An efficient local Chan–Vese model for image segmentation

In this paper, a new local Chan–Vese (LCV) model is proposed for image segmentation, which is built based on the techniques of curve evolution, local statistical function and level set method. The energy functional for the proposed model consists of three terms, i.e., global term, local term and reg...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 43; no. 3; pp. 603 - 618
Main Authors Wang, Xiao-Feng, Huang, De-Shuang, Xu, Huan
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.03.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, a new local Chan–Vese (LCV) model is proposed for image segmentation, which is built based on the techniques of curve evolution, local statistical function and level set method. The energy functional for the proposed model consists of three terms, i.e., global term, local term and regularization term. By incorporating the local image information into the proposed model, the images with intensity inhomogeneity can be efficiently segmented. In addition, the time-consuming re-initialization step widely adopted in traditional level set methods can be avoided by introducing a new penalizing energy. To avoid the long iteration process for level set evolution, an efficient termination criterion is presented which is based on the length change of evolving curve. Particularly, we proposed constructing an extended structure tensor (EST) by adding the intensity information into the classical structure tensor for texture image segmentation. It can be found that by combining the EST with our LCV model, the texture image can be efficiently segmented no matter whether it presents intensity inhomogeneity or not. Finally, experiments on some synthetic and real images have demonstrated the efficiency and robustness of our model. Moreover, comparisons with the well-known Chan–Vese (CV) model and recent popular local binary fitting (LBF) model also show that our LCV model can segment images with few iteration times and be less sensitive to the location of initial contour and the selection of governing parameters.
AbstractList In this paper, a new local Chan–Vese (LCV) model is proposed for image segmentation, which is built based on the techniques of curve evolution, local statistical function and level set method. The energy functional for the proposed model consists of three terms, i.e., global term, local term and regularization term. By incorporating the local image information into the proposed model, the images with intensity inhomogeneity can be efficiently segmented. In addition, the time-consuming re-initialization step widely adopted in traditional level set methods can be avoided by introducing a new penalizing energy. To avoid the long iteration process for level set evolution, an efficient termination criterion is presented which is based on the length change of evolving curve. Particularly, we proposed constructing an extended structure tensor (EST) by adding the intensity information into the classical structure tensor for texture image segmentation. It can be found that by combining the EST with our LCV model, the texture image can be efficiently segmented no matter whether it presents intensity inhomogeneity or not. Finally, experiments on some synthetic and real images have demonstrated the efficiency and robustness of our model. Moreover, comparisons with the well-known Chan–Vese (CV) model and recent popular local binary fitting (LBF) model also show that our LCV model can segment images with few iteration times and be less sensitive to the location of initial contour and the selection of governing parameters.
Author Xu, Huan
Huang, De-Shuang
Wang, Xiao-Feng
Author_xml – sequence: 1
  givenname: Xiao-Feng
  surname: Wang
  fullname: Wang, Xiao-Feng
  email: xfwanghf@gmail.com, xfwang@iim.ac.cn
  organization: Intelligent Computing Lab, Hefei Institute of Intelligent Machines, Chinese Academy of Sciences, P.O. Box 1130, Hefei Anhui 230031, China
– sequence: 2
  givenname: De-Shuang
  surname: Huang
  fullname: Huang, De-Shuang
  email: dshuang@iim.ac.cn
  organization: Intelligent Computing Lab, Hefei Institute of Intelligent Machines, Chinese Academy of Sciences, P.O. Box 1130, Hefei Anhui 230031, China
– sequence: 3
  givenname: Huan
  surname: Xu
  fullname: Xu, Huan
  email: xuhuan@mail.ustc.edu.cn
  organization: Intelligent Computing Lab, Hefei Institute of Intelligent Machines, Chinese Academy of Sciences, P.O. Box 1130, Hefei Anhui 230031, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22281038$$DView record in Pascal Francis
BookMark eNqFkM1KAzEURoNUsK2-gYvZuJzxJpnORAWhlPoDBTfqNmQyNzVlmpRkENz5Dr6hT2LKiAsXusrinu_mfmdCRs47JOSUQkGBVuebYqd67dcFA7goQBQA7ICMqah5PqMlG5ExAKc5Z8CPyCTGDQCt02BMruYuQ2Ostuj6rPNaddniRbnP949njJhtfYtdZnzI7FatMYu43iZS9da7Y3JoVBfx5Pudkqeb5ePiLl893N4v5qtcl8D6vKxF3VRlIypdilnFSsqEqBmfGQ0a26aiCWgbqmnVGM4EtlwZjsBqk3q0nE_J2bB3p2K6zwTltI1yF9JJ4U0yxgQFLhJXDpwOPsaA5gehIPei5EYOouRelAQh0wcpdvkrpu1QsA_Kdv-Fr4cwJgGvFoOMe5Wplw2oe9l6-_eCL45PiBM
CODEN PTNRA8
CitedBy_id crossref_primary_10_2147_OPTO_S368672
crossref_primary_10_1016_j_compbiomed_2013_01_002
crossref_primary_10_1016_j_apm_2016_03_039
crossref_primary_10_7763_IJBBB_2013_V3_207
crossref_primary_10_1016_j_neucom_2022_06_083
crossref_primary_10_1016_j_neucom_2013_02_045
crossref_primary_10_1016_j_asoc_2025_112736
crossref_primary_10_1109_ACCESS_2020_3026143
crossref_primary_10_1016_j_neucom_2021_11_023
crossref_primary_10_1016_j_patcog_2015_08_022
crossref_primary_10_1007_s11042_020_09311_9
crossref_primary_10_1007_s10851_019_00893_0
crossref_primary_10_1117_1_JEI_24_3_033020
crossref_primary_10_1083_jcb_201504035
crossref_primary_10_3390_mi13030391
crossref_primary_10_1117_1_JEI_27_6_063013
crossref_primary_10_61189_036308mdyran
crossref_primary_10_3233_JIFS_179413
crossref_primary_10_1016_j_patcog_2020_107810
crossref_primary_10_1088_1748_3190_ababb0
crossref_primary_10_1016_j_neucom_2013_02_058
crossref_primary_10_1016_j_eswa_2023_120631
crossref_primary_10_1016_j_rcim_2024_102779
crossref_primary_10_1080_21681163_2013_796164
crossref_primary_10_1007_s11227_022_04948_9
crossref_primary_10_1007_s00170_024_13514_x
crossref_primary_10_1007_s11042_019_08098_8
crossref_primary_10_1177_0040517514557314
crossref_primary_10_1007_s11042_019_08174_z
crossref_primary_10_1007_s11831_020_09463_9
crossref_primary_10_1016_j_patcog_2016_03_030
crossref_primary_10_1016_j_neucom_2018_05_070
crossref_primary_10_1109_ACCESS_2024_3388564
crossref_primary_10_1016_j_neucom_2017_01_013
crossref_primary_10_52280_pujm_2021_540704
crossref_primary_10_1016_j_engappai_2023_106472
crossref_primary_10_1109_TCBB_2019_2948330
crossref_primary_10_1016_j_neucom_2014_11_103
crossref_primary_10_1016_j_neucom_2014_11_104
crossref_primary_10_1155_2015_789485
crossref_primary_10_1007_s11760_017_1234_0
crossref_primary_10_1016_j_neucom_2014_11_106
crossref_primary_10_1016_j_neucom_2014_05_088
crossref_primary_10_1109_ACCESS_2018_2871846
crossref_primary_10_1016_j_optlastec_2016_02_002
crossref_primary_10_1049_iet_ipr_2019_0315
crossref_primary_10_1002_gamm_201410008
crossref_primary_10_1016_j_patcog_2019_01_031
crossref_primary_10_1109_TMI_2018_2867620
crossref_primary_10_1109_ACCESS_2019_2909981
crossref_primary_10_3390_biom12020240
crossref_primary_10_1016_j_neucom_2014_09_107
crossref_primary_10_1016_j_apm_2024_04_058
crossref_primary_10_1155_2020_2061841
crossref_primary_10_1016_j_cogsys_2021_02_002
crossref_primary_10_1142_S0217595923500215
crossref_primary_10_1016_j_patcog_2014_05_013
crossref_primary_10_1155_2014_357684
crossref_primary_10_1371_journal_pone_0076101
crossref_primary_10_1016_j_cogsys_2018_04_011
crossref_primary_10_1016_j_engappai_2018_04_027
crossref_primary_10_1299_jamdsm_2024jamdsm0027
crossref_primary_10_3390_app8122393
crossref_primary_10_1109_TIP_2018_2825101
crossref_primary_10_1016_j_bspc_2020_101993
crossref_primary_10_1016_j_camwa_2023_11_010
crossref_primary_10_1016_j_bspc_2018_06_001
crossref_primary_10_1016_j_neucom_2022_07_087
crossref_primary_10_1016_j_cogsys_2018_04_006
crossref_primary_10_1109_ACCESS_2018_2874812
crossref_primary_10_1016_j_neucom_2023_126946
crossref_primary_10_1016_j_neucom_2015_04_124
crossref_primary_10_1007_s11665_019_04168_y
crossref_primary_10_1016_j_apm_2022_02_042
crossref_primary_10_1016_j_neucom_2016_07_058
crossref_primary_10_1007_s42967_023_00339_w
crossref_primary_10_1016_j_cogsys_2020_02_001
crossref_primary_10_3934_ipi_2016022
crossref_primary_10_1007_s11042_017_5434_y
crossref_primary_10_1016_j_neucom_2018_06_080
crossref_primary_10_1016_j_optlaseng_2013_04_019
crossref_primary_10_1016_j_camwa_2020_04_030
crossref_primary_10_1080_21642583_2022_2045645
crossref_primary_10_1016_j_neucom_2020_07_143
crossref_primary_10_1016_j_neucom_2015_01_099
crossref_primary_10_1016_j_neucom_2020_07_144
crossref_primary_10_1109_TIP_2014_2300751
crossref_primary_10_1049_iet_ipr_2016_0352
crossref_primary_10_1155_2013_508543
crossref_primary_10_1016_j_neucom_2020_07_141
crossref_primary_10_1016_j_neucom_2022_05_100
crossref_primary_10_1016_j_neucom_2014_04_083
crossref_primary_10_1080_21642583_2022_2074168
crossref_primary_10_1016_j_neucom_2014_04_081
crossref_primary_10_1016_j_neucom_2021_10_126
crossref_primary_10_1016_j_neucom_2021_10_125
crossref_primary_10_1016_j_knosys_2016_12_023
crossref_primary_10_1016_j_neucom_2018_06_076
crossref_primary_10_1016_j_neucom_2014_04_085
crossref_primary_10_1016_j_neucom_2018_06_075
crossref_primary_10_1016_j_neucom_2021_10_122
crossref_primary_10_1155_2014_890725
crossref_primary_10_1016_j_cogsys_2019_11_002
crossref_primary_10_1016_j_compbiomed_2018_04_009
crossref_primary_10_1016_j_neucom_2018_06_079
crossref_primary_10_1016_j_neucom_2020_07_139
crossref_primary_10_3182_20130902_3_CN_3020_00173
crossref_primary_10_1016_j_patcog_2019_02_009
crossref_primary_10_1016_j_neucom_2014_03_089
crossref_primary_10_1109_TIM_2019_2925879
crossref_primary_10_1007_s11063_018_9827_3
crossref_primary_10_1109_ACCESS_2020_3007351
crossref_primary_10_1016_j_bspc_2018_09_017
crossref_primary_10_1016_j_camwa_2022_06_025
crossref_primary_10_1016_j_sigpro_2013_09_009
crossref_primary_10_1109_ACCESS_2019_2912174
crossref_primary_10_1186_s12859_022_04611_3
crossref_primary_10_1016_j_patcog_2020_107520
crossref_primary_10_1016_j_neucom_2019_01_079
crossref_primary_10_1016_j_asoc_2019_105516
crossref_primary_10_1016_j_neucom_2014_03_088
crossref_primary_10_1016_j_patrec_2011_11_012
crossref_primary_10_1016_j_asoc_2020_106982
crossref_primary_10_1142_S0219691312500245
crossref_primary_10_3390_app9061093
crossref_primary_10_1016_j_amc_2013_05_049
crossref_primary_10_1016_j_sigpro_2013_10_008
crossref_primary_10_1016_j_neucom_2023_126627
crossref_primary_10_1016_j_neucom_2023_126626
crossref_primary_10_1007_s10915_016_0280_z
crossref_primary_10_1016_j_neucom_2019_06_112
crossref_primary_10_1016_j_cmpb_2020_105752
crossref_primary_10_1109_TBME_2017_2690863
crossref_primary_10_1016_j_neucom_2023_126633
crossref_primary_10_1016_j_neucom_2023_126631
crossref_primary_10_1016_j_ecoinf_2013_07_004
crossref_primary_10_1007_s00521_017_3045_1
crossref_primary_10_1109_TPAMI_2024_3363054
crossref_primary_10_1155_2021_6695108
crossref_primary_10_1109_TIP_2018_2881907
crossref_primary_10_1007_s00530_024_01487_6
crossref_primary_10_1049_el_2014_3691
crossref_primary_10_1016_j_neucom_2015_02_102
crossref_primary_10_1186_s12938_018_0560_y
crossref_primary_10_1016_j_measurement_2014_12_007
crossref_primary_10_1007_s10916_019_1396_0
crossref_primary_10_1186_1687_6180_2013_97
crossref_primary_10_1016_j_neucom_2011_12_061
crossref_primary_10_1016_j_cogsys_2018_04_004
crossref_primary_10_1016_j_cogsys_2018_04_003
crossref_primary_10_1109_ACCESS_2020_3009321
crossref_primary_10_1155_2014_106490
crossref_primary_10_1080_09500340_2017_1366564
crossref_primary_10_1016_j_dsp_2015_12_011
crossref_primary_10_3390_technologies12020015
crossref_primary_10_1109_TIP_2020_3029443
crossref_primary_10_1134_S1061830917100035
crossref_primary_10_1080_21642583_2022_2057370
crossref_primary_10_1007_s10472_014_9413_y
crossref_primary_10_1007_s11042_018_5952_2
crossref_primary_10_1016_j_neucom_2023_126895
crossref_primary_10_1109_TIP_2014_2378052
crossref_primary_10_1049_ipr2_12115
crossref_primary_10_1049_ipr2_12116
crossref_primary_10_1007_s00138_020_01134_w
crossref_primary_10_1016_j_ins_2017_06_042
crossref_primary_10_1016_j_neucom_2015_03_048
crossref_primary_10_1016_j_patcog_2015_03_001
crossref_primary_10_1016_j_neucom_2013_06_014
crossref_primary_10_1186_s12938_016_0129_6
crossref_primary_10_1155_2022_1754291
crossref_primary_10_1016_j_cogsys_2020_09_004
crossref_primary_10_1016_j_cogsys_2020_09_001
crossref_primary_10_1007_s11045_020_00704_5
crossref_primary_10_1155_2020_7595174
crossref_primary_10_1007_s11042_023_15073_x
crossref_primary_10_1016_j_ins_2022_03_035
crossref_primary_10_1016_j_neucom_2019_07_115
crossref_primary_10_1016_j_cma_2016_06_009
crossref_primary_10_1016_j_bspc_2016_11_019
crossref_primary_10_1016_j_neucom_2014_02_077
crossref_primary_10_1155_2016_9063065
crossref_primary_10_3390_axioms12040330
crossref_primary_10_1016_j_camwa_2022_05_034
crossref_primary_10_1016_j_compmedimag_2021_101871
crossref_primary_10_1108_EC_01_2024_0083
crossref_primary_10_1016_j_neucom_2018_09_090
crossref_primary_10_1108_CW_03_2019_0028
crossref_primary_10_1109_TVLSI_2021_3082476
crossref_primary_10_3390_jmmp9030102
crossref_primary_10_1016_j_cogsys_2022_03_001
crossref_primary_10_1016_j_sigpro_2015_05_009
crossref_primary_10_1016_j_patcog_2017_07_002
crossref_primary_10_1016_S1874_1029_13_60003_8
crossref_primary_10_1155_2014_840305
crossref_primary_10_1016_j_cogsys_2018_05_003
crossref_primary_10_1016_j_sigpro_2013_03_035
crossref_primary_10_1038_s41598_017_03554_7
crossref_primary_10_1016_j_apm_2017_10_018
crossref_primary_10_1007_s00521_024_10936_2
crossref_primary_10_1007_s11042_017_5427_x
crossref_primary_10_1016_j_compbiomed_2020_103930
crossref_primary_10_1016_j_patcog_2023_110028
crossref_primary_10_1016_j_neucom_2016_10_038
crossref_primary_10_1080_21642583_2022_2092782
crossref_primary_10_1155_2015_349874
crossref_primary_10_1117_1_JEI_33_3_033033
crossref_primary_10_1016_j_neucom_2016_05_084
crossref_primary_10_1007_s11517_023_02842_x
crossref_primary_10_1038_s41598_022_19893_z
crossref_primary_10_1007_s00138_016_0805_3
crossref_primary_10_1007_s11042_018_6735_5
crossref_primary_10_1016_j_phro_2018_02_003
crossref_primary_10_1016_j_compag_2018_04_004
crossref_primary_10_1016_j_patcog_2019_04_019
crossref_primary_10_1016_j_neucom_2019_08_110
crossref_primary_10_1117_1_OE_51_3_037006
crossref_primary_10_1016_j_neucom_2014_01_079
crossref_primary_10_1049_joe_2018_8318
crossref_primary_10_1007_s11265_018_1433_0
crossref_primary_10_1016_j_eswa_2024_123961
crossref_primary_10_1049_iet_ipr_2018_5987
crossref_primary_10_1016_j_imavis_2013_08_003
crossref_primary_10_1016_j_amc_2023_128050
crossref_primary_10_1016_j_neucom_2016_04_067
crossref_primary_10_1186_1687_2770_2014_11
crossref_primary_10_1117_1_JEI_25_5_053020
crossref_primary_10_1016_j_neucom_2024_127625
crossref_primary_10_1186_s12938_016_0153_6
crossref_primary_10_1049_joe_2018_8320
crossref_primary_10_1016_j_neucom_2016_04_068
crossref_primary_10_1016_j_mri_2019_05_009
crossref_primary_10_1016_j_neucom_2019_08_109
crossref_primary_10_1007_s10278_011_9405_y
crossref_primary_10_1109_TAC_2016_2628158
crossref_primary_10_1002_ima_22195
crossref_primary_10_1016_j_patcog_2023_110112
crossref_primary_10_1109_LSP_2015_2454991
crossref_primary_10_1016_j_neucom_2022_10_047
crossref_primary_10_1016_j_patcog_2014_10_018
crossref_primary_10_1016_j_infrared_2019_103174
crossref_primary_10_1016_j_optlaseng_2014_09_005
crossref_primary_10_1016_j_knosys_2024_111972
crossref_primary_10_1007_s42979_020_00278_w
crossref_primary_10_1016_j_neucom_2024_127990
crossref_primary_10_1016_j_neucom_2018_01_091
crossref_primary_10_1016_j_neunet_2020_09_017
crossref_primary_10_1016_j_neucom_2018_01_092
crossref_primary_10_1016_j_neucom_2018_01_093
crossref_primary_10_1117_1_JEI_27_2_023018
crossref_primary_10_1007_s10044_019_00824_0
crossref_primary_10_1016_j_jenvman_2025_124836
crossref_primary_10_1109_ACCESS_2021_3111957
crossref_primary_10_1109_TIP_2020_2997331
crossref_primary_10_1007_s11265_017_1257_3
crossref_primary_10_3389_fphy_2022_1021950
crossref_primary_10_1007_s11042_021_11783_2
crossref_primary_10_1109_TIP_2017_2682980
crossref_primary_10_1049_ipr2_12891
crossref_primary_10_1016_j_cmpb_2022_107106
crossref_primary_10_1016_j_ijleo_2017_05_029
crossref_primary_10_1049_iet_ipr_2018_5796
crossref_primary_10_1007_s00530_013_0351_z
crossref_primary_10_1016_j_media_2017_06_006
crossref_primary_10_1016_j_imavis_2024_105192
crossref_primary_10_1080_03772063_2019_1615007
crossref_primary_10_1016_j_neucom_2019_09_113
crossref_primary_10_32604_iasc_2021_017616
crossref_primary_10_1002_cpe_3053
crossref_primary_10_1016_j_cogsys_2019_09_008
crossref_primary_10_1109_TIP_2021_3127848
crossref_primary_10_1016_j_ijleo_2018_01_004
crossref_primary_10_1371_journal_pone_0255948
crossref_primary_10_1016_j_bspc_2021_102560
crossref_primary_10_1007_s10489_018_1243_x
crossref_primary_10_1016_j_patcog_2011_11_019
crossref_primary_10_1109_ACCESS_2019_2932081
crossref_primary_10_32604_cmes_2023_030915
crossref_primary_10_1137_20M1310618
crossref_primary_10_1016_j_neucom_2014_07_052
crossref_primary_10_1109_JSEN_2020_3013649
crossref_primary_10_1109_TIM_2020_3001796
crossref_primary_10_1016_j_mcm_2011_11_014
crossref_primary_10_1109_TPAMI_2013_106
crossref_primary_10_1155_2015_871602
crossref_primary_10_1007_s10044_018_0717_0
crossref_primary_10_1080_21642583_2022_2084650
crossref_primary_10_1021_acsnano_7b07093
crossref_primary_10_1142_S0218001419540089
crossref_primary_10_1186_s13662_018_1669_9
crossref_primary_10_4304_jsw_8_1_228_235
crossref_primary_10_1021_acs_jpcc_1c08712
crossref_primary_10_1016_j_compbiomed_2025_109760
crossref_primary_10_1016_j_ins_2020_08_078
crossref_primary_10_1016_j_apm_2018_08_009
crossref_primary_10_1016_j_neucom_2018_02_093
crossref_primary_10_1016_j_neucom_2018_02_094
crossref_primary_10_1016_j_neucom_2022_01_005
crossref_primary_10_1016_j_ijleo_2017_05_031
crossref_primary_10_1016_j_neunet_2017_01_001
crossref_primary_10_1371_journal_pone_0174813
crossref_primary_10_1109_LGRS_2013_2278342
crossref_primary_10_1109_TCYB_2015_2446755
crossref_primary_10_1109_ACCESS_2020_3016746
crossref_primary_10_1016_j_compbiomed_2012_01_005
crossref_primary_10_1049_iet_ipr_2018_5230
crossref_primary_10_1109_ACCESS_2021_3122535
crossref_primary_10_1364_JOSAA_32_000463
crossref_primary_10_1016_j_cogsys_2018_01_003
crossref_primary_10_1016_j_neucom_2013_04_051
crossref_primary_10_1016_j_neucom_2020_08_085
crossref_primary_10_1016_j_neucom_2020_08_083
crossref_primary_10_1299_jamdsm_2016jamdsm0100
crossref_primary_10_1117_1_3593159
crossref_primary_10_52280_pujm_2021_530603
crossref_primary_10_1109_ACCESS_2016_2590440
crossref_primary_10_3934_ipi_2022014
crossref_primary_10_1142_S021800141255004X
crossref_primary_10_1016_j_neucom_2018_03_073
crossref_primary_10_1016_j_infrared_2015_12_003
crossref_primary_10_1016_j_bspc_2021_102790
crossref_primary_10_1142_S1793524513500216
crossref_primary_10_1016_j_bspc_2023_105344
crossref_primary_10_1109_ACCESS_2021_3049513
crossref_primary_10_1007_s13173_013_0102_1
crossref_primary_10_1007_s42835_018_00030_8
crossref_primary_10_1007_s10851_011_0269_z
crossref_primary_10_1016_j_cag_2013_11_004
crossref_primary_10_1016_j_pbiomolbio_2021_06_005
crossref_primary_10_1007_s11042_018_6550_z
crossref_primary_10_1108_DTA_03_2021_0075
crossref_primary_10_1016_j_jvcir_2016_10_011
crossref_primary_10_1016_j_neucom_2021_08_157
crossref_primary_10_1016_j_neucom_2021_08_154
crossref_primary_10_1016_j_neucom_2021_08_159
crossref_primary_10_1016_j_nonrwa_2011_09_002
crossref_primary_10_1016_j_neucom_2020_06_140
crossref_primary_10_1016_j_neucom_2021_08_152
crossref_primary_10_1080_00207160_2015_1079625
crossref_primary_10_1137_11085863X
crossref_primary_10_1016_j_neucom_2022_09_004
crossref_primary_10_1016_j_camwa_2013_03_021
crossref_primary_10_1016_j_neucom_2013_05_065
crossref_primary_10_1049_iet_ipr_2017_0136
crossref_primary_10_4012_dmj_2023_008
crossref_primary_10_1007_s00500_020_04878_9
crossref_primary_10_1016_j_amc_2012_09_038
crossref_primary_10_1049_iet_ipr_2016_0648
crossref_primary_10_1016_j_neucom_2014_10_113
crossref_primary_10_1007_s10043_016_0190_1
crossref_primary_10_1016_j_neucom_2014_10_112
crossref_primary_10_1016_j_neucom_2022_07_004
crossref_primary_10_1371_journal_pone_0120399
crossref_primary_10_1016_j_neucom_2014_10_110
crossref_primary_10_1016_j_neucom_2016_09_076
crossref_primary_10_1007_s11042_016_3603_z
crossref_primary_10_1016_j_neucom_2016_09_079
crossref_primary_10_1016_j_patcog_2013_11_014
crossref_primary_10_1016_j_patcog_2018_05_008
crossref_primary_10_1142_S0218001421540252
crossref_primary_10_1371_journal_pone_0120018
crossref_primary_10_1016_j_neucom_2014_10_108
crossref_primary_10_1016_j_neucom_2020_10_004
crossref_primary_10_1016_j_neucom_2014_10_109
crossref_primary_10_1145_3373358
crossref_primary_10_1016_j_neucom_2014_10_107
crossref_primary_10_1016_j_neucom_2021_09_080
crossref_primary_10_1142_S0218001420540269
crossref_primary_10_1016_j_neucom_2016_09_087
crossref_primary_10_1007_s11517_019_02085_9
crossref_primary_10_1109_TIP_2018_2848471
crossref_primary_10_1007_s11042_018_5685_2
crossref_primary_10_1016_j_neucom_2018_10_060
crossref_primary_10_1016_j_jvcir_2019_01_001
crossref_primary_10_3233_JIFS_17466
crossref_primary_10_3390_app8122576
crossref_primary_10_1016_j_patcog_2021_108158
crossref_primary_10_1016_j_neucom_2020_10_114
crossref_primary_10_1155_2014_145343
crossref_primary_10_1016_j_patcog_2016_01_021
crossref_primary_10_1016_j_patcog_2014_07_008
crossref_primary_10_1088_1361_6560_ab553d
crossref_primary_10_48084_etasr_2866
crossref_primary_10_4018_IJITSA_316935
crossref_primary_10_2139_ssrn_3998903
crossref_primary_10_1007_s11042_021_11718_x
crossref_primary_10_1016_j_neucom_2018_04_085
crossref_primary_10_3390_math10020206
crossref_primary_10_1007_s11554_021_01172_1
crossref_primary_10_1016_j_neucom_2014_06_082
crossref_primary_10_1016_j_cogsys_2020_10_002
crossref_primary_10_1080_09500340_2019_1567840
crossref_primary_10_1016_j_patcog_2011_02_022
crossref_primary_10_1080_21642583_2022_2063201
Cites_doi 10.1109/TBME.2007.896587
10.1007/BF00133570
10.1006/jcph.1995.1098
10.1023/A:1007979827043
10.1109/ICPR.2006.713
10.1007/978-3-540-72823-8_18
10.1109/TIP.2008.2004611
10.1002/cpa.3160420503
10.1137/S1064827596298245
10.1017/S0962492904000273
10.1117/12.709700
10.1109/TMI.2006.891486
10.1109/83.902291
10.1023/A:1020874308076
10.1016/j.imavis.2005.09.010
10.1023/A:1014080923068
10.1109/34.85668
10.1137/S0036139902408928
10.1109/TIP.2007.898969
10.1109/MMSP.2006.285328
10.1006/jvci.1999.0439
10.1109/34.368173
10.1016/0021-9991(88)90002-2
10.1007/978-3-540-72823-8_61
10.1109/TIP.2005.852200
10.1109/83.935033
10.1109/ICAL.2007.4338597
10.1155/IJBI/2006/49515
10.1007/BF01385685
10.1016/j.imavis.2006.12.013
10.1007/978-3-540-24673-2_25
10.1109/TITB.2006.890018
ContentType Journal Article
Copyright 2009 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2009 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.patcog.2009.08.002
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1873-5142
EndPage 618
ExternalDocumentID 22281038
10_1016_j_patcog_2009_08_002
S0031320309002982
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
ID FETCH-LOGICAL-c402t-4787b64b86c48562412887235fc0cedb61787db1c16bf328ed3af3e027f002d33
IEDL.DBID AIKHN
ISSN 0031-3203
IngestDate Mon Jul 21 09:15:10 EDT 2025
Thu Apr 24 23:12:16 EDT 2025
Tue Jul 01 02:36:08 EDT 2025
Fri Feb 23 02:33:58 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Local Chan–Vese model
Image segmentation
Intensity inhomogeneity
Extended structure tensor
Level set method
Performance evaluation
Local Chan-Vese model
Texture analysis
Image processing
Transmission protocol
Iterative method
Texture
Heterogeneity
Routing protocols
Robustness
Localization
Content analysis
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-4787b64b86c48562412887235fc0cedb61787db1c16bf328ed3af3e027f002d33
PageCount 16
ParticipantIDs pascalfrancis_primary_22281038
crossref_primary_10_1016_j_patcog_2009_08_002
crossref_citationtrail_10_1016_j_patcog_2009_08_002
elsevier_sciencedirect_doi_10_1016_j_patcog_2009_08_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-03-01
PublicationDateYYYYMMDD 2010-03-01
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Pattern recognition
PublicationYear 2010
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Caselles, Catte, Coll, Dibos (bib6) 1993; 66
Adalsteinsson, Sethian (bib41) 1995; 118
Vese, Chan (bib14) 2002; 50
Lankton, Tannenbaum (bib26) 2008; 17
Sum, Cheung (bib21) 2008; 55
An, Rousson, Xu (bib24) 2007; 4792
Gao, Bui (bib13) 2005; 14
S.M. Lee, A.L. Abott, N.A. Clark, P.A. Araman, Active contours on statistical manifolds and texture segmentation, in: Proceedings of the IEEE International Conference on Image Processing (ICIP), vol. 3, 2005, pp. 828–831.
Y. Shi, W. Karl, A fast level set method without solving PDES, in: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’05), vol. 2, 2005, pp. 97–100.
Mumford, Shah (bib9) 1989; 42
Piovano, Rousson, Papadopoulo (bib23) 2007; 4485
Kass, Witkin, Terzopoulos (bib2) 1987; 1
Paragios, Deriche (bib12) 2002; 46
S. Lankton, D. Nain, A. Yezzi, . Tannenbaum, Hybrid geodesic region-based curve evolutions for image segmentation, in: Proceedings of the SPIE: Medical Imagining, vol. 6510, 2007, pp. 65104U.
Gomes, Faugeras (bib40) 2000; 1
Y. Pan, J.D. Birdwell, S.M. Djouadi, Efficient implementation of the Chan–Vese models without solving PDEs, in: Proceedings of the International Workshop On Multimedia Signal Processing, 2006, pp. 350–354.
R.B. Xia, W.J. Liu, J.B. Zhao, L. Li, An optimal initialization technique for improving the segmentation performance of Chan–Vese model, in: Proceedings of the IEEE International Conference on Automation and Logistics, 2007, pp. 411–415.
Brox, Cremers (bib22) 2007; 4485
M. Rousson, T. Brox, R. Deriche, Active unsupervised texture segmentation on a diffusion based feature space, in: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03), vol. 2, 2003, pp. 699-7-4.
Osher, Sethian (bib3) 1988; 79
B. Sandberg, T. Chan, L. Vese, A level-set and gabor-based active contour algorithm for segmenting textured images, Technical Report 39, Mathematical Department, UCLA, Los Angeles, USA, July 2002.
J.E. Solem, N.C. Overgaard, A. Heyden, Initialization techniques for segmentation with the Chan–Vese model, in: Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), vol. 2, 2006, pp. 171–174.
Pi, Shen, Li, Fan (bib20) 2007; 25
Chan, Vese (bib10) 2001; 10
C.M. Li, C.Y. Kao, J.C. Gore, Z.H. Ding, Implicit active contours driven by local binary fitting energy, in: Proceedings of the CVPR’07, 2007, pp. 1–7.
Z. Wang, B. Vemuri, Tensor field segmentation using region based active contour model, in: Proceedings of the Eighth European Conference on Computer Vision (ECCV’04), Springer Lecture Notes in Computer Science, vol. 3024, 2004, pp. 304–315.
Sussman, Fatemi (bib39) 1999; 20
G. Aubert, M. Barlaud, O. Faugeras, S. Jehan-Besson, Image segmentation using active contours: calculus of variations of shape gradients, Research Report, INRIA, July 2002.
Brox, Weickert, Burgeth, Mrázek (bib43) 2006; 24
Vovk, Pernuš, Likar (bib37) 2007; 26
Y.H. Tsai, S. Osher, Total variation and level set based methods in image science, Acta Numer. (2005) 1–61.
Tsai, Yezzi, Willsky (bib11) 2001; 10
Gelas, Bernard, Friboulet, Prost (bib4) 2007; 16
C. Feddern, J. Weickert, B. Burgeth, Level-set methods for tensor-valued images, in: Proceedings of the Second IEEE Workshop on Variational, Geometric and Level Set Methods in Computer Vision, 2003, pp. 65–72.
Caselles, Kimmel, Sapiro (bib7) 1997; 22
Sethian (bib42) 1999
Hou (bib38) 2006; 2006
Maroulis, Savelonas, Iakovidis, Karkanis, Dimitropoulos (bib36) 2007; 11
C.M. Li, C.Y. Xu, C.F. Gui, M.D. Fox, Level set formulation without Re-initialization: a new variational formulation, in: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2005, vol. 1, 2005, pp. 430–436.
J. Bigun, G.H. Grandlund, Optimal orientation detection of linear symmetry, in: Proceedings of the IEEE First International Conference on Computer Vision (ICCV), 1987, pp. 433–438.
Malladi, Sethian, Vemuri (bib8) 1995; 17
Bigun, Grandlund, Wiklund (bib32) 1991; 13
Linda, George (bib1) 2001
Chan (10.1016/j.patcog.2009.08.002_bib10) 2001; 10
Caselles (10.1016/j.patcog.2009.08.002_bib6) 1993; 66
Sussman (10.1016/j.patcog.2009.08.002_bib39) 1999; 20
Sum (10.1016/j.patcog.2009.08.002_bib21) 2008; 55
Lankton (10.1016/j.patcog.2009.08.002_bib26) 2008; 17
Paragios (10.1016/j.patcog.2009.08.002_bib12) 2002; 46
10.1016/j.patcog.2009.08.002_bib31
10.1016/j.patcog.2009.08.002_bib30
10.1016/j.patcog.2009.08.002_bib33
Vovk (10.1016/j.patcog.2009.08.002_bib37) 2007; 26
10.1016/j.patcog.2009.08.002_bib35
10.1016/j.patcog.2009.08.002_bib34
10.1016/j.patcog.2009.08.002_bib15
Mumford (10.1016/j.patcog.2009.08.002_bib9) 1989; 42
10.1016/j.patcog.2009.08.002_bib17
Kass (10.1016/j.patcog.2009.08.002_bib2) 1987; 1
10.1016/j.patcog.2009.08.002_bib16
10.1016/j.patcog.2009.08.002_bib29
Pi (10.1016/j.patcog.2009.08.002_bib20) 2007; 25
Gao (10.1016/j.patcog.2009.08.002_bib13) 2005; 14
Linda (10.1016/j.patcog.2009.08.002_bib1) 2001
10.1016/j.patcog.2009.08.002_bib5
Brox (10.1016/j.patcog.2009.08.002_bib43) 2006; 24
Tsai (10.1016/j.patcog.2009.08.002_bib11) 2001; 10
Gomes (10.1016/j.patcog.2009.08.002_bib40) 2000; 1
Brox (10.1016/j.patcog.2009.08.002_bib22) 2007; 4485
Vese (10.1016/j.patcog.2009.08.002_bib14) 2002; 50
Hou (10.1016/j.patcog.2009.08.002_bib38) 2006; 2006
Caselles (10.1016/j.patcog.2009.08.002_bib7) 1997; 22
Sethian (10.1016/j.patcog.2009.08.002_bib42) 1999
10.1016/j.patcog.2009.08.002_bib25
10.1016/j.patcog.2009.08.002_bib28
Gelas (10.1016/j.patcog.2009.08.002_bib4) 2007; 16
10.1016/j.patcog.2009.08.002_bib27
Osher (10.1016/j.patcog.2009.08.002_bib3) 1988; 79
10.1016/j.patcog.2009.08.002_bib19
An (10.1016/j.patcog.2009.08.002_bib24) 2007; 4792
10.1016/j.patcog.2009.08.002_bib18
Bigun (10.1016/j.patcog.2009.08.002_bib32) 1991; 13
Adalsteinsson (10.1016/j.patcog.2009.08.002_bib41) 1995; 118
Malladi (10.1016/j.patcog.2009.08.002_bib8) 1995; 17
Piovano (10.1016/j.patcog.2009.08.002_bib23) 2007; 4485
Maroulis (10.1016/j.patcog.2009.08.002_bib36) 2007; 11
References_xml – volume: 22
  start-page: 61
  year: 1997
  end-page: 79
  ident: bib7
  article-title: Geodesic active contours
  publication-title: Int. J. Comput. Vision
– volume: 42
  start-page: 577
  year: 1989
  end-page: 685
  ident: bib9
  article-title: Optimal approximation by piecewise smooth functions and associated variational problems
  publication-title: Commun. Pure Appl. Math.
– volume: 17
  start-page: 2029
  year: 2008
  end-page: 2039
  ident: bib26
  article-title: Localizing region-based active contours
  publication-title: IEEE Trans. Image Process.
– volume: 10
  start-page: 1169
  year: 2001
  end-page: 1186
  ident: bib11
  article-title: Curve evolution implementation of the Mumford–Shah functional for image segmentation, denoising, interpolation, and magnification
  publication-title: IEEE Trans. Image Process.
– volume: 20
  start-page: 1165
  year: 1999
  end-page: 1191
  ident: bib39
  article-title: An efficient, interface preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow
  publication-title: SIAM J. Sci. Comput.
– reference: R.B. Xia, W.J. Liu, J.B. Zhao, L. Li, An optimal initialization technique for improving the segmentation performance of Chan–Vese model, in: Proceedings of the IEEE International Conference on Automation and Logistics, 2007, pp. 411–415.
– year: 1999
  ident: bib42
  article-title: Level Set Methods and Fast Marching Methods
– volume: 79
  start-page: 12
  year: 1988
  end-page: 49
  ident: bib3
  article-title: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations
  publication-title: J. Comput. Phys.
– reference: J. Bigun, G.H. Grandlund, Optimal orientation detection of linear symmetry, in: Proceedings of the IEEE First International Conference on Computer Vision (ICCV), 1987, pp. 433–438.
– reference: Z. Wang, B. Vemuri, Tensor field segmentation using region based active contour model, in: Proceedings of the Eighth European Conference on Computer Vision (ECCV’04), Springer Lecture Notes in Computer Science, vol. 3024, 2004, pp. 304–315.
– reference: M. Rousson, T. Brox, R. Deriche, Active unsupervised texture segmentation on a diffusion based feature space, in: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03), vol. 2, 2003, pp. 699-7-4.
– volume: 26
  start-page: 405
  year: 2007
  end-page: 421
  ident: bib37
  article-title: A review of methods for correction of intensity inhomogeneity in MRI
  publication-title: IEEE Trans. Med. Imaging
– reference: J.E. Solem, N.C. Overgaard, A. Heyden, Initialization techniques for segmentation with the Chan–Vese model, in: Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), vol. 2, 2006, pp. 171–174.
– volume: 24
  start-page: 41
  year: 2006
  end-page: 55
  ident: bib43
  article-title: Nonlinear structure tensors
  publication-title: Image Vis. Comput.
– volume: 17
  start-page: 158
  year: 1995
  end-page: 175
  ident: bib8
  article-title: Shape modeling with front propagation: a level set approach
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: S.M. Lee, A.L. Abott, N.A. Clark, P.A. Araman, Active contours on statistical manifolds and texture segmentation, in: Proceedings of the IEEE International Conference on Image Processing (ICIP), vol. 3, 2005, pp. 828–831.
– volume: 14
  start-page: 1537
  year: 2005
  end-page: 1549
  ident: bib13
  article-title: Image segmentation and selective smoothing by using Mumford–Shah model
  publication-title: IEEE Trans. Image Process.
– volume: 10
  start-page: 266
  year: 2001
  end-page: 277
  ident: bib10
  article-title: Active contours without edges
  publication-title: IEEE Trans. Image Process.
– volume: 13
  start-page: 775
  year: 1991
  end-page: 790
  ident: bib32
  article-title: Multidimensional orientation estimation with applications to texture analysis and optical flow
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 1
  start-page: 321
  year: 1987
  end-page: 331
  ident: bib2
  article-title: Snakes: active contour models
  publication-title: Int. J. Comput. Vision
– volume: 4792
  start-page: 495
  year: 2007
  end-page: 502
  ident: bib24
  publication-title: Proc. Med. Imag. Comput. Comp. Assist. Interven.
– reference: Y.H. Tsai, S. Osher, Total variation and level set based methods in image science, Acta Numer. (2005) 1–61.
– reference: S. Lankton, D. Nain, A. Yezzi, . Tannenbaum, Hybrid geodesic region-based curve evolutions for image segmentation, in: Proceedings of the SPIE: Medical Imagining, vol. 6510, 2007, pp. 65104U.
– volume: 1
  start-page: 209
  year: 2000
  end-page: 222
  ident: bib40
  article-title: Reconciling distance functions and level sets
  publication-title: J. Visual Commun. Imaging Representation
– volume: 118
  start-page: 269
  year: 1995
  end-page: 277
  ident: bib41
  article-title: A fast level set method for propagating interface
  publication-title: J. Comput. Phys.
– volume: 46
  start-page: 223
  year: 2002
  end-page: 247
  ident: bib12
  article-title: Geodesic active regions and level set methods for supervised texture segmentation
  publication-title: Int. J. Comput. Vision
– volume: 4485
  start-page: 709
  year: 2007
  end-page: 720
  ident: bib23
  article-title: Efficient segmentation of piecewise smooth images
  publication-title: Proc. Scale Space Var. Met. Comput. Vision
– volume: 66
  start-page: 1
  year: 1993
  end-page: 31
  ident: bib6
  article-title: A geometric model for active contours in image processing
  publication-title: Numer. Math.
– reference: C.M. Li, C.Y. Xu, C.F. Gui, M.D. Fox, Level set formulation without Re-initialization: a new variational formulation, in: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2005, vol. 1, 2005, pp. 430–436.
– volume: 55
  start-page: 358
  year: 2008
  end-page: 360
  ident: bib21
  article-title: Vessel extraction under non-uniform illumination: a level set approach
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 16
  start-page: 1873
  year: 2007
  end-page: 1887
  ident: bib4
  article-title: Compactly supported radial basis functions based collocation method for level-set evolution in image segmentation
  publication-title: IEEE Trans. Image Process.
– reference: B. Sandberg, T. Chan, L. Vese, A level-set and gabor-based active contour algorithm for segmenting textured images, Technical Report 39, Mathematical Department, UCLA, Los Angeles, USA, July 2002.
– reference: C. Feddern, J. Weickert, B. Burgeth, Level-set methods for tensor-valued images, in: Proceedings of the Second IEEE Workshop on Variational, Geometric and Level Set Methods in Computer Vision, 2003, pp. 65–72.
– volume: 50
  start-page: 271
  year: 2002
  end-page: 293
  ident: bib14
  article-title: A multiphase level set framework for image segmentation using the Mumford and Shah model
  publication-title: Int. J. Comput. Vision
– volume: 11
  start-page: 537
  year: 2007
  end-page: 543
  ident: bib36
  article-title: Variable background active contour model for computer-aided delineation of nodules in thyroid ultrasound images
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– reference: Y. Shi, W. Karl, A fast level set method without solving PDES, in: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’05), vol. 2, 2005, pp. 97–100.
– reference: C.M. Li, C.Y. Kao, J.C. Gore, Z.H. Ding, Implicit active contours driven by local binary fitting energy, in: Proceedings of the CVPR’07, 2007, pp. 1–7.
– volume: 25
  start-page: 1414
  year: 2007
  end-page: 1421
  ident: bib20
  article-title: A variational formulation for segmenting desired objects in color images
  publication-title: Image Vision Comput.
– volume: 4485
  start-page: 203
  year: 2007
  end-page: 213
  ident: bib22
  article-title: On the statistical interpretation of the piecewise smooth Mumford–Shah functional
  publication-title: Proc. Scale Space Var. Met. Comput. Vision
– reference: G. Aubert, M. Barlaud, O. Faugeras, S. Jehan-Besson, Image segmentation using active contours: calculus of variations of shape gradients, Research Report, INRIA, July 2002.
– reference: Y. Pan, J.D. Birdwell, S.M. Djouadi, Efficient implementation of the Chan–Vese models without solving PDEs, in: Proceedings of the International Workshop On Multimedia Signal Processing, 2006, pp. 350–354.
– year: 2001
  ident: bib1
  article-title: Computer Vision
– volume: 2006
  start-page: 1
  year: 2006
  end-page: 11
  ident: bib38
  article-title: A review on MR image intensity inhomogeneity correction
  publication-title: Int. J. Biomed. Imaging
– year: 1999
  ident: 10.1016/j.patcog.2009.08.002_bib42
– volume: 55
  start-page: 358
  issue: 1
  year: 2008
  ident: 10.1016/j.patcog.2009.08.002_bib21
  article-title: Vessel extraction under non-uniform illumination: a level set approach
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.896587
– volume: 1
  start-page: 321
  issue: 4
  year: 1987
  ident: 10.1016/j.patcog.2009.08.002_bib2
  article-title: Snakes: active contour models
  publication-title: Int. J. Comput. Vision
  doi: 10.1007/BF00133570
– volume: 118
  start-page: 269
  year: 1995
  ident: 10.1016/j.patcog.2009.08.002_bib41
  article-title: A fast level set method for propagating interface
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1098
– ident: 10.1016/j.patcog.2009.08.002_bib30
– volume: 22
  start-page: 61
  issue: 1
  year: 1997
  ident: 10.1016/j.patcog.2009.08.002_bib7
  article-title: Geodesic active contours
  publication-title: Int. J. Comput. Vision
  doi: 10.1023/A:1007979827043
– ident: 10.1016/j.patcog.2009.08.002_bib15
  doi: 10.1109/ICPR.2006.713
– volume: 4485
  start-page: 203
  year: 2007
  ident: 10.1016/j.patcog.2009.08.002_bib22
  article-title: On the statistical interpretation of the piecewise smooth Mumford–Shah functional
  publication-title: Proc. Scale Space Var. Met. Comput. Vision
  doi: 10.1007/978-3-540-72823-8_18
– volume: 4792
  start-page: 495
  year: 2007
  ident: 10.1016/j.patcog.2009.08.002_bib24
  article-title: γ-Convergence approximation to piecewise smooth medical image segmentation
  publication-title: Proc. Med. Imag. Comput. Comp. Assist. Interven.
– volume: 17
  start-page: 2029
  issue: 11
  year: 2008
  ident: 10.1016/j.patcog.2009.08.002_bib26
  article-title: Localizing region-based active contours
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2008.2004611
– volume: 42
  start-page: 577
  year: 1989
  ident: 10.1016/j.patcog.2009.08.002_bib9
  article-title: Optimal approximation by piecewise smooth functions and associated variational problems
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160420503
– volume: 20
  start-page: 1165
  year: 1999
  ident: 10.1016/j.patcog.2009.08.002_bib39
  article-title: An efficient, interface preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827596298245
– ident: 10.1016/j.patcog.2009.08.002_bib5
  doi: 10.1017/S0962492904000273
– ident: 10.1016/j.patcog.2009.08.002_bib25
  doi: 10.1117/12.709700
– year: 2001
  ident: 10.1016/j.patcog.2009.08.002_bib1
– volume: 26
  start-page: 405
  issue: 3
  year: 2007
  ident: 10.1016/j.patcog.2009.08.002_bib37
  article-title: A review of methods for correction of intensity inhomogeneity in MRI
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.891486
– volume: 10
  start-page: 266
  issue: 2
  year: 2001
  ident: 10.1016/j.patcog.2009.08.002_bib10
  article-title: Active contours without edges
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.902291
– volume: 50
  start-page: 271
  issue: 3
  year: 2002
  ident: 10.1016/j.patcog.2009.08.002_bib14
  article-title: A multiphase level set framework for image segmentation using the Mumford and Shah model
  publication-title: Int. J. Comput. Vision
  doi: 10.1023/A:1020874308076
– volume: 24
  start-page: 41
  issue: 1
  year: 2006
  ident: 10.1016/j.patcog.2009.08.002_bib43
  article-title: Nonlinear structure tensors
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2005.09.010
– volume: 46
  start-page: 223
  issue: 3
  year: 2002
  ident: 10.1016/j.patcog.2009.08.002_bib12
  article-title: Geodesic active regions and level set methods for supervised texture segmentation
  publication-title: Int. J. Comput. Vision
  doi: 10.1023/A:1014080923068
– volume: 13
  start-page: 775
  issue: 8
  year: 1991
  ident: 10.1016/j.patcog.2009.08.002_bib32
  article-title: Multidimensional orientation estimation with applications to texture analysis and optical flow
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.85668
– ident: 10.1016/j.patcog.2009.08.002_bib28
  doi: 10.1137/S0036139902408928
– volume: 16
  start-page: 1873
  issue: 7
  year: 2007
  ident: 10.1016/j.patcog.2009.08.002_bib4
  article-title: Compactly supported radial basis functions based collocation method for level-set evolution in image segmentation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.898969
– ident: 10.1016/j.patcog.2009.08.002_bib18
  doi: 10.1109/MMSP.2006.285328
– volume: 1
  start-page: 209
  issue: 11
  year: 2000
  ident: 10.1016/j.patcog.2009.08.002_bib40
  article-title: Reconciling distance functions and level sets
  publication-title: J. Visual Commun. Imaging Representation
  doi: 10.1006/jvci.1999.0439
– ident: 10.1016/j.patcog.2009.08.002_bib33
– ident: 10.1016/j.patcog.2009.08.002_bib31
– ident: 10.1016/j.patcog.2009.08.002_bib17
– ident: 10.1016/j.patcog.2009.08.002_bib35
– volume: 17
  start-page: 158
  issue: 2
  year: 1995
  ident: 10.1016/j.patcog.2009.08.002_bib8
  article-title: Shape modeling with front propagation: a level set approach
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.368173
– volume: 79
  start-page: 12
  issue: 1
  year: 1988
  ident: 10.1016/j.patcog.2009.08.002_bib3
  article-title: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(88)90002-2
– volume: 4485
  start-page: 709
  year: 2007
  ident: 10.1016/j.patcog.2009.08.002_bib23
  article-title: Efficient segmentation of piecewise smooth images
  publication-title: Proc. Scale Space Var. Met. Comput. Vision
  doi: 10.1007/978-3-540-72823-8_61
– ident: 10.1016/j.patcog.2009.08.002_bib19
– volume: 14
  start-page: 1537
  issue: 10
  year: 2005
  ident: 10.1016/j.patcog.2009.08.002_bib13
  article-title: Image segmentation and selective smoothing by using Mumford–Shah model
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2005.852200
– volume: 10
  start-page: 1169
  issue: 8
  year: 2001
  ident: 10.1016/j.patcog.2009.08.002_bib11
  article-title: Curve evolution implementation of the Mumford–Shah functional for image segmentation, denoising, interpolation, and magnification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.935033
– ident: 10.1016/j.patcog.2009.08.002_bib16
  doi: 10.1109/ICAL.2007.4338597
– volume: 2006
  start-page: 1
  year: 2006
  ident: 10.1016/j.patcog.2009.08.002_bib38
  article-title: A review on MR image intensity inhomogeneity correction
  publication-title: Int. J. Biomed. Imaging
  doi: 10.1155/IJBI/2006/49515
– volume: 66
  start-page: 1
  issue: 1
  year: 1993
  ident: 10.1016/j.patcog.2009.08.002_bib6
  article-title: A geometric model for active contours in image processing
  publication-title: Numer. Math.
  doi: 10.1007/BF01385685
– volume: 25
  start-page: 1414
  issue: 9
  year: 2007
  ident: 10.1016/j.patcog.2009.08.002_bib20
  article-title: A variational formulation for segmenting desired objects in color images
  publication-title: Image Vision Comput.
  doi: 10.1016/j.imavis.2006.12.013
– ident: 10.1016/j.patcog.2009.08.002_bib34
  doi: 10.1007/978-3-540-24673-2_25
– volume: 11
  start-page: 537
  issue: 5
  year: 2007
  ident: 10.1016/j.patcog.2009.08.002_bib36
  article-title: Variable background active contour model for computer-aided delineation of nodules in thyroid ultrasound images
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2006.890018
– ident: 10.1016/j.patcog.2009.08.002_bib29
– ident: 10.1016/j.patcog.2009.08.002_bib27
SSID ssj0017142
Score 2.5144906
Snippet In this paper, a new local Chan–Vese (LCV) model is proposed for image segmentation, which is built based on the techniques of curve evolution, local...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 603
SubjectTerms Applied sciences
Exact sciences and technology
Extended structure tensor
Image processing
Image segmentation
Information, signal and communications theory
Intensity inhomogeneity
Level set method
Local Chan–Vese model
Signal processing
Telecommunications and information theory
Title An efficient local Chan–Vese model for image segmentation
URI https://dx.doi.org/10.1016/j.patcog.2009.08.002
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5zexHEuzgvIw--xq1NlrT4NIZjKu7Jyd5KkyZj4rri5qv4H_yH_hJP2rQ4EAa-lqaX0_Q75yTnfB9CV4rTJKRaEGWMJkwJTmQXwJAlkE1ARAFJtG0Ufhzx4ZjdT7qTGuqXvTC2rNJhf4HpOVq7I21nzXY2m9keX0s7aLcIch5xwOGGT0MOU7vRu3sYjqrNBOGxgjScesQOKDvo8jKvDBBvMXXElUG1vvKHh9rJ4iXYzRSCF7-80GAf7brwEfeKJzxANZ0eor1SmgG7P_UI3fRSrHN2CHAqOHdY2DYSfH9-PeulxrkADoaAFc_mgCh4qadz14WUHqPx4PapPyROJ4EoyP5WxPLrSM5kwBULIJ5h4HMC4dOuUR0wo7RdgCKRnvK4NNQPdEJjQzUkpAZeN6H0BNXTRapPERbcbqMqI4USLIjDGMIPo2jYicNOArlUE9HSNpFyJOJWy-I1KqvFXqLColbfMoysxGXHbyJSjcoKEo0N54vS7NHaZIgA5zeMbK19pep2dqHLcsGf_fvS52i7qByw9WcXqL56e9eXEJCsZAttXX94LTftfgDuLd7X
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcgAJsSPKUnzgGrrYjRNxqiqqAm1PLeotih27KqJpRMsV8Q_8IV_CTOJEVEKqxDWys0ziNzPOzHuE3CiXRT7TwlHGaIcr4TqyBWDII8gmIKKAJBobhQdDtzfmj5PWpEQ6eS8MllVa7M8wPUVre6RmrVlLZjPs8UXaQfxFkPKIAw5vcVi-uDpvP4o6DxT4zijDWcPB4Xn_XFrklQDeLaaWttIrdlf-8E-7SbgEq5lM7uKXD-oekD0bPNJ2dn-HpKTjI7KfCzNQu06PyV07pjrlhgCXQlN3RbGN4Pvz61kvNU3lbyiEq3Q2BzyhSz2d2x6k-ISMu_ejTs-xKgmOgtxv5SC7jnS59FzFPYhmOHgcTzRZy6g6GFFiD6CIZEM1XGlY09MRCw3TkI4aeNyIsVNSjhexPiNUuPgTVRkplOBe6IcQfBjF_Hro1yPIpCqE5bYJlKUQRyWL1yCvFXsJMouiuqUfoMBlvVkhTjErySg0NowXudmDtU8hAJTfMLO69paKy-E2FzLBn__71Ndkuzca9IP-w_DpguxkNQRYiXZJyqu3d30FoclKVtNP7we7lN-b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+local+Chan%E2%80%93Vese+model+for+image+segmentation&rft.jtitle=Pattern+recognition&rft.au=Wang%2C+Xiao-Feng&rft.au=Huang%2C+De-Shuang&rft.au=Xu%2C+Huan&rft.date=2010-03-01&rft.issn=0031-3203&rft.volume=43&rft.issue=3&rft.spage=603&rft.epage=618&rft_id=info:doi/10.1016%2Fj.patcog.2009.08.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2009_08_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon