An efficient local Chan–Vese model for image segmentation
In this paper, a new local Chan–Vese (LCV) model is proposed for image segmentation, which is built based on the techniques of curve evolution, local statistical function and level set method. The energy functional for the proposed model consists of three terms, i.e., global term, local term and reg...
Saved in:
Published in | Pattern recognition Vol. 43; no. 3; pp. 603 - 618 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.03.2010
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, a new local Chan–Vese (LCV) model is proposed for image segmentation, which is built based on the techniques of curve evolution, local statistical function and level set method. The energy functional for the proposed model consists of three terms, i.e., global term, local term and regularization term. By incorporating the local image information into the proposed model, the images with intensity inhomogeneity can be efficiently segmented. In addition, the time-consuming re-initialization step widely adopted in traditional level set methods can be avoided by introducing a new penalizing energy. To avoid the long iteration process for level set evolution, an efficient termination criterion is presented which is based on the length change of evolving curve. Particularly, we proposed constructing an extended structure tensor (EST) by adding the intensity information into the classical structure tensor for texture image segmentation. It can be found that by combining the EST with our LCV model, the texture image can be efficiently segmented no matter whether it presents intensity inhomogeneity or not. Finally, experiments on some synthetic and real images have demonstrated the efficiency and robustness of our model. Moreover, comparisons with the well-known Chan–Vese (CV) model and recent popular local binary fitting (LBF) model also show that our LCV model can segment images with few iteration times and be less sensitive to the location of initial contour and the selection of governing parameters. |
---|---|
AbstractList | In this paper, a new local Chan–Vese (LCV) model is proposed for image segmentation, which is built based on the techniques of curve evolution, local statistical function and level set method. The energy functional for the proposed model consists of three terms, i.e., global term, local term and regularization term. By incorporating the local image information into the proposed model, the images with intensity inhomogeneity can be efficiently segmented. In addition, the time-consuming re-initialization step widely adopted in traditional level set methods can be avoided by introducing a new penalizing energy. To avoid the long iteration process for level set evolution, an efficient termination criterion is presented which is based on the length change of evolving curve. Particularly, we proposed constructing an extended structure tensor (EST) by adding the intensity information into the classical structure tensor for texture image segmentation. It can be found that by combining the EST with our LCV model, the texture image can be efficiently segmented no matter whether it presents intensity inhomogeneity or not. Finally, experiments on some synthetic and real images have demonstrated the efficiency and robustness of our model. Moreover, comparisons with the well-known Chan–Vese (CV) model and recent popular local binary fitting (LBF) model also show that our LCV model can segment images with few iteration times and be less sensitive to the location of initial contour and the selection of governing parameters. |
Author | Xu, Huan Huang, De-Shuang Wang, Xiao-Feng |
Author_xml | – sequence: 1 givenname: Xiao-Feng surname: Wang fullname: Wang, Xiao-Feng email: xfwanghf@gmail.com, xfwang@iim.ac.cn organization: Intelligent Computing Lab, Hefei Institute of Intelligent Machines, Chinese Academy of Sciences, P.O. Box 1130, Hefei Anhui 230031, China – sequence: 2 givenname: De-Shuang surname: Huang fullname: Huang, De-Shuang email: dshuang@iim.ac.cn organization: Intelligent Computing Lab, Hefei Institute of Intelligent Machines, Chinese Academy of Sciences, P.O. Box 1130, Hefei Anhui 230031, China – sequence: 3 givenname: Huan surname: Xu fullname: Xu, Huan email: xuhuan@mail.ustc.edu.cn organization: Intelligent Computing Lab, Hefei Institute of Intelligent Machines, Chinese Academy of Sciences, P.O. Box 1130, Hefei Anhui 230031, China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22281038$$DView record in Pascal Francis |
BookMark | eNqFkM1KAzEURoNUsK2-gYvZuJzxJpnORAWhlPoDBTfqNmQyNzVlmpRkENz5Dr6hT2LKiAsXusrinu_mfmdCRs47JOSUQkGBVuebYqd67dcFA7goQBQA7ICMqah5PqMlG5ExAKc5Z8CPyCTGDQCt02BMruYuQ2Ostuj6rPNaddniRbnP949njJhtfYtdZnzI7FatMYu43iZS9da7Y3JoVBfx5Pudkqeb5ePiLl893N4v5qtcl8D6vKxF3VRlIypdilnFSsqEqBmfGQ0a26aiCWgbqmnVGM4EtlwZjsBqk3q0nE_J2bB3p2K6zwTltI1yF9JJ4U0yxgQFLhJXDpwOPsaA5gehIPei5EYOouRelAQh0wcpdvkrpu1QsA_Kdv-Fr4cwJgGvFoOMe5Wplw2oe9l6-_eCL45PiBM |
CODEN | PTNRA8 |
CitedBy_id | crossref_primary_10_2147_OPTO_S368672 crossref_primary_10_1016_j_compbiomed_2013_01_002 crossref_primary_10_1016_j_apm_2016_03_039 crossref_primary_10_7763_IJBBB_2013_V3_207 crossref_primary_10_1016_j_neucom_2022_06_083 crossref_primary_10_1016_j_neucom_2013_02_045 crossref_primary_10_1016_j_asoc_2025_112736 crossref_primary_10_1109_ACCESS_2020_3026143 crossref_primary_10_1016_j_neucom_2021_11_023 crossref_primary_10_1016_j_patcog_2015_08_022 crossref_primary_10_1007_s11042_020_09311_9 crossref_primary_10_1007_s10851_019_00893_0 crossref_primary_10_1117_1_JEI_24_3_033020 crossref_primary_10_1083_jcb_201504035 crossref_primary_10_3390_mi13030391 crossref_primary_10_1117_1_JEI_27_6_063013 crossref_primary_10_61189_036308mdyran crossref_primary_10_3233_JIFS_179413 crossref_primary_10_1016_j_patcog_2020_107810 crossref_primary_10_1088_1748_3190_ababb0 crossref_primary_10_1016_j_neucom_2013_02_058 crossref_primary_10_1016_j_eswa_2023_120631 crossref_primary_10_1016_j_rcim_2024_102779 crossref_primary_10_1080_21681163_2013_796164 crossref_primary_10_1007_s11227_022_04948_9 crossref_primary_10_1007_s00170_024_13514_x crossref_primary_10_1007_s11042_019_08098_8 crossref_primary_10_1177_0040517514557314 crossref_primary_10_1007_s11042_019_08174_z crossref_primary_10_1007_s11831_020_09463_9 crossref_primary_10_1016_j_patcog_2016_03_030 crossref_primary_10_1016_j_neucom_2018_05_070 crossref_primary_10_1109_ACCESS_2024_3388564 crossref_primary_10_1016_j_neucom_2017_01_013 crossref_primary_10_52280_pujm_2021_540704 crossref_primary_10_1016_j_engappai_2023_106472 crossref_primary_10_1109_TCBB_2019_2948330 crossref_primary_10_1016_j_neucom_2014_11_103 crossref_primary_10_1016_j_neucom_2014_11_104 crossref_primary_10_1155_2015_789485 crossref_primary_10_1007_s11760_017_1234_0 crossref_primary_10_1016_j_neucom_2014_11_106 crossref_primary_10_1016_j_neucom_2014_05_088 crossref_primary_10_1109_ACCESS_2018_2871846 crossref_primary_10_1016_j_optlastec_2016_02_002 crossref_primary_10_1049_iet_ipr_2019_0315 crossref_primary_10_1002_gamm_201410008 crossref_primary_10_1016_j_patcog_2019_01_031 crossref_primary_10_1109_TMI_2018_2867620 crossref_primary_10_1109_ACCESS_2019_2909981 crossref_primary_10_3390_biom12020240 crossref_primary_10_1016_j_neucom_2014_09_107 crossref_primary_10_1016_j_apm_2024_04_058 crossref_primary_10_1155_2020_2061841 crossref_primary_10_1016_j_cogsys_2021_02_002 crossref_primary_10_1142_S0217595923500215 crossref_primary_10_1016_j_patcog_2014_05_013 crossref_primary_10_1155_2014_357684 crossref_primary_10_1371_journal_pone_0076101 crossref_primary_10_1016_j_cogsys_2018_04_011 crossref_primary_10_1016_j_engappai_2018_04_027 crossref_primary_10_1299_jamdsm_2024jamdsm0027 crossref_primary_10_3390_app8122393 crossref_primary_10_1109_TIP_2018_2825101 crossref_primary_10_1016_j_bspc_2020_101993 crossref_primary_10_1016_j_camwa_2023_11_010 crossref_primary_10_1016_j_bspc_2018_06_001 crossref_primary_10_1016_j_neucom_2022_07_087 crossref_primary_10_1016_j_cogsys_2018_04_006 crossref_primary_10_1109_ACCESS_2018_2874812 crossref_primary_10_1016_j_neucom_2023_126946 crossref_primary_10_1016_j_neucom_2015_04_124 crossref_primary_10_1007_s11665_019_04168_y crossref_primary_10_1016_j_apm_2022_02_042 crossref_primary_10_1016_j_neucom_2016_07_058 crossref_primary_10_1007_s42967_023_00339_w crossref_primary_10_1016_j_cogsys_2020_02_001 crossref_primary_10_3934_ipi_2016022 crossref_primary_10_1007_s11042_017_5434_y crossref_primary_10_1016_j_neucom_2018_06_080 crossref_primary_10_1016_j_optlaseng_2013_04_019 crossref_primary_10_1016_j_camwa_2020_04_030 crossref_primary_10_1080_21642583_2022_2045645 crossref_primary_10_1016_j_neucom_2020_07_143 crossref_primary_10_1016_j_neucom_2015_01_099 crossref_primary_10_1016_j_neucom_2020_07_144 crossref_primary_10_1109_TIP_2014_2300751 crossref_primary_10_1049_iet_ipr_2016_0352 crossref_primary_10_1155_2013_508543 crossref_primary_10_1016_j_neucom_2020_07_141 crossref_primary_10_1016_j_neucom_2022_05_100 crossref_primary_10_1016_j_neucom_2014_04_083 crossref_primary_10_1080_21642583_2022_2074168 crossref_primary_10_1016_j_neucom_2014_04_081 crossref_primary_10_1016_j_neucom_2021_10_126 crossref_primary_10_1016_j_neucom_2021_10_125 crossref_primary_10_1016_j_knosys_2016_12_023 crossref_primary_10_1016_j_neucom_2018_06_076 crossref_primary_10_1016_j_neucom_2014_04_085 crossref_primary_10_1016_j_neucom_2018_06_075 crossref_primary_10_1016_j_neucom_2021_10_122 crossref_primary_10_1155_2014_890725 crossref_primary_10_1016_j_cogsys_2019_11_002 crossref_primary_10_1016_j_compbiomed_2018_04_009 crossref_primary_10_1016_j_neucom_2018_06_079 crossref_primary_10_1016_j_neucom_2020_07_139 crossref_primary_10_3182_20130902_3_CN_3020_00173 crossref_primary_10_1016_j_patcog_2019_02_009 crossref_primary_10_1016_j_neucom_2014_03_089 crossref_primary_10_1109_TIM_2019_2925879 crossref_primary_10_1007_s11063_018_9827_3 crossref_primary_10_1109_ACCESS_2020_3007351 crossref_primary_10_1016_j_bspc_2018_09_017 crossref_primary_10_1016_j_camwa_2022_06_025 crossref_primary_10_1016_j_sigpro_2013_09_009 crossref_primary_10_1109_ACCESS_2019_2912174 crossref_primary_10_1186_s12859_022_04611_3 crossref_primary_10_1016_j_patcog_2020_107520 crossref_primary_10_1016_j_neucom_2019_01_079 crossref_primary_10_1016_j_asoc_2019_105516 crossref_primary_10_1016_j_neucom_2014_03_088 crossref_primary_10_1016_j_patrec_2011_11_012 crossref_primary_10_1016_j_asoc_2020_106982 crossref_primary_10_1142_S0219691312500245 crossref_primary_10_3390_app9061093 crossref_primary_10_1016_j_amc_2013_05_049 crossref_primary_10_1016_j_sigpro_2013_10_008 crossref_primary_10_1016_j_neucom_2023_126627 crossref_primary_10_1016_j_neucom_2023_126626 crossref_primary_10_1007_s10915_016_0280_z crossref_primary_10_1016_j_neucom_2019_06_112 crossref_primary_10_1016_j_cmpb_2020_105752 crossref_primary_10_1109_TBME_2017_2690863 crossref_primary_10_1016_j_neucom_2023_126633 crossref_primary_10_1016_j_neucom_2023_126631 crossref_primary_10_1016_j_ecoinf_2013_07_004 crossref_primary_10_1007_s00521_017_3045_1 crossref_primary_10_1109_TPAMI_2024_3363054 crossref_primary_10_1155_2021_6695108 crossref_primary_10_1109_TIP_2018_2881907 crossref_primary_10_1007_s00530_024_01487_6 crossref_primary_10_1049_el_2014_3691 crossref_primary_10_1016_j_neucom_2015_02_102 crossref_primary_10_1186_s12938_018_0560_y crossref_primary_10_1016_j_measurement_2014_12_007 crossref_primary_10_1007_s10916_019_1396_0 crossref_primary_10_1186_1687_6180_2013_97 crossref_primary_10_1016_j_neucom_2011_12_061 crossref_primary_10_1016_j_cogsys_2018_04_004 crossref_primary_10_1016_j_cogsys_2018_04_003 crossref_primary_10_1109_ACCESS_2020_3009321 crossref_primary_10_1155_2014_106490 crossref_primary_10_1080_09500340_2017_1366564 crossref_primary_10_1016_j_dsp_2015_12_011 crossref_primary_10_3390_technologies12020015 crossref_primary_10_1109_TIP_2020_3029443 crossref_primary_10_1134_S1061830917100035 crossref_primary_10_1080_21642583_2022_2057370 crossref_primary_10_1007_s10472_014_9413_y crossref_primary_10_1007_s11042_018_5952_2 crossref_primary_10_1016_j_neucom_2023_126895 crossref_primary_10_1109_TIP_2014_2378052 crossref_primary_10_1049_ipr2_12115 crossref_primary_10_1049_ipr2_12116 crossref_primary_10_1007_s00138_020_01134_w crossref_primary_10_1016_j_ins_2017_06_042 crossref_primary_10_1016_j_neucom_2015_03_048 crossref_primary_10_1016_j_patcog_2015_03_001 crossref_primary_10_1016_j_neucom_2013_06_014 crossref_primary_10_1186_s12938_016_0129_6 crossref_primary_10_1155_2022_1754291 crossref_primary_10_1016_j_cogsys_2020_09_004 crossref_primary_10_1016_j_cogsys_2020_09_001 crossref_primary_10_1007_s11045_020_00704_5 crossref_primary_10_1155_2020_7595174 crossref_primary_10_1007_s11042_023_15073_x crossref_primary_10_1016_j_ins_2022_03_035 crossref_primary_10_1016_j_neucom_2019_07_115 crossref_primary_10_1016_j_cma_2016_06_009 crossref_primary_10_1016_j_bspc_2016_11_019 crossref_primary_10_1016_j_neucom_2014_02_077 crossref_primary_10_1155_2016_9063065 crossref_primary_10_3390_axioms12040330 crossref_primary_10_1016_j_camwa_2022_05_034 crossref_primary_10_1016_j_compmedimag_2021_101871 crossref_primary_10_1108_EC_01_2024_0083 crossref_primary_10_1016_j_neucom_2018_09_090 crossref_primary_10_1108_CW_03_2019_0028 crossref_primary_10_1109_TVLSI_2021_3082476 crossref_primary_10_3390_jmmp9030102 crossref_primary_10_1016_j_cogsys_2022_03_001 crossref_primary_10_1016_j_sigpro_2015_05_009 crossref_primary_10_1016_j_patcog_2017_07_002 crossref_primary_10_1016_S1874_1029_13_60003_8 crossref_primary_10_1155_2014_840305 crossref_primary_10_1016_j_cogsys_2018_05_003 crossref_primary_10_1016_j_sigpro_2013_03_035 crossref_primary_10_1038_s41598_017_03554_7 crossref_primary_10_1016_j_apm_2017_10_018 crossref_primary_10_1007_s00521_024_10936_2 crossref_primary_10_1007_s11042_017_5427_x crossref_primary_10_1016_j_compbiomed_2020_103930 crossref_primary_10_1016_j_patcog_2023_110028 crossref_primary_10_1016_j_neucom_2016_10_038 crossref_primary_10_1080_21642583_2022_2092782 crossref_primary_10_1155_2015_349874 crossref_primary_10_1117_1_JEI_33_3_033033 crossref_primary_10_1016_j_neucom_2016_05_084 crossref_primary_10_1007_s11517_023_02842_x crossref_primary_10_1038_s41598_022_19893_z crossref_primary_10_1007_s00138_016_0805_3 crossref_primary_10_1007_s11042_018_6735_5 crossref_primary_10_1016_j_phro_2018_02_003 crossref_primary_10_1016_j_compag_2018_04_004 crossref_primary_10_1016_j_patcog_2019_04_019 crossref_primary_10_1016_j_neucom_2019_08_110 crossref_primary_10_1117_1_OE_51_3_037006 crossref_primary_10_1016_j_neucom_2014_01_079 crossref_primary_10_1049_joe_2018_8318 crossref_primary_10_1007_s11265_018_1433_0 crossref_primary_10_1016_j_eswa_2024_123961 crossref_primary_10_1049_iet_ipr_2018_5987 crossref_primary_10_1016_j_imavis_2013_08_003 crossref_primary_10_1016_j_amc_2023_128050 crossref_primary_10_1016_j_neucom_2016_04_067 crossref_primary_10_1186_1687_2770_2014_11 crossref_primary_10_1117_1_JEI_25_5_053020 crossref_primary_10_1016_j_neucom_2024_127625 crossref_primary_10_1186_s12938_016_0153_6 crossref_primary_10_1049_joe_2018_8320 crossref_primary_10_1016_j_neucom_2016_04_068 crossref_primary_10_1016_j_mri_2019_05_009 crossref_primary_10_1016_j_neucom_2019_08_109 crossref_primary_10_1007_s10278_011_9405_y crossref_primary_10_1109_TAC_2016_2628158 crossref_primary_10_1002_ima_22195 crossref_primary_10_1016_j_patcog_2023_110112 crossref_primary_10_1109_LSP_2015_2454991 crossref_primary_10_1016_j_neucom_2022_10_047 crossref_primary_10_1016_j_patcog_2014_10_018 crossref_primary_10_1016_j_infrared_2019_103174 crossref_primary_10_1016_j_optlaseng_2014_09_005 crossref_primary_10_1016_j_knosys_2024_111972 crossref_primary_10_1007_s42979_020_00278_w crossref_primary_10_1016_j_neucom_2024_127990 crossref_primary_10_1016_j_neucom_2018_01_091 crossref_primary_10_1016_j_neunet_2020_09_017 crossref_primary_10_1016_j_neucom_2018_01_092 crossref_primary_10_1016_j_neucom_2018_01_093 crossref_primary_10_1117_1_JEI_27_2_023018 crossref_primary_10_1007_s10044_019_00824_0 crossref_primary_10_1016_j_jenvman_2025_124836 crossref_primary_10_1109_ACCESS_2021_3111957 crossref_primary_10_1109_TIP_2020_2997331 crossref_primary_10_1007_s11265_017_1257_3 crossref_primary_10_3389_fphy_2022_1021950 crossref_primary_10_1007_s11042_021_11783_2 crossref_primary_10_1109_TIP_2017_2682980 crossref_primary_10_1049_ipr2_12891 crossref_primary_10_1016_j_cmpb_2022_107106 crossref_primary_10_1016_j_ijleo_2017_05_029 crossref_primary_10_1049_iet_ipr_2018_5796 crossref_primary_10_1007_s00530_013_0351_z crossref_primary_10_1016_j_media_2017_06_006 crossref_primary_10_1016_j_imavis_2024_105192 crossref_primary_10_1080_03772063_2019_1615007 crossref_primary_10_1016_j_neucom_2019_09_113 crossref_primary_10_32604_iasc_2021_017616 crossref_primary_10_1002_cpe_3053 crossref_primary_10_1016_j_cogsys_2019_09_008 crossref_primary_10_1109_TIP_2021_3127848 crossref_primary_10_1016_j_ijleo_2018_01_004 crossref_primary_10_1371_journal_pone_0255948 crossref_primary_10_1016_j_bspc_2021_102560 crossref_primary_10_1007_s10489_018_1243_x crossref_primary_10_1016_j_patcog_2011_11_019 crossref_primary_10_1109_ACCESS_2019_2932081 crossref_primary_10_32604_cmes_2023_030915 crossref_primary_10_1137_20M1310618 crossref_primary_10_1016_j_neucom_2014_07_052 crossref_primary_10_1109_JSEN_2020_3013649 crossref_primary_10_1109_TIM_2020_3001796 crossref_primary_10_1016_j_mcm_2011_11_014 crossref_primary_10_1109_TPAMI_2013_106 crossref_primary_10_1155_2015_871602 crossref_primary_10_1007_s10044_018_0717_0 crossref_primary_10_1080_21642583_2022_2084650 crossref_primary_10_1021_acsnano_7b07093 crossref_primary_10_1142_S0218001419540089 crossref_primary_10_1186_s13662_018_1669_9 crossref_primary_10_4304_jsw_8_1_228_235 crossref_primary_10_1021_acs_jpcc_1c08712 crossref_primary_10_1016_j_compbiomed_2025_109760 crossref_primary_10_1016_j_ins_2020_08_078 crossref_primary_10_1016_j_apm_2018_08_009 crossref_primary_10_1016_j_neucom_2018_02_093 crossref_primary_10_1016_j_neucom_2018_02_094 crossref_primary_10_1016_j_neucom_2022_01_005 crossref_primary_10_1016_j_ijleo_2017_05_031 crossref_primary_10_1016_j_neunet_2017_01_001 crossref_primary_10_1371_journal_pone_0174813 crossref_primary_10_1109_LGRS_2013_2278342 crossref_primary_10_1109_TCYB_2015_2446755 crossref_primary_10_1109_ACCESS_2020_3016746 crossref_primary_10_1016_j_compbiomed_2012_01_005 crossref_primary_10_1049_iet_ipr_2018_5230 crossref_primary_10_1109_ACCESS_2021_3122535 crossref_primary_10_1364_JOSAA_32_000463 crossref_primary_10_1016_j_cogsys_2018_01_003 crossref_primary_10_1016_j_neucom_2013_04_051 crossref_primary_10_1016_j_neucom_2020_08_085 crossref_primary_10_1016_j_neucom_2020_08_083 crossref_primary_10_1299_jamdsm_2016jamdsm0100 crossref_primary_10_1117_1_3593159 crossref_primary_10_52280_pujm_2021_530603 crossref_primary_10_1109_ACCESS_2016_2590440 crossref_primary_10_3934_ipi_2022014 crossref_primary_10_1142_S021800141255004X crossref_primary_10_1016_j_neucom_2018_03_073 crossref_primary_10_1016_j_infrared_2015_12_003 crossref_primary_10_1016_j_bspc_2021_102790 crossref_primary_10_1142_S1793524513500216 crossref_primary_10_1016_j_bspc_2023_105344 crossref_primary_10_1109_ACCESS_2021_3049513 crossref_primary_10_1007_s13173_013_0102_1 crossref_primary_10_1007_s42835_018_00030_8 crossref_primary_10_1007_s10851_011_0269_z crossref_primary_10_1016_j_cag_2013_11_004 crossref_primary_10_1016_j_pbiomolbio_2021_06_005 crossref_primary_10_1007_s11042_018_6550_z crossref_primary_10_1108_DTA_03_2021_0075 crossref_primary_10_1016_j_jvcir_2016_10_011 crossref_primary_10_1016_j_neucom_2021_08_157 crossref_primary_10_1016_j_neucom_2021_08_154 crossref_primary_10_1016_j_neucom_2021_08_159 crossref_primary_10_1016_j_nonrwa_2011_09_002 crossref_primary_10_1016_j_neucom_2020_06_140 crossref_primary_10_1016_j_neucom_2021_08_152 crossref_primary_10_1080_00207160_2015_1079625 crossref_primary_10_1137_11085863X crossref_primary_10_1016_j_neucom_2022_09_004 crossref_primary_10_1016_j_camwa_2013_03_021 crossref_primary_10_1016_j_neucom_2013_05_065 crossref_primary_10_1049_iet_ipr_2017_0136 crossref_primary_10_4012_dmj_2023_008 crossref_primary_10_1007_s00500_020_04878_9 crossref_primary_10_1016_j_amc_2012_09_038 crossref_primary_10_1049_iet_ipr_2016_0648 crossref_primary_10_1016_j_neucom_2014_10_113 crossref_primary_10_1007_s10043_016_0190_1 crossref_primary_10_1016_j_neucom_2014_10_112 crossref_primary_10_1016_j_neucom_2022_07_004 crossref_primary_10_1371_journal_pone_0120399 crossref_primary_10_1016_j_neucom_2014_10_110 crossref_primary_10_1016_j_neucom_2016_09_076 crossref_primary_10_1007_s11042_016_3603_z crossref_primary_10_1016_j_neucom_2016_09_079 crossref_primary_10_1016_j_patcog_2013_11_014 crossref_primary_10_1016_j_patcog_2018_05_008 crossref_primary_10_1142_S0218001421540252 crossref_primary_10_1371_journal_pone_0120018 crossref_primary_10_1016_j_neucom_2014_10_108 crossref_primary_10_1016_j_neucom_2020_10_004 crossref_primary_10_1016_j_neucom_2014_10_109 crossref_primary_10_1145_3373358 crossref_primary_10_1016_j_neucom_2014_10_107 crossref_primary_10_1016_j_neucom_2021_09_080 crossref_primary_10_1142_S0218001420540269 crossref_primary_10_1016_j_neucom_2016_09_087 crossref_primary_10_1007_s11517_019_02085_9 crossref_primary_10_1109_TIP_2018_2848471 crossref_primary_10_1007_s11042_018_5685_2 crossref_primary_10_1016_j_neucom_2018_10_060 crossref_primary_10_1016_j_jvcir_2019_01_001 crossref_primary_10_3233_JIFS_17466 crossref_primary_10_3390_app8122576 crossref_primary_10_1016_j_patcog_2021_108158 crossref_primary_10_1016_j_neucom_2020_10_114 crossref_primary_10_1155_2014_145343 crossref_primary_10_1016_j_patcog_2016_01_021 crossref_primary_10_1016_j_patcog_2014_07_008 crossref_primary_10_1088_1361_6560_ab553d crossref_primary_10_48084_etasr_2866 crossref_primary_10_4018_IJITSA_316935 crossref_primary_10_2139_ssrn_3998903 crossref_primary_10_1007_s11042_021_11718_x crossref_primary_10_1016_j_neucom_2018_04_085 crossref_primary_10_3390_math10020206 crossref_primary_10_1007_s11554_021_01172_1 crossref_primary_10_1016_j_neucom_2014_06_082 crossref_primary_10_1016_j_cogsys_2020_10_002 crossref_primary_10_1080_09500340_2019_1567840 crossref_primary_10_1016_j_patcog_2011_02_022 crossref_primary_10_1080_21642583_2022_2063201 |
Cites_doi | 10.1109/TBME.2007.896587 10.1007/BF00133570 10.1006/jcph.1995.1098 10.1023/A:1007979827043 10.1109/ICPR.2006.713 10.1007/978-3-540-72823-8_18 10.1109/TIP.2008.2004611 10.1002/cpa.3160420503 10.1137/S1064827596298245 10.1017/S0962492904000273 10.1117/12.709700 10.1109/TMI.2006.891486 10.1109/83.902291 10.1023/A:1020874308076 10.1016/j.imavis.2005.09.010 10.1023/A:1014080923068 10.1109/34.85668 10.1137/S0036139902408928 10.1109/TIP.2007.898969 10.1109/MMSP.2006.285328 10.1006/jvci.1999.0439 10.1109/34.368173 10.1016/0021-9991(88)90002-2 10.1007/978-3-540-72823-8_61 10.1109/TIP.2005.852200 10.1109/83.935033 10.1109/ICAL.2007.4338597 10.1155/IJBI/2006/49515 10.1007/BF01385685 10.1016/j.imavis.2006.12.013 10.1007/978-3-540-24673-2_25 10.1109/TITB.2006.890018 |
ContentType | Journal Article |
Copyright | 2009 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2009 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW |
DOI | 10.1016/j.patcog.2009.08.002 |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Applied Sciences |
EISSN | 1873-5142 |
EndPage | 618 |
ExternalDocumentID | 22281038 10_1016_j_patcog_2009_08_002 S0031320309002982 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW |
ID | FETCH-LOGICAL-c402t-4787b64b86c48562412887235fc0cedb61787db1c16bf328ed3af3e027f002d33 |
IEDL.DBID | AIKHN |
ISSN | 0031-3203 |
IngestDate | Mon Jul 21 09:15:10 EDT 2025 Thu Apr 24 23:12:16 EDT 2025 Tue Jul 01 02:36:08 EDT 2025 Fri Feb 23 02:33:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Local Chan–Vese model Image segmentation Intensity inhomogeneity Extended structure tensor Level set method Performance evaluation Local Chan-Vese model Texture analysis Image processing Transmission protocol Iterative method Texture Heterogeneity Routing protocols Robustness Localization Content analysis |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-4787b64b86c48562412887235fc0cedb61787db1c16bf328ed3af3e027f002d33 |
PageCount | 16 |
ParticipantIDs | pascalfrancis_primary_22281038 crossref_primary_10_1016_j_patcog_2009_08_002 crossref_citationtrail_10_1016_j_patcog_2009_08_002 elsevier_sciencedirect_doi_10_1016_j_patcog_2009_08_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-03-01 |
PublicationDateYYYYMMDD | 2010-03-01 |
PublicationDate_xml | – month: 03 year: 2010 text: 2010-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Pattern recognition |
PublicationYear | 2010 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Caselles, Catte, Coll, Dibos (bib6) 1993; 66 Adalsteinsson, Sethian (bib41) 1995; 118 Vese, Chan (bib14) 2002; 50 Lankton, Tannenbaum (bib26) 2008; 17 Sum, Cheung (bib21) 2008; 55 An, Rousson, Xu (bib24) 2007; 4792 Gao, Bui (bib13) 2005; 14 S.M. Lee, A.L. Abott, N.A. Clark, P.A. Araman, Active contours on statistical manifolds and texture segmentation, in: Proceedings of the IEEE International Conference on Image Processing (ICIP), vol. 3, 2005, pp. 828–831. Y. Shi, W. Karl, A fast level set method without solving PDES, in: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’05), vol. 2, 2005, pp. 97–100. Mumford, Shah (bib9) 1989; 42 Piovano, Rousson, Papadopoulo (bib23) 2007; 4485 Kass, Witkin, Terzopoulos (bib2) 1987; 1 Paragios, Deriche (bib12) 2002; 46 S. Lankton, D. Nain, A. Yezzi, . Tannenbaum, Hybrid geodesic region-based curve evolutions for image segmentation, in: Proceedings of the SPIE: Medical Imagining, vol. 6510, 2007, pp. 65104U. Gomes, Faugeras (bib40) 2000; 1 Y. Pan, J.D. Birdwell, S.M. Djouadi, Efficient implementation of the Chan–Vese models without solving PDEs, in: Proceedings of the International Workshop On Multimedia Signal Processing, 2006, pp. 350–354. R.B. Xia, W.J. Liu, J.B. Zhao, L. Li, An optimal initialization technique for improving the segmentation performance of Chan–Vese model, in: Proceedings of the IEEE International Conference on Automation and Logistics, 2007, pp. 411–415. Brox, Cremers (bib22) 2007; 4485 M. Rousson, T. Brox, R. Deriche, Active unsupervised texture segmentation on a diffusion based feature space, in: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03), vol. 2, 2003, pp. 699-7-4. Osher, Sethian (bib3) 1988; 79 B. Sandberg, T. Chan, L. Vese, A level-set and gabor-based active contour algorithm for segmenting textured images, Technical Report 39, Mathematical Department, UCLA, Los Angeles, USA, July 2002. J.E. Solem, N.C. Overgaard, A. Heyden, Initialization techniques for segmentation with the Chan–Vese model, in: Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), vol. 2, 2006, pp. 171–174. Pi, Shen, Li, Fan (bib20) 2007; 25 Chan, Vese (bib10) 2001; 10 C.M. Li, C.Y. Kao, J.C. Gore, Z.H. Ding, Implicit active contours driven by local binary fitting energy, in: Proceedings of the CVPR’07, 2007, pp. 1–7. Z. Wang, B. Vemuri, Tensor field segmentation using region based active contour model, in: Proceedings of the Eighth European Conference on Computer Vision (ECCV’04), Springer Lecture Notes in Computer Science, vol. 3024, 2004, pp. 304–315. Sussman, Fatemi (bib39) 1999; 20 G. Aubert, M. Barlaud, O. Faugeras, S. Jehan-Besson, Image segmentation using active contours: calculus of variations of shape gradients, Research Report, INRIA, July 2002. Brox, Weickert, Burgeth, Mrázek (bib43) 2006; 24 Vovk, Pernuš, Likar (bib37) 2007; 26 Y.H. Tsai, S. Osher, Total variation and level set based methods in image science, Acta Numer. (2005) 1–61. Tsai, Yezzi, Willsky (bib11) 2001; 10 Gelas, Bernard, Friboulet, Prost (bib4) 2007; 16 C. Feddern, J. Weickert, B. Burgeth, Level-set methods for tensor-valued images, in: Proceedings of the Second IEEE Workshop on Variational, Geometric and Level Set Methods in Computer Vision, 2003, pp. 65–72. Caselles, Kimmel, Sapiro (bib7) 1997; 22 Sethian (bib42) 1999 Hou (bib38) 2006; 2006 Maroulis, Savelonas, Iakovidis, Karkanis, Dimitropoulos (bib36) 2007; 11 C.M. Li, C.Y. Xu, C.F. Gui, M.D. Fox, Level set formulation without Re-initialization: a new variational formulation, in: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2005, vol. 1, 2005, pp. 430–436. J. Bigun, G.H. Grandlund, Optimal orientation detection of linear symmetry, in: Proceedings of the IEEE First International Conference on Computer Vision (ICCV), 1987, pp. 433–438. Malladi, Sethian, Vemuri (bib8) 1995; 17 Bigun, Grandlund, Wiklund (bib32) 1991; 13 Linda, George (bib1) 2001 Chan (10.1016/j.patcog.2009.08.002_bib10) 2001; 10 Caselles (10.1016/j.patcog.2009.08.002_bib6) 1993; 66 Sussman (10.1016/j.patcog.2009.08.002_bib39) 1999; 20 Sum (10.1016/j.patcog.2009.08.002_bib21) 2008; 55 Lankton (10.1016/j.patcog.2009.08.002_bib26) 2008; 17 Paragios (10.1016/j.patcog.2009.08.002_bib12) 2002; 46 10.1016/j.patcog.2009.08.002_bib31 10.1016/j.patcog.2009.08.002_bib30 10.1016/j.patcog.2009.08.002_bib33 Vovk (10.1016/j.patcog.2009.08.002_bib37) 2007; 26 10.1016/j.patcog.2009.08.002_bib35 10.1016/j.patcog.2009.08.002_bib34 10.1016/j.patcog.2009.08.002_bib15 Mumford (10.1016/j.patcog.2009.08.002_bib9) 1989; 42 10.1016/j.patcog.2009.08.002_bib17 Kass (10.1016/j.patcog.2009.08.002_bib2) 1987; 1 10.1016/j.patcog.2009.08.002_bib16 10.1016/j.patcog.2009.08.002_bib29 Pi (10.1016/j.patcog.2009.08.002_bib20) 2007; 25 Gao (10.1016/j.patcog.2009.08.002_bib13) 2005; 14 Linda (10.1016/j.patcog.2009.08.002_bib1) 2001 10.1016/j.patcog.2009.08.002_bib5 Brox (10.1016/j.patcog.2009.08.002_bib43) 2006; 24 Tsai (10.1016/j.patcog.2009.08.002_bib11) 2001; 10 Gomes (10.1016/j.patcog.2009.08.002_bib40) 2000; 1 Brox (10.1016/j.patcog.2009.08.002_bib22) 2007; 4485 Vese (10.1016/j.patcog.2009.08.002_bib14) 2002; 50 Hou (10.1016/j.patcog.2009.08.002_bib38) 2006; 2006 Caselles (10.1016/j.patcog.2009.08.002_bib7) 1997; 22 Sethian (10.1016/j.patcog.2009.08.002_bib42) 1999 10.1016/j.patcog.2009.08.002_bib25 10.1016/j.patcog.2009.08.002_bib28 Gelas (10.1016/j.patcog.2009.08.002_bib4) 2007; 16 10.1016/j.patcog.2009.08.002_bib27 Osher (10.1016/j.patcog.2009.08.002_bib3) 1988; 79 10.1016/j.patcog.2009.08.002_bib19 An (10.1016/j.patcog.2009.08.002_bib24) 2007; 4792 10.1016/j.patcog.2009.08.002_bib18 Bigun (10.1016/j.patcog.2009.08.002_bib32) 1991; 13 Adalsteinsson (10.1016/j.patcog.2009.08.002_bib41) 1995; 118 Malladi (10.1016/j.patcog.2009.08.002_bib8) 1995; 17 Piovano (10.1016/j.patcog.2009.08.002_bib23) 2007; 4485 Maroulis (10.1016/j.patcog.2009.08.002_bib36) 2007; 11 |
References_xml | – volume: 22 start-page: 61 year: 1997 end-page: 79 ident: bib7 article-title: Geodesic active contours publication-title: Int. J. Comput. Vision – volume: 42 start-page: 577 year: 1989 end-page: 685 ident: bib9 article-title: Optimal approximation by piecewise smooth functions and associated variational problems publication-title: Commun. Pure Appl. Math. – volume: 17 start-page: 2029 year: 2008 end-page: 2039 ident: bib26 article-title: Localizing region-based active contours publication-title: IEEE Trans. Image Process. – volume: 10 start-page: 1169 year: 2001 end-page: 1186 ident: bib11 article-title: Curve evolution implementation of the Mumford–Shah functional for image segmentation, denoising, interpolation, and magnification publication-title: IEEE Trans. Image Process. – volume: 20 start-page: 1165 year: 1999 end-page: 1191 ident: bib39 article-title: An efficient, interface preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow publication-title: SIAM J. Sci. Comput. – reference: R.B. Xia, W.J. Liu, J.B. Zhao, L. Li, An optimal initialization technique for improving the segmentation performance of Chan–Vese model, in: Proceedings of the IEEE International Conference on Automation and Logistics, 2007, pp. 411–415. – year: 1999 ident: bib42 article-title: Level Set Methods and Fast Marching Methods – volume: 79 start-page: 12 year: 1988 end-page: 49 ident: bib3 article-title: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations publication-title: J. Comput. Phys. – reference: J. Bigun, G.H. Grandlund, Optimal orientation detection of linear symmetry, in: Proceedings of the IEEE First International Conference on Computer Vision (ICCV), 1987, pp. 433–438. – reference: Z. Wang, B. Vemuri, Tensor field segmentation using region based active contour model, in: Proceedings of the Eighth European Conference on Computer Vision (ECCV’04), Springer Lecture Notes in Computer Science, vol. 3024, 2004, pp. 304–315. – reference: M. Rousson, T. Brox, R. Deriche, Active unsupervised texture segmentation on a diffusion based feature space, in: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03), vol. 2, 2003, pp. 699-7-4. – volume: 26 start-page: 405 year: 2007 end-page: 421 ident: bib37 article-title: A review of methods for correction of intensity inhomogeneity in MRI publication-title: IEEE Trans. Med. Imaging – reference: J.E. Solem, N.C. Overgaard, A. Heyden, Initialization techniques for segmentation with the Chan–Vese model, in: Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), vol. 2, 2006, pp. 171–174. – volume: 24 start-page: 41 year: 2006 end-page: 55 ident: bib43 article-title: Nonlinear structure tensors publication-title: Image Vis. Comput. – volume: 17 start-page: 158 year: 1995 end-page: 175 ident: bib8 article-title: Shape modeling with front propagation: a level set approach publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: S.M. Lee, A.L. Abott, N.A. Clark, P.A. Araman, Active contours on statistical manifolds and texture segmentation, in: Proceedings of the IEEE International Conference on Image Processing (ICIP), vol. 3, 2005, pp. 828–831. – volume: 14 start-page: 1537 year: 2005 end-page: 1549 ident: bib13 article-title: Image segmentation and selective smoothing by using Mumford–Shah model publication-title: IEEE Trans. Image Process. – volume: 10 start-page: 266 year: 2001 end-page: 277 ident: bib10 article-title: Active contours without edges publication-title: IEEE Trans. Image Process. – volume: 13 start-page: 775 year: 1991 end-page: 790 ident: bib32 article-title: Multidimensional orientation estimation with applications to texture analysis and optical flow publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 1 start-page: 321 year: 1987 end-page: 331 ident: bib2 article-title: Snakes: active contour models publication-title: Int. J. Comput. Vision – volume: 4792 start-page: 495 year: 2007 end-page: 502 ident: bib24 publication-title: Proc. Med. Imag. Comput. Comp. Assist. Interven. – reference: Y.H. Tsai, S. Osher, Total variation and level set based methods in image science, Acta Numer. (2005) 1–61. – reference: S. Lankton, D. Nain, A. Yezzi, . Tannenbaum, Hybrid geodesic region-based curve evolutions for image segmentation, in: Proceedings of the SPIE: Medical Imagining, vol. 6510, 2007, pp. 65104U. – volume: 1 start-page: 209 year: 2000 end-page: 222 ident: bib40 article-title: Reconciling distance functions and level sets publication-title: J. Visual Commun. Imaging Representation – volume: 118 start-page: 269 year: 1995 end-page: 277 ident: bib41 article-title: A fast level set method for propagating interface publication-title: J. Comput. Phys. – volume: 46 start-page: 223 year: 2002 end-page: 247 ident: bib12 article-title: Geodesic active regions and level set methods for supervised texture segmentation publication-title: Int. J. Comput. Vision – volume: 4485 start-page: 709 year: 2007 end-page: 720 ident: bib23 article-title: Efficient segmentation of piecewise smooth images publication-title: Proc. Scale Space Var. Met. Comput. Vision – volume: 66 start-page: 1 year: 1993 end-page: 31 ident: bib6 article-title: A geometric model for active contours in image processing publication-title: Numer. Math. – reference: C.M. Li, C.Y. Xu, C.F. Gui, M.D. Fox, Level set formulation without Re-initialization: a new variational formulation, in: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2005, vol. 1, 2005, pp. 430–436. – volume: 55 start-page: 358 year: 2008 end-page: 360 ident: bib21 article-title: Vessel extraction under non-uniform illumination: a level set approach publication-title: IEEE Trans. Biomed. Eng. – volume: 16 start-page: 1873 year: 2007 end-page: 1887 ident: bib4 article-title: Compactly supported radial basis functions based collocation method for level-set evolution in image segmentation publication-title: IEEE Trans. Image Process. – reference: B. Sandberg, T. Chan, L. Vese, A level-set and gabor-based active contour algorithm for segmenting textured images, Technical Report 39, Mathematical Department, UCLA, Los Angeles, USA, July 2002. – reference: C. Feddern, J. Weickert, B. Burgeth, Level-set methods for tensor-valued images, in: Proceedings of the Second IEEE Workshop on Variational, Geometric and Level Set Methods in Computer Vision, 2003, pp. 65–72. – volume: 50 start-page: 271 year: 2002 end-page: 293 ident: bib14 article-title: A multiphase level set framework for image segmentation using the Mumford and Shah model publication-title: Int. J. Comput. Vision – volume: 11 start-page: 537 year: 2007 end-page: 543 ident: bib36 article-title: Variable background active contour model for computer-aided delineation of nodules in thyroid ultrasound images publication-title: IEEE Trans. Inf. Technol. Biomed. – reference: Y. Shi, W. Karl, A fast level set method without solving PDES, in: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’05), vol. 2, 2005, pp. 97–100. – reference: C.M. Li, C.Y. Kao, J.C. Gore, Z.H. Ding, Implicit active contours driven by local binary fitting energy, in: Proceedings of the CVPR’07, 2007, pp. 1–7. – volume: 25 start-page: 1414 year: 2007 end-page: 1421 ident: bib20 article-title: A variational formulation for segmenting desired objects in color images publication-title: Image Vision Comput. – volume: 4485 start-page: 203 year: 2007 end-page: 213 ident: bib22 article-title: On the statistical interpretation of the piecewise smooth Mumford–Shah functional publication-title: Proc. Scale Space Var. Met. Comput. Vision – reference: G. Aubert, M. Barlaud, O. Faugeras, S. Jehan-Besson, Image segmentation using active contours: calculus of variations of shape gradients, Research Report, INRIA, July 2002. – reference: Y. Pan, J.D. Birdwell, S.M. Djouadi, Efficient implementation of the Chan–Vese models without solving PDEs, in: Proceedings of the International Workshop On Multimedia Signal Processing, 2006, pp. 350–354. – year: 2001 ident: bib1 article-title: Computer Vision – volume: 2006 start-page: 1 year: 2006 end-page: 11 ident: bib38 article-title: A review on MR image intensity inhomogeneity correction publication-title: Int. J. Biomed. Imaging – year: 1999 ident: 10.1016/j.patcog.2009.08.002_bib42 – volume: 55 start-page: 358 issue: 1 year: 2008 ident: 10.1016/j.patcog.2009.08.002_bib21 article-title: Vessel extraction under non-uniform illumination: a level set approach publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.896587 – volume: 1 start-page: 321 issue: 4 year: 1987 ident: 10.1016/j.patcog.2009.08.002_bib2 article-title: Snakes: active contour models publication-title: Int. J. Comput. Vision doi: 10.1007/BF00133570 – volume: 118 start-page: 269 year: 1995 ident: 10.1016/j.patcog.2009.08.002_bib41 article-title: A fast level set method for propagating interface publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1098 – ident: 10.1016/j.patcog.2009.08.002_bib30 – volume: 22 start-page: 61 issue: 1 year: 1997 ident: 10.1016/j.patcog.2009.08.002_bib7 article-title: Geodesic active contours publication-title: Int. J. Comput. Vision doi: 10.1023/A:1007979827043 – ident: 10.1016/j.patcog.2009.08.002_bib15 doi: 10.1109/ICPR.2006.713 – volume: 4485 start-page: 203 year: 2007 ident: 10.1016/j.patcog.2009.08.002_bib22 article-title: On the statistical interpretation of the piecewise smooth Mumford–Shah functional publication-title: Proc. Scale Space Var. Met. Comput. Vision doi: 10.1007/978-3-540-72823-8_18 – volume: 4792 start-page: 495 year: 2007 ident: 10.1016/j.patcog.2009.08.002_bib24 article-title: γ-Convergence approximation to piecewise smooth medical image segmentation publication-title: Proc. Med. Imag. Comput. Comp. Assist. Interven. – volume: 17 start-page: 2029 issue: 11 year: 2008 ident: 10.1016/j.patcog.2009.08.002_bib26 article-title: Localizing region-based active contours publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2008.2004611 – volume: 42 start-page: 577 year: 1989 ident: 10.1016/j.patcog.2009.08.002_bib9 article-title: Optimal approximation by piecewise smooth functions and associated variational problems publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160420503 – volume: 20 start-page: 1165 year: 1999 ident: 10.1016/j.patcog.2009.08.002_bib39 article-title: An efficient, interface preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827596298245 – ident: 10.1016/j.patcog.2009.08.002_bib5 doi: 10.1017/S0962492904000273 – ident: 10.1016/j.patcog.2009.08.002_bib25 doi: 10.1117/12.709700 – year: 2001 ident: 10.1016/j.patcog.2009.08.002_bib1 – volume: 26 start-page: 405 issue: 3 year: 2007 ident: 10.1016/j.patcog.2009.08.002_bib37 article-title: A review of methods for correction of intensity inhomogeneity in MRI publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2006.891486 – volume: 10 start-page: 266 issue: 2 year: 2001 ident: 10.1016/j.patcog.2009.08.002_bib10 article-title: Active contours without edges publication-title: IEEE Trans. Image Process. doi: 10.1109/83.902291 – volume: 50 start-page: 271 issue: 3 year: 2002 ident: 10.1016/j.patcog.2009.08.002_bib14 article-title: A multiphase level set framework for image segmentation using the Mumford and Shah model publication-title: Int. J. Comput. Vision doi: 10.1023/A:1020874308076 – volume: 24 start-page: 41 issue: 1 year: 2006 ident: 10.1016/j.patcog.2009.08.002_bib43 article-title: Nonlinear structure tensors publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2005.09.010 – volume: 46 start-page: 223 issue: 3 year: 2002 ident: 10.1016/j.patcog.2009.08.002_bib12 article-title: Geodesic active regions and level set methods for supervised texture segmentation publication-title: Int. J. Comput. Vision doi: 10.1023/A:1014080923068 – volume: 13 start-page: 775 issue: 8 year: 1991 ident: 10.1016/j.patcog.2009.08.002_bib32 article-title: Multidimensional orientation estimation with applications to texture analysis and optical flow publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.85668 – ident: 10.1016/j.patcog.2009.08.002_bib28 doi: 10.1137/S0036139902408928 – volume: 16 start-page: 1873 issue: 7 year: 2007 ident: 10.1016/j.patcog.2009.08.002_bib4 article-title: Compactly supported radial basis functions based collocation method for level-set evolution in image segmentation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.898969 – ident: 10.1016/j.patcog.2009.08.002_bib18 doi: 10.1109/MMSP.2006.285328 – volume: 1 start-page: 209 issue: 11 year: 2000 ident: 10.1016/j.patcog.2009.08.002_bib40 article-title: Reconciling distance functions and level sets publication-title: J. Visual Commun. Imaging Representation doi: 10.1006/jvci.1999.0439 – ident: 10.1016/j.patcog.2009.08.002_bib33 – ident: 10.1016/j.patcog.2009.08.002_bib31 – ident: 10.1016/j.patcog.2009.08.002_bib17 – ident: 10.1016/j.patcog.2009.08.002_bib35 – volume: 17 start-page: 158 issue: 2 year: 1995 ident: 10.1016/j.patcog.2009.08.002_bib8 article-title: Shape modeling with front propagation: a level set approach publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.368173 – volume: 79 start-page: 12 issue: 1 year: 1988 ident: 10.1016/j.patcog.2009.08.002_bib3 article-title: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(88)90002-2 – volume: 4485 start-page: 709 year: 2007 ident: 10.1016/j.patcog.2009.08.002_bib23 article-title: Efficient segmentation of piecewise smooth images publication-title: Proc. Scale Space Var. Met. Comput. Vision doi: 10.1007/978-3-540-72823-8_61 – ident: 10.1016/j.patcog.2009.08.002_bib19 – volume: 14 start-page: 1537 issue: 10 year: 2005 ident: 10.1016/j.patcog.2009.08.002_bib13 article-title: Image segmentation and selective smoothing by using Mumford–Shah model publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.852200 – volume: 10 start-page: 1169 issue: 8 year: 2001 ident: 10.1016/j.patcog.2009.08.002_bib11 article-title: Curve evolution implementation of the Mumford–Shah functional for image segmentation, denoising, interpolation, and magnification publication-title: IEEE Trans. Image Process. doi: 10.1109/83.935033 – ident: 10.1016/j.patcog.2009.08.002_bib16 doi: 10.1109/ICAL.2007.4338597 – volume: 2006 start-page: 1 year: 2006 ident: 10.1016/j.patcog.2009.08.002_bib38 article-title: A review on MR image intensity inhomogeneity correction publication-title: Int. J. Biomed. Imaging doi: 10.1155/IJBI/2006/49515 – volume: 66 start-page: 1 issue: 1 year: 1993 ident: 10.1016/j.patcog.2009.08.002_bib6 article-title: A geometric model for active contours in image processing publication-title: Numer. Math. doi: 10.1007/BF01385685 – volume: 25 start-page: 1414 issue: 9 year: 2007 ident: 10.1016/j.patcog.2009.08.002_bib20 article-title: A variational formulation for segmenting desired objects in color images publication-title: Image Vision Comput. doi: 10.1016/j.imavis.2006.12.013 – ident: 10.1016/j.patcog.2009.08.002_bib34 doi: 10.1007/978-3-540-24673-2_25 – volume: 11 start-page: 537 issue: 5 year: 2007 ident: 10.1016/j.patcog.2009.08.002_bib36 article-title: Variable background active contour model for computer-aided delineation of nodules in thyroid ultrasound images publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2006.890018 – ident: 10.1016/j.patcog.2009.08.002_bib29 – ident: 10.1016/j.patcog.2009.08.002_bib27 |
SSID | ssj0017142 |
Score | 2.5144906 |
Snippet | In this paper, a new local Chan–Vese (LCV) model is proposed for image segmentation, which is built based on the techniques of curve evolution, local... |
SourceID | pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 603 |
SubjectTerms | Applied sciences Exact sciences and technology Extended structure tensor Image processing Image segmentation Information, signal and communications theory Intensity inhomogeneity Level set method Local Chan–Vese model Signal processing Telecommunications and information theory |
Title | An efficient local Chan–Vese model for image segmentation |
URI | https://dx.doi.org/10.1016/j.patcog.2009.08.002 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5zexHEuzgvIw--xq1NlrT4NIZjKu7Jyd5KkyZj4rri5qv4H_yH_hJP2rQ4EAa-lqaX0_Q75yTnfB9CV4rTJKRaEGWMJkwJTmQXwJAlkE1ARAFJtG0Ufhzx4ZjdT7qTGuqXvTC2rNJhf4HpOVq7I21nzXY2m9keX0s7aLcIch5xwOGGT0MOU7vRu3sYjqrNBOGxgjScesQOKDvo8jKvDBBvMXXElUG1vvKHh9rJ4iXYzRSCF7-80GAf7brwEfeKJzxANZ0eor1SmgG7P_UI3fRSrHN2CHAqOHdY2DYSfH9-PeulxrkADoaAFc_mgCh4qadz14WUHqPx4PapPyROJ4EoyP5WxPLrSM5kwBULIJ5h4HMC4dOuUR0wo7RdgCKRnvK4NNQPdEJjQzUkpAZeN6H0BNXTRapPERbcbqMqI4USLIjDGMIPo2jYicNOArlUE9HSNpFyJOJWy-I1KqvFXqLColbfMoysxGXHbyJSjcoKEo0N54vS7NHaZIgA5zeMbK19pep2dqHLcsGf_fvS52i7qByw9WcXqL56e9eXEJCsZAttXX94LTftfgDuLd7X |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcgAJsSPKUnzgGrrYjRNxqiqqAm1PLeotih27KqJpRMsV8Q_8IV_CTOJEVEKqxDWys0ziNzPOzHuE3CiXRT7TwlHGaIcr4TqyBWDII8gmIKKAJBobhQdDtzfmj5PWpEQ6eS8MllVa7M8wPUVre6RmrVlLZjPs8UXaQfxFkPKIAw5vcVi-uDpvP4o6DxT4zijDWcPB4Xn_XFrklQDeLaaWttIrdlf-8E-7SbgEq5lM7uKXD-oekD0bPNJ2dn-HpKTjI7KfCzNQu06PyV07pjrlhgCXQlN3RbGN4Pvz61kvNU3lbyiEq3Q2BzyhSz2d2x6k-ISMu_ejTs-xKgmOgtxv5SC7jnS59FzFPYhmOHgcTzRZy6g6GFFiD6CIZEM1XGlY09MRCw3TkI4aeNyIsVNSjhexPiNUuPgTVRkplOBe6IcQfBjF_Hro1yPIpCqE5bYJlKUQRyWL1yCvFXsJMouiuqUfoMBlvVkhTjErySg0NowXudmDtU8hAJTfMLO69paKy-E2FzLBn__71Ndkuzca9IP-w_DpguxkNQRYiXZJyqu3d30FoclKVtNP7we7lN-b |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+local+Chan%E2%80%93Vese+model+for+image+segmentation&rft.jtitle=Pattern+recognition&rft.au=Wang%2C+Xiao-Feng&rft.au=Huang%2C+De-Shuang&rft.au=Xu%2C+Huan&rft.date=2010-03-01&rft.issn=0031-3203&rft.volume=43&rft.issue=3&rft.spage=603&rft.epage=618&rft_id=info:doi/10.1016%2Fj.patcog.2009.08.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2009_08_002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |