Building Change Detection in VHR SAR Images via Unsupervised Deep Transcoding

Building change detection (CD), important for its application in urban monitoring, can be performed in near real time by comparing prechange and postchange very-high-spatial-resolution (VHR) synthetic-aperture-radar (SAR) images. However, multitemporal VHR SAR images are complex as they show high sp...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 59; no. 3; pp. 1917 - 1929
Main Authors Saha, Sudipan, Bovolo, Francesca, Bruzzone, Lorenzo
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Building change detection (CD), important for its application in urban monitoring, can be performed in near real time by comparing prechange and postchange very-high-spatial-resolution (VHR) synthetic-aperture-radar (SAR) images. However, multitemporal VHR SAR images are complex as they show high spatial correlation, prone to shadows, and show an inhomogeneous signature. Spatial context needs to be taken into account to effectively detect a change in such images. Recently, convolutional-neural-network (CNN)-based transfer learning techniques have shown strong performance for CD in VHR multispectral images. However, its direct use for SAR CD is impeded by the absence of labeled SAR data and, thus, pretrained networks. To overcome this, we exploit the availability of paired unlabeled SAR and optical images to train for the suboptimal task of transcoding SAR images into optical images using a cycle-consistent generative adversarial network (CycleGAN). The CycleGAN consists of two generator networks: one for transcoding SAR images into the optical image domain and the other for projecting optical images into the SAR image domain. After unsupervised training, the generator transcoding SAR images into optical ones is used as a bitemporal deep feature extractor to extract optical-like features from bitemporal SAR images. Thus, deep change vector analysis (DCVA) and fuzzy rules can be applied to identify changed buildings (new/destroyed). We validate our method on two data sets made up of pairs of bitemporal VHR SAR images on the city of L'Aquila (Italy) and Trento (Italy).
AbstractList Building change detection (CD), important for its application in urban monitoring, can be performed in near real time by comparing prechange and postchange very-high-spatial-resolution (VHR) synthetic-aperture-radar (SAR) images. However, multitemporal VHR SAR images are complex as they show high spatial correlation, prone to shadows, and show an inhomogeneous signature. Spatial context needs to be taken into account to effectively detect a change in such images. Recently, convolutional-neural-network (CNN)-based transfer learning techniques have shown strong performance for CD in VHR multispectral images. However, its direct use for SAR CD is impeded by the absence of labeled SAR data and, thus, pretrained networks. To overcome this, we exploit the availability of paired unlabeled SAR and optical images to train for the suboptimal task of transcoding SAR images into optical images using a cycle-consistent generative adversarial network (CycleGAN). The CycleGAN consists of two generator networks: one for transcoding SAR images into the optical image domain and the other for projecting optical images into the SAR image domain. After unsupervised training, the generator transcoding SAR images into optical ones is used as a bitemporal deep feature extractor to extract optical-like features from bitemporal SAR images. Thus, deep change vector analysis (DCVA) and fuzzy rules can be applied to identify changed buildings (new/destroyed). We validate our method on two data sets made up of pairs of bitemporal VHR SAR images on the city of L'Aquila (Italy) and Trento (Italy).
Author Saha, Sudipan
Bruzzone, Lorenzo
Bovolo, Francesca
Author_xml – sequence: 1
  givenname: Sudipan
  orcidid: 0000-0002-9440-0720
  surname: Saha
  fullname: Saha, Sudipan
  email: saha@fbk.eu
  organization: Fondazione Bruno Kessler, Trento, Italy
– sequence: 2
  givenname: Francesca
  orcidid: 0000-0003-3104-7656
  surname: Bovolo
  fullname: Bovolo, Francesca
  email: bovolo@fbk.eu
  organization: Fondazione Bruno Kessler, Trento, Italy
– sequence: 3
  givenname: Lorenzo
  orcidid: 0000-0002-6036-459X
  surname: Bruzzone
  fullname: Bruzzone, Lorenzo
  organization: Department of Information Engineering and Computer Science, University of Trento, Trento, Italy
BookMark eNp9kE9LwzAYh4MoOP98APES8Nz5JmnS5DinTmEibNNrSdu3MzLTmbQDv70tEw8ePL2X5_m98JyQQ994JOSCwZgxMNer2WI55sBhLACAG3VARkxKnYBK00MyAmZUwrXhx-QkxncAlkqWjcjTTec2lfNrOn2zfo30FlssW9d46jx9fVjQ5WRBHz_sGiPdOUtffOy2GHYuYtXDuKWrYH0sm2HkjBzVdhPx_Oeekpf7u9X0IZk_zx6nk3lSpsDbRFpRpBx0YUymwNYGtQSFILOqQqGzQrIyU1xjUWtZFKpQlte64pkWwIu0FKfkar-7Dc1nh7HN35su-P5lzlMjpMm4Fj3F9lQZmhgD1vk2uA8bvnIG-VAtH6rlQ7X8p1rvZH-c0rV26NEG6zb_mpd70yHi7yfDekiA-AbiSXp6
CODEN IGRSD2
CitedBy_id crossref_primary_10_1016_j_eswa_2023_122083
crossref_primary_10_3390_rs14020245
crossref_primary_10_1109_LGRS_2021_3066435
crossref_primary_10_1109_JSTARS_2022_3159619
crossref_primary_10_1109_JSTARS_2022_3206898
crossref_primary_10_1109_TGRS_2022_3205382
crossref_primary_10_1109_TGRS_2021_3131993
crossref_primary_10_1109_TGRS_2021_3109957
crossref_primary_10_1109_TGRS_2021_3130940
crossref_primary_10_1109_TGRS_2021_3120198
crossref_primary_10_1109_JSTARS_2022_3218369
crossref_primary_10_1109_TGRS_2022_3203769
crossref_primary_10_1109_JSTARS_2023_3241944
crossref_primary_10_1109_TGRS_2021_3139994
crossref_primary_10_1109_TGRS_2022_3154390
crossref_primary_10_1109_TGRS_2024_3516001
crossref_primary_10_1109_JSTARS_2024_3452640
crossref_primary_10_3390_app13021037
crossref_primary_10_1007_s10994_023_06374_1
crossref_primary_10_1109_TGRS_2022_3174651
crossref_primary_10_3390_rs12203461
crossref_primary_10_1080_17538947_2024_2310090
crossref_primary_10_1109_JSTARS_2023_3325370
crossref_primary_10_1109_TGRS_2022_3181583
crossref_primary_10_1049_rsn2_12616
crossref_primary_10_3390_rs14184478
crossref_primary_10_1109_JSTARS_2022_3199017
crossref_primary_10_1016_j_jhydrol_2022_128420
crossref_primary_10_1109_TGRS_2023_3242284
crossref_primary_10_1109_TGRS_2022_3190977
crossref_primary_10_3390_rs15071868
crossref_primary_10_3390_rs15071863
crossref_primary_10_1109_JSTARS_2022_3199539
crossref_primary_10_3390_rs16193590
crossref_primary_10_1109_LGRS_2021_3068558
crossref_primary_10_3390_rs16224223
crossref_primary_10_1109_LGRS_2021_3050746
crossref_primary_10_1109_TGRS_2024_3367970
crossref_primary_10_1016_j_patcog_2023_110237
crossref_primary_10_1109_TGRS_2024_3442156
crossref_primary_10_1109_TGRS_2024_3381196
crossref_primary_10_1109_TGRS_2021_3134127
crossref_primary_10_1109_JSTARS_2021_3121556
crossref_primary_10_1109_JSTARS_2022_3187108
crossref_primary_10_1016_j_jag_2022_102769
crossref_primary_10_1016_j_rse_2024_114577
