_cesx_2019_100019 crossref_primary_10_1016_j_powtec_2024_119428 crossref_primary_10_31857_S1024708423600069 crossref_primary_10_1016_j_physa_2022_128298 crossref_primary_10_1016_j_energy_2024_134321 crossref_primary_10_1016_j_ces_2018_10_009 crossref_primary_10_1016_j_enconman_2022_116561 crossref_primary_10_1016_j_powtec_2024_120532 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103949 crossref_primary_10_1016_j_compfluid_2021_104934 crossref_primary_10_1017_jfm_2020_482 crossref_primary_10_1021_acs_iecr_2c01008 crossref_primary_10_1016_j_cej_2022_139637 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103941 crossref_primary_10_1063_5_0202281 crossref_primary_10_1007_s00707_018_2325_x crossref_primary_10_1016_j_powtec_2024_119783 crossref_primary_10_1134_S0015462823600487 crossref_primary_10_3390_w16131881 crossref_primary_10_1016_j_compfluid_2023_106166 crossref_primary_10_1016_j_ces_2021_116469 crossref_primary_10_1016_j_seppur_2021_119250 crossref_primary_10_1063_5_0165555 crossref_primary_10_1063_5_0058516 crossref_primary_10_1002_cite_202200121 crossref_primary_10_1016_j_conbuildmat_2022_127862 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104692 crossref_primary_10_1063_5_0248123 crossref_primary_10_1016_j_euromechflu_2024_07_008 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104579 crossref_primary_10_1063_5_0230284 crossref_primary_10_1016_j_powtec_2023_118280 crossref_primary_10_1016_j_ces_2023_119288 crossref_primary_10_1063_1_5116183 crossref_primary_10_1002_aic_16951 crossref_primary_10_1016_j_resp_2021_103769 crossref_primary_10_1063_5_0097916 crossref_primary_10_1063_5_0186621 crossref_primary_10_1016_j_cesx_2019_100015 crossref_primary_10_1063_5_0011618 crossref_primary_10_1063_5_0200136 crossref_primary_10_1016_j_partic_2024_11_005 crossref_primary_10_1016_j_ijmultiphaseflow_2025_105176 crossref_primary_10_1016_j_ijmultiphaseflow_2018_12_003 crossref_primary_10_1021_acs_energyfuels_0c03440 crossref_primary_10_1021_acs_iecr_0c03045 crossref_primary_10_1016_j_cej_2023_142969 crossref_primary_10_1103_PhysRevE_103_013303 crossref_primary_10_1016_j_cej_2021_130391 crossref_primary_10_1063_5_0085270 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103565 crossref_primary_10_1063_5_0019745 crossref_primary_10_1007_s40430_020_02345_y crossref_primary_10_1016_j_ijmultiphaseflow_2020_103263 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104906 crossref_primary_10_1016_j_powtec_2023_118290 crossref_primary_10_1016_j_jvolgeores_2024_108051 crossref_primary_10_1016_j_powtec_2022_117341 crossref_primary_10_1016_j_powtec_2024_119561 |
Cites_doi | 10.1098/rsta.2001.0955 10.1016/0032-5910(93)80051-B 10.1016/j.compfluid.2008.06.001 10.1016/j.powtec.2013.08.044 10.1017/jfm.2017.705 10.1103/PhysRevLett.117.114503 10.1017/S0022112098002493 10.1016/0301-9322(94)90011-6 10.1063/1.1399290 10.1017/jfm.2011.519 10.1017/S0022112094001771 10.1023/A:1010414013942 10.1016/j.ces.2009.10.028 10.1017/jfm.2017.239 10.1063/1.4902015 10.1016/j.ijheatmasstransfer.2011.09.005 10.1088/1742-5468/2010/01/P01018 10.1023/B:JOSS.0000015179.12689.e4 10.1080/02786828708959128 10.1103/PhysRevE.65.041203 10.1017/jfm.2012.135 10.1093/comjnl/7.2.155 10.1002/aic.11065 10.1016/j.powtec.2016.07.067 10.1017/S0022112094001783 10.1016/j.powtec.2016.02.038 10.1016/S0021-9991(02)00022-0 10.1016/j.powtec.2007.08.021 10.1016/j.compfluid.2014.12.005 10.1016/0032-5910(89)80008-7 10.1016/j.ijmultiphaseflow.2011.09.004 10.1063/1.869307 10.1016/j.compfluid.2013.01.013 10.1016/j.compfluid.2005.03.008 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijmultiphaseflow.2018.05.011 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-3533 |
EndPage | 337 |
ExternalDocumentID | 10_1016_j_ijmultiphaseflow_2018_05_011 S0301932217307851 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SSG SST SSZ T5K TN5 VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c402t-61d4be16a4257bfcbcd33b950d5ca309e8758a8fbbc9c6f0bb187967246ac9243 |
IEDL.DBID | .~1 |
ISSN | 0301-9322 |
IngestDate | Thu Apr 24 23:11:56 EDT 2025 Tue Jul 01 02:45:06 EDT 2025 Fri Feb 23 02:45:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Non-spherical particles Force and torque correlation Lattice Boltzmann method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-61d4be16a4257bfcbcd33b950d5ca309e8758a8fbbc9c6f0bb187967246ac9243 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1016_j_ijmultiphaseflow_2018_05_011 crossref_citationtrail_10_1016_j_ijmultiphaseflow_2018_05_011 elsevier_sciencedirect_doi_10_1016_j_ijmultiphaseflow_2018_05_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2018 2018-09-00 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: September 2018 |
PublicationDecade | 2010 |
PublicationTitle | International journal of multiphase flow |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Huang, Yang, Krafczyk, Lu (bib0017) 2012; 692 Hilton, Mason, Cleary (bib0014) 2010; 65 Richter, Nikrityuk (bib0032) 2012; 55 Di Felice (bib0006) 1994; 20 Beetstra, Van der Hoef, Kuipers (bib0003) 2007; 53 El Khoury, Andersson, Pettersen (bib0008) 2012; 701 d’Humières, Ginzburg, Krafczyk, Lallemand, Luo (bib0005) 2002; 360 Richter, Nikrityuk (bib0033) 2013; 249 Oberbeck (bib0027) 1876; 81 Vakarelski, Berry, Chan, Thoroddsen (bib0036) 2016; 117 Zou, He (bib0038) 1997; 9 Akenine-Möller, Haines, Hoffman (bib0002) 2008 Eitel-Amor, Meinke, Schröder (bib0007) 2013; 75 Happel, Brenner (bib0011) 1983; 1 Sanjeevi, Padding (bib0035) 2017; 820 Ouchene, Khalij, Taniere, Arcen (bib0029) 2015; 113 Mei, Yu, Shyy, Luo (bib0026) 2002; 65 Powell (bib0031) 1964; 7 Hölzer, Sommerfeld (bib0015) 2008; 184 Ladd (bib0022) 1994; 271 Ouchene, Khalij, Arcen, Tanière (bib0028) 2016; 303 He, Luo (bib0012) 1997; 88 Bouzidi, Firdaouss, Lallemand (bib0004) 2001; 13 Leith (bib0025) 1987; 6 Hölzer, Sommerfeld (bib0016) 2009; 38 Lallemand, Luo (bib0024) 2003; 184 Ladd, Verberg (bib0023) 2001; 104 Ladd (bib0021) 1994; 271 Hecht, Harting (bib0013) 2010; 2010 Rubinstein, Ozel, Yin, Derksen, Sundaresan (bib0034) 2017; 833 Haider, Levenspiel (bib0010) 1989; 58 Ganser (bib0009) 1993; 77 Zastawny, Mallouppas, Zhao, Van Wachem (bib0037) 2012; 39 Jiang, Gallardo, Andersson (bib0019) 2014; 26 Kruggel-Emden, Kravets, Suryanarayana, Jasevicius (bib0020) 2016; 294 Pan, Luo, Miller (bib0030) 2006; 35 Aidun, Lu, Ding (bib0001) 1998; 373 Jeffery (bib0018) 1922; 102 Kruggel-Emden (10.1016/j.ijmultiphaseflow.2018.05.011_bib0020) 2016; 294 Richter (10.1016/j.ijmultiphaseflow.2018.05.011_bib0032) 2012; 55 Sanjeevi (10.1016/j.ijmultiphaseflow.2018.05.011_bib0035) 2017; 820 Lallemand (10.1016/j.ijmultiphaseflow.2018.05.011_bib0024) 2003; 184 Bouzidi (10.1016/j.ijmultiphaseflow.2018.05.011_bib0004) 2001; 13 Rubinstein (10.1016/j.ijmultiphaseflow.2018.05.011_bib0034) 2017; 833 Zou (10.1016/j.ijmultiphaseflow.2018.05.011_bib0038) 1997; 9 Aidun (10.1016/j.ijmultiphaseflow.2018.05.011_bib0001) 1998; 373 Hölzer (10.1016/j.ijmultiphaseflow.2018.05.011_bib0016) 2009; 38 Akenine-Möller (10.1016/j.ijmultiphaseflow.2018.05.011_bib0002) 2008 Richter (10.1016/j.ijmultiphaseflow.2018.05.011_bib0033) 2013; 249 d’Humières (10.1016/j.ijmultiphaseflow.2018.05.011_bib0005) 2002; 360 Huang (10.1016/j.ijmultiphaseflow.2018.05.011_bib0017) 2012; 692 Ouchene (10.1016/j.ijmultiphaseflow.2018.05.011_bib0029) 2015; 113 Ladd (10.1016/j.ijmultiphaseflow.2018.05.011_bib0023) 2001; 104 Beetstra (10.1016/j.ijmultiphaseflow.2018.05.011_bib0003) 2007; 53 Di Felice (10.1016/j.ijmultiphaseflow.2018.05.011_bib0006) 1994; 20 Powell (10.1016/j.ijmultiphaseflow.2018.05.011_bib0031) 1964; 7 El Khoury (10.1016/j.ijmultiphaseflow.2018.05.011_bib0008) 2012; 701 Leith (10.1016/j.ijmultiphaseflow.2018.05.011_bib0025) 1987; 6 Hölzer (10.1016/j.ijmultiphaseflow.2018.05.011_bib0015) 2008; 184 Hilton (10.1016/j.ijmultiphaseflow.2018.05.011_bib0014) 2010; 65 Happel (10.1016/j.ijmultiphaseflow.2018.05.011_bib0011) 1983; 1 Jeffery (10.1016/j.ijmultiphaseflow.2018.05.011_bib0018) 1922; 102 Ladd (10.1016/j.ijmultiphaseflow.2018.05.011_bib0021) 1994; 271 Oberbeck (10.1016/j.ijmultiphaseflow.2018.05.011_bib0027) 1876; 81 Eitel-Amor (10.1016/j.ijmultiphaseflow.2018.05.011_bib0007) 2013; 75 Mei (10.1016/j.ijmultiphaseflow.2018.05.011_bib0026) 2002; 65 Pan (10.1016/j.ijmultiphaseflow.2018.05.011_bib0030) 2006; 35 Zastawny (10.1016/j.ijmultiphaseflow.2018.05.011_bib0037) 2012; 39 He (10.1016/j.ijmultiphaseflow.2018.05.011_bib0012) 1997; 88 Vakarelski (10.1016/j.ijmultiphaseflow.2018.05.011_bib0036) 2016; 117 Ganser (10.1016/j.ijmultiphaseflow.2018.05.011_bib0009) 1993; 77 Jiang (10.1016/j.ijmultiphaseflow.2018.05.011_bib0019) 2014; 26 Haider (10.1016/j.ijmultiphaseflow.2018.05.011_bib0010) 1989; 58 Ouchene (10.1016/j.ijmultiphaseflow.2018.05.011_bib0028) 2016; 303 Hecht (10.1016/j.ijmultiphaseflow.2018.05.011_bib0013) 2010; 2010 Ladd (10.1016/j.ijmultiphaseflow.2018.05.011_bib0022) 1994; 271 |
References_xml | – volume: 701 start-page: 98 year: 2012 end-page: 136 ident: bib0008 article-title: Wakes behind a prolate spheroid in crossflow publication-title: J. Fluid Mech. – volume: 117 start-page: 114503 year: 2016 ident: bib0036 article-title: Leidenfrost vapor layers reduce drag without the crisis in high viscosity liquids publication-title: Phys. Rev. Lett. – volume: 271 start-page: 285 year: 1994 end-page: 309 ident: bib0021 article-title: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. part 1. Theoretical foundation publication-title: J. Fluid Mech. – volume: 2010 start-page: P01018 year: 2010 ident: bib0013 article-title: Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann simulations publication-title: J. Stat. Mech. Theory Exp. – volume: 65 start-page: 1584 year: 2010 end-page: 1596 ident: bib0014 article-title: Dynamics of gas–solid fluidised beds with non-spherical particle geometry publication-title: Chem. Eng. Sci. – volume: 35 start-page: 898 year: 2006 end-page: 909 ident: bib0030 article-title: An evaluation of lattice Boltzmann schemes for porous medium flow simulation publication-title: Comput. fluids – volume: 88 start-page: 927 year: 1997 end-page: 944 ident: bib0012 article-title: Lattice Boltzmann model for the incompressible Navier–Stokes equation publication-title: J. Stat. Phys. – volume: 303 start-page: 33 year: 2016 end-page: 43 ident: bib0028 article-title: A new set of correlations of drag, lift and torque coefficients for non-spherical particles and large Reynolds numbers publication-title: Powder Technol. – volume: 113 start-page: 53 year: 2015 end-page: 64 ident: bib0029 article-title: Drag, lift and torque coefficients for ellipsoidal particles: from low to moderate particle Reynolds numbers publication-title: Comput. Fluids – volume: 9 start-page: 1591 year: 1997 end-page: 1598 ident: bib0038 article-title: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model publication-title: Phys. Fluids (1994-present) – volume: 75 start-page: 127 year: 2013 end-page: 139 ident: bib0007 article-title: A lattice-Boltzmann method with hierarchically refined meshes publication-title: Comput. Fluids – volume: 1 year: 1983 ident: bib0011 publication-title: Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media – volume: 104 start-page: 1191 year: 2001 end-page: 1251 ident: bib0023 article-title: Lattice-Boltzmann simulations of particle-fluid suspensions publication-title: J. Stat. Phys. – volume: 58 start-page: 63 year: 1989 end-page: 70 ident: bib0010 article-title: Drag coefficient and terminal velocity of spherical and nonspherical particles publication-title: Powder Technol. – volume: 7 start-page: 155 year: 1964 end-page: 162 ident: bib0031 article-title: An efficient method for finding the minimum of a function of several variables without calculating derivatives publication-title: Comput. J. – volume: 81 start-page: 62 year: 1876 end-page: 80 ident: bib0027 article-title: Über stationäre flüssigkeitsbewegungen mit berücksichtigung der inneren reibung. publication-title: Journal für die reine und angewandte Mathematik – volume: 26 start-page: 113602 year: 2014 ident: bib0019 article-title: The laminar wake behind a 6: 1 prolate spheroid at 45 incidence angle publication-title: Phys. Fluids (1994-present) – volume: 820 year: 2017 ident: bib0035 article-title: On the orientational dependence of drag experienced by spheroids publication-title: J. Fluid Mech. – volume: 39 start-page: 227 year: 2012 end-page: 239 ident: bib0037 article-title: Derivation of drag and lift force and torque coefficients for non-spherical particles in flows publication-title: Int. J. Multiph. Flow – volume: 38 start-page: 572 year: 2009 end-page: 589 ident: bib0016 article-title: Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles publication-title: Comput. Fluids – volume: 65 start-page: 041203 year: 2002 ident: bib0026 article-title: Force evaluation in the lattice Boltzmann method involving curved geometry publication-title: Phys. Rev. E – volume: 249 start-page: 463 year: 2013 end-page: 474 ident: bib0033 article-title: New correlations for heat and fluid flow past ellipsoidal and cubic particles at different angles of attack publication-title: Powder Technol. – volume: 20 start-page: 153 year: 1994 end-page: 159 ident: bib0006 article-title: The Voidage function for fluid-particle interaction systems publication-title: Int. J. Multiph. Flow – volume: 271 start-page: 311 year: 1994 end-page: 339 ident: bib0022 article-title: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. part 2. Numerical results publication-title: J. Fluid Mech. – volume: 373 start-page: 287 year: 1998 end-page: 311 ident: bib0001 article-title: Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation publication-title: J. Fluid Mech. – year: 2008 ident: bib0002 publication-title: Real-Time Rendering – volume: 184 start-page: 406 year: 2003 end-page: 421 ident: bib0024 article-title: Lattice Boltzmann method for moving boundaries publication-title: J. Comput. Phys. – volume: 184 start-page: 361 year: 2008 end-page: 365 ident: bib0015 article-title: New simple correlation formula for the drag coefficient of non-spherical particles publication-title: Powder Technol. – volume: 6 start-page: 153 year: 1987 end-page: 161 ident: bib0025 article-title: Drag on nonspherical objects publication-title: Aerosol. Sci. Technol. – volume: 77 start-page: 143 year: 1993 end-page: 152 ident: bib0009 article-title: A rational approach to drag prediction of spherical and nonspherical particles publication-title: Powder Technol. – volume: 833 start-page: 599 year: 2017 end-page: 630 ident: bib0034 article-title: Lattice Boltzmann simulations of low-Reynolds-number flows past fluidized spheres: effect of inhomogeneities on the drag force publication-title: J. Fluid Mech. – volume: 102 start-page: 161 year: 1922 end-page: 179 ident: bib0018 article-title: The motion of ellipsoidal particles immersed in a viscous fluid publication-title: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences – volume: 53 start-page: 489 year: 2007 end-page: 501 ident: bib0003 article-title: Drag force of intermediate Reynolds number flow past mono-and bidisperse arrays of spheres publication-title: AlChE J. – volume: 692 start-page: 369 year: 2012 end-page: 394 ident: bib0017 article-title: Rotation of spheroidal particles in Couette flows publication-title: J. Fluid Mech. – volume: 13 start-page: 3452 year: 2001 end-page: 3459 ident: bib0004 article-title: Momentum transfer of a Boltzmann-lattice fluid with boundaries publication-title: Phys. Fluids (1994-present) – volume: 55 start-page: 1343 year: 2012 end-page: 1354 ident: bib0032 article-title: Drag forces and heat transfer coefficients for spherical, cuboidal and ellipsoidal particles in cross flow at sub-critical Reynolds numbers publication-title: Int. J. Heat Mass Transf. – volume: 360 start-page: 437 year: 2002 end-page: 451 ident: bib0005 article-title: Multiple–relaxation–time lattice Boltzmann models in three dimensions publication-title: Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. – volume: 294 start-page: 236 year: 2016 end-page: 251 ident: bib0020 article-title: Direct numerical simulation of coupled fluid flow and heat transfer for single particles and particle packings by a LBM-approach publication-title: Powder Technol. – volume: 1 year: 1983 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0011 – volume: 360 start-page: 437 issue: 1792 year: 2002 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0005 article-title: Multiple–relaxation–time lattice Boltzmann models in three dimensions publication-title: Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. doi: 10.1098/rsta.2001.0955 – volume: 77 start-page: 143 issue: 2 year: 1993 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0009 article-title: A rational approach to drag prediction of spherical and nonspherical particles publication-title: Powder Technol. doi: 10.1016/0032-5910(93)80051-B – volume: 38 start-page: 572 issue: 3 year: 2009 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0016 article-title: Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2008.06.001 – volume: 249 start-page: 463 year: 2013 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0033 article-title: New correlations for heat and fluid flow past ellipsoidal and cubic particles at different angles of attack publication-title: Powder Technol. doi: 10.1016/j.powtec.2013.08.044 – volume: 833 start-page: 599 year: 2017 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0034 article-title: Lattice Boltzmann simulations of low-Reynolds-number flows past fluidized spheres: effect of inhomogeneities on the drag force publication-title: J. Fluid Mech. doi: 10.1017/jfm.2017.705 – volume: 102 start-page: 161 year: 1922 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0018 article-title: The motion of ellipsoidal particles immersed in a viscous fluid – volume: 117 start-page: 114503 issue: 11 year: 2016 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0036 article-title: Leidenfrost vapor layers reduce drag without the crisis in high viscosity liquids publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.114503 – volume: 373 start-page: 287 issue: 1 year: 1998 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0001 article-title: Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation publication-title: J. Fluid Mech. doi: 10.1017/S0022112098002493 – volume: 20 start-page: 153 issue: 1 year: 1994 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0006 article-title: The Voidage function for fluid-particle interaction systems publication-title: Int. J. Multiph. Flow doi: 10.1016/0301-9322(94)90011-6 – volume: 13 start-page: 3452 issue: 11 year: 2001 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0004 article-title: Momentum transfer of a Boltzmann-lattice fluid with boundaries publication-title: Phys. Fluids (1994-present) doi: 10.1063/1.1399290 – volume: 692 start-page: 369 year: 2012 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0017 article-title: Rotation of spheroidal particles in Couette flows publication-title: J. Fluid Mech. doi: 10.1017/jfm.2011.519 – volume: 271 start-page: 285 issue: 1 year: 1994 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0021 article-title: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. part 1. Theoretical foundation publication-title: J. Fluid Mech. doi: 10.1017/S0022112094001771 – volume: 104 start-page: 1191 issue: 5–6 year: 2001 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0023 article-title: Lattice-Boltzmann simulations of particle-fluid suspensions publication-title: J. Stat. Phys. doi: 10.1023/A:1010414013942 – volume: 65 start-page: 1584 issue: 5 year: 2010 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0014 article-title: Dynamics of gas–solid fluidised beds with non-spherical particle geometry publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2009.10.028 – volume: 81 start-page: 62 year: 1876 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0027 article-title: Über stationäre flüssigkeitsbewegungen mit berücksichtigung der inneren reibung. publication-title: Journal für die reine und angewandte Mathematik – volume: 820 year: 2017 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0035 article-title: On the orientational dependence of drag experienced by spheroids publication-title: J. Fluid Mech. doi: 10.1017/jfm.2017.239 – volume: 26 start-page: 113602 issue: 11 year: 2014 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0019 article-title: The laminar wake behind a 6: 1 prolate spheroid at 45 incidence angle publication-title: Phys. Fluids (1994-present) doi: 10.1063/1.4902015 – volume: 55 start-page: 1343 issue: 4 year: 2012 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0032 article-title: Drag forces and heat transfer coefficients for spherical, cuboidal and ellipsoidal particles in cross flow at sub-critical Reynolds numbers publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2011.09.005 – volume: 2010 start-page: P01018 issue: 01 year: 2010 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0013 article-title: Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann simulations publication-title: J. Stat. Mech. Theory Exp. doi: 10.1088/1742-5468/2010/01/P01018 – volume: 88 start-page: 927 issue: 3–4 year: 1997 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0012 article-title: Lattice Boltzmann model for the incompressible Navier–Stokes equation publication-title: J. Stat. Phys. doi: 10.1023/B:JOSS.0000015179.12689.e4 – volume: 6 start-page: 153 issue: 2 year: 1987 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0025 article-title: Drag on nonspherical objects publication-title: Aerosol. Sci. Technol. doi: 10.1080/02786828708959128 – volume: 65 start-page: 041203 issue: 4 year: 2002 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0026 article-title: Force evaluation in the lattice Boltzmann method involving curved geometry publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.65.041203 – volume: 701 start-page: 98 year: 2012 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0008 article-title: Wakes behind a prolate spheroid in crossflow publication-title: J. Fluid Mech. doi: 10.1017/jfm.2012.135 – year: 2008 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0002 – volume: 7 start-page: 155 issue: 2 year: 1964 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0031 article-title: An efficient method for finding the minimum of a function of several variables without calculating derivatives publication-title: Comput. J. doi: 10.1093/comjnl/7.2.155 – volume: 53 start-page: 489 issue: 2 year: 2007 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0003 article-title: Drag force of intermediate Reynolds number flow past mono-and bidisperse arrays of spheres publication-title: AlChE J. doi: 10.1002/aic.11065 – volume: 303 start-page: 33 year: 2016 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0028 article-title: A new set of correlations of drag, lift and torque coefficients for non-spherical particles and large Reynolds numbers publication-title: Powder Technol. doi: 10.1016/j.powtec.2016.07.067 – volume: 271 start-page: 311 year: 1994 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0022 article-title: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. part 2. Numerical results publication-title: J. Fluid Mech. doi: 10.1017/S0022112094001783 – volume: 294 start-page: 236 year: 2016 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0020 article-title: Direct numerical simulation of coupled fluid flow and heat transfer for single particles and particle packings by a LBM-approach publication-title: Powder Technol. doi: 10.1016/j.powtec.2016.02.038 – volume: 184 start-page: 406 issue: 2 year: 2003 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0024 article-title: Lattice Boltzmann method for moving boundaries publication-title: J. Comput. Phys. doi: 10.1016/S0021-9991(02)00022-0 – volume: 184 start-page: 361 issue: 3 year: 2008 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0015 article-title: New simple correlation formula for the drag coefficient of non-spherical particles publication-title: Powder Technol. doi: 10.1016/j.powtec.2007.08.021 – volume: 113 start-page: 53 year: 2015 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0029 article-title: Drag, lift and torque coefficients for ellipsoidal particles: from low to moderate particle Reynolds numbers publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2014.12.005 – volume: 58 start-page: 63 issue: 1 year: 1989 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0010 article-title: Drag coefficient and terminal velocity of spherical and nonspherical particles publication-title: Powder Technol. doi: 10.1016/0032-5910(89)80008-7 – volume: 39 start-page: 227 year: 2012 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0037 article-title: Derivation of drag and lift force and torque coefficients for non-spherical particles in flows publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2011.09.004 – volume: 9 start-page: 1591 issue: 6 year: 1997 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0038 article-title: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model publication-title: Phys. Fluids (1994-present) doi: 10.1063/1.869307 – volume: 75 start-page: 127 year: 2013 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0007 article-title: A lattice-Boltzmann method with hierarchically refined meshes publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2013.01.013 – volume: 35 start-page: 898 issue: 8 year: 2006 ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0030 article-title: An evaluation of lattice Boltzmann schemes for porous medium flow simulation publication-title: Comput. fluids doi: 10.1016/j.compfluid.2005.03.008 |
SSID | ssj0005743 |
Score | 2.5975754 |
Snippet | •Hydrodynamic drag, lift and torque correlations for non-spherical particles.•Three types of axisymmetric non-spherical particles are... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 325 |
SubjectTerms | Force and torque correlation Lattice Boltzmann method Non-spherical particles |
Title | Drag, lift and torque correlations for non-spherical particles from Stokes limit to high Reynolds numbers |
URI | https://dx.doi.org/10.1016/j.ijmultiphaseflow.2018.05.011 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEJ4QjUYPRlEjPsgejCcrlC59HDwQlKBGDiIJt2Z3u9ViAwRqjBd_uzN9KBoPHLy1zexmMzudR_LNNwCnDaGUi4HX0FpYBre5Y0ibS4MLq64wouhGyq5_37O7A347bA5L0C56YQhWmfv-zKen3jr_Usu1WZtGUa1PyTxmH5hTo526aRs15w5Z-cXHAswjA9mTsEHS63D2jfGKRhls7xkjRhhP3gjq5WZMnubfgWoh-HS2YSvPGlkrO9gOlPS4DJsLXIJlWEuxnGq-C9HVTDydszgKEybGAcOqGp0_UzSHI0e-MUxVGRb-xpxYBeie2LSAyDHqOGH9ZPKCzzH1P-EOjGiN2YN-H0_iYM6yOSLzPRh0rh_bXSOfqGAorBMTrBMDLrVpC_pTZaikCixLes160FR4OZ7G6sUVbiil8pQd1qWkYeS20-C2UFipWfuwgofTB8BMGXBPobTiHg9MlNdWKBxLm6ZwXWFW4LJQn69yunGaehH7Ba5s5P9Wv0_q9-tNH9VfAedr_TQj3lh6Zau4Lf-HKfkYJZbc4_Af9jiCDXrLAGnHsJLMXvUJZjCJrKYmWoXV1s1dt_cJMkf3Aw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB6k4usgWhXf7kE8Gdo0mzQ5eChqia8erIK3ZXez0dTQFhMR_70zTeILDz14C8nOssxO5gHffANw2JJa-xh4LWOkY3GPty3lcWVx6TQ1RhTTmrDr3_S88J5fPrgPM3Ba9cIQrLL0_YVPn3jr8k2j1GZjnCSNPiXzmH1gTo126lMb9SyxU7k1mO1cXIW9L6RHgbOn9RYJzMPRF8wrGRTIvScMGnE6eiO0l1-Qedp_x6pv8ae7Astl4sg6xdlWYcYM67D0jU6wDnMTOKfO1iA5e5GPxyxN4pzJYcSwsEb_zzSN4ijBbwyzVYa1v5URsQBdFRtXKDlGTSesn4-e8TmlFijcgRGzMbs178NRGmWsGCWSrcN99_zuNLTKoQqWxlIxx1Ix4srYnqSfVcVa6chxVOA2I1fj_QQGCxhf-rFSOtBe3FSK5pF77Rb3pMZizdmAGh7ObAKzVcQDjas1D3hk43rjxLLtGNuWvi_tLTip1Cd0yThOgy9SUUHLBuK3-gWpXzRdgerfgvan_Ljg3phaslPdlvhhTQIDxZR7bP_DHgewEN7dXIvri97VDizSlwKftgu1_OXV7GFCk6v90mA_AJdj-bQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drag%2C+lift+and+torque+correlations+for+non-spherical+particles+from+Stokes+limit+to+high+Reynolds+numbers&rft.jtitle=International+journal+of+multiphase+flow&rft.au=Sanjeevi%2C+Sathish+K.P.&rft.au=Kuipers%2C+J.A.M.&rft.au=Padding%2C+Johan+T.&rft.date=2018-09-01&rft.issn=0301-9322&rft.volume=106&rft.spage=325&rft.epage=337&rft_id=info:doi/10.1016%2Fj.ijmultiphaseflow.2018.05.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijmultiphaseflow_2018_05_011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-9322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-9322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-9322&client=summon |