Analysis of electromechanical systems based on the absolute nodal coordinate formulation

The absolute nodal coordinate formulation (ANCF) approach has been successfully used to analyze bodies undergoing large deformations in multibody dynamics applications. In this study, the ANCF is extended to the analysis of coupled electromechanical systems. To this end, the electrostatic equations...

Full description

Saved in:
Bibliographic Details
Published inActa mechanica Vol. 233; no. 3; pp. 1019 - 1030
Main Authors Nemov, Alexander S., Matikainen, Marko K., Wang, Tengfei, Mikkola, Aki
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.03.2022
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0001-5970
1619-6937
DOI10.1007/s00707-022-03153-2

Cover

Abstract The absolute nodal coordinate formulation (ANCF) approach has been successfully used to analyze bodies undergoing large deformations in multibody dynamics applications. In this study, the ANCF is extended to the analysis of coupled electromechanical systems. To this end, the electrostatic equations are solved by means of conventional plane finite elements, and the ANCF is used to describe the geometrically nonlinear elastic deformation of a thin beam. Bidirectional coupling between electrostatic and elastic domains was introduced using an iterative staggering algorithm. The results illustrate that the ANCF approach can be applied to electromechanical problems when objects are discretized using beam and plate elements. Two numerical examples of microbeams subject to an electrostatic field are used to validate the proposed solution strategy and to reveal characteristic features of fully coupled electromechanical solutions accounting for finite strain theory.
AbstractList The absolute nodal coordinate formulation (ANCF) approach has been successfully used to analyze bodies undergoing large deformations in multibody dynamics applications. In this study, the ANCF is extended to the analysis of coupled electromechanical systems. To this end, the electrostatic equations are solved by means of conventional plane finite elements, and the ANCF is used to describe the geometrically nonlinear elastic deformation of a thin beam. Bidirectional coupling between electrostatic and elastic domains was introduced using an iterative staggering algorithm. The results illustrate that the ANCF approach can be applied to electromechanical problems when objects are discretized using beam and plate elements. Two numerical examples of microbeams subject to an electrostatic field are used to validate the proposed solution strategy and to reveal characteristic features of fully coupled electromechanical solutions accounting for finite strain theory.
Audience Academic
Author Matikainen, Marko K.
Wang, Tengfei
Nemov, Alexander S.
Mikkola, Aki
Author_xml – sequence: 1
  givenname: Alexander S.
  orcidid: 0000-0003-0431-4579
  surname: Nemov
  fullname: Nemov, Alexander S.
  organization: Higher School of Mechanics and Control, Peter the Great St. Petersburg Polytechnic University, Department of Mechanical Engineering, LUT University
– sequence: 2
  givenname: Marko K.
  orcidid: 0000-0003-3683-0199
  surname: Matikainen
  fullname: Matikainen, Marko K.
  organization: Department of Mechanical Engineering, LUT University
– sequence: 3
  givenname: Tengfei
  orcidid: 0000-0002-4742-5298
  surname: Wang
  fullname: Wang, Tengfei
  organization: Department of Mechanical Engineering, LUT University, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University
– sequence: 4
  givenname: Aki
  orcidid: 0000-0003-2762-8503
  surname: Mikkola
  fullname: Mikkola, Aki
  organization: Department of Mechanical Engineering, LUT University
BookMark eNp9kE1LxDAQhoMouK7-AU8Fz9VJ0jbb4yJ-geBFwVuYTScaaRNNsof990YrCB4kkJDhfTKZ54jt--CJsVMO5xxAXaSygapBiBokb2Ut9tiCd7yvu16qfbYAAF63vYJDdpTSW7kJ1fAFe157HHfJpSrYikYyOYaJzCt6Z3Cs0i5lmlK1wURDFXyVX6nCTQrjNlPlw1AyJoQ4OI-lYEOctiNmF_wxO7A4Jjr5OZfs6frq8fK2vn-4ubtc39emAZHrZiMtSECF5TuN7IUyYsX7VnYD9U1LqpOIAymuhBiMMRYBgajnre02AoxcsrP53fcYPraUsn4L21iGSlp0DbSrDmBVUudz6gVH0s7bkCOasgaanCkurSv1dderRhSRogBiBkwMKUWy-j26CeNOc9BfyvWsXBfl-lu5_oJWfyDj8reN0s2N_6NyRlPp418o_o7xD_UJ1XWX7A
CitedBy_id crossref_primary_10_1007_s00707_022_03340_1
crossref_primary_10_1007_s11044_023_09890_z
Cites_doi 10.1088/0022-3727/25/6/017
10.1088/0964-1726/16/6/R01
10.1088/0960-1317/3/1/002
10.1016/0924-4247(94)00983-O
10.1016/j.jsv.2019.03.022
10.1142/S0219455419500494
10.1007/s11071-011-0158-4
10.1007/s10409-017-0660-0
10.1016/S0924-4247(97)80218-X
10.1007/s10409-019-00903-9
10.1115/1.4035413
10.1007/s00707-018-2332-y
10.1109/TCAD.2003.816210
10.1109/JMEMS.2006.880204
10.1007/s11044-008-9125-3
10.1177/1045389X09343478
10.1007/s11071-020-06001-x
10.1023/A:1009740800463
10.1007/s00707-019-02558-w
10.1007/s10409-019-00897-4
10.1243/09544054JEM1571
10.1002/(SICI)1097-0207(19980215)41:3<527::AID-NME297>3.0.CO;2-7
10.1016/j.mechmachtheory.2020.103961
10.1088/0964-1726/10/6/301
10.1007/s00707-019-02607-4
10.1002/(SICI)1097-0207(19961230)39:24<4119::AID-NME42>3.0.CO;2-4
10.1007/978-1-4614-9596-3
10.1016/j.ijnonlinmec.2020.103662
10.1088/0964-1726/10/4/310
10.1007/s00707-018-2294-0
10.1016/j.compstruc.2006.01.016
10.1016/j.cma.2021.113993
10.1115/1.4023487
ContentType Journal Article
Copyright The Author(s) 2022
COPYRIGHT 2022 Springer
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7TB
7XB
88I
8AO
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
GUQSH
HCIFZ
KR7
L6V
M2O
M2P
M7S
MBDVC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1007/s00707-022-03153-2
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Research Library
Science Database
Engineering Database (Proquest)
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Research Library Prep

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1619-6937
EndPage 1030
ExternalDocumentID A697427072
10_1007_s00707_022_03153_2
GrantInformation_xml – fundername: Lappeenrannan teknillisen yliopiston tukisäätiön
  funderid: http://dx.doi.org/10.13039/501100013237
– fundername: Academy of Finland
  grantid: 325911
GroupedDBID --Z
-5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
88I
8AO
8FE
8FG
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M2O
M2P
M4Y
M7S
MA-
MK~
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9P
PF-
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
T9H
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z92
_50
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
7TB
7XB
8FD
8FK
ABRTQ
FR3
KR7
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c402t-4b3f030a7a74143927c2819536de945e763aade71722dcccfa0a0ee915f6b20c3
IEDL.DBID 8FG
ISSN 0001-5970
IngestDate Sat Aug 16 15:52:03 EDT 2025
Tue Jun 10 21:03:57 EDT 2025
Thu Apr 24 23:09:17 EDT 2025
Tue Jul 01 03:37:50 EDT 2025
Fri Feb 21 02:47:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-4b3f030a7a74143927c2819536de945e763aade71722dcccfa0a0ee915f6b20c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0431-4579
0000-0002-4742-5298
0000-0003-3683-0199
0000-0003-2762-8503
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s00707-022-03153-2
PQID 2640586008
PQPubID 47448
PageCount 12
ParticipantIDs proquest_journals_2640586008
gale_infotracacademiconefile_A697427072
crossref_primary_10_1007_s00707_022_03153_2
crossref_citationtrail_10_1007_s00707_022_03153_2
springer_journals_10_1007_s00707_022_03153_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220300
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 3
  year: 2022
  text: 20220300
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Acta mechanica
PublicationTitleAbbrev Acta Mech
PublicationYear 2022
Publisher Springer Vienna
Springer
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer
– name: Springer Nature B.V
References Maugin (CR26) 1988
Gilardi, Buckham, Park (CR10) 2009; 20
Hu, Tian, Liu (CR13) 2017; 33
Kuehnel (CR17) 1995; 48
Xu, Liu (CR37) 2020; 36
Li, Aluru (CR22) 2003; 22
CR38
Obrezkov, Eliasson, Harish, Matikainen (CR29) 2021; 129
Shabana, Desai, Grossi, Patel (CR34) 2020; 231
Batra, Porfiri, Spinello (CR3) 2007; 16
Lan, Tian, Yu (CR20) 2020; 36
Zienkiewicz, Taylor, Zhu (CR39) 2013
Hurskainen, Matikainen, Wang, Mikkola (CR14) 2017; 12
Maurini, Pouget, dell’Isola (CR27) 2006; 84
Obrezkov, Matikainen, Harish (CR30) 2020; 231
Ong, Lim, Lee, Leondes (CR31) 2006
Batra, Porfiri, Spinello (CR2) 2006; 15
Lan, Li, Yu (CR19) 2019; 230
Matikainen, Von Hertzen, Mikkola, Gerstmayr (CR25) 2010; 224
Dorfmann, Ogden (CR7) 2014
Li, Chen, Zhang, Liao (CR23) 2019; 19
Shabana (CR33) 1997; 1
Van Sterkenburg (CR36) 1992; 25
Shi, Ramesh, Mukherjee (CR35) 1996; 39
CR5
Lee, Kwon, Kim, Cho, Youn (CR21) 2004; 5
Judy (CR15) 2001; 10
Krommer (CR16) 2001; 10
CR9
Bozorgmehri, Hurskainen, Matikainen, Mikkola (CR4) 2019; 453
Gerstmayr, Matikainen, Mikkola (CR8) 2008; 20
Nada, El-Assal (CR28) 2012; 67
Kulkarni, Shabana (CR18) 2019; 230
Aluru, White (CR1) 1997; 58
Chu, Mehregany, Mullen (CR6) 1993; 3
Griffiths (CR11) 2013
Rhim, Lee (CR32) 1998; 41
Htun, Suzuki, García-Vallejo (CR12) 2020; 153
Luo, Tian, Hu (CR24) 2020; 102
P Lan (3153_CR19) 2019; 230
S Kulkarni (3153_CR18) 2019; 230
P Lan (3153_CR20) 2020; 36
MK Matikainen (3153_CR25) 2010; 224
DJ Griffiths (3153_CR11) 2013
L Li (3153_CR23) 2019; 19
WS Lee (3153_CR21) 2004; 5
AA Shabana (3153_CR33) 1997; 1
SWP Van Sterkenburg (3153_CR36) 1992; 25
GA Maugin (3153_CR26) 1988
LP Obrezkov (3153_CR30) 2020; 231
JW Judy (3153_CR15) 2001; 10
C Maurini (3153_CR27) 2006; 84
G Li (3153_CR22) 2003; 22
L Obrezkov (3153_CR29) 2021; 129
OC Zienkiewicz (3153_CR39) 2013
F Shi (3153_CR35) 1996; 39
NR Aluru (3153_CR1) 1997; 58
G Gilardi (3153_CR10) 2009; 20
B Bozorgmehri (3153_CR4) 2019; 453
M Krommer (3153_CR16) 2001; 10
TZ Htun (3153_CR12) 2020; 153
RC Batra (3153_CR3) 2007; 16
ET Ong (3153_CR31) 2006
L Dorfmann (3153_CR7) 2014
J Rhim (3153_CR32) 1998; 41
AA Shabana (3153_CR34) 2020; 231
J Gerstmayr (3153_CR8) 2008; 20
WH Chu (3153_CR6) 1993; 3
RC Batra (3153_CR2) 2006; 15
3153_CR38
W Kuehnel (3153_CR17) 1995; 48
K Luo (3153_CR24) 2020; 102
H Hu (3153_CR13) 2017; 33
Q Xu (3153_CR37) 2020; 36
3153_CR5
AA Nada (3153_CR28) 2012; 67
V-VT Hurskainen (3153_CR14) 2017; 12
3153_CR9
References_xml – volume: 5
  start-page: 279
  issue: 3
  year: 2004
  end-page: 286
  ident: CR21
  article-title: Frequency-shifting analysis of electrostatically tunable micro-mechanical actuator
  publication-title: CMES Comput. Model. Eng. Sci.
– volume: 25
  start-page: 996
  issue: 6
  year: 1992
  end-page: 1003
  ident: CR36
  article-title: The electrostriction of silicon and diamond
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/25/6/017
– volume: 16
  start-page: R23
  issue: 6
  year: 2007
  end-page: R31
  ident: CR3
  article-title: Review of modeling electrostatically actuated microelectromechanical systems
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/16/6/R01
– volume: 3
  start-page: 4
  issue: 1
  year: 1993
  end-page: 7
  ident: CR6
  article-title: Analysis of tip deflection and force of a bimetallic cantilever microactuator
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/3/1/002
– volume: 48
  start-page: 101
  issue: 2
  year: 1995
  end-page: 108
  ident: CR17
  article-title: Modelling of the mechanical behaviour of a differential capacitor acceleration sensor
  publication-title: Sens. Actuators A
  doi: 10.1016/0924-4247(94)00983-O
– volume: 453
  start-page: 214
  year: 2019
  end-page: 236
  ident: CR4
  article-title: Dynamic analysis of rotating shafts using the absolute nodal coordinate formulation
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2019.03.022
– volume: 19
  start-page: 1950049
  issue: 4
  year: 2019
  ident: CR23
  article-title: Large deformation and vibration analysis of microbeams by absolute nodal coordinate formulation
  publication-title: Int. J. Struct. Stab. Dyn.
  doi: 10.1142/S0219455419500494
– volume: 67
  start-page: 2441
  issue: 4
  year: 2012
  end-page: 2454
  ident: CR28
  article-title: Absolute nodal coordinate formulation of large-deformation piezoelectric laminated plates
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-011-0158-4
– year: 2006
  ident: CR31
  article-title: Techniques in electrostatics analysis of MEMS and their applications
  publication-title: MEMS/NEMS
– volume: 33
  start-page: 516
  issue: 3
  year: 2017
  end-page: 528
  ident: CR13
  article-title: Computational dynamics of soft machines
  publication-title: Acta Mech. Sin./Lixue Xuebao
  doi: 10.1007/s10409-017-0660-0
– volume: 58
  start-page: 1
  issue: 1
  year: 1997
  end-page: 11
  ident: CR1
  article-title: An efficient numerical technique for electromechanical simulation of complicated microelectromechanical structures
  publication-title: Sens. Actuators A
  doi: 10.1016/S0924-4247(97)80218-X
– volume: 36
  start-page: 245
  issue: 1
  year: 2020
  end-page: 255
  ident: CR37
  article-title: Effective enhanced model for a large deformable soft pneumatic actuator
  publication-title: Acta Mech. Sin./Lixue Xuebao
  doi: 10.1007/s10409-019-00903-9
– volume: 12
  issue: 4
  year: 2017
  ident: CR14
  article-title: A planar beam finite-element formulation with individually interpolated shear deformation
  publication-title: J. Comput. Nonlinear Dyn.
  doi: 10.1115/1.4035413
– volume: 230
  start-page: 1145
  issue: 3
  year: 2019
  end-page: 1158
  ident: CR19
  article-title: Computer implementation of piecewise cable element based on the absolute nodal coordinate formulation and its application in wire modeling
  publication-title: Acta Mech.
  doi: 10.1007/s00707-018-2332-y
– volume: 22
  start-page: 1228
  issue: 9
  year: 2003
  end-page: 1242
  ident: CR22
  article-title: Efficient mixed-domain analysis of electrostatic MEMS
  publication-title: IEEE Trans Comput Aided Des Integr Circuits Syst
  doi: 10.1109/TCAD.2003.816210
– year: 2013
  ident: CR39
  publication-title: The Finite Element Method: Its Basis and Fundamentals
– year: 1988
  ident: CR26
  publication-title: Continuum Mechanics of Electromagnetic Solids
– volume: 15
  start-page: 1175
  issue: 5
  year: 2006
  end-page: 1189
  ident: CR2
  article-title: Electromechanical model of electrically actuated narrow microbeams
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2006.880204
– volume: 20
  start-page: 359
  issue: 4
  year: 2008
  end-page: 384
  ident: CR8
  article-title: A geometrically exact beam element based on the absolute nodal coordinate formulation
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-008-9125-3
– volume: 20
  start-page: 1941
  issue: 16
  year: 2009
  end-page: 1958
  ident: CR10
  article-title: Finite element modeling of a slewing non-linear flexible beam for active vibration control with arrays of sensors and actuators
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X09343478
– year: 2013
  ident: CR11
  publication-title: Introduction to Electrodynamics
– volume: 102
  start-page: 1463
  issue: 3
  year: 2020
  end-page: 1483
  ident: CR24
  article-title: Dynamic modeling, simulation and design of smart membrane systems driven by soft actuators of multilayer dielectric elastomers
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-06001-x
– volume: 1
  start-page: 339
  year: 1997
  end-page: 348
  ident: CR33
  article-title: Definition of the slopes and the finite element absolute nodal coordinate formulation
  publication-title: Multibody Syst. Dyn.
  doi: 10.1023/A:1009740800463
– volume: 231
  start-page: 1365
  issue: 4
  year: 2020
  end-page: 1376
  ident: CR34
  article-title: Generalization of the strain-split method and evaluation of the nonlinear ANCF finite elements
  publication-title: Acta Mech.
  doi: 10.1007/s00707-019-02558-w
– volume: 36
  start-page: 82
  issue: 1
  year: 2020
  end-page: 96
  ident: CR20
  article-title: A new absolute nodal coordinate formulation beam element with multilayer circular cross section
  publication-title: Acta Mech. Sin./Lixue Xuebao
  doi: 10.1007/s10409-019-00897-4
– volume: 224
  start-page: 103
  issue: 1
  year: 2010
  end-page: 116
  ident: CR25
  article-title: Elimination of high frequencies in the absolute nodal coordinate formulation
  publication-title: Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn.
  doi: 10.1243/09544054JEM1571
– volume: 41
  start-page: 527
  year: 1998
  end-page: 540
  ident: CR32
  article-title: A vectorial approach to computational modelling of beams undergoing finite rotations
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/(SICI)1097-0207(19980215)41:3<527::AID-NME297>3.0.CO;2-7
– volume: 153
  year: 2020
  ident: CR12
  article-title: Dynamic modeling of a radially multilayered tether cable for a remotely-operated underwater vehicle (ROV) based on the absolute nodal coordinate formulation (ANCF)
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2020.103961
– volume: 10
  start-page: 1115
  issue: 6
  year: 2001
  end-page: 1134
  ident: CR15
  article-title: Microelectromechanical systems (MEMS): fabrication, design and applications
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/10/6/301
– volume: 231
  start-page: 1519
  issue: 4
  year: 2020
  end-page: 1538
  ident: CR30
  article-title: A finite element for soft tissue deformation based on the absolute nodal coordinate formulation
  publication-title: Acta Mech.
  doi: 10.1007/s00707-019-02607-4
– ident: CR38
– volume: 39
  start-page: 4119
  issue: 34
  year: 1996
  end-page: 4139
  ident: CR35
  article-title: Dynamic analysis of micro-electro-mechanical systems
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/(SICI)1097-0207(19961230)39:24<4119::AID-NME42>3.0.CO;2-4
– ident: CR9
– year: 2014
  ident: CR7
  publication-title: Nonlinear Theory of Electroelastic and Magnetoelastic Interactions
  doi: 10.1007/978-1-4614-9596-3
– volume: 129
  start-page: 103662
  year: 2021
  ident: CR29
  article-title: Usability of finite elements based on the absolute nodal coordinate formulation for deformation analysis of the Achilles tendon
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2020.103662
– ident: CR5
– volume: 10
  start-page: 668
  issue: 4
  year: 2001
  end-page: 680
  ident: CR16
  article-title: On the correction of the Bernoulli–Euler beam theory for smart piezoelectric beams
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/10/4/310
– volume: 230
  start-page: 929
  issue: 3
  year: 2019
  end-page: 952
  ident: CR18
  article-title: Spatial ANCF/CRBF beam elements
  publication-title: Acta Mech.
  doi: 10.1007/s00707-018-2294-0
– volume: 84
  start-page: 1438
  issue: 22–23
  year: 2006
  end-page: 1458
  ident: CR27
  article-title: Extension of the Euler–Bernoulli model of piezoelectric laminates to include 3d effects via a mixed approach
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2006.01.016
– volume: 231
  start-page: 1519
  issue: 4
  year: 2020
  ident: 3153_CR30
  publication-title: Acta Mech.
  doi: 10.1007/s00707-019-02607-4
– volume: 84
  start-page: 1438
  issue: 22–23
  year: 2006
  ident: 3153_CR27
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2006.01.016
– volume: 3
  start-page: 4
  issue: 1
  year: 1993
  ident: 3153_CR6
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/3/1/002
– volume: 5
  start-page: 279
  issue: 3
  year: 2004
  ident: 3153_CR21
  publication-title: CMES Comput. Model. Eng. Sci.
– ident: 3153_CR5
  doi: 10.1016/j.cma.2021.113993
– volume: 36
  start-page: 82
  issue: 1
  year: 2020
  ident: 3153_CR20
  publication-title: Acta Mech. Sin./Lixue Xuebao
  doi: 10.1007/s10409-019-00897-4
– volume: 129
  start-page: 103662
  year: 2021
  ident: 3153_CR29
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2020.103662
– volume: 230
  start-page: 929
  issue: 3
  year: 2019
  ident: 3153_CR18
  publication-title: Acta Mech.
  doi: 10.1007/s00707-018-2294-0
– volume: 36
  start-page: 245
  issue: 1
  year: 2020
  ident: 3153_CR37
  publication-title: Acta Mech. Sin./Lixue Xuebao
  doi: 10.1007/s10409-019-00903-9
– volume: 230
  start-page: 1145
  issue: 3
  year: 2019
  ident: 3153_CR19
  publication-title: Acta Mech.
  doi: 10.1007/s00707-018-2332-y
– volume: 19
  start-page: 1950049
  issue: 4
  year: 2019
  ident: 3153_CR23
  publication-title: Int. J. Struct. Stab. Dyn.
  doi: 10.1142/S0219455419500494
– volume: 67
  start-page: 2441
  issue: 4
  year: 2012
  ident: 3153_CR28
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-011-0158-4
– volume: 1
  start-page: 339
  year: 1997
  ident: 3153_CR33
  publication-title: Multibody Syst. Dyn.
  doi: 10.1023/A:1009740800463
– volume-title: Introduction to Electrodynamics
  year: 2013
  ident: 3153_CR11
– volume-title: MEMS/NEMS
  year: 2006
  ident: 3153_CR31
– volume: 33
  start-page: 516
  issue: 3
  year: 2017
  ident: 3153_CR13
  publication-title: Acta Mech. Sin./Lixue Xuebao
  doi: 10.1007/s10409-017-0660-0
– volume: 453
  start-page: 214
  year: 2019
  ident: 3153_CR4
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2019.03.022
– volume: 10
  start-page: 1115
  issue: 6
  year: 2001
  ident: 3153_CR15
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/10/6/301
– volume: 12
  issue: 4
  year: 2017
  ident: 3153_CR14
  publication-title: J. Comput. Nonlinear Dyn.
  doi: 10.1115/1.4035413
– volume: 10
  start-page: 668
  issue: 4
  year: 2001
  ident: 3153_CR16
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/10/4/310
– volume-title: The Finite Element Method: Its Basis and Fundamentals
  year: 2013
  ident: 3153_CR39
– volume: 41
  start-page: 527
  year: 1998
  ident: 3153_CR32
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/(SICI)1097-0207(19980215)41:3<527::AID-NME297>3.0.CO;2-7
– volume: 22
  start-page: 1228
  issue: 9
  year: 2003
  ident: 3153_CR22
  publication-title: IEEE Trans Comput Aided Des Integr Circuits Syst
  doi: 10.1109/TCAD.2003.816210
– volume-title: Nonlinear Theory of Electroelastic and Magnetoelastic Interactions
  year: 2014
  ident: 3153_CR7
  doi: 10.1007/978-1-4614-9596-3
– volume: 224
  start-page: 103
  issue: 1
  year: 2010
  ident: 3153_CR25
  publication-title: Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn.
  doi: 10.1243/09544054JEM1571
– ident: 3153_CR9
  doi: 10.1115/1.4023487
– volume: 102
  start-page: 1463
  issue: 3
  year: 2020
  ident: 3153_CR24
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-06001-x
– volume-title: Continuum Mechanics of Electromagnetic Solids
  year: 1988
  ident: 3153_CR26
– volume: 39
  start-page: 4119
  issue: 34
  year: 1996
  ident: 3153_CR35
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/(SICI)1097-0207(19961230)39:24<4119::AID-NME42>3.0.CO;2-4
– volume: 231
  start-page: 1365
  issue: 4
  year: 2020
  ident: 3153_CR34
  publication-title: Acta Mech.
  doi: 10.1007/s00707-019-02558-w
– volume: 58
  start-page: 1
  issue: 1
  year: 1997
  ident: 3153_CR1
  publication-title: Sens. Actuators A
  doi: 10.1016/S0924-4247(97)80218-X
– ident: 3153_CR38
– volume: 48
  start-page: 101
  issue: 2
  year: 1995
  ident: 3153_CR17
  publication-title: Sens. Actuators A
  doi: 10.1016/0924-4247(94)00983-O
– volume: 153
  year: 2020
  ident: 3153_CR12
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2020.103961
– volume: 25
  start-page: 996
  issue: 6
  year: 1992
  ident: 3153_CR36
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/25/6/017
– volume: 16
  start-page: R23
  issue: 6
  year: 2007
  ident: 3153_CR3
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/16/6/R01
– volume: 20
  start-page: 359
  issue: 4
  year: 2008
  ident: 3153_CR8
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-008-9125-3
– volume: 20
  start-page: 1941
  issue: 16
  year: 2009
  ident: 3153_CR10
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X09343478
– volume: 15
  start-page: 1175
  issue: 5
  year: 2006
  ident: 3153_CR2
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2006.880204
SSID ssj0012741
Score 2.3102853
Snippet The absolute nodal coordinate formulation (ANCF) approach has been successfully used to analyze bodies undergoing large deformations in multibody dynamics...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1019
SubjectTerms Algorithms
Analysis
Classical and Continuum Physics
Control
Dynamical Systems
Elastic deformation
Electric fields
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Heat and Mass Transfer
Iterative methods
Microbeams
Original Paper
Simulation
Solid Mechanics
Theoretical and Applied Mechanics
Vibration
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbQdoEDb8RgoByQOECmNl279jihwQSCE5PGKcqrEgJaxLoLvx6nTQuMh7Rz0zS1HeezHH8GODHo9A2aDkV0LKjN39JY64SaVKoojqTqe7ZQ-PYuGk_619Nw6orCZvVt9zolWXrqptitZKah9va57UwQUHS87dCPk7gF7eHVw82oyR5YSpYK9voUAbPnimV-n-XbgbToln_kR8tj53IDJvWCq9smT715IXvqfYHLcdk_2oR1h0PJsDKcLVgx2TasfWEn3IFpTVhC8pS4djkvxlYKW8WSigN6Ruw5qEmeEYSSRMjSlg3Jco1jVI6x7WOGeJZYcOxahe3C5HJ0fzGmrhEDRVWxgvZlkKIzEAOBgkUEwwaqyr9F2iT90KCPEkIbjAwZ00qpVHjCMybxwzSSzFPBHrSyPDP7QFiqbYjiY-BmyQGESJkMZOzbOMgobTrg19rgyrGU22YZz7zhVy6lxlFqvJQaZx04a955rTg6_h19apXM7QbGmZVwdQi4PkuFxYcRhlgMX8KR3doOuNvZM44A0gtjhIlxB85rtX4-_vu7B8sNP4RVVlkG9fwutIq3uTlC_FPIY2fuH7lI-Ps
  priority: 102
  providerName: Springer Nature
Title Analysis of electromechanical systems based on the absolute nodal coordinate formulation
URI https://link.springer.com/article/10.1007/s00707-022-03153-2
https://www.proquest.com/docview/2640586008
Volume 233
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60vehBfGK1yh4ED7qYbNI0PUksfaBYRCzU07LZ3YCgSbX1_zuz2bQ-sJcW2s2DmdmZbzKZbwg5M-D0DZgOA3QsGdZvWax1h5ksVVEcpSr0sFH4fhQNx-HtpDVxD9xm7rXKyidaR60Lhc_IryBwe60YwnN8PX1nODUKq6tuhMY6qftwUbTzuD9YVBGQmqWEvz4D4Oy5phnbOmd5bhi-y45zDgLGfwSm3-75T53Uhp_-NtlyuJEmpaJ3yJrJd8nmNzbBPTKpCEZokVE33ubNYGcvKoKWnM0zinFL0yKnAP2oTK3tGZoXGtaoAnLRlxzwJ0Uw60Z77ZNxv_fUHTI3OIGBaPmchWmQweaVbQkCAMTB26qsl0XadMKWAZ8ipTaQyXGulVKZ9KRnTMdvZVHKPRUckFpe5OaQUJ5pTClAuj4280uZ8TRIYx_zFqO0aRC_kppQjlUch1u8igUfspW0AEkLK2nBG-Riccy05NRYufoclSFww8GZlXR9A3B_SF0lkghSIg4HwcpmpS_hduJMLO2mQS4rHS7__v-6R6vPdkw2eGk9zPObpDb_-DQngE_m6ak1wlNSTwbPdz34vumNHh7h127Uhc8xT74AkpTkHA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgHIAD4ikGA3IAcYCINutKd0BovDReE0Ig7RbSJJWQoAU2hPhT_EbsNh0vwY1z06SynfhzHX8GWLV46Fs0HY7oWHHK3_LImCa3SazDKIx14FGh8HknbF8HJ91GdwjeyloYulZZnon5QW0yTf_It9Bxe40I3XO0-_DIqWsUZVfLFhqFWZza1xcM2Xo7xweo3zUhjg6v9tvcdRXguK7o8yCuJ2jZaluhM0V3LLZ1kUwKjW0GDYsbTiljMcwRwmitE-Upz9qm30jCWHi6jvMOw0hAFa0VGNk77FxcDvIWRAZTAG6fI1T3XJlOXqyXM-twuj1PnRXqXHxxhd8dwo_MbO7wjiZhwiFV1ipMawqGbDoN45_4C2egW1KasCxhrqHOvaVaYlI9K1iie4w8pWFZyhBsMhXn1m5ZmhkcozMU5W2KiJcRfHbNxGbh-l-EOgeVNEvtPDCRGApifAztiD5AqUTE9TjyKVKy2tgq-KXUpHY85tRO404OGJhzSUuUtMwlLUUVNgbvPBQsHn-OXidlSNriOLNWrlIBv4_IsmQrxCBM4Es4slbqS7q935MfllqFzVKHH49_X3fh79lWYLR9dX4mz447p4swJgpL4p5fg0r_6dkuITrqx8vOJBnc_PcueAdeAh0i
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4SAgOiKcYzxxAHCCiTbeuOyCEGGM8xQGk3UKapBIStMCGEH-NX4fdphsPwW3npmlkf4ntOv4MsGnx0LcIHY7eseKUv-WRMQ1uk1iHURjrqkeFwpdXYfu2etapdUbgo6yFoWuV5ZmYH9Qm0_SPfA8Nt1eL0DxHe4m7FnHdbB08PXPqIEWZ1rKdRgGRc_v-huFbd_-0ibreEqJ1fHPU5q7DAMc1iB6vxkGCKFd1hYYVTbOo6yKxFBrbqNYsbj6ljMWQRwijtU6UpzxrG34tCWPh6QDnHYXxelBvUOAXtU76GQyihSlcb5-j0-65gp28bC_n2OF0j556LARcfDOKP03DrxxtbvpaMzDtfFZ2WIBsFkZsOgdTX5gM56FTkpuwLGGutc6jpapiAgEr-KK7jGymYVnK0O1kKs5xb1maGRyjMxTkfYq-LyNH2rUVW4DboYh0EcbSLLVLwERiKJzxMcgjIgGlEhEHceRTzGS1sRXwS6lJ7RjNqbHGg-xzMeeSlihpmUtaigrs9N95Kvg8_h29TcqQtNlxZq1czQKuj2iz5GGI4ZjAl3Dkaqkv6U6BrhxgtgK7pQ4Hj__-7vL_s23ABGJfXpxena_ApCiAxD1_FcZ6L692Dd2kXrye45HB3bA3wCfMJh_y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+electromechanical+systems+based+on+the+absolute+nodal+coordinate+formulation&rft.jtitle=Acta+mechanica&rft.au=Nemov%2C+Alexander+S.&rft.au=Matikainen%2C+Marko+K.&rft.au=Wang%2C+Tengfei&rft.au=Mikkola%2C+Aki&rft.date=2022-03-01&rft.issn=0001-5970&rft.eissn=1619-6937&rft.volume=233&rft.issue=3&rft.spage=1019&rft.epage=1030&rft_id=info:doi/10.1007%2Fs00707-022-03153-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00707_022_03153_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-5970&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-5970&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-5970&client=summon