crossref_primary_10_3390_su14169847
crossref_primary_10_1109_JSTARS_2022_3192251
crossref_primary_10_1109_TGRS_2022_3140324
crossref_primary_10_1109_TGRS_2022_3190504
crossref_primary_10_3390_rs14030734
crossref_primary_10_1109_TGRS_2024_3425672
crossref_primary_10_1364_AO_479955
crossref_primary_10_1109_TICPS_2024_3452644
crossref_primary_10_1109_TGRS_2023_3235981
crossref_primary_10_3390_w14010030
crossref_primary_10_3390_rs13030471
crossref_primary_10_3390_electronics13112204
crossref_primary_10_1109_TGRS_2022_3203314
crossref_primary_10_3390_rs13061195
crossref_primary_10_1109_LGRS_2021_3130862
crossref_primary_10_1109_TAES_2024_3382622
crossref_primary_10_3390_rs15071724
crossref_primary_10_1109_JSTARS_2024_3411622
crossref_primary_10_1007_s40808_021_01258_6
crossref_primary_10_3390_s23031527
crossref_primary_10_1007_s10994_021_06008_4
crossref_primary_10_1109_TGRS_2022_3227098
crossref_primary_10_3390_rs14122874
crossref_primary_10_1080_17538947_2022_2094001
crossref_primary_10_1080_01431161_2023_2187724
crossref_primary_10_1109_TIP_2025_3539461
crossref_primary_10_3390_rs13153053
crossref_primary_10_1109_TGRS_2023_3270204
crossref_primary_10_1109_TGRS_2025_3534234
crossref_primary_10_3389_feart_2023_1288003
crossref_primary_10_1007_s11042_023_15106_5
crossref_primary_10_1109_JSTARS_2022_3225665
crossref_primary_10_3390_rs14020330
crossref_primary_10_3390_rs13234927
crossref_primary_10_1109_TGRS_2020_3046004
crossref_primary_10_1117_1_JRS_18_016503
crossref_primary_10_1109_TGRS_2022_3213925
crossref_primary_10_1109_TGRS_2024_3504742
crossref_primary_10_1016_j_engappai_2022_105070
crossref_primary_10_3390_rs15112754
crossref_primary_10_1080_01431161_2022_2123721
crossref_primary_10_1109_JSTARS_2021_3136599
crossref_primary_10_1109_TGRS_2023_3293190
crossref_primary_10_23919_JSEE_2022_000087
crossref_primary_10_1080_17538947_2024_2316109
crossref_primary_10_1371_journal_pone_0306755
crossref_primary_10_1109_LGRS_2022_3222794
crossref_primary_10_3390_rs16061070
crossref_primary_10_1016_j_jag_2022_102734
crossref_primary_10_3390_rs13183670
crossref_primary_10_3390_rs15020470
crossref_primary_10_1109_TGRS_2021_3079907
crossref_primary_10_1109_LGRS_2021_3110302
crossref_primary_10_1016_j_isprsjprs_2022_12_009
crossref_primary_10_1109_TGRS_2021_3106381
crossref_primary_10_1109_JSTARS_2021_3115481
crossref_primary_10_1109_ACCESS_2020_3038225
crossref_primary_10_3390_rs13183660
crossref_primary_10_1109_TGRS_2024_3397797
crossref_primary_10_1109_LGRS_2020_3043822
crossref_primary_10_3390_rs14163922
crossref_primary_10_1016_j_engappai_2023_107641
crossref_primary_10_1016_j_isprsjprs_2024_05_018
crossref_primary_10_1109_JSTARS_2022_3181155
crossref_primary_10_1109_TGRS_2023_3344062
crossref_primary_10_1109_JSTARS_2021_3122461
crossref_primary_10_3390_rs16132355
crossref_primary_10_1080_01431161_2025_2467303
crossref_primary_10_1109_JSTARS_2022_3231915
crossref_primary_10_3390_rs15204972
Cites_doi 10.1016/j.isprsjprs.2017.05.001
10.1109/TNNLS.2015.2435783
10.1109/TGRS.2014.2363548
10.1109/TPAMI.2009.57
10.1109/TGRS.2013.2238946
10.1109/TGRS.2005.857987
10.1109/IGARSS.2018.8518298
10.1109/MGRS.2015.2443494
10.1109/IGARSS.2012.6351110
10.1109/JPROC.2016.2598228
10.1109/TNNLS.2016.2636227
10.1109/TGRS.2018.2886643
10.1109/LGRS.2011.2167211
10.3390/rs11091091
10.1016/j.patcog.2016.07.001
10.1109/TGRS.2004.842441
10.3390/rs11111314
10.1109/TIP.2008.916047
10.1109/LGRS.2018.2876616
10.1038/nature14539
10.1109/IGARSS.2009.5417722
10.1109/JSTARS.2017.2712119
10.1109/CVPRW.2014.131
10.1109/TFUZZ.2013.2249072
10.1109/TGRS.2013.2271564
10.3390/rs11172067
10.1109/MGRS.2016.2540798
10.1109/LGRS.2019.2895656
10.1109/CVPR.2014.222
10.1109/ACCESS.2019.2958983
10.1109/TBDATA.2016.2573280
10.1109/LGRS.2016.2611001
10.1109/TGRS.2016.2616585
10.1109/IGARSS.2015.7326376
10.1049/ip-rsn:20045088
10.1109/TGRS.2019.2901945
10.1109/CVPR.2015.7298642
10.1109/ICIP.2018.8451836
10.1109/ICCV.2017.244
10.1080/01431161.2016.1217442
10.1109/LGRS.2008.2007429
10.1109/LGRS.2019.2906279
10.1007/s42405-019-00222-0
10.2747/1548-1603.41.3.244
10.1109/TGRS.2007.895835
10.3390/rs9090907
10.1109/TGRS.2008.920911
10.1109/CVPRW.2015.7301382
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2020.3000296
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 1929
ExternalDocumentID 10_1109_TGRS_2020_3000296
9120230
Genre orig-research
GeographicLocations Italy
GeographicLocations_xml – name: Italy
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYOK
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c402t-5a3b4208b99760af9e8506e057dde387b51c7628ebf85bb6b6a2f8d278302b4c3
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jun 30 10:15:47 EDT 2025
Tue Jul 01 01:34:20 EDT 2025
Thu Apr 24 22:55:43 EDT 2025
Wed Aug 27 02:43:53 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-5a3b4208b99760af9e8506e057dde387b51c7628ebf85bb6b6a2f8d278302b4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9440-0720
0000-0003-3104-7656
0000-0002-6036-459X
OpenAccessLink https://ieeexplore.ieee.org/document/9120230/authors#authors
PQID 2493597283
PQPubID 85465
PageCount 13
ParticipantIDs crossref_primary_10_1109_TGRS_2020_3000296
ieee_primary_9120230
proquest_journals_2493597283
crossref_citationtrail_10_1109_TGRS_2020_3000296
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref54
ref10
odena (ref45) 2017; 70
ref17
ref16
ref19
lee (ref56) 2018
ref18
kingma (ref55) 2014
ref51
uprety (ref7) 2010; 9
ref48
ref47
ref41
ref44
donahue (ref40) 2016
ref43
ref49
ref8
ref9
ref4
ref3
ref6
ref5
ref35
ref34
ref37
(ref58) 2020
ref36
ref31
ref30
ref33
ref32
zhou (ref20) 2014
ley (ref42) 2018
ref2
ref1
ref39
ref38
el amin (ref50) 2016; 10011
ref24
ref23
ref26
ref25
ref22
ref21
ref28
ref27
ref29
wang (ref46) 2019
References_xml – ident: ref28
  doi: 10.1016/j.isprsjprs.2017.05.001
– volume: 9
  start-page: 1
  year: 2010
  ident: ref7
  article-title: Damage detection using high resolution TerraSAR-X imagery in the 2009 L'Aquila Earthquake
  publication-title: Proc 8th Int Workshop Remote Sens Disaster Manage
– ident: ref21
  doi: 10.1109/TNNLS.2015.2435783
– ident: ref5
  doi: 10.1109/TGRS.2014.2363548
– year: 2016
  ident: ref40
  article-title: Adversarial feature learning
  publication-title: arXiv 1605 09782
– ident: ref48
  doi: 10.1109/TPAMI.2009.57
– ident: ref11
  doi: 10.1109/TGRS.2013.2238946
– ident: ref13
  doi: 10.1109/TGRS.2005.857987
– ident: ref39
  doi: 10.1109/IGARSS.2018.8518298
– ident: ref31
  doi: 10.1109/MGRS.2015.2443494
– year: 2014
  ident: ref55
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– ident: ref8
  doi: 10.1109/IGARSS.2012.6351110
– ident: ref1
  doi: 10.1109/JPROC.2016.2598228
– ident: ref29
  doi: 10.1109/TNNLS.2016.2636227
– ident: ref4
  doi: 10.1109/TGRS.2018.2886643
– ident: ref14
  doi: 10.1109/LGRS.2011.2167211
– ident: ref34
  doi: 10.3390/rs11091091
– start-page: 487
  year: 2014
  ident: ref20
  article-title: Learning deep features for scene recognition using places database
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 8
  year: 2018
  ident: ref56
  article-title: Mid-level feature extractor for transfer learning to small-scale dataset of medical images
  publication-title: Advances in Computer Science and Ubiquitous Computing
– ident: ref37
  doi: 10.1016/j.patcog.2016.07.001
– ident: ref9
  doi: 10.1109/TGRS.2004.842441
– volume: 10011
  year: 2016
  ident: ref50
  article-title: Convolutional neural network features based change detection in satellite images
  publication-title: Proc SPIE
– ident: ref30
  doi: 10.3390/rs11111314
– ident: ref10
  doi: 10.1109/TIP.2008.916047
– ident: ref25
  doi: 10.1109/LGRS.2018.2876616
– ident: ref19
  doi: 10.1038/nature14539
– ident: ref6
  doi: 10.1109/IGARSS.2009.5417722
– start-page: 1
  year: 2018
  ident: ref42
  article-title: Exploiting GAN-based SAR to optical image transcoding for improved classification via deep learning
  publication-title: Proc 12th Eur Conf Synth Aperture Radar
– ident: ref54
  doi: 10.1109/JSTARS.2017.2712119
– ident: ref35
  doi: 10.1109/CVPRW.2014.131
– ident: ref12
  doi: 10.1109/TFUZZ.2013.2249072
– ident: ref17
  doi: 10.1109/TGRS.2013.2271564
– ident: ref43
  doi: 10.3390/rs11172067
– ident: ref32
  doi: 10.1109/MGRS.2016.2540798
– ident: ref23
  doi: 10.1109/LGRS.2019.2895656
– ident: ref57
  doi: 10.1109/CVPR.2014.222
– ident: ref33
  doi: 10.1109/ACCESS.2019.2958983
– ident: ref51
  doi: 10.1109/TBDATA.2016.2573280
– ident: ref22
  doi: 10.1109/LGRS.2016.2611001
– ident: ref38
  doi: 10.1109/TGRS.2016.2616585
– ident: ref2
  doi: 10.1109/IGARSS.2015.7326376
– ident: ref15
  doi: 10.1049/ip-rsn:20045088
– ident: ref26
  doi: 10.1109/TGRS.2019.2901945
– ident: ref49
  doi: 10.1109/CVPR.2015.7298642
– ident: ref41
  doi: 10.1109/ICIP.2018.8451836
– ident: ref44
  doi: 10.1109/ICCV.2017.244
– ident: ref18
  doi: 10.1080/01431161.2016.1217442
– ident: ref3
  doi: 10.1109/LGRS.2008.2007429
– ident: ref24
  doi: 10.1109/LGRS.2019.2906279
– ident: ref27
  doi: 10.1007/s42405-019-00222-0
– year: 2019
  ident: ref46
  article-title: Generative adversarial networks in computer vision: A survey and taxonomy
  publication-title: arXiv 1906 01529
– ident: ref47
  doi: 10.2747/1548-1603.41.3.244
– volume: 70
  start-page: 2642
  year: 2017
  ident: ref45
  article-title: Conditional image synthesis with auxiliary classifier GANs
  publication-title: Proc 34th Int Conf Mach Learn (ICML)
– ident: ref53
  doi: 10.1109/TGRS.2007.895835
– ident: ref52
  doi: 10.3390/rs9090907
– year: 2020
  ident: ref58
  publication-title: Google Maps
– ident: ref16
  doi: 10.1109/TGRS.2008.920911
– ident: ref36
  doi: 10.1109/CVPRW.2015.7301382
SSID ssj0014517
Score 2.6275506
Snippet Building change detection (CD), important for its application in urban monitoring, can be performed in near real time by comparing prechange and postchange...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1917
SubjectTerms Artificial neural networks
Buildings
Change detection
Change detection (CD)
deep change vector analysis (DCVA)
Detection
Domains
Feature extraction
generative adversarial network (GAN)
multitemporal images
Neural networks
Optical imaging
Optical sensors
Radar imaging
Radar polarimetry
remote sensing
SAR (radar)
Synthetic aperture radar
synthetic aperture radar (SAR)
Training
Transcoding
Transfer learning
Vector analysis
very high-resolution images
Title Building Change Detection in VHR SAR Images via Unsupervised Deep Transcoding
URI https://ieeexplore.ieee.org/document/9120230
https://www.proquest.com/docview/2493597283
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYACQkOvAZivJQDJ0RH16ZZe-Q1BtI4jA3tViWpJyGgm2jHgV-Pk2YTAoS49eBEUezY_uoXwLFQssV9LT0pZebxLNSeVCg9JIHOYuNw24hp9150BvxuGA0X4HReC4OINvkMG-bTxvKzsZ6aX2VnSdMM-yaAvkjArarVmkcMeNR0pdHCIxARuAhm00_O-je9B0KCAQFUowBMf_4vNsgOVfmhia15aa9Dd3awKqvkuTEtVUN_fOvZ-N-Tb8Ca8zPZeSUYm7CA-Rasfuk-uAXLNvtTFzXoXrjh2KwqNmBXWNoUrZw95eyx02MP5z12-0q6p2DvT5IN8mI6MVqmwIyIccKszdNjs8k2DNrX_cuO5-YseJrQY-lFMlQmyq4S8k18OUrQtLFD8uRI94VxS0VNTTozRjWKI6WEEjIYxZmZ0eEHiutwB5bycY67wCL0ZSgiFJL7PBsR9NYio60TybkUYasO_uzmU-2akJtZGC-pBSN-khpmpYZZqWNWHU7mSyZVB46_iGvm8ueE7t7rcDBjb-reaJES8AwJTpF_tff7qn1YCUwGi804O4Cl8m2Kh-SClOrIyt4naFzVdA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB5FqRBwaHmqaSn4wAmxyT68zu6RPiBAwiEkiNvK9k6kiLKJupse-us79joRAoS47WFsWZ7xzHw7L4BjoWSX-1p6Usrc43mkPalQekgCnSfG4bYR08GN6I351X1834DTVS0MItrkM2ybTxvLz2d6YX6VddLADPsmgP6B7H4c1NVaq5gBjwNXHC08ghGhi2EGftoZXQxvCQuGBFGNCjAd-p9YITtW5YUutgbm_BMMlker80oe2otKtfW_Z10b33v2LfjoPE12VovGNjSw2IHNJ_0Hd2DN5n_qchcG3914bFaXG7CfWNkkrYJNC3bXG7LbsyG7fCTtU7K_U8nGRbmYGz1TYk7EOGfW6umZ2WQPxue_Rj96npu04GnCj5UXy0iZOLtKyTvx5SRF08gOyZcj7RclXRUHmrRmgmqSxEoJJWQ4SXIzpcMPFdfRPjSLWYGfgcXoy0jEKCT3eT4h8K1FTlunknMpom4L_OXNZ9q1ITfTMH5nFo74aWaYlRlmZY5ZLThZLZnXPTjeIt41l78idPfegoMlezP3SsuMoGdEgIo8rC-vrzqC9d5o0M_6lzfXX2EjNPksNv_sAJrVnwV-I4ekUodWDv8DuXHYvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Building+Change+Detection+in+VHR+SAR+Images+via+Unsupervised+Deep+Transcoding&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Saha%2C+Sudipan&rft.au=Bovolo%2C+Francesca&rft.au=Bruzzone%2C+Lorenzo&rft.date=2021-03-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=59&rft.issue=3&rft.spage=1917&rft.epage=1929&rft_id=info:doi/10.1109%2FTGRS.2020.3000296&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2020_3000296
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon