Drag, lift and torque correlations for non-spherical particles from Stokes limit to high Reynolds numbers

•Hydrodynamic drag, lift and torque correlations for non-spherical particles.•Three types of axisymmetric non-spherical particles are investigated.•Correlations take into account expected physics at low and high Reynolds number.•Correlations are valid in a larger range of Reynolds numbers than previ...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of multiphase flow Vol. 106; pp. 325 - 337
Main Authors Sanjeevi, Sathish K.P., Kuipers, J.A.M., Padding, Johan T.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2018
Subjects
Online AccessGet full text
ISSN0301-9322
1879-3533
DOI10.1016/j.ijmultiphaseflow.2018.05.011

Cover

Loading…
Abstract •Hydrodynamic drag, lift and torque correlations for non-spherical particles.•Three types of axisymmetric non-spherical particles are investigated.•Correlations take into account expected physics at low and high Reynolds number.•Correlations are valid in a larger range of Reynolds numbers than previous works. Accurate direct numerical simulations are performed to determine the drag, lift and torque coefficients of non-spherical particles. The numerical simulations are performed using the lattice Boltzmann method with multi-relaxation time. The motivation for this work is the need for accurate drag, lift and torque correlations for high Re regimes, which are encountered in Euler-Lagrangian simulations of fluidization and pneumatic conveying of larger non-spherical particles. The simulations are performed in the Reynolds number range 0.1 ≤ Re ≤ 2000 for different incident angles ϕ. Different tests are performed to analyse the influence of grid resolution and confinement effects for different Re. The measured drag, lift and torque coefficients are utilized to derive accurate correlations for specific non-spherical particle shapes, which can be used in unresolved simulations. The functional forms for the correlations are chosen to agree with the expected physics at Stokes flow as well as the observed leveling off of the drag coefficient at high Re flows. Therefore the fits can be extended to regimes outside the Re regimes simulated. We observe sine-squared scaling of the drag coefficient for the particles tested even at Re=2000 with CD,ϕ=CD,ϕ=0∘+(CD,ϕ=90∘−CD,ϕ=0∘)sin2ϕ. Furthermore, we also observe that the lift coefficient approximately scales as CL,ϕ=(CD,ϕ=90∘−CD,ϕ=0∘)sinϕcosϕ for the elongated particles. The current work would greatly improve the accuracy of Euler-Lagrangian simulations of larger non-spherical particles considering the existing literature is mainly limited to steady flow regimes and lower Re.
AbstractList •Hydrodynamic drag, lift and torque correlations for non-spherical particles.•Three types of axisymmetric non-spherical particles are investigated.•Correlations take into account expected physics at low and high Reynolds number.•Correlations are valid in a larger range of Reynolds numbers than previous works. Accurate direct numerical simulations are performed to determine the drag, lift and torque coefficients of non-spherical particles. The numerical simulations are performed using the lattice Boltzmann method with multi-relaxation time. The motivation for this work is the need for accurate drag, lift and torque correlations for high Re regimes, which are encountered in Euler-Lagrangian simulations of fluidization and pneumatic conveying of larger non-spherical particles. The simulations are performed in the Reynolds number range 0.1 ≤ Re ≤ 2000 for different incident angles ϕ. Different tests are performed to analyse the influence of grid resolution and confinement effects for different Re. The measured drag, lift and torque coefficients are utilized to derive accurate correlations for specific non-spherical particle shapes, which can be used in unresolved simulations. The functional forms for the correlations are chosen to agree with the expected physics at Stokes flow as well as the observed leveling off of the drag coefficient at high Re flows. Therefore the fits can be extended to regimes outside the Re regimes simulated. We observe sine-squared scaling of the drag coefficient for the particles tested even at Re=2000 with CD,ϕ=CD,ϕ=0∘+(CD,ϕ=90∘−CD,ϕ=0∘)sin2ϕ. Furthermore, we also observe that the lift coefficient approximately scales as CL,ϕ=(CD,ϕ=90∘−CD,ϕ=0∘)sinϕcosϕ for the elongated particles. The current work would greatly improve the accuracy of Euler-Lagrangian simulations of larger non-spherical particles considering the existing literature is mainly limited to steady flow regimes and lower Re.
Author Sanjeevi, Sathish K.P.
Padding, Johan T.
Kuipers, J.A.M.
Author_xml – sequence: 1
  givenname: Sathish K.P.
  surname: Sanjeevi
  fullname: Sanjeevi, Sathish K.P.
  organization: Process and Energy Department, Delft University of Technology, Leeghwaterstraat 39, Delft 2628 CB, The Netherlands
– sequence: 2
  givenname: J.A.M.
  surname: Kuipers
  fullname: Kuipers, J.A.M.
  organization: Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
– sequence: 3
  givenname: Johan T.
  surname: Padding
  fullname: Padding, Johan T.
  email: J.T.Padding@tudelft.nl
  organization: Process and Energy Department, Delft University of Technology, Leeghwaterstraat 39, Delft 2628 CB, The Netherlands
BookMark eNqN0EtLAzEQwPEgFayP75CTJ3dNNvu8CFKfIAg-ziHJzrZTs5uapEq_vVvryVNPExj4hfkfk8ngBiDknLOUM15eLlNc9msbcbVQATrrvtOM8TplRco4PyBTXldNIgohJmTKBONJI7LsiByHsGSMFVUupgRvvJpfUItdpGpoaXT-cw3UOO_BqohuCLRzno5_J2G1AI9GWbpSPqKxMO686-lrdB_j22KPcRToAucL-gKbwdk20GHda_DhlBx2ygY4-5sn5P3u9m32kDw93z_Orp8Sk7MsJiVvcw28VHlWVLoz2rRC6KZgbWGUYA3UVVGrutPaNKbsmNbbM8sqy0tlmiwXJ-Rq5xrvQvDQyZXHXvmN5Exuw8ml_B9ObsNJVsgx3Ajc_AMMxt8U0Su0-zMPOwbGY78QvAwGYTDQogcTZetwX-oHOqmehA
CitedBy_id crossref_primary_10_1002_aic_18162
crossref_primary_10_1016_j_powtec_2022_117972
crossref_primary_10_1007_s00162_022_00627_w
crossref_primary_10_5194_acp_22_12727_2022
crossref_primary_10_1016_j_powtec_2019_09_088
crossref_primary_10_1063_5_0241431
crossref_primary_10_1103_PhysRevFluids_6_044306
crossref_primary_10_1016_j_apt_2021_02_016
crossref_primary_10_1016_j_powtec_2024_120068
crossref_primary_10_1016_j_cej_2024_155192
crossref_primary_10_3390_pr12112473
crossref_primary_10_1016_j_ces_2022_118335
crossref_primary_10_2139_ssrn_3971350
crossref_primary_10_1016_j_ces_2022_118299
crossref_primary_10_1016_j_powtec_2022_117170
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120730
crossref_primary_10_3390_ma15124215
crossref_primary_10_1002_aic_16895
crossref_primary_10_1016_j_cesx_2020_100079
crossref_primary_10_1103_PhysRevFluids_7_074401
crossref_primary_10_1007_s10013_021_00477_9
crossref_primary_10_1016_j_powtec_2024_119749
crossref_primary_10_1515_cppm_2020_0103
crossref_primary_10_1016_j_powtec_2020_11_083
crossref_primary_10_1063_5_0082653
crossref_primary_10_1016_j_ijheatmasstransfer_2019_118742
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104283
crossref_primary_10_1016_j_jksues_2021_10_003
crossref_primary_10_1103_PhysRevE_105_015306
crossref_primary_10_1016_j_powtec_2022_117727
crossref_primary_10_1016_j_ces_2024_120145
crossref_primary_10_1016_j_powtec_2020_11_003
crossref_primary_10_1103_PhysRevFluids_6_024302
crossref_primary_10_1016_j_applthermaleng_2024_123815
crossref_primary_10_1063_5_0209670
crossref_primary_10_1016_j_cej_2022_136325
crossref_primary_10_1016_j_compfluid_2019_104323
crossref_primary_10_1017_jfm_2023_942
crossref_primary_10_1002_aic_17211
crossref_primary_10_1016_j_tsep_2023_101721
crossref_primary_10_1017_jfm_2023_420
crossref_primary_10_1016_j_cma_2024_116994
crossref_primary_10_1016_j_powtec_2022_117553
crossref_primary_10_1016_j_oceaneng_2023_113789
crossref_primary_10_3390_pr11051369
crossref_primary_10_1016_j_ces_2019_08_003
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103519
crossref_primary_10_1016_j_powtec_2024_120241
crossref_primary_10_1017_jfm_2024_562
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103238
crossref_primary_10_1103_PhysRevE_103_023304
crossref_primary_10_1016_j_ces_2022_117540
crossref_primary_10_1063_5_0086310
crossref_primary_10_1063_5_0093232
crossref_primary_10_1002_aic_16594
crossref_primary_10_1016_j_fuel_2024_131743
crossref_primary_10_1016_j_partic_2024_12_006
crossref_primary_10_1016_j_cej_2019_05_194
crossref_primary_10_1002_admi_201902169
crossref_primary_10_1007_s11440_024_02472_z
crossref_primary_10_1016_j_ijmultiphaseflow_2024_105111
crossref_primary_10_1002_aic_17040
crossref_primary_10_1016_j_apt_2023_104136
crossref_primary_10_1016_j_powtec_2021_05_012
crossref_primary_10_1063_5_0025816
crossref_primary_10_1088_2631_8695_adc074
crossref_primary_10_1021_acsomega_1c02053
crossref_primary_10_3390_w17050736
crossref_primary_10_1002_aic_17157
crossref_primary_10_1063_5_0223428
crossref_primary_10_1063_5_0234031
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104996
crossref_primary_10_1016_j_powtec_2021_07_050
crossref_primary_10_1016_j_cherd_2023_10_030
crossref_primary_10_1016_j_proci_2022_07_138
crossref_primary_10_2139_ssrn_4159665
crossref_primary_10_1017_jfm_2019_516
crossref_primary_10_1109_ACCESS_2025_3550720
crossref_primary_10_1115_1_4057019
crossref_primary_10_1016_j_renene_2019_04_074
crossref_primary_10_1016_j_enganabound_2019_08_020
crossref_primary_10_1017_jfm_2023_610
crossref_primary_10_1016_j_addr_2022_114461
crossref_primary_10_1016_j_cesx_2019_100019
crossref_primary_10_1016_j_powtec_2024_119428
crossref_primary_10_31857_S1024708423600069
crossref_primary_10_1016_j_physa_2022_128298
crossref_primary_10_1016_j_energy_2024_134321
crossref_primary_10_1016_j_ces_2018_10_009
crossref_primary_10_1016_j_enconman_2022_116561
crossref_primary_10_1016_j_powtec_2024_120532
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103949
crossref_primary_10_1016_j_compfluid_2021_104934
crossref_primary_10_1017_jfm_2020_482
crossref_primary_10_1021_acs_iecr_2c01008
crossref_primary_10_1016_j_cej_2022_139637
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103941
crossref_primary_10_1063_5_0202281
crossref_primary_10_1007_s00707_018_2325_x
crossref_primary_10_1016_j_powtec_2024_119783
crossref_primary_10_1134_S0015462823600487
crossref_primary_10_3390_w16131881
crossref_primary_10_1016_j_compfluid_2023_106166
crossref_primary_10_1016_j_ces_2021_116469
crossref_primary_10_1016_j_seppur_2021_119250
crossref_primary_10_1063_5_0165555
crossref_primary_10_1063_5_0058516
crossref_primary_10_1002_cite_202200121
crossref_primary_10_1016_j_conbuildmat_2022_127862
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104692
crossref_primary_10_1063_5_0248123
crossref_primary_10_1016_j_euromechflu_2024_07_008
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104579
crossref_primary_10_1063_5_0230284
crossref_primary_10_1016_j_powtec_2023_118280
crossref_primary_10_1016_j_ces_2023_119288
crossref_primary_10_1063_1_5116183
crossref_primary_10_1002_aic_16951
crossref_primary_10_1016_j_resp_2021_103769
crossref_primary_10_1063_5_0097916
crossref_primary_10_1063_5_0186621
crossref_primary_10_1016_j_cesx_2019_100015
crossref_primary_10_1063_5_0011618
crossref_primary_10_1063_5_0200136
crossref_primary_10_1016_j_partic_2024_11_005
crossref_primary_10_1016_j_ijmultiphaseflow_2025_105176
crossref_primary_10_1016_j_ijmultiphaseflow_2018_12_003
crossref_primary_10_1021_acs_energyfuels_0c03440
crossref_primary_10_1021_acs_iecr_0c03045
crossref_primary_10_1016_j_cej_2023_142969
crossref_primary_10_1103_PhysRevE_103_013303
crossref_primary_10_1016_j_cej_2021_130391
crossref_primary_10_1063_5_0085270
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103565
crossref_primary_10_1063_5_0019745
crossref_primary_10_1007_s40430_020_02345_y
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103263
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104906
crossref_primary_10_1016_j_powtec_2023_118290
crossref_primary_10_1016_j_jvolgeores_2024_108051
crossref_primary_10_1016_j_powtec_2022_117341
crossref_primary_10_1016_j_powtec_2024_119561
Cites_doi 10.1098/rsta.2001.0955
10.1016/0032-5910(93)80051-B
10.1016/j.compfluid.2008.06.001
10.1016/j.powtec.2013.08.044
10.1017/jfm.2017.705
10.1103/PhysRevLett.117.114503
10.1017/S0022112098002493
10.1016/0301-9322(94)90011-6
10.1063/1.1399290
10.1017/jfm.2011.519
10.1017/S0022112094001771
10.1023/A:1010414013942
10.1016/j.ces.2009.10.028
10.1017/jfm.2017.239
10.1063/1.4902015
10.1016/j.ijheatmasstransfer.2011.09.005
10.1088/1742-5468/2010/01/P01018
10.1023/B:JOSS.0000015179.12689.e4
10.1080/02786828708959128
10.1103/PhysRevE.65.041203
10.1017/jfm.2012.135
10.1093/comjnl/7.2.155
10.1002/aic.11065
10.1016/j.powtec.2016.07.067
10.1017/S0022112094001783
10.1016/j.powtec.2016.02.038
10.1016/S0021-9991(02)00022-0
10.1016/j.powtec.2007.08.021
10.1016/j.compfluid.2014.12.005
10.1016/0032-5910(89)80008-7
10.1016/j.ijmultiphaseflow.2011.09.004
10.1063/1.869307
10.1016/j.compfluid.2013.01.013
10.1016/j.compfluid.2005.03.008
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ijmultiphaseflow.2018.05.011
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-3533
EndPage 337
ExternalDocumentID 10_1016_j_ijmultiphaseflow_2018_05_011
S0301932217307851
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
TN5
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c402t-61d4be16a4257bfcbcd33b950d5ca309e8758a8fbbc9c6f0bb187967246ac9243
IEDL.DBID .~1
ISSN 0301-9322
IngestDate Thu Apr 24 23:11:56 EDT 2025
Tue Jul 01 02:45:06 EDT 2025
Fri Feb 23 02:45:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Non-spherical particles
Force and torque correlation
Lattice Boltzmann method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-61d4be16a4257bfcbcd33b950d5ca309e8758a8fbbc9c6f0bb187967246ac9243
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_ijmultiphaseflow_2018_05_011
crossref_citationtrail_10_1016_j_ijmultiphaseflow_2018_05_011
elsevier_sciencedirect_doi_10_1016_j_ijmultiphaseflow_2018_05_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2018
2018-09-00
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: September 2018
PublicationDecade 2010
PublicationTitle International journal of multiphase flow
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Huang, Yang, Krafczyk, Lu (bib0017) 2012; 692
Hilton, Mason, Cleary (bib0014) 2010; 65
Richter, Nikrityuk (bib0032) 2012; 55
Di Felice (bib0006) 1994; 20
Beetstra, Van der Hoef, Kuipers (bib0003) 2007; 53
El Khoury, Andersson, Pettersen (bib0008) 2012; 701
d’Humières, Ginzburg, Krafczyk, Lallemand, Luo (bib0005) 2002; 360
Richter, Nikrityuk (bib0033) 2013; 249
Oberbeck (bib0027) 1876; 81
Vakarelski, Berry, Chan, Thoroddsen (bib0036) 2016; 117
Zou, He (bib0038) 1997; 9
Akenine-Möller, Haines, Hoffman (bib0002) 2008
Eitel-Amor, Meinke, Schröder (bib0007) 2013; 75
Happel, Brenner (bib0011) 1983; 1
Sanjeevi, Padding (bib0035) 2017; 820
Ouchene, Khalij, Taniere, Arcen (bib0029) 2015; 113
Mei, Yu, Shyy, Luo (bib0026) 2002; 65
Powell (bib0031) 1964; 7
Hölzer, Sommerfeld (bib0015) 2008; 184
Ladd (bib0022) 1994; 271
Ouchene, Khalij, Arcen, Tanière (bib0028) 2016; 303
He, Luo (bib0012) 1997; 88
Bouzidi, Firdaouss, Lallemand (bib0004) 2001; 13
Leith (bib0025) 1987; 6
Hölzer, Sommerfeld (bib0016) 2009; 38
Lallemand, Luo (bib0024) 2003; 184
Ladd, Verberg (bib0023) 2001; 104
Ladd (bib0021) 1994; 271
Hecht, Harting (bib0013) 2010; 2010
Rubinstein, Ozel, Yin, Derksen, Sundaresan (bib0034) 2017; 833
Haider, Levenspiel (bib0010) 1989; 58
Ganser (bib0009) 1993; 77
Zastawny, Mallouppas, Zhao, Van Wachem (bib0037) 2012; 39
Jiang, Gallardo, Andersson (bib0019) 2014; 26
Kruggel-Emden, Kravets, Suryanarayana, Jasevicius (bib0020) 2016; 294
Pan, Luo, Miller (bib0030) 2006; 35
Aidun, Lu, Ding (bib0001) 1998; 373
Jeffery (bib0018) 1922; 102
Kruggel-Emden (10.1016/j.ijmultiphaseflow.2018.05.011_bib0020) 2016; 294
Richter (10.1016/j.ijmultiphaseflow.2018.05.011_bib0032) 2012; 55
Sanjeevi (10.1016/j.ijmultiphaseflow.2018.05.011_bib0035) 2017; 820
Lallemand (10.1016/j.ijmultiphaseflow.2018.05.011_bib0024) 2003; 184
Bouzidi (10.1016/j.ijmultiphaseflow.2018.05.011_bib0004) 2001; 13
Rubinstein (10.1016/j.ijmultiphaseflow.2018.05.011_bib0034) 2017; 833
Zou (10.1016/j.ijmultiphaseflow.2018.05.011_bib0038) 1997; 9
Aidun (10.1016/j.ijmultiphaseflow.2018.05.011_bib0001) 1998; 373
Hölzer (10.1016/j.ijmultiphaseflow.2018.05.011_bib0016) 2009; 38
Akenine-Möller (10.1016/j.ijmultiphaseflow.2018.05.011_bib0002) 2008
Richter (10.1016/j.ijmultiphaseflow.2018.05.011_bib0033) 2013; 249
d’Humières (10.1016/j.ijmultiphaseflow.2018.05.011_bib0005) 2002; 360
Huang (10.1016/j.ijmultiphaseflow.2018.05.011_bib0017) 2012; 692
Ouchene (10.1016/j.ijmultiphaseflow.2018.05.011_bib0029) 2015; 113
Ladd (10.1016/j.ijmultiphaseflow.2018.05.011_bib0023) 2001; 104
Beetstra (10.1016/j.ijmultiphaseflow.2018.05.011_bib0003) 2007; 53
Di Felice (10.1016/j.ijmultiphaseflow.2018.05.011_bib0006) 1994; 20
Powell (10.1016/j.ijmultiphaseflow.2018.05.011_bib0031) 1964; 7
El Khoury (10.1016/j.ijmultiphaseflow.2018.05.011_bib0008) 2012; 701
Leith (10.1016/j.ijmultiphaseflow.2018.05.011_bib0025) 1987; 6
Hölzer (10.1016/j.ijmultiphaseflow.2018.05.011_bib0015) 2008; 184
Hilton (10.1016/j.ijmultiphaseflow.2018.05.011_bib0014) 2010; 65
Happel (10.1016/j.ijmultiphaseflow.2018.05.011_bib0011) 1983; 1
Jeffery (10.1016/j.ijmultiphaseflow.2018.05.011_bib0018) 1922; 102
Ladd (10.1016/j.ijmultiphaseflow.2018.05.011_bib0021) 1994; 271
Oberbeck (10.1016/j.ijmultiphaseflow.2018.05.011_bib0027) 1876; 81
Eitel-Amor (10.1016/j.ijmultiphaseflow.2018.05.011_bib0007) 2013; 75
Mei (10.1016/j.ijmultiphaseflow.2018.05.011_bib0026) 2002; 65
Pan (10.1016/j.ijmultiphaseflow.2018.05.011_bib0030) 2006; 35
Zastawny (10.1016/j.ijmultiphaseflow.2018.05.011_bib0037) 2012; 39
He (10.1016/j.ijmultiphaseflow.2018.05.011_bib0012) 1997; 88
Vakarelski (10.1016/j.ijmultiphaseflow.2018.05.011_bib0036) 2016; 117
Ganser (10.1016/j.ijmultiphaseflow.2018.05.011_bib0009) 1993; 77
Jiang (10.1016/j.ijmultiphaseflow.2018.05.011_bib0019) 2014; 26
Haider (10.1016/j.ijmultiphaseflow.2018.05.011_bib0010) 1989; 58
Ouchene (10.1016/j.ijmultiphaseflow.2018.05.011_bib0028) 2016; 303
Hecht (10.1016/j.ijmultiphaseflow.2018.05.011_bib0013) 2010; 2010
Ladd (10.1016/j.ijmultiphaseflow.2018.05.011_bib0022) 1994; 271
References_xml – volume: 701
  start-page: 98
  year: 2012
  end-page: 136
  ident: bib0008
  article-title: Wakes behind a prolate spheroid in crossflow
  publication-title: J. Fluid Mech.
– volume: 117
  start-page: 114503
  year: 2016
  ident: bib0036
  article-title: Leidenfrost vapor layers reduce drag without the crisis in high viscosity liquids
  publication-title: Phys. Rev. Lett.
– volume: 271
  start-page: 285
  year: 1994
  end-page: 309
  ident: bib0021
  article-title: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. part 1. Theoretical foundation
  publication-title: J. Fluid Mech.
– volume: 2010
  start-page: P01018
  year: 2010
  ident: bib0013
  article-title: Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann simulations
  publication-title: J. Stat. Mech. Theory Exp.
– volume: 65
  start-page: 1584
  year: 2010
  end-page: 1596
  ident: bib0014
  article-title: Dynamics of gas–solid fluidised beds with non-spherical particle geometry
  publication-title: Chem. Eng. Sci.
– volume: 35
  start-page: 898
  year: 2006
  end-page: 909
  ident: bib0030
  article-title: An evaluation of lattice Boltzmann schemes for porous medium flow simulation
  publication-title: Comput. fluids
– volume: 88
  start-page: 927
  year: 1997
  end-page: 944
  ident: bib0012
  article-title: Lattice Boltzmann model for the incompressible Navier–Stokes equation
  publication-title: J. Stat. Phys.
– volume: 303
  start-page: 33
  year: 2016
  end-page: 43
  ident: bib0028
  article-title: A new set of correlations of drag, lift and torque coefficients for non-spherical particles and large Reynolds numbers
  publication-title: Powder Technol.
– volume: 113
  start-page: 53
  year: 2015
  end-page: 64
  ident: bib0029
  article-title: Drag, lift and torque coefficients for ellipsoidal particles: from low to moderate particle Reynolds numbers
  publication-title: Comput. Fluids
– volume: 9
  start-page: 1591
  year: 1997
  end-page: 1598
  ident: bib0038
  article-title: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model
  publication-title: Phys. Fluids (1994-present)
– volume: 75
  start-page: 127
  year: 2013
  end-page: 139
  ident: bib0007
  article-title: A lattice-Boltzmann method with hierarchically refined meshes
  publication-title: Comput. Fluids
– volume: 1
  year: 1983
  ident: bib0011
  publication-title: Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media
– volume: 104
  start-page: 1191
  year: 2001
  end-page: 1251
  ident: bib0023
  article-title: Lattice-Boltzmann simulations of particle-fluid suspensions
  publication-title: J. Stat. Phys.
– volume: 58
  start-page: 63
  year: 1989
  end-page: 70
  ident: bib0010
  article-title: Drag coefficient and terminal velocity of spherical and nonspherical particles
  publication-title: Powder Technol.
– volume: 7
  start-page: 155
  year: 1964
  end-page: 162
  ident: bib0031
  article-title: An efficient method for finding the minimum of a function of several variables without calculating derivatives
  publication-title: Comput. J.
– volume: 81
  start-page: 62
  year: 1876
  end-page: 80
  ident: bib0027
  article-title: Über stationäre flüssigkeitsbewegungen mit berücksichtigung der inneren reibung.
  publication-title: Journal für die reine und angewandte Mathematik
– volume: 26
  start-page: 113602
  year: 2014
  ident: bib0019
  article-title: The laminar wake behind a 6: 1 prolate spheroid at 45 incidence angle
  publication-title: Phys. Fluids (1994-present)
– volume: 820
  year: 2017
  ident: bib0035
  article-title: On the orientational dependence of drag experienced by spheroids
  publication-title: J. Fluid Mech.
– volume: 39
  start-page: 227
  year: 2012
  end-page: 239
  ident: bib0037
  article-title: Derivation of drag and lift force and torque coefficients for non-spherical particles in flows
  publication-title: Int. J. Multiph. Flow
– volume: 38
  start-page: 572
  year: 2009
  end-page: 589
  ident: bib0016
  article-title: Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles
  publication-title: Comput. Fluids
– volume: 65
  start-page: 041203
  year: 2002
  ident: bib0026
  article-title: Force evaluation in the lattice Boltzmann method involving curved geometry
  publication-title: Phys. Rev. E
– volume: 249
  start-page: 463
  year: 2013
  end-page: 474
  ident: bib0033
  article-title: New correlations for heat and fluid flow past ellipsoidal and cubic particles at different angles of attack
  publication-title: Powder Technol.
– volume: 20
  start-page: 153
  year: 1994
  end-page: 159
  ident: bib0006
  article-title: The Voidage function for fluid-particle interaction systems
  publication-title: Int. J. Multiph. Flow
– volume: 271
  start-page: 311
  year: 1994
  end-page: 339
  ident: bib0022
  article-title: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. part 2. Numerical results
  publication-title: J. Fluid Mech.
– volume: 373
  start-page: 287
  year: 1998
  end-page: 311
  ident: bib0001
  article-title: Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation
  publication-title: J. Fluid Mech.
– year: 2008
  ident: bib0002
  publication-title: Real-Time Rendering
– volume: 184
  start-page: 406
  year: 2003
  end-page: 421
  ident: bib0024
  article-title: Lattice Boltzmann method for moving boundaries
  publication-title: J. Comput. Phys.
– volume: 184
  start-page: 361
  year: 2008
  end-page: 365
  ident: bib0015
  article-title: New simple correlation formula for the drag coefficient of non-spherical particles
  publication-title: Powder Technol.
– volume: 6
  start-page: 153
  year: 1987
  end-page: 161
  ident: bib0025
  article-title: Drag on nonspherical objects
  publication-title: Aerosol. Sci. Technol.
– volume: 77
  start-page: 143
  year: 1993
  end-page: 152
  ident: bib0009
  article-title: A rational approach to drag prediction of spherical and nonspherical particles
  publication-title: Powder Technol.
– volume: 833
  start-page: 599
  year: 2017
  end-page: 630
  ident: bib0034
  article-title: Lattice Boltzmann simulations of low-Reynolds-number flows past fluidized spheres: effect of inhomogeneities on the drag force
  publication-title: J. Fluid Mech.
– volume: 102
  start-page: 161
  year: 1922
  end-page: 179
  ident: bib0018
  article-title: The motion of ellipsoidal particles immersed in a viscous fluid
  publication-title: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences
– volume: 53
  start-page: 489
  year: 2007
  end-page: 501
  ident: bib0003
  article-title: Drag force of intermediate Reynolds number flow past mono-and bidisperse arrays of spheres
  publication-title: AlChE J.
– volume: 692
  start-page: 369
  year: 2012
  end-page: 394
  ident: bib0017
  article-title: Rotation of spheroidal particles in Couette flows
  publication-title: J. Fluid Mech.
– volume: 13
  start-page: 3452
  year: 2001
  end-page: 3459
  ident: bib0004
  article-title: Momentum transfer of a Boltzmann-lattice fluid with boundaries
  publication-title: Phys. Fluids (1994-present)
– volume: 55
  start-page: 1343
  year: 2012
  end-page: 1354
  ident: bib0032
  article-title: Drag forces and heat transfer coefficients for spherical, cuboidal and ellipsoidal particles in cross flow at sub-critical Reynolds numbers
  publication-title: Int. J. Heat Mass Transf.
– volume: 360
  start-page: 437
  year: 2002
  end-page: 451
  ident: bib0005
  article-title: Multiple–relaxation–time lattice Boltzmann models in three dimensions
  publication-title: Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci.
– volume: 294
  start-page: 236
  year: 2016
  end-page: 251
  ident: bib0020
  article-title: Direct numerical simulation of coupled fluid flow and heat transfer for single particles and particle packings by a LBM-approach
  publication-title: Powder Technol.
– volume: 1
  year: 1983
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0011
– volume: 360
  start-page: 437
  issue: 1792
  year: 2002
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0005
  article-title: Multiple–relaxation–time lattice Boltzmann models in three dimensions
  publication-title: Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2001.0955
– volume: 77
  start-page: 143
  issue: 2
  year: 1993
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0009
  article-title: A rational approach to drag prediction of spherical and nonspherical particles
  publication-title: Powder Technol.
  doi: 10.1016/0032-5910(93)80051-B
– volume: 38
  start-page: 572
  issue: 3
  year: 2009
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0016
  article-title: Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2008.06.001
– volume: 249
  start-page: 463
  year: 2013
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0033
  article-title: New correlations for heat and fluid flow past ellipsoidal and cubic particles at different angles of attack
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2013.08.044
– volume: 833
  start-page: 599
  year: 2017
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0034
  article-title: Lattice Boltzmann simulations of low-Reynolds-number flows past fluidized spheres: effect of inhomogeneities on the drag force
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2017.705
– volume: 102
  start-page: 161
  year: 1922
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0018
  article-title: The motion of ellipsoidal particles immersed in a viscous fluid
– volume: 117
  start-page: 114503
  issue: 11
  year: 2016
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0036
  article-title: Leidenfrost vapor layers reduce drag without the crisis in high viscosity liquids
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.114503
– volume: 373
  start-page: 287
  issue: 1
  year: 1998
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0001
  article-title: Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112098002493
– volume: 20
  start-page: 153
  issue: 1
  year: 1994
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0006
  article-title: The Voidage function for fluid-particle interaction systems
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/0301-9322(94)90011-6
– volume: 13
  start-page: 3452
  issue: 11
  year: 2001
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0004
  article-title: Momentum transfer of a Boltzmann-lattice fluid with boundaries
  publication-title: Phys. Fluids (1994-present)
  doi: 10.1063/1.1399290
– volume: 692
  start-page: 369
  year: 2012
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0017
  article-title: Rotation of spheroidal particles in Couette flows
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2011.519
– volume: 271
  start-page: 285
  issue: 1
  year: 1994
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0021
  article-title: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. part 1. Theoretical foundation
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112094001771
– volume: 104
  start-page: 1191
  issue: 5–6
  year: 2001
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0023
  article-title: Lattice-Boltzmann simulations of particle-fluid suspensions
  publication-title: J. Stat. Phys.
  doi: 10.1023/A:1010414013942
– volume: 65
  start-page: 1584
  issue: 5
  year: 2010
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0014
  article-title: Dynamics of gas–solid fluidised beds with non-spherical particle geometry
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2009.10.028
– volume: 81
  start-page: 62
  year: 1876
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0027
  article-title: Über stationäre flüssigkeitsbewegungen mit berücksichtigung der inneren reibung.
  publication-title: Journal für die reine und angewandte Mathematik
– volume: 820
  year: 2017
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0035
  article-title: On the orientational dependence of drag experienced by spheroids
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2017.239
– volume: 26
  start-page: 113602
  issue: 11
  year: 2014
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0019
  article-title: The laminar wake behind a 6: 1 prolate spheroid at 45 incidence angle
  publication-title: Phys. Fluids (1994-present)
  doi: 10.1063/1.4902015
– volume: 55
  start-page: 1343
  issue: 4
  year: 2012
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0032
  article-title: Drag forces and heat transfer coefficients for spherical, cuboidal and ellipsoidal particles in cross flow at sub-critical Reynolds numbers
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2011.09.005
– volume: 2010
  start-page: P01018
  issue: 01
  year: 2010
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0013
  article-title: Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann simulations
  publication-title: J. Stat. Mech. Theory Exp.
  doi: 10.1088/1742-5468/2010/01/P01018
– volume: 88
  start-page: 927
  issue: 3–4
  year: 1997
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0012
  article-title: Lattice Boltzmann model for the incompressible Navier–Stokes equation
  publication-title: J. Stat. Phys.
  doi: 10.1023/B:JOSS.0000015179.12689.e4
– volume: 6
  start-page: 153
  issue: 2
  year: 1987
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0025
  article-title: Drag on nonspherical objects
  publication-title: Aerosol. Sci. Technol.
  doi: 10.1080/02786828708959128
– volume: 65
  start-page: 041203
  issue: 4
  year: 2002
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0026
  article-title: Force evaluation in the lattice Boltzmann method involving curved geometry
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.65.041203
– volume: 701
  start-page: 98
  year: 2012
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0008
  article-title: Wakes behind a prolate spheroid in crossflow
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2012.135
– year: 2008
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0002
– volume: 7
  start-page: 155
  issue: 2
  year: 1964
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0031
  article-title: An efficient method for finding the minimum of a function of several variables without calculating derivatives
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.2.155
– volume: 53
  start-page: 489
  issue: 2
  year: 2007
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0003
  article-title: Drag force of intermediate Reynolds number flow past mono-and bidisperse arrays of spheres
  publication-title: AlChE J.
  doi: 10.1002/aic.11065
– volume: 303
  start-page: 33
  year: 2016
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0028
  article-title: A new set of correlations of drag, lift and torque coefficients for non-spherical particles and large Reynolds numbers
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2016.07.067
– volume: 271
  start-page: 311
  year: 1994
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0022
  article-title: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. part 2. Numerical results
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112094001783
– volume: 294
  start-page: 236
  year: 2016
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0020
  article-title: Direct numerical simulation of coupled fluid flow and heat transfer for single particles and particle packings by a LBM-approach
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2016.02.038
– volume: 184
  start-page: 406
  issue: 2
  year: 2003
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0024
  article-title: Lattice Boltzmann method for moving boundaries
  publication-title: J. Comput. Phys.
  doi: 10.1016/S0021-9991(02)00022-0
– volume: 184
  start-page: 361
  issue: 3
  year: 2008
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0015
  article-title: New simple correlation formula for the drag coefficient of non-spherical particles
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2007.08.021
– volume: 113
  start-page: 53
  year: 2015
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0029
  article-title: Drag, lift and torque coefficients for ellipsoidal particles: from low to moderate particle Reynolds numbers
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2014.12.005
– volume: 58
  start-page: 63
  issue: 1
  year: 1989
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0010
  article-title: Drag coefficient and terminal velocity of spherical and nonspherical particles
  publication-title: Powder Technol.
  doi: 10.1016/0032-5910(89)80008-7
– volume: 39
  start-page: 227
  year: 2012
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0037
  article-title: Derivation of drag and lift force and torque coefficients for non-spherical particles in flows
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2011.09.004
– volume: 9
  start-page: 1591
  issue: 6
  year: 1997
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0038
  article-title: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model
  publication-title: Phys. Fluids (1994-present)
  doi: 10.1063/1.869307
– volume: 75
  start-page: 127
  year: 2013
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0007
  article-title: A lattice-Boltzmann method with hierarchically refined meshes
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2013.01.013
– volume: 35
  start-page: 898
  issue: 8
  year: 2006
  ident: 10.1016/j.ijmultiphaseflow.2018.05.011_bib0030
  article-title: An evaluation of lattice Boltzmann schemes for porous medium flow simulation
  publication-title: Comput. fluids
  doi: 10.1016/j.compfluid.2005.03.008
SSID ssj0005743
Score 2.5975754
Snippet •Hydrodynamic drag, lift and torque correlations for non-spherical particles.•Three types of axisymmetric non-spherical particles are...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 325
SubjectTerms Force and torque correlation
Lattice Boltzmann method
Non-spherical particles
Title Drag, lift and torque correlations for non-spherical particles from Stokes limit to high Reynolds numbers
URI https://dx.doi.org/10.1016/j.ijmultiphaseflow.2018.05.011
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEJ4QjUYPRlEjPsgejCcrlC59HDwQlKBGDiIJt2Z3u9ViAwRqjBd_uzN9KBoPHLy1zexmMzudR_LNNwCnDaGUi4HX0FpYBre5Y0ibS4MLq64wouhGyq5_37O7A347bA5L0C56YQhWmfv-zKen3jr_Usu1WZtGUa1PyTxmH5hTo526aRs15w5Z-cXHAswjA9mTsEHS63D2jfGKRhls7xkjRhhP3gjq5WZMnubfgWoh-HS2YSvPGlkrO9gOlPS4DJsLXIJlWEuxnGq-C9HVTDydszgKEybGAcOqGp0_UzSHI0e-MUxVGRb-xpxYBeie2LSAyDHqOGH9ZPKCzzH1P-EOjGiN2YN-H0_iYM6yOSLzPRh0rh_bXSOfqGAorBMTrBMDLrVpC_pTZaikCixLes160FR4OZ7G6sUVbiil8pQd1qWkYeS20-C2UFipWfuwgofTB8BMGXBPobTiHg9MlNdWKBxLm6ZwXWFW4LJQn69yunGaehH7Ba5s5P9Wv0_q9-tNH9VfAedr_TQj3lh6Zau4Lf-HKfkYJZbc4_Af9jiCDXrLAGnHsJLMXvUJZjCJrKYmWoXV1s1dt_cJMkf3Aw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB6k4usgWhXf7kE8Gdo0mzQ5eChqia8erIK3ZXez0dTQFhMR_70zTeILDz14C8nOssxO5gHffANw2JJa-xh4LWOkY3GPty3lcWVx6TQ1RhTTmrDr3_S88J5fPrgPM3Ba9cIQrLL0_YVPn3jr8k2j1GZjnCSNPiXzmH1gTo126lMb9SyxU7k1mO1cXIW9L6RHgbOn9RYJzMPRF8wrGRTIvScMGnE6eiO0l1-Qedp_x6pv8ae7Astl4sg6xdlWYcYM67D0jU6wDnMTOKfO1iA5e5GPxyxN4pzJYcSwsEb_zzSN4ijBbwyzVYa1v5URsQBdFRtXKDlGTSesn4-e8TmlFijcgRGzMbs178NRGmWsGCWSrcN99_zuNLTKoQqWxlIxx1Ix4srYnqSfVcVa6chxVOA2I1fj_QQGCxhf-rFSOtBe3FSK5pF77Rb3pMZizdmAGh7ObAKzVcQDjas1D3hk43rjxLLtGNuWvi_tLTip1Cd0yThOgy9SUUHLBuK3-gWpXzRdgerfgvan_Ljg3phaslPdlvhhTQIDxZR7bP_DHgewEN7dXIvri97VDizSlwKftgu1_OXV7GFCk6v90mA_AJdj-bQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drag%2C+lift+and+torque+correlations+for+non-spherical+particles+from+Stokes+limit+to+high+Reynolds+numbers&rft.jtitle=International+journal+of+multiphase+flow&rft.au=Sanjeevi%2C+Sathish+K.P.&rft.au=Kuipers%2C+J.A.M.&rft.au=Padding%2C+Johan+T.&rft.date=2018-09-01&rft.issn=0301-9322&rft.volume=106&rft.spage=325&rft.epage=337&rft_id=info:doi/10.1016%2Fj.ijmultiphaseflow.2018.05.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijmultiphaseflow_2018_05_011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-9322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-9322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-9322&client=summon