Estimation of signal-to-noise: a new procedure applied to AVIRIS data

To make the best use of narrowband Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data, an investigator needs to know the signal-to-noise ratio (SNR). The signal is land cover dependent and varies with both wavelength and atmospheric absorption, and random noise comprises sensor noise and i...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 27; no. 5; pp. 620 - 628
Main Authors Curran, P.J., Dungan, J.L.
Format Journal Article
LanguageEnglish
Published Legacy CDMS IEEE 01.09.1989
Subjects
Online AccessGet full text
ISSN0196-2892
DOI10.1109/TGRS.1989.35945

Cover

Abstract To make the best use of narrowband Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data, an investigator needs to know the signal-to-noise ratio (SNR). The signal is land cover dependent and varies with both wavelength and atmospheric absorption, and random noise comprises sensor noise and intrapixel variability (i.e. variability within a pixel). The three existing methods for estimating the SNR are inadequate, since typical laboratory methods inflate, while typical dark-current and image methods deflate the SNR value. The authors propose a procedure called the geostatistical method that is based on the removal of periodic noise by notch filtering in the frequency domain and the isolation of sensor noise and intrapixel variability using the semivariogram. This procedure was applied easily and successfully to five sets of AVIRIS data from the 1987 flying season and could be applied to remotely sensed data from broadband sensors.< >
AbstractList To make the best use of narrowband airborne visible/infrared imaging spectrometer (AVIRIS) data, an investigator needs to know the ratio of signal to random variability or noise (signal-to-noise ratio or SNR). The signal is land cover dependent and varies with both wavelength and atmospheric absorption; random noise comprises sensor noise and intrapixel variability (i.e., variability within a pixel). The three existing methods for estimating the SNR are inadequate, since typical laboratory methods inflate while dark current and image methods deflate the SNR. A new procedure is proposed called the geostatistical method. It is based on the removal of periodic noise by notch filtering in the frequency domain and the isolation of sensor noise and intrapixel variability using the semi- variogram. This procedure was applied easily and successfully to five sets of AVIRIS data from the 1987 flying season and could be applied to remotely sensed data from broadband sensors. (Author)
To make the best use of narrowband Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data, an investigator needs to know the signal-to-noise ratio (SNR). The signal is land cover dependent and varies with both wavelength and atmospheric absorption, and random noise comprises sensor noise and intrapixel variability (i.e. variability within a pixel). The three existing methods for estimating the SNR are inadequate, since typical laboratory methods inflate, while typical dark-current and image methods deflate the SNR value. The authors propose a procedure called the geostatistical method that is based on the removal of periodic noise by notch filtering in the frequency domain and the isolation of sensor noise and intrapixel variability using the semivariogram. This procedure was applied easily and successfully to five sets of AVIRIS data from the 1987 flying season and could be applied to remotely sensed data from broadband sensors
To make the best use of narrowband Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data, an investigator needs to know the ratio of singal to random variability or "noise" (signal-to-noise ratio or SNR). The three existing methods for estimating the SNR are inadequate, since typical "laboratory" methods inflate, while typical "dark current" and "image" methods deflate, the SNR. We propose a new procedure called the "geostatistical" method. It is based on the removal of periodic noise by "notch filtering" in the frequency domain and the isolation of sensor noise and intrapixel variability using the semivariogram.
To make the best use of narrowband Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data, an investigator needs to know the signal-to-noise ratio (SNR). The signal is land cover dependent and varies with both wavelength and atmospheric absorption, and random noise comprises sensor noise and intrapixel variability (i.e. variability within a pixel). The three existing methods for estimating the SNR are inadequate, since typical laboratory methods inflate, while typical dark-current and image methods deflate the SNR value. The authors propose a procedure called the geostatistical method that is based on the removal of periodic noise by notch filtering in the frequency domain and the isolation of sensor noise and intrapixel variability using the semivariogram. This procedure was applied easily and successfully to five sets of AVIRIS data from the 1987 flying season and could be applied to remotely sensed data from broadband sensors.< >
To make the best use of narrowband airborne visible/infrared imaging spectrometer (AVIRIS) data, an investigator needs to know the ratio of signal to random variability or noise (signal-to-noise ratio or SNR). The signal is land cover dependent and varies with both wavelength and atmospheric absorption; random noise comprises sensor noise and intrapixel variability (i.e., variability within a pixel). The three existing methods for estimating the SNR are inadequate, since typical laboratory methods inflate while dark current and image methods deflate the SNR. A new procedure is proposed called the geostatistical method. It is based on the removal of periodic noise by notch filtering in the frequency domain and the isolation of sensor noise and intrapixel variability using the semi-variogram. This procedure was applied easily and successfully to five sets of AVIRIS data from the 1987 flying season and could be applied to remotely sensed data from broadband sensors.
Audience PUBLIC
Author Dungan, J.L.
Curran, P.J.
Author_xml – sequence: 1
  givenname: P.J.
  surname: Curran
  fullname: Curran, P.J.
  organization: NASA Ames Res. Center, Moffett Field, CA, USA
– sequence: 2
  givenname: J.L.
  surname: Dungan
  fullname: Dungan, J.L.
BookMark eNqNkb1PAyEchhlqYv2YjYkDk9u1wMHd4WZM1SZNTGx1Jb_jwGCuRz1ojP-9tGccHNQFhvd5yRueIzTqfGcQOqNkQimR09Xd43JCZSUnuZBcjNCYUFlkrJLsEB2F8EoI5YKWYzSbhejWEJ3vsLc4uJcO2iz6rPMumCsMuDPveNN7bZptbzBsNq0zDY4eXz_PH-dL3ECEE3RgoQ3m9Os-Rk-3s9XNfbZ4uJvfXC8yzQmLGa8LyktRAEAtLGtISWyZTiktVFpT2-S8ltRAnksoGKG2TjupqG1ugBCdH6PL4d006G1rQlRrF7RpW-iM3wbFJOE8l-JvsEpLaFH-DQpelhX7HygYLxI4HUDd-xB6Y9WmTz_cfyhK1M6O2tlROztqbyc1xI-GdnGvJPbg2l96F0OvgwAqwSGlkhDCiqqQKT4fYmeM-R4xVD8BMvim6g
CODEN IGRSD2
CitedBy_id crossref_primary_10_1016_j_rse_2021_112499
crossref_primary_10_14358_PERS_73_7_841
crossref_primary_10_1177_030913339802200103
crossref_primary_10_1080_01431169508954601
crossref_primary_10_2112_04_0421_1
crossref_primary_10_1080_01431169208904163
crossref_primary_10_1016_j_infrared_2019_103115
crossref_primary_10_1109_JSTARS_2015_2405095
crossref_primary_10_1016_j_isprsjprs_2014_06_013
crossref_primary_10_1109_36_387592
crossref_primary_10_1364_AO_51_006045
crossref_primary_10_1016_j_actaastro_2016_07_042
crossref_primary_10_1080_01431169508954491
crossref_primary_10_1364_AO_53_007059
crossref_primary_10_1117_1_1447547
crossref_primary_10_1016_j_isprsjprs_2022_08_004
crossref_primary_10_1080_01431169308904391
crossref_primary_10_1109_TGRS_2007_897421
crossref_primary_10_3390_s18030693
crossref_primary_10_1080_02757250009532397
crossref_primary_10_5589_cjrs3202fi
crossref_primary_10_1080_01431160110076153
crossref_primary_10_1109_TGRS_2014_2359935
crossref_primary_10_1016_j_infrared_2018_12_011
crossref_primary_10_1109_36_563280
crossref_primary_10_1007_s11432_009_0156_z
crossref_primary_10_1016_0034_4257_93_90061_2
crossref_primary_10_1364_OE_22_027270
crossref_primary_10_1109_JSTARS_2012_2232904
crossref_primary_10_1080_01431160500396741
crossref_primary_10_1080_01431169508954510
crossref_primary_10_1109_TGRS_2010_2058579
crossref_primary_10_1109_TGRS_2021_3060781
crossref_primary_10_1108_SR_07_2020_0165
crossref_primary_10_1371_journal_pone_0066972
crossref_primary_10_1364_OE_26_034503
crossref_primary_10_1109_36_368225
crossref_primary_10_1109_TGRS_2009_2020156
crossref_primary_10_3390_rs11131622
crossref_primary_10_1080_01431169608949031
crossref_primary_10_3390_s110302408
crossref_primary_10_1109_JSTARS_2012_2227245
crossref_primary_10_1080_01431160310001654969
crossref_primary_10_1016_j_jqsrt_2024_109100
crossref_primary_10_1016_0034_4257_90_90066_U
crossref_primary_10_1186_1687_6180_2013_65
crossref_primary_10_1109_JSTSP_2010_2104312
crossref_primary_10_1109_TGRS_2021_3096999
crossref_primary_10_3390_rs9121237
crossref_primary_10_3390_rs13061050
crossref_primary_10_1016_0034_4257_89_90069_2
crossref_primary_10_3390_s90503289
crossref_primary_10_1364_AO_40_001464
crossref_primary_10_3390_rs6054409
crossref_primary_10_1007_BF02826476
crossref_primary_10_3390_s23104695
crossref_primary_10_1080_01431160310001618383
crossref_primary_10_1080_01431161_2012_666363
crossref_primary_10_1109_36_934076
crossref_primary_10_3390_rs16071238
crossref_primary_10_1080_01431169608949062
crossref_primary_10_5589_cjrs3203fi
crossref_primary_10_1016_j_rse_2024_114291
crossref_primary_10_1080_01431160902922888
crossref_primary_10_1109_TGRS_2014_2301415
crossref_primary_10_1080_01431160802220201
crossref_primary_10_1080_2150704X_2014_923126
crossref_primary_10_1186_1687_5281_2014_3
crossref_primary_10_1109_36_312895
crossref_primary_10_1007_BF03026667
crossref_primary_10_1080_01431169608949181
crossref_primary_10_1109_LGRS_2018_2878869
crossref_primary_10_1080_01431161_2020_1766146
crossref_primary_10_1109_TGRS_2008_916982
crossref_primary_10_3390_rs11182071
crossref_primary_10_1007_s11801_022_1024_y
crossref_primary_10_5589_m06_018
crossref_primary_10_2112_JCOASTRES_D_20_00070_1
crossref_primary_10_3390_app13052851
crossref_primary_10_1109_JSTARS_2022_3225964
crossref_primary_10_1016_j_biosystemseng_2016_12_006
crossref_primary_10_1016_S0924_2716_01_00035_1
crossref_primary_10_1080_01431160902887867
crossref_primary_10_1177_030913339902300303
crossref_primary_10_1007_BF02826814
crossref_primary_10_1177_030913339401800204
crossref_primary_10_1080_01431161_2010_532819
crossref_primary_10_2747_1548_1603_41_1_62
crossref_primary_10_1109_62_318881
crossref_primary_10_1109_LGRS_2007_909927
crossref_primary_10_1016_j_jag_2005_01_001
crossref_primary_10_1109_TGRS_2009_2031812
crossref_primary_10_5589_m06_020
crossref_primary_10_1109_TGRS_2014_2313129
crossref_primary_10_1111_j_0033_0124_1990_00345_x
crossref_primary_10_1038_s41598_024_69732_6
Cites_doi 10.1117/12.942288
10.1016/0034-4257(88)90007-7
10.1016/0034-4257(88)90021-1
10.1016/0034-4257(88)90003-X
10.1109/TGRS.1984.350620
10.1109/36.3050
10.1007/978-1-4612-5090-6_1
10.1117/12.942295
10.1038/335154a0
10.1126/science.228.4704.1147
10.1117/12.942294
10.1117/12.942280
ContentType Journal Article
DBID CYE
CYI
AAYXX
CITATION
7SP
8FD
L7M
H8D
FR3
KR7
DOI 10.1109/TGRS.1989.35945
DatabaseName NASA Scientific and Technical Information
NASA Technical Reports Server
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Aerospace Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList Technology Research Database
Technology Research Database
Technology Research Database


Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EndPage 628
ExternalDocumentID 10_1109_TGRS_1989_35945
19900026869
35945
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
CYE
CYI
RIG
AAYOK
AAYXX
CITATION
7SP
8FD
L7M
H8D
FR3
KR7
ID FETCH-LOGICAL-c402t-4b614756aaab5f2d070f7d0799fa8cc1fd34b91ea339a6201fb01415bf3ea00c3
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Fri Sep 05 11:17:49 EDT 2025
Thu Sep 04 17:38:04 EDT 2025
Thu Sep 04 17:51:25 EDT 2025
Fri Sep 05 13:10:46 EDT 2025
Tue Jul 01 04:30:02 EDT 2025
Thu Apr 24 23:01:21 EDT 2025
Fri Aug 15 15:28:00 EDT 2025
Tue Aug 26 16:39:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-4b614756aaab5f2d070f7d0799fa8cc1fd34b91ea339a6201fb01415bf3ea00c3
Notes CDMS
Legacy CDMS
ISSN: 0196-2892
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 25475246
PQPubID 23500
PageCount 9
ParticipantIDs nasa_ntrs_19900026869
proquest_miscellaneous_29044395
proquest_miscellaneous_25477827
crossref_primary_10_1109_TGRS_1989_35945
proquest_miscellaneous_25475246
proquest_miscellaneous_28614167
ieee_primary_35945
crossref_citationtrail_10_1109_TGRS_1989_35945
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1989-09-01
PublicationDateYYYYMMDD 1989-09-01
PublicationDate_xml – month: 09
  year: 1989
  text: 1989-09-01
  day: 01
PublicationDecade 1980
PublicationPlace Legacy CDMS
PublicationPlace_xml – name: Legacy CDMS
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 1989
Publisher IEEE
Publisher_xml – name: IEEE
References ref12
vane (ref16) 1988
ref31
(ref7) 1988
ref11
young (ref35) 1987
price (ref40) 1987
(ref5) 1987
ref1
swanberg (ref41) 1987
bringham (ref33) 1974
conel (ref22) 1988
curran (ref9) 1986; 52
ref26
ref25
ref20
moik (ref38) 1980
green (ref19) 1988
gonzales (ref34) 1977
chahine (ref15) 1983
mather (ref32) 1987
ref27
odland (ref29) 1988
ref8
lowe (ref13) 1976
(ref10) 1985; 643
crowley (ref36) 1988
porter (ref17) 1988
ref3
duggin (ref21) 1985; 51
conel (ref24) 1987; 834
rosenfeld (ref37) 1982
ref6
carerre (ref18) 1988
porter (ref4) 1987; 834
clark (ref23) 1988
kondratyev (ref14) 1969
journel (ref28) 1978
carr (ref30) 1984
vane (ref2) 1985; 2
hlavka (ref39) 1986
References_xml – ident: ref31
  doi: 10.1117/12.942288
– year: 1987
  ident: ref5
  publication-title: Airborne visible/infrared imaging spectrometer AVIRIS A description of the sensor ground data processing facility laboratory calibration and first results
– start-page: 162
  year: 1988
  ident: ref19
  article-title: Determination of in-flight AVIRIS spectral, radiometric, spectral and signal-to-noise characteristics using atmospheric and surface measurements from the vicinity of the rare-earth-bearing carbonatite at Mountain Pass, California
  publication-title: Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop
– ident: ref11
  doi: 10.1016/0034-4257(88)90007-7
– year: 1969
  ident: ref14
  publication-title: Radiation in the Atmosphere
– ident: ref25
  doi: 10.1016/0034-4257(88)90021-1
– start-page: 70
  year: 1987
  ident: ref41
  article-title: The use of airborne imaging spectrometer data to determine experimentally induced variation in coniferous canopy chemistry
  publication-title: Proc 3rd Airborne Image Spectrometer Data Anal Workshop
– ident: ref3
  doi: 10.1016/0034-4257(88)90003-X
– start-page: 134
  year: 1988
  ident: ref18
  article-title: An assessment of AVIRIS data for hydrothermal alteration mapping in the Goldfield mining district, Nevada
  publication-title: Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop
– volume: 52
  start-page: 229
  year: 1986
  ident: ref9
  article-title: The importance of measurement error for certain procedures in remote sensing at optical wavelengths
  publication-title: Photogrammetr Eng Remote Sensing
– volume: 51
  start-page: 1427
  year: 1985
  ident: ref21
  article-title: Systematic and random variations in Thematic Mapper digital radiance data
  publication-title: Photogrammetr Eng
– ident: ref20
  doi: 10.1109/TGRS.1984.350620
– ident: ref27
  doi: 10.1109/36.3050
– ident: ref6
  doi: 10.1117/12.942288
– year: 1978
  ident: ref28
  publication-title: Mining Geostatistics
– start-page: 91
  year: 1987
  ident: ref40
  article-title: Toward detecting California shrubland canopy chemistry with AIS data
  publication-title: Proc 3rd Airborne Image Spectrometer Data Anal Workshop
– year: 1988
  ident: ref17
  article-title: AVIRIS instrument status
  publication-title: Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop
– start-page: 1
  year: 1988
  ident: ref16
  article-title: AVIRIS performance during the 1987 flight season: An AVIRIS project assessment and summary of the NASA-sponsored performance evaluation
  publication-title: Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop
– ident: ref26
  doi: 10.1007/978-1-4612-5090-6_1
– year: 1988
  ident: ref29
  publication-title: Spatial Autocorrelation
– start-page: 74
  year: 1986
  ident: ref39
  article-title: Destriping AIS data using Fourier filtering techniques
  publication-title: Proc 3rd Airborne Image Spectrometer Data Anal Workshop
– start-page: 155
  year: 1988
  ident: ref36
  article-title: Evaluation of Airborne Visible/Infrared Imaging Spectrometer data of the Mountain Pass, California carbonatite complex
  publication-title: Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop
– start-page: 155
  year: 1976
  ident: ref13
  publication-title: Remote Sensing of Environment
– start-page: 197
  year: 1988
  ident: ref22
  article-title: In-flight radiometric calibration of the Airborne, Visible/Infrared Imaging Spectrometer (AVIRIS)
  publication-title: Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop
– volume: 2
  start-page: 11
  year: 1985
  ident: ref2
  article-title: High spectral resolution remote sensing of the Earth
  publication-title: SENSORS
– year: 1987
  ident: ref32
  publication-title: Computer Processing of Remotely Sensed Images An Introduction
– ident: ref8
  doi: 10.1117/12.942295
– year: 1980
  ident: ref38
  publication-title: Digital Processing of Remotely Sensed Images
– start-page: 165
  year: 1983
  ident: ref15
  publication-title: Manual of Remote Sensing
– year: 1974
  ident: ref33
  publication-title: The Fast Fourier Transform
– year: 1987
  ident: ref35
  publication-title: Noise characterization of airborne visible and infrared imaging spectrometer data
– volume: 643
  year: 1985
  ident: ref10
  publication-title: Near Infrared Reflectance Spectroscopy (NIRS) Analysis of Forage Quality USDA Handbook
– year: 1988
  ident: ref7
  publication-title: Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop
– year: 1982
  ident: ref37
  publication-title: Digital Picture Processing
– ident: ref12
  doi: 10.1038/335154a0
– year: 1977
  ident: ref34
  publication-title: Digital Image Processing
– ident: ref1
  doi: 10.1126/science.228.4704.1147
– volume: 834
  start-page: 140
  year: 1987
  ident: ref24
  publication-title: Imaging Spectroscopy II
  doi: 10.1117/12.942294
– volume: 834
  start-page: 22
  year: 1987
  ident: ref4
  publication-title: Imaging Spectroscopy II
  doi: 10.1117/12.942280
– start-page: 55
  year: 1984
  ident: ref30
  article-title: Application of the theory of regionalized variables to the spatial analysis of Landsat data
  publication-title: Proc Spatial Information Tech for Remote Sensing Today and Tomorrow 9th William T Pecora Memorial Symp
– year: 1988
  ident: ref23
  article-title: Calibration and evaluation of AVIRIS data
  publication-title: Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop
SSID ssj0014517
Score 1.6622018
Snippet To make the best use of narrowband Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data, an investigator needs to know the signal-to-noise ratio (SNR)....
To make the best use of narrowband airborne visible/infrared imaging spectrometer (AVIRIS) data, an investigator needs to know the ratio of signal to random...
To make the best use of narrowband Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data, an investigator needs to know the ratio of singal to random...
SourceID proquest
crossref
nasa
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 620
SubjectTerms Absorption
Earth Resources And Remote Sensing
Infrared imaging
Infrared spectra
Layout
NASA
Noise level
Reflectivity
Sensor phenomena and characterization
Signal to noise ratio
Spectroscopy
Title Estimation of signal-to-noise: a new procedure applied to AVIRIS data
URI https://ieeexplore.ieee.org/document/35945
https://ntrs.nasa.gov/citations/19900026869
https://www.proquest.com/docview/25475246
https://www.proquest.com/docview/25477827
https://www.proquest.com/docview/28614167
https://www.proquest.com/docview/29044395
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELagEhIcaHmJ7dMHDlwS4iR27N5QtRQ4cOAlbtHYsSXEKkEkufDrGTthW6BdcUmsaKxYM3Y8E3_zDSF71lUcTKEj4zQGKAZEJI3CVlGB0kwY5gLb55k4vspPb_jNSJMTcmGstQF8ZmPfDGf5VWN6_6vsIOMq58tkGSfZkKk1Py_IORsTo0WEIUQ6kviwRB1c_j6_iD0yKA7dX-w_oaAK3mpo4c3HOOwwRx-HUkVtICb0wJK7uO90bB5f0Ta-b_CfyProaNLDYWZskCVbb5K1v-gHN8lKgH-adotMp7jShyRG2jjqQR0wi7omqpvb1v6kQNH7pmGzq_oHS2HwXWnX0MPrk_OTC-qRptvk6mh6-es4GgssRAbDxi7KNW7OBRcAoLlLK1z-rsCrUg6kQTNVWa4Vs5BlCgS6Ck57XCjXLrOQJCbbQdU1td0lVMkMWGqkVR72JiUkJuUVL2wi85RlbELiZ7WXZmQf90UwZmWIQhJVejuV3k5l0NSE7M873A_EG_8X3fDqnouND7e9VUt8S4uyvjZqKqRQE_Lj2cwlriR_PAK1bfq2xFC54GkuFkugR1UskJCoUSYWSagkRyeQf_7XoL-Q1T8Ytq_kQ_fQ22_o9HT6e5jvT_qV_Ro
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZ4CAEHoKWoy6s-cOCSNE5ix-ZWoS27UHpot6g3a-zYUkWVoCa59NczdtLlveKSRNEksWZsz0z8-RtC3jhfc7CVSaw3mKBYEIm0Cq-qGpRhwjIf2T6PxeKs_HjOzyeanLgXxjkXwWcuDZdxLb9u7RB-le0XXJX8NrmLXr_k416t9YpBydm0NVokmETkE40Py9T-6sPJaRqwQWl8wS8eKJZUwVMDHfwxHUcfc_h4LFbURWrCAC35mg69Se31b8SN_9f8J-TRFGrSg7FvbJFbrtkmD38iINwm9yIA1HZPyXyOY33cxkhbTwOsAy6Tvk2a9qJz7yhQjL9pdHf1cOUojNEr7Vt68GV5sjylAWu6Q84O56v3i2QqsZBYTBz7pDTonisuAMBwn9c4AfgKj0p5kBYNVRelUcxBUSgQGCx4E5Ch3PjCQZbZ4hmqrm3cLqFKFsByK50KwDcpIbM5r3nlMlnmrGAzkt6oXduJfzyUwbjUMQ_JlA520sFOOmpqRt6uH_g2Um_8W3QrqHstNt3cCVbV-JUOZUN11FxIoWZk78bMGsdSWCCBxrVDpzFZrnheis0SGFNVGyQkapSJTRIqKzEM5M__1ug9cn-x-nykj5bHn16QBz8QbS_Jnf5qcK8wBOrN69j3vwNdEgB2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+signal-to-noise+-+A+new+procedure+applied+to+AVIRIS+data&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Curran%2C+Paul+J.&rft.au=Dungan%2C+Jennifer+L.&rft.date=1989-09-01&rft.issn=0196-2892&rft.volume=27&rft_id=info:doi/10.1109%2FTGRS.1989.35945&rft.externalDBID=CYI&rft.externalDocID=19900026869
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon