Evaluation of stiffness in a cellulose fiber reinforced epoxy laminates for structural applications: Experimental and finite element analysis

Natural fiber composites have been proved to have the ability to replace the synthetic fiber composites in many structural applications. Unprecedented growth in the field of computational techniques has opened the doors of analysis and simulation of composite materials under various environment. Mod...

Full description

Saved in:
Bibliographic Details
Published inDefence technology Vol. 14; no. 4; pp. 278 - 286
Main Authors Ahmad, Furkan, Bajpai, Pramendra Kumar
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2018
KeAi Communications Co., Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Natural fiber composites have been proved to have the ability to replace the synthetic fiber composites in many structural applications. Unprecedented growth in the field of computational techniques has opened the doors of analysis and simulation of composite materials under various environment. Modelling and simulation using various available softwares saves a lot of time and resources. In the present work, an attempt has been made to analyze the tensile behavior of jute fiber reinforced epoxy based polymer composite materials using the student version of commercially available finite element code Siemens PLM NX 10.0. In most of the structural applications, materials are required to have enough stiffness to resist the shape deformation under normal loading conditions. Therefore, emphasis is given to the load-deformation behavior of the developed composites. A 3-dimensional model of the test specimen was developed using ply-stacking method and the strain-stress values were verified by the available literature. The model showed a good agreement between the experimental and software results. Effect of ply angle, fiber percentage, fiber type, number of layers and weft fiber angle on the stiffness of laminate have been studied.
ISSN:2214-9147
2214-9147
DOI:10.1016/j.dt.2018.05.006