Simulation of paleotectonic stress fields within Paleogene shale reservoirs and prediction of favorable zones for fracture development within the Zhanhua Depression, Bohai Bay Basin, east China
Tectonic fractures are the most important reservoir spaces within shale reservoirs and can significantly improve the permeability of a reservoir, the development and distribution of these fractures are controlled by paleotectonic stress fields. An important hydrocarbon reservoir is hosted by a Paleo...
Saved in:
Published in | Journal of petroleum science & engineering Vol. 110; pp. 119 - 131 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier B.V
01.10.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tectonic fractures are the most important reservoir spaces within shale reservoirs and can significantly improve the permeability of a reservoir, the development and distribution of these fractures are controlled by paleotectonic stress fields. An important hydrocarbon reservoir is hosted by a Paleogene shale unit within the lower section of the third member of the Shahejie Formation (Es3) within the Zhanhua Depression of the Bohai Bay Basin, east China. Industrial-level oil and gas production has been obtained from over 30 wells with the highest single well production of 93t/d, indicating the large oil and gas potential of these reservoirs in the Zhanhua Depression.
The data obtained from cores, logs, and drilling in the Zhanhua Depression can be used to identify the processes involved in the development of such tectonic fractures. In this study, these data were combined with additional acoustic emission and rock mechanics data to identify the effects of faulting and lithological variations on the development of fractures using a finite element method (FEM) stress analysis approach that simulated paleotectonic stress fields during the late Dongying stage, the period of time when the majority of the fractures developed. Estimations of rock failure criteria and comprehensive indexing of rupture rates for tectonic fractures were undertaken to determine the quantitative development of fractures and to predict favorable zones for fracture development.
Tectonic fractures within the shale reservoir in the lower part of the Es3 unit include both tensional and shear fractures, these fractures are generally unfilled or half-filled. The NE–SW strike of these fractures is consistent with the orientation of the present stress field, meaning that these fractures were high-priority targets during initial well targeting. Tectonic fractures can be identified during logging by increased resistivity (R2.5), increased acoustic time difference (AC) values combined with cycle skip of the peaks, and highly variable but generally elevated gamma ray (GR) values. Fractures can also be directly identified, and fracture parameters can be determined using Formation MicroScanner Image (FMI). The magnitude of the maximum principal stress during the major period of fracture development within the Zhanhua Depression was 53.2MPa, and the paleotectonic stress field was controlled by the location of fault zones. In contrast, areas without fractures have stress fields that were influenced by lithological variations, leading to the development of high stress fields in areas with rocks containing high concentrations of carbonate.
Fracture development is controlled by tectonic stress fields and fractured areas are generally located between fault zones, at the intersection of faults, in areas when fault orientations change, and at high stress areas near fault tips. The present results regarding predictions of the locations of fractured areas are consistent with the location of producing oil and gas wells.
•The characteristics of lacustrine shale fracture in the Bohai Bay Basin.•Simulation of the paleotectonic stress field with shale reservoir.•The prediction of favorable zones for shale tectonic fracture development.•The effects of faults and lithology on the distribution of shale tectonic fracture. |
---|---|
AbstractList | Objective: Tectonic fractures are the most important reservoir spaces within shale reservoirs and can significantly improve the permeability of a reservoir, the development and distribution of these fractures are controlled by paleotectonic stress fields. An important hydrocarbon reservoir is hosted by a Paleogene shale unit within the lower section of the third member of the Shahejie Formation (Es3) within the Zhanhua Depression of the Bohai Bay Basin, east China. Industrial-level oil and gas production has been obtained from over 30 wells with the highest single well production of 93 t/d, indicating the large oil and gas potential of these reservoirs in the Zhanhua Depression. Tectonic fractures are the most important reservoir spaces within shale reservoirs and can significantly improve the permeability of a reservoir, the development and distribution of these fractures are controlled by paleotectonic stress fields. An important hydrocarbon reservoir is hosted by a Paleogene shale unit within the lower section of the third member of the Shahejie Formation (Es3) within the Zhanhua Depression of the Bohai Bay Basin, east China. Industrial-level oil and gas production has been obtained from over 30 wells with the highest single well production of 93t/d, indicating the large oil and gas potential of these reservoirs in the Zhanhua Depression. The data obtained from cores, logs, and drilling in the Zhanhua Depression can be used to identify the processes involved in the development of such tectonic fractures. In this study, these data were combined with additional acoustic emission and rock mechanics data to identify the effects of faulting and lithological variations on the development of fractures using a finite element method (FEM) stress analysis approach that simulated paleotectonic stress fields during the late Dongying stage, the period of time when the majority of the fractures developed. Estimations of rock failure criteria and comprehensive indexing of rupture rates for tectonic fractures were undertaken to determine the quantitative development of fractures and to predict favorable zones for fracture development. Tectonic fractures within the shale reservoir in the lower part of the Es3 unit include both tensional and shear fractures, these fractures are generally unfilled or half-filled. The NE–SW strike of these fractures is consistent with the orientation of the present stress field, meaning that these fractures were high-priority targets during initial well targeting. Tectonic fractures can be identified during logging by increased resistivity (R2.5), increased acoustic time difference (AC) values combined with cycle skip of the peaks, and highly variable but generally elevated gamma ray (GR) values. Fractures can also be directly identified, and fracture parameters can be determined using Formation MicroScanner Image (FMI). The magnitude of the maximum principal stress during the major period of fracture development within the Zhanhua Depression was 53.2MPa, and the paleotectonic stress field was controlled by the location of fault zones. In contrast, areas without fractures have stress fields that were influenced by lithological variations, leading to the development of high stress fields in areas with rocks containing high concentrations of carbonate. Fracture development is controlled by tectonic stress fields and fractured areas are generally located between fault zones, at the intersection of faults, in areas when fault orientations change, and at high stress areas near fault tips. The present results regarding predictions of the locations of fractured areas are consistent with the location of producing oil and gas wells. •The characteristics of lacustrine shale fracture in the Bohai Bay Basin.•Simulation of the paleotectonic stress field with shale reservoir.•The prediction of favorable zones for shale tectonic fracture development.•The effects of faults and lithology on the distribution of shale tectonic fracture. |
Author | Zhang, Yeqian Jiu, Kai Huang, WenHui You, Shenggang Zeng, Weite Ding, WenLong |
Author_xml | – sequence: 1 givenname: Kai surname: Jiu fullname: Jiu, Kai organization: School of Energy Resources, China University of Geosciences, Beijing 100083, China – sequence: 2 givenname: WenLong surname: Ding fullname: Ding, WenLong email: dingwenlong2006@126.com organization: School of Energy Resources, China University of Geosciences, Beijing 100083, China – sequence: 3 givenname: WenHui surname: Huang fullname: Huang, WenHui organization: School of Energy Resources, China University of Geosciences, Beijing 100083, China – sequence: 4 givenname: Shenggang surname: You fullname: You, Shenggang organization: School of Energy Resources, China University of Geosciences, Beijing 100083, China – sequence: 5 givenname: Yeqian surname: Zhang fullname: Zhang, Yeqian organization: School of Energy Resources, China University of Geosciences, Beijing 100083, China – sequence: 6 givenname: Weite surname: Zeng fullname: Zeng, Weite organization: School of Energy Resources, China University of Geosciences, Beijing 100083, China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27994757$$DView record in Pascal Francis |
BookMark | eNqFkstuFDEQRVsoSEwCf8DCGyQWzFB-9MMskMiElxQJJGDDxqpxV9OOeuzG9gwKf8ef4WESFizIwiqrdO61VXVPqxMfPFXVYw4rDrx5frWaKccwrQRwuQK9AhD3qgXvWrlULa9PqgVoAUvFoX5QnaZ0BQCyke2i-vXJbXcTZhc8CwObcaKQyebgnWUpR0qJDY6mPrEfLo_Os48H5Bt5YmksV1YQivvgYmLoezZH6p299RtwHyJuCvazfLlYhciGiDbvIrGe9jSFeUs-35rnkdjXEf24Q3ZB8-H54vSMnYcRHTvH63KSKw3ClNm6SPBhdX_AKdGjm3pWfXnz-vP63fLyw9v361eXS6tA5KUapMa-lVhveoBBA7XIm43VnZLU2VqIXlk1dB2ve5KAqG1DnWoFdVoiojyrnh595xi-7yhls3XJ0jShp7BLhjdKCK2lhLvRWnKAphaqoE9uUEwWpzIbb10yc3RbjNdGtFqrtm4Lp46cjSGlSMNfhIM5hMBcmWMIzCEEBrQpISiyF__IrMt_tp0juuku8cujmMpY946iSdaRt2XBsUTE9MH93-A3gNHW0Q |
CODEN | JPSEE6 |
CitedBy_id | crossref_primary_10_1016_j_tecto_2017_06_030 crossref_primary_10_1007_s12182_018_0240_3 crossref_primary_10_1016_j_jsg_2016_03_007 crossref_primary_10_1016_j_tecto_2019_228303 crossref_primary_10_1109_ACCESS_2018_2847723 crossref_primary_10_1371_journal_pone_0205958 crossref_primary_10_1016_j_jog_2016_02_005 crossref_primary_10_1016_j_petrol_2016_06_036 crossref_primary_10_3389_feart_2022_938765 crossref_primary_10_3389_feart_2022_1028439 crossref_primary_10_1016_j_energy_2024_133329 crossref_primary_10_2118_219453_PA crossref_primary_10_1007_s11600_024_01519_9 crossref_primary_10_1016_j_jgsce_2024_205266 crossref_primary_10_1016_j_marpetgeo_2019_06_026 crossref_primary_10_1088_1755_1315_861_6_062077 crossref_primary_10_1016_j_marpetgeo_2020_104787 crossref_primary_10_1016_j_marpetgeo_2021_105439 crossref_primary_10_1016_j_jsg_2023_104845 crossref_primary_10_1016_j_jngse_2016_10_033 crossref_primary_10_1061_IJGNAI_GMENG_9727 crossref_primary_10_1007_s12182_019_00360_w crossref_primary_10_1007_s12303_019_0022_y crossref_primary_10_1111_1365_2478_13054 crossref_primary_10_1007_s12517_022_09936_0 crossref_primary_10_3389_feart_2022_1024748 crossref_primary_10_1190_INT_2021_0238_1 crossref_primary_10_1016_j_jhydrol_2022_128291 crossref_primary_10_1016_j_jseaes_2017_12_038 crossref_primary_10_1002_gj_3255 crossref_primary_10_1007_s12517_018_4123_0 crossref_primary_10_2113_2022_9662175 crossref_primary_10_1016_j_marpetgeo_2016_12_008 crossref_primary_10_1016_j_geoen_2023_211749 crossref_primary_10_1088_1742_2140_aaad97 crossref_primary_10_3390_en16041797 crossref_primary_10_1016_j_petsci_2023_08_021 crossref_primary_10_1130_B36151_1 crossref_primary_10_1111_1755_6724_13447 crossref_primary_10_1190_geo2023_0510_1 crossref_primary_10_1016_j_tecto_2024_230421 crossref_primary_10_1007_s40948_023_00633_0 crossref_primary_10_1130_GES02557_1 crossref_primary_10_3390_en17143424 crossref_primary_10_1016_j_marpetgeo_2017_04_004 crossref_primary_10_1021_acsomega_4c11005 crossref_primary_10_1016_j_jseaes_2023_105817 crossref_primary_10_1002_ese3_685 crossref_primary_10_1088_1757_899X_392_4_042018 crossref_primary_10_1016_j_petrol_2017_06_068 crossref_primary_10_1016_j_enggeo_2018_09_010 crossref_primary_10_3389_feart_2023_1001489 crossref_primary_10_1016_j_jngse_2021_104110 crossref_primary_10_21285_2686_9993_2021_44_4_397_407 crossref_primary_10_1016_j_marpetgeo_2018_12_030 crossref_primary_10_1016_j_petrol_2017_10_046 crossref_primary_10_1017_S001675681500062X crossref_primary_10_1016_j_petrol_2016_05_002 crossref_primary_10_1007_s11631_020_00416_4 crossref_primary_10_1016_j_marpetgeo_2018_05_036 crossref_primary_10_1016_j_gete_2024_100566 crossref_primary_10_3389_feart_2022_1036493 crossref_primary_10_3389_feart_2024_1468997 crossref_primary_10_4236_gep_2017_511006 crossref_primary_10_1016_j_jseaes_2017_04_032 crossref_primary_10_1007_s12303_025_00019_2 crossref_primary_10_1029_2020JB019809 crossref_primary_10_1007_s12517_019_4914_y crossref_primary_10_1155_2023_3249570 crossref_primary_10_1016_j_marpetgeo_2016_11_021 crossref_primary_10_2118_205495_PA crossref_primary_10_1016_j_energy_2023_127724 crossref_primary_10_1007_s12182_016_0141_2 crossref_primary_10_1016_j_petrol_2017_12_006 crossref_primary_10_1515_geo_2016_0053 crossref_primary_10_1016_j_petrol_2017_04_021 crossref_primary_10_1016_j_engeos_2021_10_005 crossref_primary_10_1016_j_petrol_2015_12_004 crossref_primary_10_1007_s12517_021_07847_0 crossref_primary_10_1007_s12303_017_0039_z |
Cites_doi | 10.1016/j.marpetgeo.2013.08.009 10.1016/j.jseaes.2011.06.004 10.2113/gscpgbull.55.1.51 10.1016/j.orggeochem.2005.08.009 10.1016/S1872-5791(08)60088-3 10.1016/j.proeps.2009.09.136 10.1016/j.marpetgeo.2010.07.005 10.1016/S1876-3804(12)60015-9 10.1016/j.gsf.2011.10.001 10.1016/j.petrol.2012.03.006 10.1016/j.orggeochem.2008.10.013 10.1016/j.jseaes.2013.07.014 10.1016/j.marpetgeo.2013.04.022 10.1016/j.petrol.2005.12.002 10.1098/rsta.1921.0006 10.1029/JB074i022p05343 10.1016/j.marpetgeo.2009.08.012 10.1016/S0191-8141(98)00080-7 10.1016/0148-9062(73)90059-4 10.1016/j.orggeochem.2004.09.003 10.1016/S0191-8141(02)00165-7 10.1016/S0040-1951(01)00107-X |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2013 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7TN F1W H96 L.G 7SU 8FD C1K FR3 KR7 |
DOI | 10.1016/j.petrol.2013.09.002 |
DatabaseName | CrossRef Pascal-Francis Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Environmental Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Civil Engineering Abstracts Engineering Research Database Technology Research Database Environmental Engineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Engineering Applied Sciences |
EISSN | 1873-4715 |
EndPage | 131 |
ExternalDocumentID | 27994757 10_1016_j_petrol_2013_09_002 S0920410513002428 |
GeographicLocations | Asia China INW, Bohai Sea, Shahejie Formation INW, Bohai Sea, Bohai Bay |
GeographicLocations_xml | – name: INW, Bohai Sea, Bohai Bay – name: INW, Bohai Sea, Shahejie Formation |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ H~9 IHE IMUCA J1W JARJE KOM LY3 LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SEP SES SEW SPC SPCBC SPD SSE SSR SSZ T5K WH7 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH IQODW 7TN F1W H96 L.G 7SU 8FD C1K FR3 KR7 |
ID | FETCH-LOGICAL-c402t-4f39ad73a5bd00f90e7a16bc9843e8c522d4c4f8815de30aa9c6e8472e893aaa3 |
IEDL.DBID | .~1 |
ISSN | 0920-4105 |
IngestDate | Fri Jul 11 11:24:09 EDT 2025 Fri Jul 11 03:32:47 EDT 2025 Wed Apr 02 07:17:44 EDT 2025 Thu Apr 24 22:54:40 EDT 2025 Tue Jul 01 01:24:56 EDT 2025 Fri Feb 23 02:24:03 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | fracture prediction paleotectonic stress field shale reservoir finite element method Bohai Bay Basin tectonic fractures Paleogene Stress analysis Shale Reservoir Fracture Tectonics Finite element method Simulation |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-4f39ad73a5bd00f90e7a16bc9843e8c522d4c4f8815de30aa9c6e8472e893aaa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1531006524 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1642299330 proquest_miscellaneous_1531006524 pascalfrancis_primary_27994757 crossref_primary_10_1016_j_petrol_2013_09_002 crossref_citationtrail_10_1016_j_petrol_2013_09_002 elsevier_sciencedirect_doi_10_1016_j_petrol_2013_09_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-01 |
PublicationDateYYYYMMDD | 2013-10-01 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Journal of petroleum science & engineering |
PublicationYear | 2013 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Ding, Zhu, Cai, Gong, Chen (bib500) 2013; 45 Mckinnon, Barra (bib22) 1998; 20 Nelson (bib24) 2001 Wan (bib36) 2011 Ding, Li, Li, Xu, Jiu, Zeng, Wu (bib6) 2011; 3 Hao, Zhou, Zhu, Zou, Yang (bib11) 2010; 27 Zhi, Li, Fan, Zhang (bib46) 2004; 11 Zeng, Li (bib42) 2009; 93 Zeng, Zhang, Ding, Zhao, Zhang, Liu, Jiu (bib502) 2013; 75 Jarvie, Hill, Ruble, Pollastro (bib15) 2007; 91 Curtis (bib4) 2002; 86 John (bib17) 1969; 74 Qi, Yang (bib27) 2010; 27 Yuan (bib41) 2003; 27 Zhu, Zhang, Jin, Dai, Zhang, Li (bib50) 2005; 36 Tong, Zhao, Lu, Zhang, Zheng, Xu, Wang, Pan (bib32) 2012; 39 Zhang, Liu, Zhu, Li, Lu (bib43) 2009; 40 Ding, Fan, Yu, Huang, Liu (bib5) 2012; 86–87 Corbett, Friedman, Spang (bib3) 1987; 71 Li (bib19) 1997 Gao (bib8) 2011; 30 Mohammed, Keith, Maher (bib23) 2012; 96 Guan., Niu, Guo (bib10) 1995 Tuckwell, Lonergan, Jolly (bib33) 2003; 25 (Accessed Feb. 16). Hardy, Hudson, Fairhurst (bib12) 1973; 10 Lorenz, Finley (bib21) 1991; 75 Jiu, Ding, Huang, Zhang, Zhao, Hu (bib501) 2013; 48 Peggy, Michele (bib26) 2001; 337 Griffith (bib9) 1921; 221 Shedid (bib30) 2006; 50 Wang, Wang, Wang, Sun, Qiao (bib38) 2004; 23 Kinley, Cook, Breyer, Jarvie, Busbey (bib18) 2009; 93 Liu, Huang, Fan, Wang, Zeng (bib20) 2008; 29 Wu, Shi, Dong, Tian (bib39) 2009; 16 Zhang, Pan (bib45) 2012; 36 Chen, Zhang, Wan (bib2) 1988; 9 Zhou, Zhang, Wang, Li (bib48) 2009; 1 John, Jenny, David (bib16) 2002; 86 Zhou (bib47) 2003 Ahr (bib1) 2008 International Energy Agency (IEA), 2010. Oil Market Report. Ning (bib25) 2008; 22 Shi, Li, Pang, Chen, Zhang, Wang, Jin (bib31) 2004; 36 Ding, Shao (bib7) 2001; 26 Hou, Qian, Cai (bib13) 2001; 37 Shaw (bib29) 2005 Zhou, Fu, Lou, Lu, Feng, Zhou, Santosh, Li (bib49) 2012; 47 Xiang (bib34) 2008; 15 Wan, Zhang, Zhang (bib37) 2012; 19 Zhang, Sanderson (bib44) 2002 Wu, Li, Zheng (bib40) 2004; 10 Ross, Bustin (bib28) 2007; 55 Xu, Li, Kang, Liu (bib35) 2003; 23 Xu (10.1016/j.petrol.2013.09.002_bib35) 2003; 23 Ross (10.1016/j.petrol.2013.09.002_bib28) 2007; 55 Wan (10.1016/j.petrol.2013.09.002_bib36) 2011 Zhang (10.1016/j.petrol.2013.09.002_bib45) 2012; 36 Wang (10.1016/j.petrol.2013.09.002_bib38) 2004; 23 Wu (10.1016/j.petrol.2013.09.002_bib39) 2009; 16 10.1016/j.petrol.2013.09.002_bib14 Ding (10.1016/j.petrol.2013.09.002_bib5) 2012; 86–87 Wan (10.1016/j.petrol.2013.09.002_bib37) 2012; 19 Xiang (10.1016/j.petrol.2013.09.002_bib34) 2008; 15 Ding (10.1016/j.petrol.2013.09.002_bib500) 2013; 45 Li (10.1016/j.petrol.2013.09.002_bib19) 1997 Mckinnon (10.1016/j.petrol.2013.09.002_bib22) 1998; 20 Shedid (10.1016/j.petrol.2013.09.002_bib30) 2006; 50 Hardy (10.1016/j.petrol.2013.09.002_bib12) 1973; 10 Chen (10.1016/j.petrol.2013.09.002_bib2) 1988; 9 John (10.1016/j.petrol.2013.09.002_bib17) 1969; 74 Shaw (10.1016/j.petrol.2013.09.002_bib29) 2005 Guan. (10.1016/j.petrol.2013.09.002_bib10) 1995 Jiu (10.1016/j.petrol.2013.09.002_bib501) 2013; 48 Mohammed (10.1016/j.petrol.2013.09.002_bib23) 2012; 96 Zeng (10.1016/j.petrol.2013.09.002_bib502) 2013; 75 Hou (10.1016/j.petrol.2013.09.002_bib13) 2001; 37 John (10.1016/j.petrol.2013.09.002_bib16) 2002; 86 Zhou (10.1016/j.petrol.2013.09.002_bib49) 2012; 47 Ding (10.1016/j.petrol.2013.09.002_bib7) 2001; 26 Zhou (10.1016/j.petrol.2013.09.002_bib48) 2009; 1 Kinley (10.1016/j.petrol.2013.09.002_bib18) 2009; 93 Tong (10.1016/j.petrol.2013.09.002_bib32) 2012; 39 Gao (10.1016/j.petrol.2013.09.002_bib8) 2011; 30 Qi (10.1016/j.petrol.2013.09.002_bib27) 2010; 27 Jarvie (10.1016/j.petrol.2013.09.002_bib15) 2007; 91 Zhi (10.1016/j.petrol.2013.09.002_bib46) 2004; 11 Griffith (10.1016/j.petrol.2013.09.002_bib9) 1921; 221 Curtis (10.1016/j.petrol.2013.09.002_bib4) 2002; 86 Ding (10.1016/j.petrol.2013.09.002_bib6) 2011; 3 Ahr (10.1016/j.petrol.2013.09.002_bib1) 2008 Lorenz (10.1016/j.petrol.2013.09.002_bib21) 1991; 75 Zhang (10.1016/j.petrol.2013.09.002_bib44) 2002 Corbett (10.1016/j.petrol.2013.09.002_bib3) 1987; 71 Nelson (10.1016/j.petrol.2013.09.002_bib24) 2001 Shi (10.1016/j.petrol.2013.09.002_bib31) 2004; 36 Tuckwell (10.1016/j.petrol.2013.09.002_bib33) 2003; 25 Zhou (10.1016/j.petrol.2013.09.002_bib47) 2003 Zeng (10.1016/j.petrol.2013.09.002_bib42) 2009; 93 Zhang (10.1016/j.petrol.2013.09.002_bib43) 2009; 40 Wu (10.1016/j.petrol.2013.09.002_bib40) 2004; 10 Liu (10.1016/j.petrol.2013.09.002_bib20) 2008; 29 Ning (10.1016/j.petrol.2013.09.002_bib25) 2008; 22 Yuan (10.1016/j.petrol.2013.09.002_bib41) 2003; 27 Zhu (10.1016/j.petrol.2013.09.002_bib50) 2005; 36 Peggy (10.1016/j.petrol.2013.09.002_bib26) 2001; 337 Hao (10.1016/j.petrol.2013.09.002_bib11) 2010; 27 |
References_xml | – volume: 30 start-page: 31 year: 2011 end-page: 34 ident: bib8 article-title: The simulation of ancient tectonic stress field and favorable areas of fractured reservoir in Nanniwan region, Ordos basin publication-title: J. Yanan Univ. (Nat. Sci. Ed.) – volume: 75 start-page: 1738 year: 1991 end-page: 1757 ident: bib21 article-title: Regional fractures: fracturing of Mesaverde reservoirs in the Piceance Basin, Colorado publication-title: Am. Assoc. Pet. Geol. Bull. – volume: 48 start-page: 113 year: 2013 end-page: 123 ident: bib501 article-title: Fractures of lacustrine shale reservoirs, the Zhanhua Depression in the Bohai Bay Basin, eastern publication-title: China. Marine and Petroleum Geology – volume: 20 start-page: 1663 year: 1998 end-page: 1672 ident: bib22 article-title: Fracture initiation, growth and effect on stress field: a numerical investigation publication-title: J. Struct. Geol. – volume: 36 start-page: 365 year: 2012 end-page: 369 ident: bib45 article-title: On three calculation methods of volcanic reservoir fracture porosity based on FMI data publication-title: Well Logg. Technol. – volume: 55 start-page: 51 year: 2007 end-page: 57 ident: bib28 article-title: Shale gas potential of the Lower Jurassic Gordondale Member, northeastern British Columbia, Canada publication-title: Bull. Can. Pet. Geol. – volume: 86 start-page: 1921 year: 2002 end-page: 1938 ident: bib4 article-title: Fractured shale–gas systems publication-title: Am. Assoc. Pet. Geol. Bull. – volume: 96 start-page: 59 year: 2012 end-page: 492 ident: bib23 article-title: Diverse fracture properties and their impact on performance in conventional and tight-gas reservoirs, Saudi Arabia: the Unayzah, South Haradh case study publication-title: Am. Assoc. Pet. Geol. Bull. – reference: (Accessed Feb. 16). – year: 1997 ident: bib19 article-title: Development of Low Permeability Sandstone Oilfield – volume: 50 start-page: 285 year: 2006 end-page: 292 ident: bib30 article-title: Influences of fracture orientation on oil recovery by water and polymer flooding processes: an experimental approach publication-title: J. Pet. Sci. Eng. – volume: 71 start-page: 17 year: 1987 end-page: 28 ident: bib3 article-title: Fracture development and mechanical stratigraphy of Austin Chalk, Texas publication-title: Am. Assoc. Pet. Geol. – volume: 10 start-page: 53 year: 1973 end-page: 67 ident: bib12 article-title: The failure of rock beams: part I—theoretical studies publication-title: Int. J. Rock Mech. Min. Sci. Geomech. Abstr. – year: 2001 ident: bib24 article-title: Geologic Analysis of Naturally Fractured Reservoirs – volume: 91 start-page: 475 year: 2007 end-page: 499 ident: bib15 article-title: Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale–gas assessment publication-title: Am. Assoc. Pet. Geol. Bull. – volume: 36 start-page: 203 year: 2004 end-page: 223 ident: bib31 article-title: Fault-fracture mesh petroleum plays in the Zhanhua Depressio, Bohai Bay Basin: Part 2. Oil-source correlation and secondary migration mechanisms publication-title: Org. Geochem. – volume: 11 start-page: 27 year: 2004 end-page: 29 ident: bib46 article-title: Study on Migration and accumulation of oil and gas in fractured shale reservoir in Zhanhua sag publication-title: Pet. Geol. Recovery Effic. – volume: 1 start-page: 875 year: 2009 end-page: 881 ident: bib48 article-title: Exploration of numerical simulation on paleo-tectonic stress field publication-title: Procedia Earth Planet. Sci. – year: 1995 ident: bib10 article-title: Unconventional Oil and Gas Geology in China – volume: 19 start-page: 194 year: 2012 end-page: 199 ident: bib37 article-title: Simulation of tectonic stress field of the Beidagang tectonic belts in North China Tectonic Period publication-title: Earth Sci. Front. – volume: 93 start-page: 461 year: 2009 end-page: 477 ident: bib42 article-title: Fractures in sandstone reservoirs with ultra-low permeability: a case study of the Upper Triassic Yanchang Formation in the Ordos Basin, China publication-title: Am. Assoc. Pet. Geol. Bull. – volume: 15 start-page: 31 year: 2008 end-page: 37 ident: bib34 article-title: Quantitatively analyze the main controlling factors of mudstone fracture in Jiyang depression publication-title: Pet. Geol. Eng. – volume: 16 start-page: 190 year: 2009 end-page: 196 ident: bib39 article-title: Numerical simulating study of mechanical characteristic of superposed deformation in Daba Mountain foreland publication-title: Earth Sci. Front. – volume: 86 start-page: 505 year: 2002 end-page: 524 ident: bib16 article-title: Natural fractures in the Spraberry Formation, Midland Basin, Texas: the effects of mechanical stratigraphy on fracture variability and reservoir behavior publication-title: Am. Assoc. Pet. Geol. Bull. – volume: 3 start-page: 97 year: 2011 end-page: 105 ident: bib6 article-title: Fracture development in shale and its relationship to gas accumulation publication-title: Geosci. Front. – volume: 37 start-page: 845 year: 2001 end-page: 851 ident: bib13 article-title: The tectonic evolution of Bohai Basin in mesozoic and cenozoic time publication-title: Univ. Pekinensis (Acta Sci. Nat.) – volume: 10 start-page: 405 year: 2004 end-page: 416 ident: bib40 article-title: Analysis on features and origins of the Mesozoic and Cenozoic faults in Zhanhua Sag publication-title: Geol. J. China Univ. – volume: 75 start-page: 251 year: 2013 end-page: 266 ident: bib502 article-title: Fracture development in Paleozoic shale of Chongqing area (South China). Part one: Fracture characteristics and comparative analysis of main controlling factors publication-title: Journal of Asian Earth Sciences – volume: 29 start-page: 475 year: 2008 end-page: 477 ident: bib20 article-title: The simulation of present tectonic stress field and the prediction of tectonic fractures of Ordovician in Tazhong Area, Tarim Basin publication-title: Xinjiang Pet. Geol. – start-page: 142 year: 2003 end-page: 143 ident: bib47 article-title: Studies on the structure mode of Baigezhuang region and the identification and prediction of structure fracture reservoirs publication-title: Guangzhou Inst. Geochem., Chin. Acad. Sci. – volume: 26 start-page: 100 year: 2001 end-page: 104 ident: bib7 article-title: An experimental research into determination of highest paleotectonic stress state experienced by rock through geological ages publication-title: Earth Sci. – volume: 27 start-page: 20 year: 2003 end-page: 23 ident: bib41 article-title: Characteristics of fractures in argillaceous rocks of Luojia area in Zhanhua sag publication-title: J. China Univ. Petroleum (Ed. Nat. Sci.) – volume: 47 start-page: 94 year: 2012 end-page: 106 ident: bib49 article-title: Structural anatomy and dynamics of evolution of the Qikou Sag, Bohai Bay Basin: implications for the destruction of North China craton publication-title: J. Asian Earth Sci. – volume: 23 start-page: 74 year: 2003 end-page: 76 ident: bib35 article-title: The characteristics of fractured shale reservoir of in Zhanhua depression publication-title: Bull. Mineral., Petrol. Geochem. – volume: 39 start-page: 62 year: 2012 end-page: 69 ident: bib32 article-title: Reservoir evaluation and fracture chracterization of the metamorphic buried hill reservoir in Bohai Bay Basin publication-title: Pet. Explor. Dev. – volume: 22 start-page: 37 year: 2008 end-page: 39 ident: bib25 article-title: Key factors of mudstone and its relationship with hydrocarbon formation at Xianghezhuang area publication-title: Pet. Geol. Eng. – volume: 36 start-page: 1650 year: 2005 end-page: 1663 ident: bib50 article-title: Origin of the Neogene shallow gas accumulations in the Jiyang superdepression, Bohai Bay Basin publication-title: Org. Geochem. – volume: 9 start-page: 5 year: 1988 end-page: 7 ident: bib2 article-title: Gulong Qingshankou mudstone north of structural cracks and reservoir distribution and prediction publication-title: Pet. Technol. – year: 2002 ident: bib44 article-title: Numerical Modelling and Analysis of Fluid Flow and Deformation of Fractured Rock Masses – volume: 23 start-page: 4052 year: 2004 end-page: 4057 ident: bib38 article-title: Relation among three dimensional tectonic stress field, fracture and migration of oil and gas in oil field, Chinese publication-title: J. Rock Mech. Eng. – reference: International Energy Agency (IEA), 2010. Oil Market Report. – volume: 86–87 start-page: 62 year: 2012 end-page: 70 ident: bib5 article-title: Ordovician carbonate reservoir fracture characteristics and fracture distribution forecasting in the Tazhong area of Tarim Basin, Northwest China publication-title: J. Pet. Sci. Eng. – volume: 25 start-page: 1241 year: 2003 end-page: 1250 ident: bib33 article-title: The control of stress history and flaw distribution on the evolution of polygonal fracture networks publication-title: J. Struct. Geol. – volume: 337 start-page: 117 year: 2001 end-page: 133 ident: bib26 article-title: Role of shale thickness in vertical connectivity of fracture:application of crack-bridging theory to the Austin Chalk, Texas publication-title: Tectonophysics – volume: 27 start-page: 1910 year: 2010 end-page: 1926 ident: bib11 article-title: Charging of oil fields surrounding the Shaleitian uplift from multiple source rock intervals and generative kitchens, Bohai Bay basin, China publication-title: Mar. Pet. Geol. – volume: 93 start-page: 857 year: 2009 end-page: 889 ident: bib18 article-title: Hydrocarbon potential of the Barnett shale( Mississippian), Delaw are Basin, west Texas and southeastern New Mexico publication-title: Am. Assoc. Pet. Geol. Bull. – volume: 27 start-page: 757 year: 2010 end-page: 771 ident: bib27 article-title: Cenozoic structural deformation and dynamic processes of the Bohai Bay basin province, China publication-title: Mar. Pet. Geol. – year: 2011 ident: bib36 article-title: The Tectonics of China: Data, Maps and Evolution – year: 2005 ident: bib29 article-title: Understanding the Micro to Macro Behaviour of Rock–Fluid Systems – year: 2008 ident: bib1 article-title: Geology of Carbonate Reservoirs: The Identification, Description and Characterization of Hydrocarbon Reservoirs in Carbonate Rocks – volume: 45 start-page: 121 year: 2013 end-page: 133 ident: bib500 article-title: Analysis of the Developmental Characteristics and Major Regulating Factors of Fractures in Marine-Continental Transitional Shale-Gas Reservoirs: A Case Study of the Carboniferous-Permian Strata in the Southeastern Ordos Basin publication-title: Central China. Mar. Pet. Geol. – volume: 40 start-page: 229 year: 2009 end-page: 242 ident: bib43 article-title: Source rocks in Mesozoic–Cenozoic continental rift basins, east China: a case from Dongying Depression, Bohai Bay Basin publication-title: Org. Geochem. – volume: 221 start-page: 163 year: 1921 end-page: 198 ident: bib9 article-title: The phenomena of rupture and flow in solids publication-title: Philos. Trans. R. Soc. London – volume: 74 start-page: 5343 year: 1969 end-page: 5348 ident: bib17 article-title: On the Coulomb–Mohr failure criterion publication-title: J. Geophys. Res. – volume: 23 start-page: 4052 year: 2004 ident: 10.1016/j.petrol.2013.09.002_bib38 article-title: Relation among three dimensional tectonic stress field, fracture and migration of oil and gas in oil field, Chinese publication-title: J. Rock Mech. Eng. – volume: 27 start-page: 20 year: 2003 ident: 10.1016/j.petrol.2013.09.002_bib41 article-title: Characteristics of fractures in argillaceous rocks of Luojia area in Zhanhua sag publication-title: J. China Univ. Petroleum (Ed. Nat. Sci.) – volume: 23 start-page: 74 year: 2003 ident: 10.1016/j.petrol.2013.09.002_bib35 article-title: The characteristics of fractured shale reservoir of in Zhanhua depression publication-title: Bull. Mineral., Petrol. Geochem. – volume: 48 start-page: 113 year: 2013 ident: 10.1016/j.petrol.2013.09.002_bib501 article-title: Fractures of lacustrine shale reservoirs, the Zhanhua Depression in the Bohai Bay Basin, eastern publication-title: China. Marine and Petroleum Geology doi: 10.1016/j.marpetgeo.2013.08.009 – year: 2002 ident: 10.1016/j.petrol.2013.09.002_bib44 – start-page: 142 year: 2003 ident: 10.1016/j.petrol.2013.09.002_bib47 article-title: Studies on the structure mode of Baigezhuang region and the identification and prediction of structure fracture reservoirs publication-title: Guangzhou Inst. Geochem., Chin. Acad. Sci. – volume: 47 start-page: 94 year: 2012 ident: 10.1016/j.petrol.2013.09.002_bib49 article-title: Structural anatomy and dynamics of evolution of the Qikou Sag, Bohai Bay Basin: implications for the destruction of North China craton publication-title: J. Asian Earth Sci. doi: 10.1016/j.jseaes.2011.06.004 – volume: 15 start-page: 31 year: 2008 ident: 10.1016/j.petrol.2013.09.002_bib34 article-title: Quantitatively analyze the main controlling factors of mudstone fracture in Jiyang depression publication-title: Pet. Geol. Eng. – volume: 55 start-page: 51 year: 2007 ident: 10.1016/j.petrol.2013.09.002_bib28 article-title: Shale gas potential of the Lower Jurassic Gordondale Member, northeastern British Columbia, Canada publication-title: Bull. Can. Pet. Geol. doi: 10.2113/gscpgbull.55.1.51 – volume: 19 start-page: 194 year: 2012 ident: 10.1016/j.petrol.2013.09.002_bib37 article-title: Simulation of tectonic stress field of the Beidagang tectonic belts in North China Tectonic Period publication-title: Earth Sci. Front. – volume: 86 start-page: 1921 year: 2002 ident: 10.1016/j.petrol.2013.09.002_bib4 article-title: Fractured shale–gas systems publication-title: Am. Assoc. Pet. Geol. Bull. – volume: 86 start-page: 505 year: 2002 ident: 10.1016/j.petrol.2013.09.002_bib16 article-title: Natural fractures in the Spraberry Formation, Midland Basin, Texas: the effects of mechanical stratigraphy on fracture variability and reservoir behavior publication-title: Am. Assoc. Pet. Geol. Bull. – volume: 91 start-page: 475 year: 2007 ident: 10.1016/j.petrol.2013.09.002_bib15 article-title: Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale–gas assessment publication-title: Am. Assoc. Pet. Geol. Bull. – volume: 36 start-page: 1650 year: 2005 ident: 10.1016/j.petrol.2013.09.002_bib50 article-title: Origin of the Neogene shallow gas accumulations in the Jiyang superdepression, Bohai Bay Basin publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2005.08.009 – volume: 16 start-page: 190 year: 2009 ident: 10.1016/j.petrol.2013.09.002_bib39 article-title: Numerical simulating study of mechanical characteristic of superposed deformation in Daba Mountain foreland publication-title: Earth Sci. Front. doi: 10.1016/S1872-5791(08)60088-3 – volume: 1 start-page: 875 year: 2009 ident: 10.1016/j.petrol.2013.09.002_bib48 article-title: Exploration of numerical simulation on paleo-tectonic stress field publication-title: Procedia Earth Planet. Sci. doi: 10.1016/j.proeps.2009.09.136 – volume: 27 start-page: 1910 year: 2010 ident: 10.1016/j.petrol.2013.09.002_bib11 article-title: Charging of oil fields surrounding the Shaleitian uplift from multiple source rock intervals and generative kitchens, Bohai Bay basin, China publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2010.07.005 – year: 2008 ident: 10.1016/j.petrol.2013.09.002_bib1 – volume: 39 start-page: 62 year: 2012 ident: 10.1016/j.petrol.2013.09.002_bib32 article-title: Reservoir evaluation and fracture chracterization of the metamorphic buried hill reservoir in Bohai Bay Basin publication-title: Pet. Explor. Dev. doi: 10.1016/S1876-3804(12)60015-9 – volume: 26 start-page: 100 year: 2001 ident: 10.1016/j.petrol.2013.09.002_bib7 article-title: An experimental research into determination of highest paleotectonic stress state experienced by rock through geological ages publication-title: Earth Sci. – volume: 71 start-page: 17 year: 1987 ident: 10.1016/j.petrol.2013.09.002_bib3 article-title: Fracture development and mechanical stratigraphy of Austin Chalk, Texas publication-title: Am. Assoc. Pet. Geol. – volume: 93 start-page: 461 year: 2009 ident: 10.1016/j.petrol.2013.09.002_bib42 article-title: Fractures in sandstone reservoirs with ultra-low permeability: a case study of the Upper Triassic Yanchang Formation in the Ordos Basin, China publication-title: Am. Assoc. Pet. Geol. Bull. – volume: 3 start-page: 97 year: 2011 ident: 10.1016/j.petrol.2013.09.002_bib6 article-title: Fracture development in shale and its relationship to gas accumulation publication-title: Geosci. Front. doi: 10.1016/j.gsf.2011.10.001 – ident: 10.1016/j.petrol.2013.09.002_bib14 – volume: 29 start-page: 475 year: 2008 ident: 10.1016/j.petrol.2013.09.002_bib20 article-title: The simulation of present tectonic stress field and the prediction of tectonic fractures of Ordovician in Tazhong Area, Tarim Basin publication-title: Xinjiang Pet. Geol. – volume: 86–87 start-page: 62 year: 2012 ident: 10.1016/j.petrol.2013.09.002_bib5 article-title: Ordovician carbonate reservoir fracture characteristics and fracture distribution forecasting in the Tazhong area of Tarim Basin, Northwest China publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2012.03.006 – volume: 11 start-page: 27 year: 2004 ident: 10.1016/j.petrol.2013.09.002_bib46 article-title: Study on Migration and accumulation of oil and gas in fractured shale reservoir in Zhanhua sag publication-title: Pet. Geol. Recovery Effic. – volume: 30 start-page: 31 year: 2011 ident: 10.1016/j.petrol.2013.09.002_bib8 article-title: The simulation of ancient tectonic stress field and favorable areas of fractured reservoir in Nanniwan region, Ordos basin publication-title: J. Yanan Univ. (Nat. Sci. Ed.) – volume: 40 start-page: 229 year: 2009 ident: 10.1016/j.petrol.2013.09.002_bib43 article-title: Source rocks in Mesozoic–Cenozoic continental rift basins, east China: a case from Dongying Depression, Bohai Bay Basin publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2008.10.013 – year: 1997 ident: 10.1016/j.petrol.2013.09.002_bib19 – volume: 75 start-page: 251 year: 2013 ident: 10.1016/j.petrol.2013.09.002_bib502 article-title: Fracture development in Paleozoic shale of Chongqing area (South China). Part one: Fracture characteristics and comparative analysis of main controlling factors publication-title: Journal of Asian Earth Sciences doi: 10.1016/j.jseaes.2013.07.014 – volume: 96 start-page: 59 year: 2012 ident: 10.1016/j.petrol.2013.09.002_bib23 article-title: Diverse fracture properties and their impact on performance in conventional and tight-gas reservoirs, Saudi Arabia: the Unayzah, South Haradh case study publication-title: Am. Assoc. Pet. Geol. Bull. – volume: 45 start-page: 121 year: 2013 ident: 10.1016/j.petrol.2013.09.002_bib500 article-title: Analysis of the Developmental Characteristics and Major Regulating Factors of Fractures in Marine-Continental Transitional Shale-Gas Reservoirs: A Case Study of the Carboniferous-Permian Strata in the Southeastern Ordos Basin publication-title: Central China. Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2013.04.022 – volume: 37 start-page: 845 year: 2001 ident: 10.1016/j.petrol.2013.09.002_bib13 article-title: The tectonic evolution of Bohai Basin in mesozoic and cenozoic time publication-title: Univ. Pekinensis (Acta Sci. Nat.) – volume: 75 start-page: 1738 year: 1991 ident: 10.1016/j.petrol.2013.09.002_bib21 article-title: Regional fractures: fracturing of Mesaverde reservoirs in the Piceance Basin, Colorado publication-title: Am. Assoc. Pet. Geol. Bull. – volume: 9 start-page: 5 year: 1988 ident: 10.1016/j.petrol.2013.09.002_bib2 article-title: Gulong Qingshankou mudstone north of structural cracks and reservoir distribution and prediction publication-title: Pet. Technol. – volume: 50 start-page: 285 year: 2006 ident: 10.1016/j.petrol.2013.09.002_bib30 article-title: Influences of fracture orientation on oil recovery by water and polymer flooding processes: an experimental approach publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2005.12.002 – volume: 36 start-page: 365 year: 2012 ident: 10.1016/j.petrol.2013.09.002_bib45 article-title: On three calculation methods of volcanic reservoir fracture porosity based on FMI data publication-title: Well Logg. Technol. – volume: 221 start-page: 163 year: 1921 ident: 10.1016/j.petrol.2013.09.002_bib9 article-title: The phenomena of rupture and flow in solids publication-title: Philos. Trans. R. Soc. London doi: 10.1098/rsta.1921.0006 – volume: 74 start-page: 5343 year: 1969 ident: 10.1016/j.petrol.2013.09.002_bib17 article-title: On the Coulomb–Mohr failure criterion publication-title: J. Geophys. Res. doi: 10.1029/JB074i022p05343 – volume: 27 start-page: 757 year: 2010 ident: 10.1016/j.petrol.2013.09.002_bib27 article-title: Cenozoic structural deformation and dynamic processes of the Bohai Bay basin province, China publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2009.08.012 – volume: 93 start-page: 857 year: 2009 ident: 10.1016/j.petrol.2013.09.002_bib18 article-title: Hydrocarbon potential of the Barnett shale( Mississippian), Delaw are Basin, west Texas and southeastern New Mexico publication-title: Am. Assoc. Pet. Geol. Bull. – volume: 22 start-page: 37 year: 2008 ident: 10.1016/j.petrol.2013.09.002_bib25 article-title: Key factors of mudstone and its relationship with hydrocarbon formation at Xianghezhuang area publication-title: Pet. Geol. Eng. – volume: 20 start-page: 1663 year: 1998 ident: 10.1016/j.petrol.2013.09.002_bib22 article-title: Fracture initiation, growth and effect on stress field: a numerical investigation publication-title: J. Struct. Geol. doi: 10.1016/S0191-8141(98)00080-7 – year: 2011 ident: 10.1016/j.petrol.2013.09.002_bib36 – volume: 10 start-page: 405 year: 2004 ident: 10.1016/j.petrol.2013.09.002_bib40 article-title: Analysis on features and origins of the Mesozoic and Cenozoic faults in Zhanhua Sag publication-title: Geol. J. China Univ. – volume: 10 start-page: 53 year: 1973 ident: 10.1016/j.petrol.2013.09.002_bib12 article-title: The failure of rock beams: part I—theoretical studies publication-title: Int. J. Rock Mech. Min. Sci. Geomech. Abstr. doi: 10.1016/0148-9062(73)90059-4 – year: 2005 ident: 10.1016/j.petrol.2013.09.002_bib29 – year: 2001 ident: 10.1016/j.petrol.2013.09.002_bib24 – volume: 36 start-page: 203 year: 2004 ident: 10.1016/j.petrol.2013.09.002_bib31 article-title: Fault-fracture mesh petroleum plays in the Zhanhua Depressio, Bohai Bay Basin: Part 2. Oil-source correlation and secondary migration mechanisms publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2004.09.003 – year: 1995 ident: 10.1016/j.petrol.2013.09.002_bib10 – volume: 25 start-page: 1241 year: 2003 ident: 10.1016/j.petrol.2013.09.002_bib33 article-title: The control of stress history and flaw distribution on the evolution of polygonal fracture networks publication-title: J. Struct. Geol. doi: 10.1016/S0191-8141(02)00165-7 – volume: 337 start-page: 117 year: 2001 ident: 10.1016/j.petrol.2013.09.002_bib26 article-title: Role of shale thickness in vertical connectivity of fracture:application of crack-bridging theory to the Austin Chalk, Texas publication-title: Tectonophysics doi: 10.1016/S0040-1951(01)00107-X |
SSID | ssj0003637 |
Score | 1.9537584 |
Snippet | Tectonic fractures are the most important reservoir spaces within shale reservoirs and can significantly improve the permeability of a reservoir, the... Objective: Tectonic fractures are the most important reservoir spaces within shale reservoirs and can significantly improve the permeability of a reservoir,... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 119 |
SubjectTerms | Applied sciences Basins Bohai Bay Basin China Crude oil, natural gas and petroleum products Depression Energy Exact sciences and technology finite element method Fracture mechanics fracture prediction Fuels Geology and geochemistry. Geological and geochemical prospecting. Petroliferous series Natural gas paleotectonic stress field Prospecting and exploration Prospecting and production of crude oil, natural gas, oil shales and tar sands Reservoirs Shale shale reservoir Stresses tectonic fractures |
Title | Simulation of paleotectonic stress fields within Paleogene shale reservoirs and prediction of favorable zones for fracture development within the Zhanhua Depression, Bohai Bay Basin, east China |
URI | https://dx.doi.org/10.1016/j.petrol.2013.09.002 https://www.proquest.com/docview/1531006524 https://www.proquest.com/docview/1642299330 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9KRVBEtCqeH8cIPhpvL7v52Me2Wk-FItRC35bNZpeLaC4kd4X2of-b_5kzm6S1KBZ8CCRhkiy7szu_7PxmhrHXxivrC-mjwhV5JAupIqViF1mbxs4WiZdlYPkepotj-ekkOdli-2MsDNEqh7W_X9PDaj3cmQ29OWuqanbEVcyJpEgOGTQ0FPArZUZa_vbiiuYh0j5vJgpHJD2GzwWOFwLTdkUOiLkI2U6HzZW_mKd7jemw03xf7eKPhTtYo4MH7P4AI2G3b-lDtuXqHXb3t-SCO-z2h1C09-wR-3lU_RiqdMHKQ4M2ISRnoKy40AeLQGCydUDbslUNX0gEVctBt8RToBil9nRVtR2YuoSmJffO-D5vTlGPChQ7p8T_gDAYPAVfbVoH5RUpaXw5Qk6gferlxsC7kYhbv4G91dJUsGfO8OgqvEFlhSAU-H7Mjg_ef91fREPphsjiD-k6kl4oU2bCJEXJuVfcZWaeFlblUrjcIugrpZU-z-dJ6QQ3RtnUoaGMHeInY4x4wrZrbPNTBmWuLGI67qW1EvEW6laZGOXIg8ml9RMmxhHTdshrTuU1vuuRwPZN9-OsaZw1VxrHecKiy6eaPq_HDfLZqAz6mn5qND03PDm9pjuXn4szpWSWZBP2alQmjXObHDamdqtNp9EazQkjxvIfMvgDiZBCCP7sv5v4nN2hq56j-IJtr9uNe4lYa11Mw2Saslu7Hz8vDn8BnAgv0A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEF7qFdEiorXi-VJH8KPh9pLNy35sq_Vq6yG0hX5bNptdLqJJSO4K7b_znzmTl9OiWPBDIORmc0t2MvNk55kZxt5qJ41LhfNSmyaeSIX0pPStZ0zkW5OGTmQty3cezc7Fp4vwYoMdDLkwRKvsbX9n01tr3V-Z9E9zUuX55JRLnxNJkQIy6GiSO2yTqlOFI7a5d3Q8m68NchB1pTNR3qMBQwZdS_NCbFqXFIOYBm3B035_5S8e6kGlG3xurmt48Yftbh3S4SP2sEeSsNdN9jHbsMU22_qtvuA2u_ux7dt79YT9OM2_9426oHRQoVto6zNQYVzo8kWgJbM1QDuzeQFfSAS1y0KzwFOgNKX6sszrBnSRQVVThGe4n9OXqEopil1T7X9AJAyO8q9WtYXsFy9puDmiTqCt6sVKw_uBi1u8g_1yoXPY11d4NDleoM5C0Pb43mHnhx_ODmZe373BM_hNuvSEC6TO4kCHaca5k9zGehqlRiYisIlB3JcJI1ySTMPMBlxraSKLvtK3CKG01sFTNipwzs8YZIk0COu4E8YIhFyoXlmopaUgJhfGjVkwrJgyfWlz6rDxTQ0ctq-qW2dF66y4VLjOY-atR1VdaY9b5ONBGdQNFVXofW4ZuXtDd9Z_58dSosbGY_ZmUCaFrzfFbHRhy1Wj0CFNCSb64h8y-A2JqCII-PP_nuJrdm929vlEnRzNj1-w-_RLR1l8yUbLemVfIfRaprv9q_UT3SkygQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+of+paleotectonic+stress+fields+within+Paleogene+shale+reservoirs+and+prediction+of+favorable+zones+for+fracture+development+within+the+Zhanhua+Depression%2C+Bohai+Bay+Basin%2C+east+China&rft.jtitle=Journal+of+petroleum+science+%26+engineering&rft.au=KAI+JIU&rft.au=WENLONG+DING&rft.au=WENHUI+HUANG&rft.au=SHENGGANG+YOU&rft.date=2013-10-01&rft.pub=Elsevier&rft.issn=0920-4105&rft.volume=110&rft.spage=119&rft.epage=131&rft_id=info:doi/10.1016%2Fj.petrol.2013.09.002&rft.externalDBID=n%2Fa&rft.externalDocID=27994757 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4105&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4105&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4105&client=summon |