Building Change Detection in VHR SAR Images via Unsupervised Deep Transcoding
Building change detection (CD), important for its application in urban monitoring, can be performed in near real time by comparing prechange and postchange very-high-spatial-resolution (VHR) synthetic-aperture-radar (SAR) images. However, multitemporal VHR SAR images are complex as they show high sp...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 59; no. 3; pp. 1917 - 1929 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Building change detection (CD), important for its application in urban monitoring, can be performed in near real time by comparing prechange and postchange very-high-spatial-resolution (VHR) synthetic-aperture-radar (SAR) images. However, multitemporal VHR SAR images are complex as they show high spatial correlation, prone to shadows, and show an inhomogeneous signature. Spatial context needs to be taken into account to effectively detect a change in such images. Recently, convolutional-neural-network (CNN)-based transfer learning techniques have shown strong performance for CD in VHR multispectral images. However, its direct use for SAR CD is impeded by the absence of labeled SAR data and, thus, pretrained networks. To overcome this, we exploit the availability of paired unlabeled SAR and optical images to train for the suboptimal task of transcoding SAR images into optical images using a cycle-consistent generative adversarial network (CycleGAN). The CycleGAN consists of two generator networks: one for transcoding SAR images into the optical image domain and the other for projecting optical images into the SAR image domain. After unsupervised training, the generator transcoding SAR images into optical ones is used as a bitemporal deep feature extractor to extract optical-like features from bitemporal SAR images. Thus, deep change vector analysis (DCVA) and fuzzy rules can be applied to identify changed buildings (new/destroyed). We validate our method on two data sets made up of pairs of bitemporal VHR SAR images on the city of L'Aquila (Italy) and Trento (Italy). |
---|---|
AbstractList | Building change detection (CD), important for its application in urban monitoring, can be performed in near real time by comparing prechange and postchange very-high-spatial-resolution (VHR) synthetic-aperture-radar (SAR) images. However, multitemporal VHR SAR images are complex as they show high spatial correlation, prone to shadows, and show an inhomogeneous signature. Spatial context needs to be taken into account to effectively detect a change in such images. Recently, convolutional-neural-network (CNN)-based transfer learning techniques have shown strong performance for CD in VHR multispectral images. However, its direct use for SAR CD is impeded by the absence of labeled SAR data and, thus, pretrained networks. To overcome this, we exploit the availability of paired unlabeled SAR and optical images to train for the suboptimal task of transcoding SAR images into optical images using a cycle-consistent generative adversarial network (CycleGAN). The CycleGAN consists of two generator networks: one for transcoding SAR images into the optical image domain and the other for projecting optical images into the SAR image domain. After unsupervised training, the generator transcoding SAR images into optical ones is used as a bitemporal deep feature extractor to extract optical-like features from bitemporal SAR images. Thus, deep change vector analysis (DCVA) and fuzzy rules can be applied to identify changed buildings (new/destroyed). We validate our method on two data sets made up of pairs of bitemporal VHR SAR images on the city of L'Aquila (Italy) and Trento (Italy). |
Author | Saha, Sudipan Bruzzone, Lorenzo Bovolo, Francesca |
Author_xml | – sequence: 1 givenname: Sudipan orcidid: 0000-0002-9440-0720 surname: Saha fullname: Saha, Sudipan email: saha@fbk.eu organization: Fondazione Bruno Kessler, Trento, Italy – sequence: 2 givenname: Francesca orcidid: 0000-0003-3104-7656 surname: Bovolo fullname: Bovolo, Francesca email: bovolo@fbk.eu organization: Fondazione Bruno Kessler, Trento, Italy – sequence: 3 givenname: Lorenzo orcidid: 0000-0002-6036-459X surname: Bruzzone fullname: Bruzzone, Lorenzo organization: Department of Information Engineering and Computer Science, University of Trento, Trento, Italy |
BookMark | eNp9kE9LwzAYh4MoOP98APES8Nz5JmnS5DinTmEibNNrSdu3MzLTmbQDv70tEw8ePL2X5_m98JyQQ994JOSCwZgxMNer2WI55sBhLACAG3VARkxKnYBK00MyAmZUwrXhx-QkxncAlkqWjcjTTec2lfNrOn2zfo30FlssW9d46jx9fVjQ5WRBHz_sGiPdOUtffOy2GHYuYtXDuKWrYH0sm2HkjBzVdhPx_Oeekpf7u9X0IZk_zx6nk3lSpsDbRFpRpBx0YUymwNYGtQSFILOqQqGzQrIyU1xjUWtZFKpQlte64pkWwIu0FKfkar-7Dc1nh7HN35su-P5lzlMjpMm4Fj3F9lQZmhgD1vk2uA8bvnIG-VAtH6rlQ7X8p1rvZH-c0rV26NEG6zb_mpd70yHi7yfDekiA-AbiSXp6 |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_1016_j_eswa_2023_122083 crossref_primary_10_3390_rs14020245 crossref_primary_10_1109_LGRS_2021_3066435 crossref_primary_10_1109_JSTARS_2022_3159619 crossref_primary_10_1109_JSTARS_2022_3206898 crossref_primary_10_1109_TGRS_2022_3205382 crossref_primary_10_1109_TGRS_2021_3131993 crossref_primary_10_1109_TGRS_2021_3109957 crossref_primary_10_1109_TGRS_2021_3130940 crossref_primary_10_1109_TGRS_2021_3120198 crossref_primary_10_1109_JSTARS_2022_3218369 crossref_primary_10_1109_TGRS_2022_3203769 crossref_primary_10_1109_JSTARS_2023_3241944 crossref_primary_10_1109_TGRS_2021_3139994 crossref_primary_10_1109_TGRS_2022_3154390 crossref_primary_10_1109_TGRS_2024_3516001 crossref_primary_10_1109_JSTARS_2024_3452640 crossref_primary_10_3390_app13021037 crossref_primary_10_1007_s10994_023_06374_1 crossref_primary_10_1109_TGRS_2022_3174651 crossref_primary_10_3390_rs12203461 crossref_primary_10_1080_17538947_2024_2310090 crossref_primary_10_1109_JSTARS_2023_3325370 crossref_primary_10_1109_TGRS_2022_3181583 crossref_primary_10_1049_rsn2_12616 crossref_primary_10_3390_rs14184478 crossref_primary_10_1109_JSTARS_2022_3199017 crossref_primary_10_1016_j_jhydrol_2022_128420 crossref_primary_10_1109_TGRS_2023_3242284 crossref_primary_10_1109_TGRS_2022_3190977 crossref_primary_10_3390_rs15071868 crossref_primary_10_3390_rs15071863 crossref_primary_10_1109_JSTARS_2022_3199539 crossref_primary_10_3390_rs16193590 crossref_primary_10_1109_LGRS_2021_3068558 crossref_primary_10_3390_rs16224223 crossref_primary_10_1109_LGRS_2021_3050746 crossref_primary_10_1109_TGRS_2024_3367970 crossref_primary_10_1016_j_patcog_2023_110237 crossref_primary_10_1109_TGRS_2024_3442156 crossref_primary_10_1109_TGRS_2024_3381196 crossref_primary_10_1109_TGRS_2021_3134127 crossref_primary_10_1109_JSTARS_2021_3121556 crossref_primary_10_1109_JSTARS_2022_3187108 crossref_primary_10_1016_j_jag_2022_102769 crossref_primary_10_1016_j_rse_2024_114577 crossref_primary_10_3390_su14169847 crossref_primary_10_1109_JSTARS_2022_3192251 crossref_primary_10_1109_TGRS_2022_3140324 crossref_primary_10_1109_TGRS_2022_3190504 crossref_primary_10_3390_rs14030734 crossref_primary_10_1109_TGRS_2024_3425672 crossref_primary_10_1364_AO_479955 crossref_primary_10_1109_TICPS_2024_3452644 crossref_primary_10_1109_TGRS_2023_3235981 crossref_primary_10_3390_w14010030 crossref_primary_10_3390_rs13030471 crossref_primary_10_3390_electronics13112204 crossref_primary_10_1109_TGRS_2022_3203314 crossref_primary_10_3390_rs13061195 crossref_primary_10_1109_LGRS_2021_3130862 crossref_primary_10_1109_TAES_2024_3382622 crossref_primary_10_3390_rs15071724 crossref_primary_10_1109_JSTARS_2024_3411622 crossref_primary_10_1007_s40808_021_01258_6 crossref_primary_10_3390_s23031527 crossref_primary_10_1007_s10994_021_06008_4 crossref_primary_10_1109_TGRS_2022_3227098 crossref_primary_10_3390_rs14122874 crossref_primary_10_1080_17538947_2022_2094001 crossref_primary_10_1080_01431161_2023_2187724 crossref_primary_10_1109_TIP_2025_3539461 crossref_primary_10_3390_rs13153053 crossref_primary_10_1109_TGRS_2023_3270204 crossref_primary_10_1109_TGRS_2025_3534234 crossref_primary_10_3389_feart_2023_1288003 crossref_primary_10_1007_s11042_023_15106_5 crossref_primary_10_1109_JSTARS_2022_3225665 crossref_primary_10_3390_rs14020330 crossref_primary_10_3390_rs13234927 crossref_primary_10_1109_TGRS_2020_3046004 crossref_primary_10_1117_1_JRS_18_016503 crossref_primary_10_1109_TGRS_2022_3213925 crossref_primary_10_1109_TGRS_2024_3504742 crossref_primary_10_1016_j_engappai_2022_105070 crossref_primary_10_3390_rs15112754 crossref_primary_10_1080_01431161_2022_2123721 crossref_primary_10_1109_JSTARS_2021_3136599 crossref_primary_10_1109_TGRS_2023_3293190 crossref_primary_10_23919_JSEE_2022_000087 crossref_primary_10_1080_17538947_2024_2316109 crossref_primary_10_1371_journal_pone_0306755 crossref_primary_10_1109_LGRS_2022_3222794 crossref_primary_10_3390_rs16061070 crossref_primary_10_1016_j_jag_2022_102734 crossref_primary_10_3390_rs13183670 crossref_primary_10_3390_rs15020470 crossref_primary_10_1109_TGRS_2021_3079907 crossref_primary_10_1109_LGRS_2021_3110302 crossref_primary_10_1016_j_isprsjprs_2022_12_009 crossref_primary_10_1109_TGRS_2021_3106381 crossref_primary_10_1109_JSTARS_2021_3115481 crossref_primary_10_1109_ACCESS_2020_3038225 crossref_primary_10_3390_rs13183660 crossref_primary_10_1109_TGRS_2024_3397797 crossref_primary_10_1109_LGRS_2020_3043822 crossref_primary_10_3390_rs14163922 crossref_primary_10_1016_j_engappai_2023_107641 crossref_primary_10_1016_j_isprsjprs_2024_05_018 crossref_primary_10_1109_JSTARS_2022_3181155 crossref_primary_10_1109_TGRS_2023_3344062 crossref_primary_10_1109_JSTARS_2021_3122461 crossref_primary_10_3390_rs16132355 crossref_primary_10_1080_01431161_2025_2467303 crossref_primary_10_1109_JSTARS_2022_3231915 crossref_primary_10_3390_rs15204972 |
Cites_doi | 10.1016/j.isprsjprs.2017.05.001 10.1109/TNNLS.2015.2435783 10.1109/TGRS.2014.2363548 10.1109/TPAMI.2009.57 10.1109/TGRS.2013.2238946 10.1109/TGRS.2005.857987 10.1109/IGARSS.2018.8518298 10.1109/MGRS.2015.2443494 10.1109/IGARSS.2012.6351110 10.1109/JPROC.2016.2598228 10.1109/TNNLS.2016.2636227 10.1109/TGRS.2018.2886643 10.1109/LGRS.2011.2167211 10.3390/rs11091091 10.1016/j.patcog.2016.07.001 10.1109/TGRS.2004.842441 10.3390/rs11111314 10.1109/TIP.2008.916047 10.1109/LGRS.2018.2876616 10.1038/nature14539 10.1109/IGARSS.2009.5417722 10.1109/JSTARS.2017.2712119 10.1109/CVPRW.2014.131 10.1109/TFUZZ.2013.2249072 10.1109/TGRS.2013.2271564 10.3390/rs11172067 10.1109/MGRS.2016.2540798 10.1109/LGRS.2019.2895656 10.1109/CVPR.2014.222 10.1109/ACCESS.2019.2958983 10.1109/TBDATA.2016.2573280 10.1109/LGRS.2016.2611001 10.1109/TGRS.2016.2616585 10.1109/IGARSS.2015.7326376 10.1049/ip-rsn:20045088 10.1109/TGRS.2019.2901945 10.1109/CVPR.2015.7298642 10.1109/ICIP.2018.8451836 10.1109/ICCV.2017.244 10.1080/01431161.2016.1217442 10.1109/LGRS.2008.2007429 10.1109/LGRS.2019.2906279 10.1007/s42405-019-00222-0 10.2747/1548-1603.41.3.244 10.1109/TGRS.2007.895835 10.3390/rs9090907 10.1109/TGRS.2008.920911 10.1109/CVPRW.2015.7301382 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
DOI | 10.1109/TGRS.2020.3000296 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEL url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 1929 |
ExternalDocumentID | 10_1109_TGRS_2020_3000296 9120230 |
Genre | orig-research |
GeographicLocations | Italy |
GeographicLocations_xml | – name: Italy |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYOK AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c402t-5a3b4208b99760af9e8506e057dde387b51c7628ebf85bb6b6a2f8d278302b4c3 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Mon Jun 30 10:15:47 EDT 2025 Tue Jul 01 01:34:20 EDT 2025 Thu Apr 24 22:55:43 EDT 2025 Wed Aug 27 02:43:53 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-5a3b4208b99760af9e8506e057dde387b51c7628ebf85bb6b6a2f8d278302b4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9440-0720 0000-0003-3104-7656 0000-0002-6036-459X |
OpenAccessLink | https://ieeexplore.ieee.org/document/9120230/authors#authors |
PQID | 2493597283 |
PQPubID | 85465 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1109_TGRS_2020_3000296 ieee_primary_9120230 proquest_journals_2493597283 crossref_citationtrail_10_1109_TGRS_2020_3000296 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref54 ref10 odena (ref45) 2017; 70 ref17 ref16 ref19 lee (ref56) 2018 ref18 kingma (ref55) 2014 ref51 uprety (ref7) 2010; 9 ref48 ref47 ref41 ref44 donahue (ref40) 2016 ref43 ref49 ref8 ref9 ref4 ref3 ref6 ref5 ref35 ref34 ref37 (ref58) 2020 ref36 ref31 ref30 ref33 ref32 zhou (ref20) 2014 ley (ref42) 2018 ref2 ref1 ref39 ref38 el amin (ref50) 2016; 10011 ref24 ref23 ref26 ref25 ref22 ref21 ref28 ref27 ref29 wang (ref46) 2019 |
References_xml | – ident: ref28 doi: 10.1016/j.isprsjprs.2017.05.001 – volume: 9 start-page: 1 year: 2010 ident: ref7 article-title: Damage detection using high resolution TerraSAR-X imagery in the 2009 L'Aquila Earthquake publication-title: Proc 8th Int Workshop Remote Sens Disaster Manage – ident: ref21 doi: 10.1109/TNNLS.2015.2435783 – ident: ref5 doi: 10.1109/TGRS.2014.2363548 – year: 2016 ident: ref40 article-title: Adversarial feature learning publication-title: arXiv 1605 09782 – ident: ref48 doi: 10.1109/TPAMI.2009.57 – ident: ref11 doi: 10.1109/TGRS.2013.2238946 – ident: ref13 doi: 10.1109/TGRS.2005.857987 – ident: ref39 doi: 10.1109/IGARSS.2018.8518298 – ident: ref31 doi: 10.1109/MGRS.2015.2443494 – year: 2014 ident: ref55 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 – ident: ref8 doi: 10.1109/IGARSS.2012.6351110 – ident: ref1 doi: 10.1109/JPROC.2016.2598228 – ident: ref29 doi: 10.1109/TNNLS.2016.2636227 – ident: ref4 doi: 10.1109/TGRS.2018.2886643 – ident: ref14 doi: 10.1109/LGRS.2011.2167211 – ident: ref34 doi: 10.3390/rs11091091 – start-page: 487 year: 2014 ident: ref20 article-title: Learning deep features for scene recognition using places database publication-title: Proc Adv Neural Inf Process Syst – start-page: 8 year: 2018 ident: ref56 article-title: Mid-level feature extractor for transfer learning to small-scale dataset of medical images publication-title: Advances in Computer Science and Ubiquitous Computing – ident: ref37 doi: 10.1016/j.patcog.2016.07.001 – ident: ref9 doi: 10.1109/TGRS.2004.842441 – volume: 10011 year: 2016 ident: ref50 article-title: Convolutional neural network features based change detection in satellite images publication-title: Proc SPIE – ident: ref30 doi: 10.3390/rs11111314 – ident: ref10 doi: 10.1109/TIP.2008.916047 – ident: ref25 doi: 10.1109/LGRS.2018.2876616 – ident: ref19 doi: 10.1038/nature14539 – ident: ref6 doi: 10.1109/IGARSS.2009.5417722 – start-page: 1 year: 2018 ident: ref42 article-title: Exploiting GAN-based SAR to optical image transcoding for improved classification via deep learning publication-title: Proc 12th Eur Conf Synth Aperture Radar – ident: ref54 doi: 10.1109/JSTARS.2017.2712119 – ident: ref35 doi: 10.1109/CVPRW.2014.131 – ident: ref12 doi: 10.1109/TFUZZ.2013.2249072 – ident: ref17 doi: 10.1109/TGRS.2013.2271564 – ident: ref43 doi: 10.3390/rs11172067 – ident: ref32 doi: 10.1109/MGRS.2016.2540798 – ident: ref23 doi: 10.1109/LGRS.2019.2895656 – ident: ref57 doi: 10.1109/CVPR.2014.222 – ident: ref33 doi: 10.1109/ACCESS.2019.2958983 – ident: ref51 doi: 10.1109/TBDATA.2016.2573280 – ident: ref22 doi: 10.1109/LGRS.2016.2611001 – ident: ref38 doi: 10.1109/TGRS.2016.2616585 – ident: ref2 doi: 10.1109/IGARSS.2015.7326376 – ident: ref15 doi: 10.1049/ip-rsn:20045088 – ident: ref26 doi: 10.1109/TGRS.2019.2901945 – ident: ref49 doi: 10.1109/CVPR.2015.7298642 – ident: ref41 doi: 10.1109/ICIP.2018.8451836 – ident: ref44 doi: 10.1109/ICCV.2017.244 – ident: ref18 doi: 10.1080/01431161.2016.1217442 – ident: ref3 doi: 10.1109/LGRS.2008.2007429 – ident: ref24 doi: 10.1109/LGRS.2019.2906279 – ident: ref27 doi: 10.1007/s42405-019-00222-0 – year: 2019 ident: ref46 article-title: Generative adversarial networks in computer vision: A survey and taxonomy publication-title: arXiv 1906 01529 – ident: ref47 doi: 10.2747/1548-1603.41.3.244 – volume: 70 start-page: 2642 year: 2017 ident: ref45 article-title: Conditional image synthesis with auxiliary classifier GANs publication-title: Proc 34th Int Conf Mach Learn (ICML) – ident: ref53 doi: 10.1109/TGRS.2007.895835 – ident: ref52 doi: 10.3390/rs9090907 – year: 2020 ident: ref58 publication-title: Google Maps – ident: ref16 doi: 10.1109/TGRS.2008.920911 – ident: ref36 doi: 10.1109/CVPRW.2015.7301382 |
SSID | ssj0014517 |
Score | 2.6275506 |
Snippet | Building change detection (CD), important for its application in urban monitoring, can be performed in near real time by comparing prechange and postchange... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1917 |
SubjectTerms | Artificial neural networks Buildings Change detection Change detection (CD) deep change vector analysis (DCVA) Detection Domains Feature extraction generative adversarial network (GAN) multitemporal images Neural networks Optical imaging Optical sensors Radar imaging Radar polarimetry remote sensing SAR (radar) Synthetic aperture radar synthetic aperture radar (SAR) Training Transcoding Transfer learning Vector analysis very high-resolution images |
Title | Building Change Detection in VHR SAR Images via Unsupervised Deep Transcoding |
URI | https://ieeexplore.ieee.org/document/9120230 https://www.proquest.com/docview/2493597283 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYACQkOvAZivJQDJ0RH16ZZe-Q1BtI4jA3tViWpJyGgm2jHgV-Pk2YTAoS49eBEUezY_uoXwLFQssV9LT0pZebxLNSeVCg9JIHOYuNw24hp9150BvxuGA0X4HReC4OINvkMG-bTxvKzsZ6aX2VnSdMM-yaAvkjArarVmkcMeNR0pdHCIxARuAhm00_O-je9B0KCAQFUowBMf_4vNsgOVfmhia15aa9Dd3awKqvkuTEtVUN_fOvZ-N-Tb8Ca8zPZeSUYm7CA-Rasfuk-uAXLNvtTFzXoXrjh2KwqNmBXWNoUrZw95eyx02MP5z12-0q6p2DvT5IN8mI6MVqmwIyIccKszdNjs8k2DNrX_cuO5-YseJrQY-lFMlQmyq4S8k18OUrQtLFD8uRI94VxS0VNTTozRjWKI6WEEjIYxZmZ0eEHiutwB5bycY67wCL0ZSgiFJL7PBsR9NYio60TybkUYasO_uzmU-2akJtZGC-pBSN-khpmpYZZqWNWHU7mSyZVB46_iGvm8ueE7t7rcDBjb-reaJES8AwJTpF_tff7qn1YCUwGi804O4Cl8m2Kh-SClOrIyt4naFzVdA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB5FqRBwaHmqaSn4wAmxyT68zu6RPiBAwiEkiNvK9k6kiLKJupse-us79joRAoS47WFsWZ7xzHw7L4BjoWSX-1p6Usrc43mkPalQekgCnSfG4bYR08GN6I351X1834DTVS0MItrkM2ybTxvLz2d6YX6VddLADPsmgP6B7H4c1NVaq5gBjwNXHC08ghGhi2EGftoZXQxvCQuGBFGNCjAd-p9YITtW5YUutgbm_BMMlker80oe2otKtfW_Z10b33v2LfjoPE12VovGNjSw2IHNJ_0Hd2DN5n_qchcG3914bFaXG7CfWNkkrYJNC3bXG7LbsyG7fCTtU7K_U8nGRbmYGz1TYk7EOGfW6umZ2WQPxue_Rj96npu04GnCj5UXy0iZOLtKyTvx5SRF08gOyZcj7RclXRUHmrRmgmqSxEoJJWQ4SXIzpcMPFdfRPjSLWYGfgcXoy0jEKCT3eT4h8K1FTlunknMpom4L_OXNZ9q1ITfTMH5nFo74aWaYlRlmZY5ZLThZLZnXPTjeIt41l78idPfegoMlezP3SsuMoGdEgIo8rC-vrzqC9d5o0M_6lzfXX2EjNPksNv_sAJrVnwV-I4ekUodWDv8DuXHYvQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Building+Change+Detection+in+VHR+SAR+Images+via+Unsupervised+Deep+Transcoding&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Saha%2C+Sudipan&rft.au=Bovolo%2C+Francesca&rft.au=Bruzzone%2C+Lorenzo&rft.date=2021-03-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=59&rft.issue=3&rft.spage=1917&rft.epage=1929&rft_id=info:doi/10.1109%2FTGRS.2020.3000296&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2020_3000296 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |