An Approach to Emotion Recognition Using Brain Rhythm Sequencing and Asymmetric Features

Emotion can be influenced during self-isolation, and to avoid severe mood swings, emotional regulation is meaningful. To achieve this, efficiently recognizing emotion is a vital step, which can be realized by electroencephalography signals. Previously, inspired by the knowledge of sequencing in bioi...

Full description

Saved in:
Bibliographic Details
Published inCognitive computation Vol. 14; no. 6; pp. 2260 - 2273
Main Authors Li, Jia Wen, Chen, Rong Jun, Barma, Shovan, Chen, Fei, Pun, Sio Hang, Mak, Peng Un, Wang, Lei Jun, Zeng, Xian Xian, Ren, Jin Chang, Zhao, Hui Min
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Emotion can be influenced during self-isolation, and to avoid severe mood swings, emotional regulation is meaningful. To achieve this, efficiently recognizing emotion is a vital step, which can be realized by electroencephalography signals. Previously, inspired by the knowledge of sequencing in bioinformatics, a method termed brain rhythm sequencing that analyzes electroencephalography as the sequence consisting of the dominant rhythm has been proposed for seizure detection. In this work, with the help of similarity measure methods, the asymmetric features are extracted from the sequences generated by different channel data. After evaluating all asymmetric features for emotion recognition, the optimal feature that yields remarkable accuracy is identified. Therefore, the classification task can be accomplished through a small amount of channel data. From a music emotion recognition experiment and a public DEAP dataset, the classification accuracies of various test sets are approximately 80–85% when employing an optimal feature extracted from one pair of symmetrical channels. Such performances are impressive when using fewer resources is a concern. Further investigation revealed that emotion recognition shows strongly individual characteristics, so an appropriate solution is to include the subject-dependent properties. Compared to the existing works, this method benefits from the design of a portable emotion-aware device used during self-isolation, as fewer scalp sensors are needed. Hence, it would provide a novel way to realize emotional applications in the future.
AbstractList Emotion can be influenced during self-isolation, and to avoid severe mood swings, emotional regulation is meaningful. To achieve this, efficiently recognizing emotion is a vital step, which can be realized by electroencephalography signals. Previously, inspired by the knowledge of sequencing in bioinformatics, a method termed brain rhythm sequencing that analyzes electroencephalography as the sequence consisting of the dominant rhythm has been proposed for seizure detection. In this work, with the help of similarity measure methods, the asymmetric features are extracted from the sequences generated by different channel data. After evaluating all asymmetric features for emotion recognition, the optimal feature that yields remarkable accuracy is identified. Therefore, the classification task can be accomplished through a small amount of channel data. From a music emotion recognition experiment and a public DEAP dataset, the classification accuracies of various test sets are approximately 80–85% when employing an optimal feature extracted from one pair of symmetrical channels. Such performances are impressive when using fewer resources is a concern. Further investigation revealed that emotion recognition shows strongly individual characteristics, so an appropriate solution is to include the subject-dependent properties. Compared to the existing works, this method benefits from the design of a portable emotion-aware device used during self-isolation, as fewer scalp sensors are needed. Hence, it would provide a novel way to realize emotional applications in the future.
Emotion can be influenced during self-isolation, and to avoid severe mood swings, emotional regulation is meaningful. To achieve this, efficiently recognizing emotion is a vital step, which can be realized by electroencephalography signals. Previously, inspired by the knowledge of sequencing in bioinformatics, a method termed brain rhythm sequencing that analyzes electroencephalography as the sequence consisting of the dominant rhythm has been proposed for seizure detection. In this work, with the help of similarity measure methods, the asymmetric features are extracted from the sequences generated by different channel data. After evaluating all asymmetric features for emotion recognition, the optimal feature that yields remarkable accuracy is identified. Therefore, the classification task can be accomplished through a small amount of channel data. From a music emotion recognition experiment and a public DEAP dataset, the classification accuracies of various test sets are approximately 80-85% when employing an optimal feature extracted from one pair of symmetrical channels. Such performances are impressive when using fewer resources is a concern. Further investigation revealed that emotion recognition shows strongly individual characteristics, so an appropriate solution is to include the subject-dependent properties. Compared to the existing works, this method benefits from the design of a portable emotion-aware device used during self-isolation, as fewer scalp sensors are needed. Hence, it would provide a novel way to realize emotional applications in the future.Emotion can be influenced during self-isolation, and to avoid severe mood swings, emotional regulation is meaningful. To achieve this, efficiently recognizing emotion is a vital step, which can be realized by electroencephalography signals. Previously, inspired by the knowledge of sequencing in bioinformatics, a method termed brain rhythm sequencing that analyzes electroencephalography as the sequence consisting of the dominant rhythm has been proposed for seizure detection. In this work, with the help of similarity measure methods, the asymmetric features are extracted from the sequences generated by different channel data. After evaluating all asymmetric features for emotion recognition, the optimal feature that yields remarkable accuracy is identified. Therefore, the classification task can be accomplished through a small amount of channel data. From a music emotion recognition experiment and a public DEAP dataset, the classification accuracies of various test sets are approximately 80-85% when employing an optimal feature extracted from one pair of symmetrical channels. Such performances are impressive when using fewer resources is a concern. Further investigation revealed that emotion recognition shows strongly individual characteristics, so an appropriate solution is to include the subject-dependent properties. Compared to the existing works, this method benefits from the design of a portable emotion-aware device used during self-isolation, as fewer scalp sensors are needed. Hence, it would provide a novel way to realize emotional applications in the future.
Author Chen, Fei
Pun, Sio Hang
Wang, Lei Jun
Chen, Rong Jun
Barma, Shovan
Mak, Peng Un
Li, Jia Wen
Zhao, Hui Min
Zeng, Xian Xian
Ren, Jin Chang
Author_xml – sequence: 1
  givenname: Jia Wen
  surname: Li
  fullname: Li, Jia Wen
  organization: School of Computer Science, Guangdong Polytechnic Normal University, Guangxi Key Lab of Multi-source Information Mining & Security, Guangxi Normal University
– sequence: 2
  givenname: Rong Jun
  surname: Chen
  fullname: Chen, Rong Jun
  email: chenrongjun@gpnu.edu.cn
  organization: School of Computer Science, Guangdong Polytechnic Normal University
– sequence: 3
  givenname: Shovan
  surname: Barma
  fullname: Barma, Shovan
  organization: Department of Electronics and Communication Engineering, Indian Institute of Information Technology Guwahati
– sequence: 4
  givenname: Fei
  surname: Chen
  fullname: Chen, Fei
  organization: Department of Electrical and Electronic Engineering, Southern University of Science and Technology
– sequence: 5
  givenname: Sio Hang
  surname: Pun
  fullname: Pun, Sio Hang
  organization: State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau
– sequence: 6
  givenname: Peng Un
  surname: Mak
  fullname: Mak, Peng Un
  organization: Department of Electrical and Computer Engineering, University of Macau
– sequence: 7
  givenname: Lei Jun
  surname: Wang
  fullname: Wang, Lei Jun
  organization: School of Computer Science, Guangdong Polytechnic Normal University
– sequence: 8
  givenname: Xian Xian
  surname: Zeng
  fullname: Zeng, Xian Xian
  organization: School of Computer Science, Guangdong Polytechnic Normal University
– sequence: 9
  givenname: Jin Chang
  surname: Ren
  fullname: Ren, Jin Chang
  organization: School of Computer Science, Guangdong Polytechnic Normal University, National Subsea Centre, Robert Gordon University
– sequence: 10
  givenname: Hui Min
  surname: Zhao
  fullname: Zhao, Hui Min
  organization: School of Computer Science, Guangdong Polytechnic Normal University
BookMark eNp9UctqGzEUFSWlefUHuhropptJpKuXtSm4IS8IBNoGshOyfMdW8EiuNBNwvj5yHFLaRVb3dc6593IOyV5MEQn5wugJo1SfFgZSmpYCtLWWvH36QA7YRKnWGCX23nKp9slhKQ-UKmkkfCL7XFHBK-OA3E9jM12vc3J-2QypOe_TEFJsfqJPixhe8rsS4qL5kV2o_eVmWPbNL_wzYvTbvovzZlo2fY9DDr65QDeMGcsx-di5VcHPr_GI3F2c_z67am9uL6_PpjetFxSGVnDFYeap5jOPcs6F1ka6-YwpJYTqKAJwFLITHg0ardBx5o0DQ0F3zgh-RL7vdNfjrMe5xzhkt7LrHHqXNza5YP-dxLC0i_RojWASJK0C314FcqpPlcH2oXhcrVzENBYLmk40Vxq2u77-B31IY471PQuGGQUwUbKiYIfyOZWSsXs7hlG7Nc7ujLPVOPtinH2qJL4jlQqOC8x_pd9hPQPycZyJ
Cites_doi 10.1166/jmihi.2015.1490
10.1109/TBME.2015.2500276
10.1007/s40708-017-0073-7
10.1007/s11760-019-01549-7
10.3390/electronics10091001
10.3390/app7121239
10.1109/TCDS.2016.2587290
10.1111/psyp.12965
10.1186/1475-925X-12-37
10.3390/s19061423
10.1007/s00521-018-3664-1
10.1109/ICEEICT.2015.7307340
10.1016/j.dsp.2018.07.003
10.1080/10803548.2010.11076862
10.1016/j.cortex.2020.02.005
10.1109/ACCESS.2019.2944273
10.1016/j.cub.2013.12.004
10.1109/T-AFFC.2011.15
10.1109/JBHI.2013.2255132
10.1007/s00521-015-2149-8
10.1155/2013/618649
10.1109/ACCESS.2019.2951376
10.3389/fnbot.2019.00037
10.1007/s00779-017-1072-7
10.1186/s40708-021-00141-5
10.1145/3206025.3206037
10.3389/fncom.2019.00080
10.1016/j.jneumeth.2003.10.009
10.3390/s22062346
10.3389/fpsyg.2017.01454
10.1142/S021963521450006X
10.1007/s11277-014-1861-5
10.1016/j.imr.2016.03.004
10.1109/TAMD.2015.2431497
10.1093/bib/bbw108
10.1016/j.procs.2016.04.062
10.3389/neuro.09.061.2009
10.1155/2017/8317357
10.1109/TCBB.2013.15
10.1007/s40846-019-00500-y
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Nov 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Nov 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1007/s12559-022-10053-z
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
Advanced Technologies & Aerospace Collection
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
Computer Science
EISSN 1866-9964
EndPage 2273
ExternalDocumentID PMC9415250
10_1007_s12559_022_10053_z
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62072122
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Project for Distinctive Innovation of Ordinary Universities of Guangdong Province
  grantid: 2018KTSCX120
– fundername: Special Projects in Key Fields of Ordinary Universities of Guangdong Province
  grantid: 2021ZDZX1087
– fundername: Guangzhou Science and Technology Plan Project
  grantid: 202102020857
– fundername: Scientific and Technological Planning Projects of Guangdong Province
  grantid: 2021A0505030074
– fundername: Guangdong Colleges and Universities Young Innovative Talents Projects
  grantid: 2018KQNCX138
– fundername: ;
  grantid: 62072122
– fundername: ;
  grantid: 2021A0505030074
– fundername: ;
  grantid: 2018KQNCX138
– fundername: ;
  grantid: 2021ZDZX1087
– fundername: ;
  grantid: 202102020857
– fundername: ;
  grantid: 2018KTSCX120
GroupedDBID 06C
06D
0R~
0VY
1N0
203
29F
29~
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
67N
67Z
6NX
875
8TC
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABMQK
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFDZB
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
AUKKA
AXYYD
AYFIA
BA0
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
EN4
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
KPH
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
PHGZT
PT4
QOR
QOS
R89
RLLFE
ROL
RSV
S1Z
S27
S3A
S3B
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
T13
TSG
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
ZMTXR
ZOVNA
~A9
AAFWJ
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c402t-43632bc073bce5d347795adb166446f0e223e45f4ce9e976ea31c9a29027fa943
IEDL.DBID BENPR
ISSN 1866-9956
IngestDate Thu Aug 21 13:28:05 EDT 2025
Fri Jul 11 10:48:34 EDT 2025
Fri Jul 25 20:53:11 EDT 2025
Tue Jul 01 05:13:44 EDT 2025
Thu Apr 10 07:55:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Asymmetric features
Emotion recognition
Electroencephalography
Symmetrical channels
Brain rhythm sequencing
Language English
License This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-43632bc073bce5d347795adb166446f0e223e45f4ce9e976ea31c9a29027fa943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9415250
PMID 36043053
PQID 2919622865
PQPubID 6623279
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9415250
proquest_miscellaneous_2708736724
proquest_journals_2919622865
crossref_primary_10_1007_s12559_022_10053_z
springer_journals_10_1007_s12559_022_10053_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Cognitive computation
PublicationTitleAbbrev Cogn Comput
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Z Mohammadi (10053_CR20) 2017; 28
M Faezipour (10053_CR4) 2021; 10
JW Li (10053_CR23) 2019; 7
R Yuvaraj (10053_CR6) 2014; 13
N Jatupaiboon (10053_CR44) 2015; 5
CJ Peng (10053_CR30) 2020; 40
N Padfield (10053_CR7) 2019; 19
J Chen (10053_CR24) 2018; 19
10053_CR38
A Djebbari (10053_CR34) 2013; 12
10053_CR37
ZM Wang (10053_CR19) 2019; 7
G Wen (10053_CR1) 2017; 2017
H Cui (10053_CR50) 2020; 205
X Jie (10053_CR41) 2014; 24
M Val-Calvo (10053_CR45) 2019; 13
A Mert (10053_CR31) 2018; 81
A Al-Nafjan (10053_CR12) 2017; 7
N Lim (10053_CR46) 2016; 5
RR Sharma (10053_CR33) 2020; 14
10053_CR42
WL Zheng (10053_CR11) 2015; 7
N Zhuang (10053_CR9) 2017; 2017
W Zheng (10053_CR21) 2016; 9
SJ Reznik (10053_CR25) 2018; 55
P Patel (10053_CR10) 2021; 8
10053_CR27
MZI Ahmed (10053_CR49) 2022; 22
J Onton (10053_CR15) 2009; 3
S Li (10053_CR8) 2021; 15
A Delorme (10053_CR29) 2004; 134
AM Chandra (10053_CR35) 2010; 16
X Hu (10053_CR28) 2017; 11
HG Rey (10053_CR36) 2014; 24
10053_CR2
M Niknazar (10053_CR13) 2013; 17
F Ren (10053_CR26) 2019; 31
N Jatupaiboon (10053_CR43) 2013; 2013
MR Islam (10053_CR47) 2021; 136
S Lenzoni (10053_CR3) 2020; 127
MM Rahman (10053_CR5) 2018; 5
S Koelstra (10053_CR16) 2012; 3
SK Park (10053_CR17) 2011; 3
MK Kim (10053_CR39) 2013; 2013
10053_CR22
S Barma (10053_CR32) 2016; 63
CM Tyng (10053_CR40) 2017; 8
SJ Choi (10053_CR14) 2014; 79
MLR Menezes (10053_CR18) 2017; 21
X Xing (10053_CR48) 2019; 13
References_xml – volume: 5
  start-page: 1020
  year: 2015
  ident: 10053_CR44
  publication-title: J Med Imaging Health Inform
  doi: 10.1166/jmihi.2015.1490
– volume: 2013
  year: 2013
  ident: 10053_CR39
  publication-title: Comput Math Methods Med
– volume: 63
  start-page: 1718
  issue: 8
  year: 2016
  ident: 10053_CR32
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2015.2500276
– volume: 5
  start-page: 1
  issue: 1
  year: 2018
  ident: 10053_CR5
  publication-title: Brain Inform
  doi: 10.1007/s40708-017-0073-7
– volume: 14
  start-page: 249
  year: 2020
  ident: 10053_CR33
  publication-title: Signal Image Video Process
  doi: 10.1007/s11760-019-01549-7
– volume: 10
  start-page: 1001
  issue: 9
  year: 2021
  ident: 10053_CR4
  publication-title: Electronics
  doi: 10.3390/electronics10091001
– ident: 10053_CR37
– volume: 7
  start-page: 1239
  issue: 12
  year: 2017
  ident: 10053_CR12
  publication-title: Appl Sci
  doi: 10.3390/app7121239
– volume: 9
  start-page: 281
  issue: 3
  year: 2016
  ident: 10053_CR21
  publication-title: IEEE Trans Cogn Dev Syst
  doi: 10.1109/TCDS.2016.2587290
– volume: 136
  year: 2021
  ident: 10053_CR47
  publication-title: Comput Biol Med
– volume: 55
  start-page: 12965
  issue: 1
  year: 2018
  ident: 10053_CR25
  publication-title: Psychophysiology
  doi: 10.1111/psyp.12965
– volume: 12
  start-page: 37
  year: 2013
  ident: 10053_CR34
  publication-title: Biomed Eng Online
  doi: 10.1186/1475-925X-12-37
– volume: 19
  start-page: 1423
  issue: 6
  year: 2019
  ident: 10053_CR7
  publication-title: Sensors
  doi: 10.3390/s19061423
– volume: 2017
  start-page: 1945630
  year: 2017
  ident: 10053_CR1
  publication-title: Comput Intell Neurosci
– volume: 15
  year: 2021
  ident: 10053_CR8
  publication-title: Front Comput Neurosci
– volume: 31
  start-page: 4491
  year: 2019
  ident: 10053_CR26
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-018-3664-1
– ident: 10053_CR38
  doi: 10.1109/ICEEICT.2015.7307340
– volume: 81
  start-page: 106
  year: 2018
  ident: 10053_CR31
  publication-title: Digit Signal Process
  doi: 10.1016/j.dsp.2018.07.003
– volume: 16
  start-page: 497
  issue: 4
  year: 2010
  ident: 10053_CR35
  publication-title: Int J Occup Saf Ergon
  doi: 10.1080/10803548.2010.11076862
– volume: 127
  start-page: 58
  year: 2020
  ident: 10053_CR3
  publication-title: Cortex
  doi: 10.1016/j.cortex.2020.02.005
– volume: 7
  start-page: 143303
  year: 2019
  ident: 10053_CR19
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2944273
– volume: 24
  start-page: 299
  issue: 3
  year: 2014
  ident: 10053_CR36
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2013.12.004
– volume: 3
  start-page: 18
  year: 2012
  ident: 10053_CR16
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/T-AFFC.2011.15
– volume: 11
  start-page: 26
  year: 2017
  ident: 10053_CR28
  publication-title: Front Hum Neurosci
– volume: 17
  start-page: 572
  issue: 3
  year: 2013
  ident: 10053_CR13
  publication-title: IEEE J Biomed Health Inf
  doi: 10.1109/JBHI.2013.2255132
– volume: 28
  start-page: 1985
  year: 2017
  ident: 10053_CR20
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-015-2149-8
– volume: 2013
  year: 2013
  ident: 10053_CR43
  publication-title: Sci World J
  doi: 10.1155/2013/618649
– volume: 7
  start-page: 160112
  year: 2019
  ident: 10053_CR23
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2951376
– volume: 13
  start-page: 37
  year: 2019
  ident: 10053_CR48
  publication-title: Front Neurorobot
  doi: 10.3389/fnbot.2019.00037
– volume: 21
  start-page: 1003
  year: 2017
  ident: 10053_CR18
  publication-title: Pers Ubiquit Comput
  doi: 10.1007/s00779-017-1072-7
– volume: 8
  start-page: 20
  issue: 1
  year: 2021
  ident: 10053_CR10
  publication-title: Brain Inform
  doi: 10.1186/s40708-021-00141-5
– ident: 10053_CR27
  doi: 10.1145/3206025.3206037
– volume: 13
  start-page: 80
  year: 2019
  ident: 10053_CR45
  publication-title: Front Comput Neurosci
  doi: 10.3389/fncom.2019.00080
– volume: 134
  start-page: 9
  issue: 1
  year: 2004
  ident: 10053_CR29
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 22
  start-page: 2346
  issue: 6
  year: 2022
  ident: 10053_CR49
  publication-title: Sensors
  doi: 10.3390/s22062346
– volume: 8
  start-page: 1454
  year: 2017
  ident: 10053_CR40
  publication-title: Front Psychol
  doi: 10.3389/fpsyg.2017.01454
– volume: 13
  start-page: 89
  issue: 1
  year: 2014
  ident: 10053_CR6
  publication-title: J Integr Neurosci
  doi: 10.1142/S021963521450006X
– volume: 79
  start-page: 2551
  year: 2014
  ident: 10053_CR14
  publication-title: Wireless Pers Commun
  doi: 10.1007/s11277-014-1861-5
– volume: 5
  start-page: 105
  issue: 2
  year: 2016
  ident: 10053_CR46
  publication-title: Integr Med Res
  doi: 10.1016/j.imr.2016.03.004
– volume: 7
  start-page: 162
  year: 2015
  ident: 10053_CR11
  publication-title: IEEE Trans Auton Ment Dev
  doi: 10.1109/TAMD.2015.2431497
– volume: 3
  start-page: 201
  issue: 6
  year: 2011
  ident: 10053_CR17
  publication-title: Int J Med Med Sci
– ident: 10053_CR2
– volume: 19
  start-page: 231
  issue: 2
  year: 2018
  ident: 10053_CR24
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbw108
– volume: 24
  start-page: 1185
  issue: 1
  year: 2014
  ident: 10053_CR41
  publication-title: Biomed Mater Eng
– ident: 10053_CR42
  doi: 10.1016/j.procs.2016.04.062
– volume: 3
  start-page: 61
  year: 2009
  ident: 10053_CR15
  publication-title: Front Hum Neurosci
  doi: 10.3389/neuro.09.061.2009
– volume: 2017
  start-page: 8317357
  year: 2017
  ident: 10053_CR9
  publication-title: Biomed Res Int
  doi: 10.1155/2017/8317357
– volume: 205
  year: 2020
  ident: 10053_CR50
  publication-title: Knowl Based Syst
– ident: 10053_CR22
  doi: 10.1109/TCBB.2013.15
– volume: 40
  start-page: 230
  year: 2020
  ident: 10053_CR30
  publication-title: J Med Biol Eng
  doi: 10.1007/s40846-019-00500-y
SSID ssj0065952
Score 2.2617784
Snippet Emotion can be influenced during self-isolation, and to avoid severe mood swings, emotional regulation is meaningful. To achieve this, efficiently recognizing...
SourceID pubmedcentral
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2260
SubjectTerms Artificial Intelligence
Asymmetry
Bioinformatics
Brain
Classification
Computation by Abstract Devices
Computational Biology/Bioinformatics
Computer Science
COVID-19
Electroencephalography
Emotion recognition
Emotions
Feature recognition
Portable equipment
Rhythm
Support vector machines
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGP_QednFx1SsTongTQN9JE17rOIYgh6mg91K0yTMwzpx3WH7683XtRsbevBWmtCU75Vf8r0A7iKZc6WMokyJgDKmrR2UUtFY2L1PG88Yg_nOr29hf8heRnxUJ4XNmmj3xiVZWepNshuiX4rR5x6KDl3uwwHHs7uV4qGfNPYXC-RVPs4oDCnmbdapMr9_Y3s72mDM3QjJHTdptfv0juGwho0kWfH5BPZ00YGjpiUDqTW0A-21QVucwigpSFLXDCfllDyvWvaQQRM0ZJ-rkAHyiI0iyGC8KMcT8r6Krsb3WaFIMltMJth3KyeIF-f2fH4Gw97zx1Of1p0UaG7PhyVlQRj4MrfqLHPNVcCEiHmmpBdaOBQaV1uQoBk3LNexRiZlgZfHmR9b6posZsE5tIppoS-AMKunRnlSGzdiGeORqz0hcikCzV3fZA7cNwRNv1YFM9JNaWQkf2rJn1bkT5cOdBuap7XyzFI_tmbBx5RZB27Xw1bs0ZeRFXo6t3OEG4kgFD5zQGzxar0qFs7eHik-x1UB7RhRC3cdeGi4uln873-9_N_0K2j7laDhdU0XWuX3XF9bAFPKm0pefwCMVera
  priority: 102
  providerName: Springer Nature
Title An Approach to Emotion Recognition Using Brain Rhythm Sequencing and Asymmetric Features
URI https://link.springer.com/article/10.1007/s12559-022-10053-z
https://www.proquest.com/docview/2919622865
https://www.proquest.com/docview/2708736724
https://pubmed.ncbi.nlm.nih.gov/PMC9415250
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB6x28te0PISYZfKSNzAIg8nTk4oi9pdgVihQqVyiuKXyqHpQtND99czkzituhLcIjuSrZnx-BvPC-BtrnRqjDNcGJlwISzqQaUMLyTefdZFzjnKd_56m93MxedFuvAPbhsfVjnoxE5Rm7WmN_IPcYGyElMe5ce735y6RpF31bfQOIERquAcja_R1eT222zQxVQsr_N35lnGKYfTp830yXOEpjlFs0ckivz--Go64M2H0ZIPXKbdTTQ9h8ceQrKy5_kTeGSbp3C212S7Z7AoG1b6YuGsXbNJ36uHzYZoIfzuYgXYFXWIYLPlrl2u2Pc-rJrG68awcrNbrajhlmYEFLdomD-H-XTy49MN9y0UuEbDsOUiyZJYaTzHStvUJELKIq2NijLEQZkLLaIDK1IntC0scadOIl3UcYHWqqsLkbyA02bd2JfABB5QZyJlXZiLWqR5aCMptZKJTcPY1QG8G6hX3fWVMqpDTWSidYW0rjpaV_cBXA4Ervyp2VQHHgfwZj-N8k5OjLqx6y3-I8NcJpmMRQDyiDH7Vali9vFM82vZVc4uCK6kYQDvBxYeFv_3Xl_9f68XcBZ3UkTvMpdw2v7Z2teIVFo1hpN8ej2GUXn988tk7IUTR-dx-Rc9r-v8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4q5UAvqGwiUMBIcAKLxHbi-IDQAB2mdDmUVppbiDcNh8m0nYzQ9EfxG_HLMqOpBLfeojiKrefvLfbbAN7k2qTWekuFlZwK4YIc1NpSJYPucz7x3mO-8_FJNjoX38fpeAv-9LkwGFbZy8RGUNuZwTvyD0wFrDDMo_x0cUmxaxR6V_sWGi0sDt3ydziyzT8efA37-5ax4f7ZlxHtugpQE85KNRU840ybAG1tXGq5kFKlpdVJFkyDzMcuKEwnUi-MUw4XXPLEqJKpcIDzpRI8_PcO3BWcK-SofPitl_xYmq_xruZZRjFjtEvSaVP10HanGDufIPDp9aYiXFu3N2MzbzhoG7033IX7ncFKBi3CHsCWqx7CzkpuLh_BeFCRQVeanNQzst92BiKnfWxSeG4iE8hn7EdBTifLejIlP9ogbnxfVpYM5svpFNt7GYJm6eLKzR_D-a2Q9glsV7PKPQUigjjwNtHOx7koRZrHLpHSaMldGjNfRvCup15x0dblKNYVmJHWRaB10dC6uI5grydw0fHovFgjKoLXq-HAXegyKSs3W4RvZJxLnkkmIpAbG7OaFetzb45UvyZNnW6FxlEaR_C-38L15P9e67P_r_UV3BudHR8VRwcnh89hhzWIwhuhPdiurxbuRbCRav2yASaBn7fNCX8BwogjNA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1HT8MwFH5iSIgLGxEoYCRuYJHhxMkxjKpMIaBSb1Ec2yqHpgjSQ_n1-GW0FMGBWxRbcfSWP_stgONQZL6UWlImuUcZU8YOCiFpxM3ep7SjtcZ85_uHoNNlNz2_9y2Lv4x2b1ySVU4DVmnKi7M3qc-miW-IhClGojsoRvRzHhaNOXZQrrtu3NhiLJZX-jvDIKCYw1mnzfz-jdmtaYo3f0ZL_nCZljtRew1WaghJ4orn6zCn8g1YbdozkFpbN2B5YtzGm9CLcxLX9cNJMSRXVfse8tQEEJnnMnyAnGPTCPLUHxf9AXmuIq3xfZpLEn-MBwPswZURxI4jc1bfgm776uWiQ-uuCjQzZ8WCMi_wXJEZ1RaZ8qXHOI_8VAonMNAo0LYygEExX7NMRQoZlnpOFqVuZA6wOo2Ytw0L-TBXO0CY0VktHaG0HbKU-aGtHM4zwT3l265OLThpCJq8VcUzkmmZZCR_YsiflORPPi1oNTRPakX6SNzImAgX02ctOJoMGxVAv0aaq-HIzOF2yL2Au8wCPsOryapYRHt2JH_tl8W0I0Qwvm3BacPV6eJ__-vu_6YfwtLjZTu5u3643YNlt5Q5vMVpwULxPlL7BtcU4qAU3S9ViPIJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Approach+to+Emotion+Recognition+Using+Brain+Rhythm+Sequencing+and+Asymmetric+Features&rft.jtitle=Cognitive+computation&rft.date=2022-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1866-9956&rft.eissn=1866-9964&rft.volume=14&rft.issue=6&rft.spage=2260&rft.epage=2273&rft_id=info:doi/10.1007%2Fs12559-022-10053-z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-9956&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-9956&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-9956&client=summon