Gaseous and electrochemical hydrogen storage behaviors of nanocrystalline and amorphous Nd-added Mg2Ni-type alloys
Melt spinning technology was used to prepare the Mg2Ni-type(Mg24Ni10Cu2)100-xNdx(x = 0, 5, 10, 15,20) alloys in order to obtain a nanocrystalline and amorphous structure.The effects of the spinning rate on the structures and gaseous and electrochemical hydrogen storage behaviors of the alloys were i...
Saved in:
Published in | Rare metals Vol. 34; no. 7; pp. 463 - 471 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Nonferrous Metals Society of China
01.07.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Melt spinning technology was used to prepare the Mg2Ni-type(Mg24Ni10Cu2)100-xNdx(x = 0, 5, 10, 15,20) alloys in order to obtain a nanocrystalline and amorphous structure.The effects of the spinning rate on the structures and gaseous and electrochemical hydrogen storage behaviors of the alloys were investigated.The analysis of X-ray diffraction(XRD), transmission electron microscope(TEM), and scanning electron microscope(SEM) linked with energy-dispersive spectroscopy(EDS)reveals that all the as-cast alloys hold a multiphase structure, involving the main phase Mg2 Ni and some secondary phases such as Mg6 Ni, Nd5Mg41, and Nd Ni.The as-spun Nd-free alloy displays an entire nanocrystalline structure,whereas the as-spun Nd-added alloys hold a nanocrystalline and amorphous structure, and the amorphization degree visibly increases with the spinning rate increasing.The melt spinning ameliorates the hydrogen storage performances of the alloys dramatically.When the spinning rate rises from 0(the as-cast was defined as the spinning rate of 0 m s-1) to 40 m s-1, the discharge capacity increases from 86.4 to 452.8 m Ah g-1, the S20(the capacity maintain rate at 20 th cycle) value increases from53.2 % to 89.7 %, the hydrogen absorption saturation ratio(Ra5, a ratio of the hydrogen absorption quantity in 5 min to the saturated hydrogen absorption capacity) increases from36.9 % to 91.5 %, and the hydrogen desorption ratio(Rd10,a ratio of the hydrogen desorption quantity in 10 min to the saturated hydrogen absorption capacity) increases from16.4 % to 47.7 % for the(x = 10) alloy, respectively. |
---|---|
AbstractList | Melt spinning technology was used to prepare the Mg2Ni-type(Mg24Ni10Cu2)100-xNdx(x = 0, 5, 10, 15,20) alloys in order to obtain a nanocrystalline and amorphous structure.The effects of the spinning rate on the structures and gaseous and electrochemical hydrogen storage behaviors of the alloys were investigated.The analysis of X-ray diffraction(XRD), transmission electron microscope(TEM), and scanning electron microscope(SEM) linked with energy-dispersive spectroscopy(EDS)reveals that all the as-cast alloys hold a multiphase structure, involving the main phase Mg2 Ni and some secondary phases such as Mg6 Ni, Nd5Mg41, and Nd Ni.The as-spun Nd-free alloy displays an entire nanocrystalline structure,whereas the as-spun Nd-added alloys hold a nanocrystalline and amorphous structure, and the amorphization degree visibly increases with the spinning rate increasing.The melt spinning ameliorates the hydrogen storage performances of the alloys dramatically.When the spinning rate rises from 0(the as-cast was defined as the spinning rate of 0 m s-1) to 40 m s-1, the discharge capacity increases from 86.4 to 452.8 m Ah g-1, the S20(the capacity maintain rate at 20 th cycle) value increases from53.2 % to 89.7 %, the hydrogen absorption saturation ratio(Ra5, a ratio of the hydrogen absorption quantity in 5 min to the saturated hydrogen absorption capacity) increases from36.9 % to 91.5 %, and the hydrogen desorption ratio(Rd10,a ratio of the hydrogen desorption quantity in 10 min to the saturated hydrogen absorption capacity) increases from16.4 % to 47.7 % for the(x = 10) alloy, respectively. Melt spinning technology was used to prepare the Mg 2 Ni-type (Mg 24 Ni 10 Cu 2 ) 100− x Nd x ( x = 0, 5, 10, 15, 20) alloys in order to obtain a nanocrystalline and amorphous structure. The effects of the spinning rate on the structures and gaseous and electrochemical hydrogen storage behaviors of the alloys were investigated. The analysis of X-ray diffraction (XRD), transmission electron microscope (TEM), and scanning electron microscope (SEM) linked with energy-dispersive spectroscopy (EDS) reveals that all the as-cast alloys hold a multiphase structure, involving the main phase Mg 2 Ni and some secondary phases such as Mg 6 Ni, Nd 5 Mg 41 , and NdNi. The as-spun Nd-free alloy displays an entire nanocrystalline structure, whereas the as-spun Nd-added alloys hold a nanocrystalline and amorphous structure, and the amorphization degree visibly increases with the spinning rate increasing. The melt spinning ameliorates the hydrogen storage performances of the alloys dramatically. When the spinning rate rises from 0 (the as-cast was defined as the spinning rate of 0 m·s −1 ) to 40 m·s −1 , the discharge capacity increases from 86.4 to 452.8 mAh·g −1 , the S 20 (the capacity maintain rate at 20th cycle) value increases from 53.2 % to 89.7 %, the hydrogen absorption saturation ratio ( R 5 a , a ratio of the hydrogen absorption quantity in 5 min to the saturated hydrogen absorption capacity) increases from 36.9 % to 91.5 %, and the hydrogen desorption ratio ( R 1 0 d , a ratio of the hydrogen desorption quantity in 10 min to the saturated hydrogen absorption capacity) increases from 16.4 % to 47.7 % for the ( x = 10) alloy, respectively. |
Author | Yang-Huan Zhang Sheng-Long Liu Tai Yang Guo-Fang Zhang Xia Li Dong-Liang Zhao |
AuthorAffiliation | Key Laboratory of Integrated Exploitation of Baiyun Obo MultiMetal Resources, Inner Mongolia University of Science and Technology Department of Functional Material Research, Central Iron and Steel Research Institute |
Author_xml | – sequence: 1 givenname: Yang-Huan surname: Zhang fullname: Zhang, Yang-Huan email: zhangyh59@sina.com organization: Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Department of Functional Material Research, Central Iron and Steel Research Institute – sequence: 2 givenname: Sheng-Long surname: Liu fullname: Liu, Sheng-Long organization: Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology – sequence: 3 givenname: Tai surname: Yang fullname: Yang, Tai organization: Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Department of Functional Material Research, Central Iron and Steel Research Institute – sequence: 4 givenname: Guo-Fang surname: Zhang fullname: Zhang, Guo-Fang organization: Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology – sequence: 5 givenname: Xia surname: Li fullname: Li, Xia organization: Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology – sequence: 6 givenname: Dong-Liang surname: Zhao fullname: Zhao, Dong-Liang organization: Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Department of Functional Material Research, Central Iron and Steel Research Institute |
BookMark | eNp9kMlOxDAQRC0EEusHcMsPGNpb7BwRYpOG4QLnyOMlyShjD3ZAyt_jYRAHDpy61apXrapTdBhicAhdErgiAPI6EyoahYFwDIwwzA_QCVG1xJIocVh2AIJBUHKMTnNeA3Be13CC0oPOLn7kSgdbudGZKUXTu81g9Fj1s02xc6HKU0y6c9XK9fpziClX0VdBh2jSnCc9jkNw3w56E9O23_ktLdbWOls9d3Q54GneFsU4xjmfoyOvx-wufuYZeru_e719xIuXh6fbmwU2HOiEmSeN89KDs8AVo9JLahlt_Aqk1hIk08RTU9crZxpeUqpysZ4JT2phmGJnSO59TYo5J-dbM0x6GmKYkh7GlkC7q67dV9eW6tpddS0vJPlDbtOw0Wn-l6F7Jhdt6Fxq1_EjhRLwX4j9POpj6N4L9_tJKdXIkluU8LwRjCshyqYEZV8ULpPx |
CitedBy_id | crossref_primary_10_1007_s12598_017_0929_2 crossref_primary_10_1007_s12598_018_1147_2 crossref_primary_10_1016_j_ijhydene_2024_02_334 crossref_primary_10_18321_ectj1635 crossref_primary_10_1007_s12598_015_0576_4 |
Cites_doi | 10.1016/j.jallcom.2006.11.078 10.1016/S0925-8388(99)00821-X 10.1016/j.jallcom.2011.02.085 10.1016/j.ijhydene.2006.11.022 10.1016/j.jallcom.2007.02.003 10.1007/s003390100771 10.1039/C0JM01921F 10.1016/j.jallcom.2007.07.028 10.1016/j.ijhydene.2008.11.082 10.1016/j.jpowsour.2005.12.072 10.1007/s12598-013-0201-3 10.1557/JMR.2004.0417 10.1016/S0925-8388(98)00680-X 10.1016/j.matchemphys.2008.12.024 10.1007/s12598-013-0040-2 10.1016/j.ijhydene.2008.01.006 10.1016/j.jallcom.2007.11.128 10.1016/j.scriptamat.2007.01.003 10.1016/S0925-8388(99)00035-3 10.1038/35104634 10.1016/S0925-8388(01)01594-8 10.1016/j.jallcom.2012.12.016 |
ContentType | Journal Article |
Copyright | The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2014 |
Copyright_xml | – notice: The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2014 |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION |
DOI | 10.1007/s12598-014-0313-4 |
DatabaseName | 中文科技期刊数据库 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Gaseous and electrochemical hydrogen storage behaviors of nanocrystalline and amorphous Nd-added Mg2Ni-type alloys |
EISSN | 1867-7185 |
EndPage | 471 |
ExternalDocumentID | 10_1007_s12598_014_0313_4 88897483504849534855484852 |
GroupedDBID | --K -EM 06D 0R~ 0VY 188 1B1 29P 2B. 2C0 2KG 2RA 2VQ 30V 4.4 406 408 40D 5VR 5VS 8FE 8FG 8RM 8TC 92H 92I 92L 92R 93N 96X AAAVM AAEDT AAFGU AAHNG AAIAL AAJKR AALRI AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAXUO AAYFA AAYIU AAYQN AAYTO AAZMS ABDZT ABECU ABFGW ABFTD ABFTV ABJCF ABJNI ABJOX ABKAS ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADINQ ADKNI ADMDM ADMUD ADOXG ADRFC ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AESTI AETCA AEVLU AEVTX AEXYK AFGCZ AFKRA AFLOW AFNRJ AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD BA0 BENPR BGLVJ BGNMA CAG CCEZO CCPQU CDRFL CHBEP COF CQIGP CW9 D1I DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EO9 ESBYG FA0 FDB FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HZ~ I0C IKXTQ IWAJR I~X J-C JBSCW JZLTJ KB. KOV LLZTM M41 M4Y MA- NPVJJ NQJWS NU0 O9- O9J P9N PDBOC PT4 Q2X R9I RIG RLLFE ROL RSV S1Z S27 S3B SCL SCM SDC SDG SDH SHX SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE T13 TCJ TGT TSG U2A UG4 UGNYK UOJIU UTJUX UZ4 UZXMN VC2 VFIZW W48 W92 WK8 Z7R Z7S Z7V Z7X Z7Y Z7Z Z83 Z85 Z88 ZMTXR ~A9 ~WA -SB -S~ 5XA 5XC AACDK AAJBT AASML AAXDM AAYZH ABAKF ABWVN ACDTI ACPIV ACRPL ADMLS ADNMO AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CAJEB H13 Q-- SJYHP U1G U5L UY8 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIGII AIXLP ATHPR AYFIA CITATION PHGZM PHGZT |
ID | FETCH-LOGICAL-c402t-3f19ef7f0ed048327f72d329fb07aa7073a1f2c66bec94185873adf35f165c383 |
IEDL.DBID | U2A |
ISSN | 1001-0521 |
IngestDate | Tue Jul 01 01:30:01 EDT 2025 Thu Apr 24 22:56:16 EDT 2025 Fri Feb 21 02:43:30 EST 2025 Wed Feb 14 10:20:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Melt spinning Hydrogen storage behaviors Mg Ni-type alloy Nanocrystalline and amorphous Element addition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-3f19ef7f0ed048327f72d329fb07aa7073a1f2c66bec94185873adf35f165c383 |
Notes | Melt spinning technology was used to prepare the Mg2Ni-type(Mg24Ni10Cu2)100-xNdx(x = 0, 5, 10, 15,20) alloys in order to obtain a nanocrystalline and amorphous structure.The effects of the spinning rate on the structures and gaseous and electrochemical hydrogen storage behaviors of the alloys were investigated.The analysis of X-ray diffraction(XRD), transmission electron microscope(TEM), and scanning electron microscope(SEM) linked with energy-dispersive spectroscopy(EDS)reveals that all the as-cast alloys hold a multiphase structure, involving the main phase Mg2 Ni and some secondary phases such as Mg6 Ni, Nd5Mg41, and Nd Ni.The as-spun Nd-free alloy displays an entire nanocrystalline structure,whereas the as-spun Nd-added alloys hold a nanocrystalline and amorphous structure, and the amorphization degree visibly increases with the spinning rate increasing.The melt spinning ameliorates the hydrogen storage performances of the alloys dramatically.When the spinning rate rises from 0(the as-cast was defined as the spinning rate of 0 m s-1) to 40 m s-1, the discharge capacity increases from 86.4 to 452.8 m Ah g-1, the S20(the capacity maintain rate at 20 th cycle) value increases from53.2 % to 89.7 %, the hydrogen absorption saturation ratio(Ra5, a ratio of the hydrogen absorption quantity in 5 min to the saturated hydrogen absorption capacity) increases from36.9 % to 91.5 %, and the hydrogen desorption ratio(Rd10,a ratio of the hydrogen desorption quantity in 10 min to the saturated hydrogen absorption capacity) increases from16.4 % to 47.7 % for the(x = 10) alloy, respectively. Mg2Ni-type alloy;Element addition;Melt spinning;Na Yang-Huan Zhang;Sheng-Long Liu;Tai Yang;Guo-Fang Zhang;Xia Li;Dong-Liang Zhao;Key Laboratory of Integrated Exploitation of Baiyun Obo MultiMetal Resources, Inner Mongolia University of Science and Technology;Department of Functional Material Research, Central Iron and Steel Research Institute 11-2112/TF |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1007_s12598_014_0313_4 crossref_primary_10_1007_s12598_014_0313_4 springer_journals_10_1007_s12598_014_0313_4 chongqing_primary_88897483504849534855484852 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-07-01 |
PublicationDateYYYYMMDD | 2015-07-01 |
PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Rare metals |
PublicationTitleAbbrev | Rare Met |
PublicationTitleAlternate | Rare Metals |
PublicationYear | 2015 |
Publisher | Nonferrous Metals Society of China |
Publisher_xml | – name: Nonferrous Metals Society of China |
References | Schlapbach, Züttel (CR8) 2001; 414 Chandra, Sharma, Chellappa, Cathey, Lynch, Bowman, Wermer, Paglieri (CR7) 2008; 452 Ren, Zhang, Li, Zhao, Guo, Wang (CR23) 2009; 34 Spassov, Köster (CR14) 1998; 279 Song, Kwon, Bae, Hong (CR13) 2008; 33 Zhang, Li, Ren, Hu, Zhang, Guo (CR21) 2011; 509 Huang, Liang, Sun, Wu (CR15) 2006; 160 Zhang, Li, Ren, Guo, Wu, Wang (CR16) 2009; 115 Ebrahimi-Porkani, Kashani-Bozorg (CR6) 2008; 456 Liu, Pan, Gao, Wang (CR2) 2011; 21 Zhu, Han, Zhao, Li, Liu (CR4) 2014; 33 Zhang, Zhao, Yang, Shang, Xu, Zhao (CR17) 2013; 555 Zhang, Ren, Yang, Zhao, Chen, Shang, Zhao (CR3) 2013; 32 Dornheim, Doppiu, Barkhordarian, Boesenberg, Klassen, Gutfleisch, Bormann (CR20) 2007; 56 Mulas, Schiffini, Cocco (CR10) 2004; 19 Wu, Han, Zhou, Lototsky, Solberg, Yartys (CR22) 2008; 466 Kuji, Nakano, Aizawa (CR9) 2002; 330–332 Skintuna, Lamati-Darkrim, Hirscher (CR5) 2007; 32 Zhang, Luo, Zeng, Wang, Kang (CR1) 2013; 37 Orimo, Fujii (CR18) 2001; 72 Wu, Wu, Wang, Wan (CR11) 2000; 302 Kumar, Viswanathan, Murthy (CR12) 2008; 461 Spassov, Köster (CR19) 1999; 287 B Skintuna (313_CR5) 2007; 32 MY Song (313_CR13) 2008; 33 D Chandra (313_CR7) 2008; 452 YH Zhang (313_CR16) 2009; 115 MS Wu (313_CR11) 2000; 302 XL Zhu (313_CR4) 2014; 33 SC Zhang (313_CR1) 2013; 37 L Schlapbach (313_CR8) 2001; 414 YF Liu (313_CR2) 2011; 21 M Dornheim (313_CR20) 2007; 56 Y Wu (313_CR22) 2008; 466 S Orimo (313_CR18) 2001; 72 LH Kumar (313_CR12) 2008; 461 YH Zhang (313_CR21) 2011; 509 YH Zhang (313_CR3) 2013; 32 T Kuji (313_CR9) 2002; 330–332 LJ Huang (313_CR15) 2006; 160 YH Zhang (313_CR17) 2013; 555 G Mulas (313_CR10) 2004; 19 T Spassov (313_CR19) 1999; 287 HP Ren (313_CR23) 2009; 34 A Ebrahimi-Porkani (313_CR6) 2008; 456 T Spassov (313_CR14) 1998; 279 |
References_xml | – volume: 37 start-page: 511 issue: 4 year: 2013 ident: CR1 article-title: Influence of magnesium content on self-discharge property of A B -Type RE-Mg-Ni hydrogen storage alloys publication-title: Chin J Rare Met – volume: 452 start-page: 312 issue: 2 year: 2008 ident: CR7 article-title: Hydriding and structural characteristics of thermally cycled and cold-worked V–0.5 at %C alloy publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2006.11.078 – volume: 302 start-page: 248 issue: 1–2 year: 2000 ident: CR11 article-title: Surface treatment for hydrogen storage alloy of nickel/metal hydride battery publication-title: J Alloys Compd doi: 10.1016/S0925-8388(99)00821-X – volume: 509 start-page: 5604 issue: 18 year: 2011 ident: CR21 article-title: Gaseous and electrochemical hydrogen storage kinetics of nanocrystalline Mg Ni-type alloy prepared by rapid quenching publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2011.02.085 – volume: 32 start-page: 1121 issue: 9 year: 2007 ident: CR5 article-title: Metal hydride materials for solid hydrogen storage: a review publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2006.11.022 – volume: 456 start-page: 211 issue: 1–2 year: 2008 ident: CR6 article-title: Nanocrystalline Mg Ni-based powders produced by high-energy ball milling and subsequent annealing publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2007.02.003 – volume: 72 start-page: 167 issue: 2 year: 2001 ident: CR18 article-title: Materials science of Mg-Ni-based new hydrides publication-title: Appl Phys A doi: 10.1007/s003390100771 – volume: 21 start-page: 4743 issue: 13 year: 2011 ident: CR2 article-title: Advanced hydrogen storage alloys for Ni/MH rechargeable batteries publication-title: J Mater Chem doi: 10.1039/C0JM01921F – volume: 461 start-page: 72 issue: 1–2 year: 2008 ident: CR12 article-title: Hydrogen absorption by Mg Ni prepared by polyol reduction publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2007.07.028 – volume: 34 start-page: 1429 issue: 3 year: 2009 ident: CR23 article-title: Influence of the substitution of La for Mg on the microstructure and hydrogen storage characteristics of Mg La Ni ( = 0–6) alloys publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2008.11.082 – volume: 160 start-page: 684 issue: 1 year: 2006 ident: CR15 article-title: Electrode properties of melt-spun Mg–Ni–Nd amorphous alloys publication-title: J Power Sources doi: 10.1016/j.jpowsour.2005.12.072 – volume: 33 start-page: 86 issue: 1 year: 2014 ident: CR4 article-title: Improving hydrogen storage performance of Li–Mg–N–H system by adding niobium hydride publication-title: Rare Met doi: 10.1007/s12598-013-0201-3 – volume: 19 start-page: 3279 issue: 11 year: 2004 ident: CR10 article-title: Mechanochemical study of the hydriding properties of nanostructured Mg Ni-Ni composites publication-title: J Mater Res doi: 10.1557/JMR.2004.0417 – volume: 279 start-page: 279 issue: 2 year: 1998 ident: CR14 article-title: Thermal stability and hydriding properties of nanocrystalline melt-spun Mg Ni Y alloy publication-title: J Alloys Compd doi: 10.1016/S0925-8388(98)00680-X – volume: 115 start-page: 328 issue: 1 year: 2009 ident: CR16 article-title: An investigation on the hydrogen storage characteristics of the melt-spun nanocrystalline and amorphous Mg La Ni ( = 0, 2) hydrogen storage alloys publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2008.12.024 – volume: 32 start-page: 150 issue: 2 year: 2013 ident: CR3 article-title: Electrochemical performances of as-cast and annealed La Nd Mg Ni Al Si ( = 0–0.4) alloys applied to Ni/metal hydride (MH) battery publication-title: Rare Met doi: 10.1007/s12598-013-0040-2 – volume: 33 start-page: 1711 issue: 6 year: 2008 ident: CR13 article-title: Hydrogen-storage properties of Mg–23.5Ni–(0 and 5) Cu prepared by melt spinning and crystallization heat treatment publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2008.01.006 – volume: 466 start-page: 176 issue: 1–2 year: 2008 ident: CR22 article-title: Microstructure and hydrogenation behavior of ball-milled and melt-spun Mg–10Ni–2Mn alloys publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2007.11.128 – volume: 56 start-page: 841 issue: 10 year: 2007 ident: CR20 article-title: Hydrogen storage in magnesium-based hydrides and hydride composites publication-title: Scr Mater doi: 10.1016/j.scriptamat.2007.01.003 – volume: 287 start-page: 243 issue: 1–2 year: 1999 ident: CR19 article-title: Hydrogenation of amorphous and nanocrystalline Mg-based alloys publication-title: J Alloys Compd doi: 10.1016/S0925-8388(99)00035-3 – volume: 414 start-page: 353 year: 2001 ident: CR8 article-title: Hydrogen-storage materials for mobile applications publication-title: Nature doi: 10.1038/35104634 – volume: 330–332 start-page: 590 year: 2002 ident: CR9 article-title: Hydrogen absorption and electrochemical properties of Mg Ni ( = 0–0.5) alloys prepared by bulk mechanical alloying publication-title: J Alloys Compd doi: 10.1016/S0925-8388(01)01594-8 – volume: 555 start-page: 131 year: 2013 ident: CR17 article-title: Comparative study of electrochemical performances of the as-melt Mg Ni M (M = None, Cu Co, Mn; = 0, 4) alloys applied to Ni/metal hydride (MH) battery publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2012.12.016 – volume: 461 start-page: 72 issue: 1–2 year: 2008 ident: 313_CR12 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2007.07.028 – volume: 115 start-page: 328 issue: 1 year: 2009 ident: 313_CR16 publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2008.12.024 – volume: 287 start-page: 243 issue: 1–2 year: 1999 ident: 313_CR19 publication-title: J Alloys Compd doi: 10.1016/S0925-8388(99)00035-3 – volume: 509 start-page: 5604 issue: 18 year: 2011 ident: 313_CR21 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2011.02.085 – volume: 555 start-page: 131 year: 2013 ident: 313_CR17 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2012.12.016 – volume: 56 start-page: 841 issue: 10 year: 2007 ident: 313_CR20 publication-title: Scr Mater doi: 10.1016/j.scriptamat.2007.01.003 – volume: 32 start-page: 1121 issue: 9 year: 2007 ident: 313_CR5 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2006.11.022 – volume: 279 start-page: 279 issue: 2 year: 1998 ident: 313_CR14 publication-title: J Alloys Compd doi: 10.1016/S0925-8388(98)00680-X – volume: 330–332 start-page: 590 year: 2002 ident: 313_CR9 publication-title: J Alloys Compd doi: 10.1016/S0925-8388(01)01594-8 – volume: 160 start-page: 684 issue: 1 year: 2006 ident: 313_CR15 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2005.12.072 – volume: 34 start-page: 1429 issue: 3 year: 2009 ident: 313_CR23 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2008.11.082 – volume: 452 start-page: 312 issue: 2 year: 2008 ident: 313_CR7 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2006.11.078 – volume: 414 start-page: 353 year: 2001 ident: 313_CR8 publication-title: Nature doi: 10.1038/35104634 – volume: 37 start-page: 511 issue: 4 year: 2013 ident: 313_CR1 publication-title: Chin J Rare Met – volume: 19 start-page: 3279 issue: 11 year: 2004 ident: 313_CR10 publication-title: J Mater Res doi: 10.1557/JMR.2004.0417 – volume: 21 start-page: 4743 issue: 13 year: 2011 ident: 313_CR2 publication-title: J Mater Chem doi: 10.1039/C0JM01921F – volume: 33 start-page: 86 issue: 1 year: 2014 ident: 313_CR4 publication-title: Rare Met doi: 10.1007/s12598-013-0201-3 – volume: 302 start-page: 248 issue: 1–2 year: 2000 ident: 313_CR11 publication-title: J Alloys Compd – volume: 72 start-page: 167 issue: 2 year: 2001 ident: 313_CR18 publication-title: Appl Phys A doi: 10.1007/s003390100771 – volume: 456 start-page: 211 issue: 1–2 year: 2008 ident: 313_CR6 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2007.02.003 – volume: 466 start-page: 176 issue: 1–2 year: 2008 ident: 313_CR22 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2007.11.128 – volume: 33 start-page: 1711 issue: 6 year: 2008 ident: 313_CR13 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2008.01.006 – volume: 32 start-page: 150 issue: 2 year: 2013 ident: 313_CR3 publication-title: Rare Met doi: 10.1007/s12598-013-0040-2 |
SSID | ssj0044660 |
Score | 2.019926 |
Snippet | Melt spinning technology was used to prepare the Mg2Ni-type(Mg24Ni10Cu2)100-xNdx(x = 0, 5, 10, 15,20) alloys in order to obtain a nanocrystalline and amorphous... Melt spinning technology was used to prepare the Mg 2 Ni-type (Mg 24 Ni 10 Cu 2 ) 100− x Nd x ( x = 0, 5, 10, 15, 20) alloys in order to obtain a... |
SourceID | crossref springer chongqing |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 463 |
SubjectTerms | addition;Melt alloy;Element Biomaterials Chemistry and Materials Science Energy Materials Engineering Materials Science Metallic Materials Mg2Ni-type Nanoscale Science and Technology Physical Chemistry spinning;Na |
Title | Gaseous and electrochemical hydrogen storage behaviors of nanocrystalline and amorphous Nd-added Mg2Ni-type alloys |
URI | http://lib.cqvip.com/qk/85314X/201507/88897483504849534855484852.html https://link.springer.com/article/10.1007/s12598-014-0313-4 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gu8AB8RTjMeXACYjU9bkeJ9hDwHaBSeMUJU2yIUEL7Tjs32P3sTEJkDi1qtJEilPbX21_JuRCSu2DodBMespmbqgjJkPTZo5lpAw9oY3EiO5w5A_G7t3Em5R13FmV7V6FJHNNvSp2A08dE69chnyDzN0kdQ-hOxzisd2p1C_GJwsKAsTJYJyqUOZPUyChwiyJpx-w3LphWo-K5samt0t2Si-Rdgqx7pENHe-T7W_cgQck7YP9AdhORaxo2cwmKqv_6Wyh0gSOBsXcR9AYtKrGz2hiaCziJEoX4BciIbfOZxBvCew4zjdSDLWRosOpPXph-I-WYnR-kR2Sca_7dDNgZQMFFgEsnDPHtEJtAmNphczxdmACWzl2aKQVCBHA1y1axo58HwQZIotNG54o43im5XsRYNcjUouTWB8TGioDvkokgrwxh-sL4xihseoVRKsc0yDXy53k7wVRBgd0DXAFfDxYHfNYkYgG7tqe3SBWtdk8KsnIsSfGK1_RKKOsOMiKo6y42yCXy1eqBf4YfFVJkJcfZfb76JN_jT4lW-A1eUXO7hmpzdNPfQ6eyVw2Sb1zO3x4xGv_-b7bzE_mF4Zp3LU |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gHIAD4inGMwdOQKSu7x4nxBiw9bRJu0VJk2xI0EI3Dvv32H1sTAIkblWVJlKc2J9r-zMhV1JqHwyFZtJTNnMjnTAZmZA5lpEy8oQ2EiO6_djvDt2nkTeq6rindbZ7HZIsNPWy2A2QOiZeuQz5Bpm7TjYAC4SYxzW027X6xfhkSUGAfjIYpzqU-dMUSKgwydLxByy3aphWo6KFsenskp0KJdJ2KdY9sqbTfbL9jTvwgOQPYH_AbaciVbRqZpNU1f90Mld5BkeDYu4jaAxaV-NPaWZoKtIsyeeAC5GQWxcziLcMdhznixVDbaRof2zHLwz_0VKMzs-nh2TYuR_cdVnVQIEl4BbOmGNakTaBsbRC5ng7MIGtHDsy0gqECOB2i5axE98HQUbIYhPCG2Ucz7R8LwHf9Yg00izVx4RGygBWSURQNOZwfWEcIzRWvYJolWOa5Haxk_y9JMrg4F2DuwIYD1bHPFYkooGn0LObxKo3mycVGTn2xHjlSxpllBUHWXGUFXeb5HrxSb3AH4Nvagny6lJOfx998q_Rl2SzO-j3eO8xfj4lW4CgvDJ_94w0ZvmnPgeUMpMXxan8Aj3N3IA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UE6MH4zPiswdPaiPskz0SFfEB8SAJt6bddsBEdxHwwL93ht0FSdTE22bTbZN-7Tx2Zr5h7ExrG6CisEL7xhFeZGOhI6gJtwJaR76yoCmi22oHzY730PW7eZ_TUZHtXoQks5oGYmlKxlcDA1fzwje02ikJyxPEPSi8ZbaC0rhKx7rj1AtRTLHKjI6AfGZUVEVY86cpiFyhnya9D1x6UUktRkiniqexyTZyi5HXM4i32JJNttn6Nx7BHTa8Q12ELjxXieF5Y5s4ZwLg_YkZpnhMOOVBovTgRWX-iKfAE5Wk8XCCNiKRc9vpDOo9xd2n-dpGkGQyvNVz2q-C_tdyitRPRrus07h9uW6KvJmCiNFFHAsXqpGFECrWEIu8E0LoGNeJQFdCpUK86aoKThwECGpEjDY1fGPA9aEa-DH6sXuslKSJ3Wc8MoB2S6zCaZMOL1DggrJUAYswGxfK7HK2k3KQkWZI9LTRdUF7D1ennFYipcGnmu-UWaXYbBnnxOTUH-NNzimVCSuJWEnCSnpldj77pFjgj8EXBYIyv6Cj30cf_Gv0KVt9vmnIp_v24yFbQ2PKz1J5j1hpPPy0x2iwjPXJ9FB-ASXk4Lw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gaseous+and+electrochemical+hydrogen+storage+behaviors+of+nanocrystalline+and+amorphous+Nd-added+Mg2Ni-type+alloys&rft.jtitle=Rare+metals&rft.au=Zhang%2C+Yang-Huan&rft.au=Liu%2C+Sheng-Long&rft.au=Yang%2C+Tai&rft.au=Zhang%2C+Guo-Fang&rft.date=2015-07-01&rft.issn=1001-0521&rft.eissn=1867-7185&rft.volume=34&rft.issue=7&rft.spage=463&rft.epage=471&rft_id=info:doi/10.1007%2Fs12598-014-0313-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12598_014_0313_4 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85314X%2F85314X.jpg |