Estimation of signal-to-noise: a new procedure applied to AVIRIS data
To make the best use of narrowband Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data, an investigator needs to know the signal-to-noise ratio (SNR). The signal is land cover dependent and varies with both wavelength and atmospheric absorption, and random noise comprises sensor noise and i...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 27; no. 5; pp. 620 - 628 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Legacy CDMS
IEEE
01.09.1989
|
Subjects | |
Online Access | Get full text |
ISSN | 0196-2892 |
DOI | 10.1109/TGRS.1989.35945 |
Cover
Abstract | To make the best use of narrowband Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data, an investigator needs to know the signal-to-noise ratio (SNR). The signal is land cover dependent and varies with both wavelength and atmospheric absorption, and random noise comprises sensor noise and intrapixel variability (i.e. variability within a pixel). The three existing methods for estimating the SNR are inadequate, since typical laboratory methods inflate, while typical dark-current and image methods deflate the SNR value. The authors propose a procedure called the geostatistical method that is based on the removal of periodic noise by notch filtering in the frequency domain and the isolation of sensor noise and intrapixel variability using the semivariogram. This procedure was applied easily and successfully to five sets of AVIRIS data from the 1987 flying season and could be applied to remotely sensed data from broadband sensors.< > |
---|---|
AbstractList | To make the best use of narrowband airborne visible/infrared imaging spectrometer (AVIRIS) data, an investigator needs to know the ratio of signal to random variability or noise (signal-to-noise ratio or SNR). The signal is land cover dependent and varies with both wavelength and atmospheric absorption; random noise comprises sensor noise and intrapixel variability (i.e., variability within a pixel). The three existing methods for estimating the SNR are inadequate, since typical laboratory methods inflate while dark current and image methods deflate the SNR. A new procedure is proposed called the geostatistical method. It is based on the removal of periodic noise by notch filtering in the frequency domain and the isolation of sensor noise and intrapixel variability using the semi- variogram. This procedure was applied easily and successfully to five sets of AVIRIS data from the 1987 flying season and could be applied to remotely sensed data from broadband sensors. (Author) To make the best use of narrowband Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data, an investigator needs to know the signal-to-noise ratio (SNR). The signal is land cover dependent and varies with both wavelength and atmospheric absorption, and random noise comprises sensor noise and intrapixel variability (i.e. variability within a pixel). The three existing methods for estimating the SNR are inadequate, since typical laboratory methods inflate, while typical dark-current and image methods deflate the SNR value. The authors propose a procedure called the geostatistical method that is based on the removal of periodic noise by notch filtering in the frequency domain and the isolation of sensor noise and intrapixel variability using the semivariogram. This procedure was applied easily and successfully to five sets of AVIRIS data from the 1987 flying season and could be applied to remotely sensed data from broadband sensors To make the best use of narrowband Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data, an investigator needs to know the ratio of singal to random variability or "noise" (signal-to-noise ratio or SNR). The three existing methods for estimating the SNR are inadequate, since typical "laboratory" methods inflate, while typical "dark current" and "image" methods deflate, the SNR. We propose a new procedure called the "geostatistical" method. It is based on the removal of periodic noise by "notch filtering" in the frequency domain and the isolation of sensor noise and intrapixel variability using the semivariogram. To make the best use of narrowband Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data, an investigator needs to know the signal-to-noise ratio (SNR). The signal is land cover dependent and varies with both wavelength and atmospheric absorption, and random noise comprises sensor noise and intrapixel variability (i.e. variability within a pixel). The three existing methods for estimating the SNR are inadequate, since typical laboratory methods inflate, while typical dark-current and image methods deflate the SNR value. The authors propose a procedure called the geostatistical method that is based on the removal of periodic noise by notch filtering in the frequency domain and the isolation of sensor noise and intrapixel variability using the semivariogram. This procedure was applied easily and successfully to five sets of AVIRIS data from the 1987 flying season and could be applied to remotely sensed data from broadband sensors.< > To make the best use of narrowband airborne visible/infrared imaging spectrometer (AVIRIS) data, an investigator needs to know the ratio of signal to random variability or noise (signal-to-noise ratio or SNR). The signal is land cover dependent and varies with both wavelength and atmospheric absorption; random noise comprises sensor noise and intrapixel variability (i.e., variability within a pixel). The three existing methods for estimating the SNR are inadequate, since typical laboratory methods inflate while dark current and image methods deflate the SNR. A new procedure is proposed called the geostatistical method. It is based on the removal of periodic noise by notch filtering in the frequency domain and the isolation of sensor noise and intrapixel variability using the semi-variogram. This procedure was applied easily and successfully to five sets of AVIRIS data from the 1987 flying season and could be applied to remotely sensed data from broadband sensors. |
Audience | PUBLIC |
Author | Dungan, J.L. Curran, P.J. |
Author_xml | – sequence: 1 givenname: P.J. surname: Curran fullname: Curran, P.J. organization: NASA Ames Res. Center, Moffett Field, CA, USA – sequence: 2 givenname: J.L. surname: Dungan fullname: Dungan, J.L. |
BookMark | eNqNkb1PAyEchhlqYv2YjYkDk9u1wMHd4WZM1SZNTGx1Jb_jwGCuRz1ojP-9tGccHNQFhvd5yRueIzTqfGcQOqNkQimR09Xd43JCZSUnuZBcjNCYUFlkrJLsEB2F8EoI5YKWYzSbhejWEJ3vsLc4uJcO2iz6rPMumCsMuDPveNN7bZptbzBsNq0zDY4eXz_PH-dL3ECEE3RgoQ3m9Os-Rk-3s9XNfbZ4uJvfXC8yzQmLGa8LyktRAEAtLGtISWyZTiktVFpT2-S8ltRAnksoGKG2TjupqG1ugBCdH6PL4d006G1rQlRrF7RpW-iM3wbFJOE8l-JvsEpLaFH-DQpelhX7HygYLxI4HUDd-xB6Y9WmTz_cfyhK1M6O2tlROztqbyc1xI-GdnGvJPbg2l96F0OvgwAqwSGlkhDCiqqQKT4fYmeM-R4xVD8BMvim6g |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_1016_j_rse_2021_112499 crossref_primary_10_14358_PERS_73_7_841 crossref_primary_10_1177_030913339802200103 crossref_primary_10_1080_01431169508954601 crossref_primary_10_2112_04_0421_1 crossref_primary_10_1080_01431169208904163 crossref_primary_10_1016_j_infrared_2019_103115 crossref_primary_10_1109_JSTARS_2015_2405095 crossref_primary_10_1016_j_isprsjprs_2014_06_013 crossref_primary_10_1109_36_387592 crossref_primary_10_1364_AO_51_006045 crossref_primary_10_1016_j_actaastro_2016_07_042 crossref_primary_10_1080_01431169508954491 crossref_primary_10_1364_AO_53_007059 crossref_primary_10_1117_1_1447547 crossref_primary_10_1016_j_isprsjprs_2022_08_004 crossref_primary_10_1080_01431169308904391 crossref_primary_10_1109_TGRS_2007_897421 crossref_primary_10_3390_s18030693 crossref_primary_10_1080_02757250009532397 crossref_primary_10_5589_cjrs3202fi crossref_primary_10_1080_01431160110076153 crossref_primary_10_1109_TGRS_2014_2359935 crossref_primary_10_1016_j_infrared_2018_12_011 crossref_primary_10_1109_36_563280 crossref_primary_10_1007_s11432_009_0156_z crossref_primary_10_1016_0034_4257_93_90061_2 crossref_primary_10_1364_OE_22_027270 crossref_primary_10_1109_JSTARS_2012_2232904 crossref_primary_10_1080_01431160500396741 crossref_primary_10_1080_01431169508954510 crossref_primary_10_1109_TGRS_2010_2058579 crossref_primary_10_1109_TGRS_2021_3060781 crossref_primary_10_1108_SR_07_2020_0165 crossref_primary_10_1371_journal_pone_0066972 crossref_primary_10_1364_OE_26_034503 crossref_primary_10_1109_36_368225 crossref_primary_10_1109_TGRS_2009_2020156 crossref_primary_10_3390_rs11131622 crossref_primary_10_1080_01431169608949031 crossref_primary_10_3390_s110302408 crossref_primary_10_1109_JSTARS_2012_2227245 crossref_primary_10_1080_01431160310001654969 crossref_primary_10_1016_j_jqsrt_2024_109100 crossref_primary_10_1016_0034_4257_90_90066_U crossref_primary_10_1186_1687_6180_2013_65 crossref_primary_10_1109_JSTSP_2010_2104312 crossref_primary_10_1109_TGRS_2021_3096999 crossref_primary_10_3390_rs9121237 crossref_primary_10_3390_rs13061050 crossref_primary_10_1016_0034_4257_89_90069_2 crossref_primary_10_3390_s90503289 crossref_primary_10_1364_AO_40_001464 crossref_primary_10_3390_rs6054409 crossref_primary_10_1007_BF02826476 crossref_primary_10_3390_s23104695 crossref_primary_10_1080_01431160310001618383 crossref_primary_10_1080_01431161_2012_666363 crossref_primary_10_1109_36_934076 crossref_primary_10_3390_rs16071238 crossref_primary_10_1080_01431169608949062 crossref_primary_10_5589_cjrs3203fi crossref_primary_10_1016_j_rse_2024_114291 crossref_primary_10_1080_01431160902922888 crossref_primary_10_1109_TGRS_2014_2301415 crossref_primary_10_1080_01431160802220201 crossref_primary_10_1080_2150704X_2014_923126 crossref_primary_10_1186_1687_5281_2014_3 crossref_primary_10_1109_36_312895 crossref_primary_10_1007_BF03026667 crossref_primary_10_1080_01431169608949181 crossref_primary_10_1109_LGRS_2018_2878869 crossref_primary_10_1080_01431161_2020_1766146 crossref_primary_10_1109_TGRS_2008_916982 crossref_primary_10_3390_rs11182071 crossref_primary_10_1007_s11801_022_1024_y crossref_primary_10_5589_m06_018 crossref_primary_10_2112_JCOASTRES_D_20_00070_1 crossref_primary_10_3390_app13052851 crossref_primary_10_1109_JSTARS_2022_3225964 crossref_primary_10_1016_j_biosystemseng_2016_12_006 crossref_primary_10_1016_S0924_2716_01_00035_1 crossref_primary_10_1080_01431160902887867 crossref_primary_10_1177_030913339902300303 crossref_primary_10_1007_BF02826814 crossref_primary_10_1177_030913339401800204 crossref_primary_10_1080_01431161_2010_532819 crossref_primary_10_2747_1548_1603_41_1_62 crossref_primary_10_1109_62_318881 crossref_primary_10_1109_LGRS_2007_909927 crossref_primary_10_1016_j_jag_2005_01_001 crossref_primary_10_1109_TGRS_2009_2031812 crossref_primary_10_5589_m06_020 crossref_primary_10_1109_TGRS_2014_2313129 crossref_primary_10_1111_j_0033_0124_1990_00345_x crossref_primary_10_1038_s41598_024_69732_6 |
Cites_doi | 10.1117/12.942288 10.1016/0034-4257(88)90007-7 10.1016/0034-4257(88)90021-1 10.1016/0034-4257(88)90003-X 10.1109/TGRS.1984.350620 10.1109/36.3050 10.1007/978-1-4612-5090-6_1 10.1117/12.942295 10.1038/335154a0 10.1126/science.228.4704.1147 10.1117/12.942294 10.1117/12.942280 |
ContentType | Journal Article |
DBID | CYE CYI AAYXX CITATION 7SP 8FD L7M H8D FR3 KR7 |
DOI | 10.1109/TGRS.1989.35945 |
DatabaseName | NASA Scientific and Technical Information NASA Technical Reports Server CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace Aerospace Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts Aerospace Database Civil Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Technology Research Database Technology Research Database Technology Research Database Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EndPage | 628 |
ExternalDocumentID | 10_1109_TGRS_1989_35945 19900026869 35945 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R CYE CYI RIG AAYOK AAYXX CITATION 7SP 8FD L7M H8D FR3 KR7 |
ID | FETCH-LOGICAL-c402t-4b614756aaab5f2d070f7d0799fa8cc1fd34b91ea339a6201fb01415bf3ea00c3 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Fri Sep 05 11:17:49 EDT 2025 Thu Sep 04 17:38:04 EDT 2025 Thu Sep 04 17:51:25 EDT 2025 Fri Sep 05 13:10:46 EDT 2025 Tue Jul 01 04:30:02 EDT 2025 Thu Apr 24 23:01:21 EDT 2025 Fri Aug 15 15:28:00 EDT 2025 Tue Aug 26 16:39:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-4b614756aaab5f2d070f7d0799fa8cc1fd34b91ea339a6201fb01415bf3ea00c3 |
Notes | CDMS Legacy CDMS ISSN: 0196-2892 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 25475246 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | nasa_ntrs_19900026869 proquest_miscellaneous_29044395 proquest_miscellaneous_25477827 crossref_primary_10_1109_TGRS_1989_35945 proquest_miscellaneous_25475246 proquest_miscellaneous_28614167 ieee_primary_35945 crossref_citationtrail_10_1109_TGRS_1989_35945 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1989-09-01 |
PublicationDateYYYYMMDD | 1989-09-01 |
PublicationDate_xml | – month: 09 year: 1989 text: 1989-09-01 day: 01 |
PublicationDecade | 1980 |
PublicationPlace | Legacy CDMS |
PublicationPlace_xml | – name: Legacy CDMS |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 1989 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref12 vane (ref16) 1988 ref31 (ref7) 1988 ref11 young (ref35) 1987 price (ref40) 1987 (ref5) 1987 ref1 swanberg (ref41) 1987 bringham (ref33) 1974 conel (ref22) 1988 curran (ref9) 1986; 52 ref26 ref25 ref20 moik (ref38) 1980 green (ref19) 1988 gonzales (ref34) 1977 chahine (ref15) 1983 mather (ref32) 1987 ref27 odland (ref29) 1988 ref8 lowe (ref13) 1976 (ref10) 1985; 643 crowley (ref36) 1988 porter (ref17) 1988 ref3 duggin (ref21) 1985; 51 conel (ref24) 1987; 834 rosenfeld (ref37) 1982 ref6 carerre (ref18) 1988 porter (ref4) 1987; 834 clark (ref23) 1988 kondratyev (ref14) 1969 journel (ref28) 1978 carr (ref30) 1984 vane (ref2) 1985; 2 hlavka (ref39) 1986 |
References_xml | – ident: ref31 doi: 10.1117/12.942288 – year: 1987 ident: ref5 publication-title: Airborne visible/infrared imaging spectrometer AVIRIS A description of the sensor ground data processing facility laboratory calibration and first results – start-page: 162 year: 1988 ident: ref19 article-title: Determination of in-flight AVIRIS spectral, radiometric, spectral and signal-to-noise characteristics using atmospheric and surface measurements from the vicinity of the rare-earth-bearing carbonatite at Mountain Pass, California publication-title: Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop – ident: ref11 doi: 10.1016/0034-4257(88)90007-7 – year: 1969 ident: ref14 publication-title: Radiation in the Atmosphere – ident: ref25 doi: 10.1016/0034-4257(88)90021-1 – start-page: 70 year: 1987 ident: ref41 article-title: The use of airborne imaging spectrometer data to determine experimentally induced variation in coniferous canopy chemistry publication-title: Proc 3rd Airborne Image Spectrometer Data Anal Workshop – ident: ref3 doi: 10.1016/0034-4257(88)90003-X – start-page: 134 year: 1988 ident: ref18 article-title: An assessment of AVIRIS data for hydrothermal alteration mapping in the Goldfield mining district, Nevada publication-title: Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop – volume: 52 start-page: 229 year: 1986 ident: ref9 article-title: The importance of measurement error for certain procedures in remote sensing at optical wavelengths publication-title: Photogrammetr Eng Remote Sensing – volume: 51 start-page: 1427 year: 1985 ident: ref21 article-title: Systematic and random variations in Thematic Mapper digital radiance data publication-title: Photogrammetr Eng – ident: ref20 doi: 10.1109/TGRS.1984.350620 – ident: ref27 doi: 10.1109/36.3050 – ident: ref6 doi: 10.1117/12.942288 – year: 1978 ident: ref28 publication-title: Mining Geostatistics – start-page: 91 year: 1987 ident: ref40 article-title: Toward detecting California shrubland canopy chemistry with AIS data publication-title: Proc 3rd Airborne Image Spectrometer Data Anal Workshop – year: 1988 ident: ref17 article-title: AVIRIS instrument status publication-title: Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop – start-page: 1 year: 1988 ident: ref16 article-title: AVIRIS performance during the 1987 flight season: An AVIRIS project assessment and summary of the NASA-sponsored performance evaluation publication-title: Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop – ident: ref26 doi: 10.1007/978-1-4612-5090-6_1 – year: 1988 ident: ref29 publication-title: Spatial Autocorrelation – start-page: 74 year: 1986 ident: ref39 article-title: Destriping AIS data using Fourier filtering techniques publication-title: Proc 3rd Airborne Image Spectrometer Data Anal Workshop – start-page: 155 year: 1988 ident: ref36 article-title: Evaluation of Airborne Visible/Infrared Imaging Spectrometer data of the Mountain Pass, California carbonatite complex publication-title: Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop – start-page: 155 year: 1976 ident: ref13 publication-title: Remote Sensing of Environment – start-page: 197 year: 1988 ident: ref22 article-title: In-flight radiometric calibration of the Airborne, Visible/Infrared Imaging Spectrometer (AVIRIS) publication-title: Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop – volume: 2 start-page: 11 year: 1985 ident: ref2 article-title: High spectral resolution remote sensing of the Earth publication-title: SENSORS – year: 1987 ident: ref32 publication-title: Computer Processing of Remotely Sensed Images An Introduction – ident: ref8 doi: 10.1117/12.942295 – year: 1980 ident: ref38 publication-title: Digital Processing of Remotely Sensed Images – start-page: 165 year: 1983 ident: ref15 publication-title: Manual of Remote Sensing – year: 1974 ident: ref33 publication-title: The Fast Fourier Transform – year: 1987 ident: ref35 publication-title: Noise characterization of airborne visible and infrared imaging spectrometer data – volume: 643 year: 1985 ident: ref10 publication-title: Near Infrared Reflectance Spectroscopy (NIRS) Analysis of Forage Quality USDA Handbook – year: 1988 ident: ref7 publication-title: Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop – year: 1982 ident: ref37 publication-title: Digital Picture Processing – ident: ref12 doi: 10.1038/335154a0 – year: 1977 ident: ref34 publication-title: Digital Image Processing – ident: ref1 doi: 10.1126/science.228.4704.1147 – volume: 834 start-page: 140 year: 1987 ident: ref24 publication-title: Imaging Spectroscopy II doi: 10.1117/12.942294 – volume: 834 start-page: 22 year: 1987 ident: ref4 publication-title: Imaging Spectroscopy II doi: 10.1117/12.942280 – start-page: 55 year: 1984 ident: ref30 article-title: Application of the theory of regionalized variables to the spatial analysis of Landsat data publication-title: Proc Spatial Information Tech for Remote Sensing Today and Tomorrow 9th William T Pecora Memorial Symp – year: 1988 ident: ref23 article-title: Calibration and evaluation of AVIRIS data publication-title: Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop |
SSID | ssj0014517 |
Score | 1.6622018 |
Snippet | To make the best use of narrowband Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data, an investigator needs to know the signal-to-noise ratio (SNR).... To make the best use of narrowband airborne visible/infrared imaging spectrometer (AVIRIS) data, an investigator needs to know the ratio of signal to random... To make the best use of narrowband Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data, an investigator needs to know the ratio of singal to random... |
SourceID | proquest crossref nasa ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 620 |
SubjectTerms | Absorption Earth Resources And Remote Sensing Infrared imaging Infrared spectra Layout NASA Noise level Reflectivity Sensor phenomena and characterization Signal to noise ratio Spectroscopy |
Title | Estimation of signal-to-noise: a new procedure applied to AVIRIS data |
URI | https://ieeexplore.ieee.org/document/35945 https://ntrs.nasa.gov/citations/19900026869 https://www.proquest.com/docview/25475246 https://www.proquest.com/docview/25477827 https://www.proquest.com/docview/28614167 https://www.proquest.com/docview/29044395 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELagEhIcaHmJ7dMHDlwS4iR27N5QtRQ4cOAlbtHYsSXEKkEkufDrGTthW6BdcUmsaKxYM3Y8E3_zDSF71lUcTKEj4zQGKAZEJI3CVlGB0kwY5gLb55k4vspPb_jNSJMTcmGstQF8ZmPfDGf5VWN6_6vsIOMq58tkGSfZkKk1Py_IORsTo0WEIUQ6kviwRB1c_j6_iD0yKA7dX-w_oaAK3mpo4c3HOOwwRx-HUkVtICb0wJK7uO90bB5f0Ta-b_CfyProaNLDYWZskCVbb5K1v-gHN8lKgH-adotMp7jShyRG2jjqQR0wi7omqpvb1v6kQNH7pmGzq_oHS2HwXWnX0MPrk_OTC-qRptvk6mh6-es4GgssRAbDxi7KNW7OBRcAoLlLK1z-rsCrUg6kQTNVWa4Vs5BlCgS6Ck57XCjXLrOQJCbbQdU1td0lVMkMWGqkVR72JiUkJuUVL2wi85RlbELiZ7WXZmQf90UwZmWIQhJVejuV3k5l0NSE7M873A_EG_8X3fDqnouND7e9VUt8S4uyvjZqKqRQE_Lj2cwlriR_PAK1bfq2xFC54GkuFkugR1UskJCoUSYWSagkRyeQf_7XoL-Q1T8Ytq_kQ_fQ22_o9HT6e5jvT_qV_Ro |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZ4CAEHoKWoy6s-cOCSNE5ix-ZWoS27UHpot6g3a-zYUkWVoCa59NczdtLlveKSRNEksWZsz0z8-RtC3jhfc7CVSaw3mKBYEIm0Cq-qGpRhwjIf2T6PxeKs_HjOzyeanLgXxjkXwWcuDZdxLb9u7RB-le0XXJX8NrmLXr_k416t9YpBydm0NVokmETkE40Py9T-6sPJaRqwQWl8wS8eKJZUwVMDHfwxHUcfc_h4LFbURWrCAC35mg69Se31b8SN_9f8J-TRFGrSg7FvbJFbrtkmD38iINwm9yIA1HZPyXyOY33cxkhbTwOsAy6Tvk2a9qJz7yhQjL9pdHf1cOUojNEr7Vt68GV5sjylAWu6Q84O56v3i2QqsZBYTBz7pDTonisuAMBwn9c4AfgKj0p5kBYNVRelUcxBUSgQGCx4E5Ch3PjCQZbZ4hmqrm3cLqFKFsByK50KwDcpIbM5r3nlMlnmrGAzkt6oXduJfzyUwbjUMQ_JlA520sFOOmpqRt6uH_g2Um_8W3QrqHstNt3cCVbV-JUOZUN11FxIoWZk78bMGsdSWCCBxrVDpzFZrnheis0SGFNVGyQkapSJTRIqKzEM5M__1ug9cn-x-nykj5bHn16QBz8QbS_Jnf5qcK8wBOrN69j3vwNdEgB2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+signal-to-noise+-+A+new+procedure+applied+to+AVIRIS+data&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Curran%2C+Paul+J.&rft.au=Dungan%2C+Jennifer+L.&rft.date=1989-09-01&rft.issn=0196-2892&rft.volume=27&rft_id=info:doi/10.1109%2FTGRS.1989.35945&rft.externalDBID=CYI&rft.externalDocID=19900026869 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |