Gaseous and electrochemical hydrogen storage behaviors of nanocrystalline and amorphous Nd-added Mg2Ni-type alloys

Melt spinning technology was used to prepare the Mg2Ni-type(Mg24Ni10Cu2)100-xNdx(x = 0, 5, 10, 15,20) alloys in order to obtain a nanocrystalline and amorphous structure.The effects of the spinning rate on the structures and gaseous and electrochemical hydrogen storage behaviors of the alloys were i...

Full description

Saved in:
Bibliographic Details
Published inRare metals Vol. 34; no. 7; pp. 463 - 471
Main Authors Zhang, Yang-Huan, Liu, Sheng-Long, Yang, Tai, Zhang, Guo-Fang, Li, Xia, Zhao, Dong-Liang
Format Journal Article
LanguageEnglish
Published Beijing Nonferrous Metals Society of China 01.07.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Melt spinning technology was used to prepare the Mg2Ni-type(Mg24Ni10Cu2)100-xNdx(x = 0, 5, 10, 15,20) alloys in order to obtain a nanocrystalline and amorphous structure.The effects of the spinning rate on the structures and gaseous and electrochemical hydrogen storage behaviors of the alloys were investigated.The analysis of X-ray diffraction(XRD), transmission electron microscope(TEM), and scanning electron microscope(SEM) linked with energy-dispersive spectroscopy(EDS)reveals that all the as-cast alloys hold a multiphase structure, involving the main phase Mg2 Ni and some secondary phases such as Mg6 Ni, Nd5Mg41, and Nd Ni.The as-spun Nd-free alloy displays an entire nanocrystalline structure,whereas the as-spun Nd-added alloys hold a nanocrystalline and amorphous structure, and the amorphization degree visibly increases with the spinning rate increasing.The melt spinning ameliorates the hydrogen storage performances of the alloys dramatically.When the spinning rate rises from 0(the as-cast was defined as the spinning rate of 0 m s-1) to 40 m s-1, the discharge capacity increases from 86.4 to 452.8 m Ah g-1, the S20(the capacity maintain rate at 20 th cycle) value increases from53.2 % to 89.7 %, the hydrogen absorption saturation ratio(Ra5, a ratio of the hydrogen absorption quantity in 5 min to the saturated hydrogen absorption capacity) increases from36.9 % to 91.5 %, and the hydrogen desorption ratio(Rd10,a ratio of the hydrogen desorption quantity in 10 min to the saturated hydrogen absorption capacity) increases from16.4 % to 47.7 % for the(x = 10) alloy, respectively.
AbstractList Melt spinning technology was used to prepare the Mg2Ni-type(Mg24Ni10Cu2)100-xNdx(x = 0, 5, 10, 15,20) alloys in order to obtain a nanocrystalline and amorphous structure.The effects of the spinning rate on the structures and gaseous and electrochemical hydrogen storage behaviors of the alloys were investigated.The analysis of X-ray diffraction(XRD), transmission electron microscope(TEM), and scanning electron microscope(SEM) linked with energy-dispersive spectroscopy(EDS)reveals that all the as-cast alloys hold a multiphase structure, involving the main phase Mg2 Ni and some secondary phases such as Mg6 Ni, Nd5Mg41, and Nd Ni.The as-spun Nd-free alloy displays an entire nanocrystalline structure,whereas the as-spun Nd-added alloys hold a nanocrystalline and amorphous structure, and the amorphization degree visibly increases with the spinning rate increasing.The melt spinning ameliorates the hydrogen storage performances of the alloys dramatically.When the spinning rate rises from 0(the as-cast was defined as the spinning rate of 0 m s-1) to 40 m s-1, the discharge capacity increases from 86.4 to 452.8 m Ah g-1, the S20(the capacity maintain rate at 20 th cycle) value increases from53.2 % to 89.7 %, the hydrogen absorption saturation ratio(Ra5, a ratio of the hydrogen absorption quantity in 5 min to the saturated hydrogen absorption capacity) increases from36.9 % to 91.5 %, and the hydrogen desorption ratio(Rd10,a ratio of the hydrogen desorption quantity in 10 min to the saturated hydrogen absorption capacity) increases from16.4 % to 47.7 % for the(x = 10) alloy, respectively.
Melt spinning technology was used to prepare the Mg 2 Ni-type (Mg 24 Ni 10 Cu 2 ) 100− x Nd x ( x  = 0, 5, 10, 15, 20) alloys in order to obtain a nanocrystalline and amorphous structure. The effects of the spinning rate on the structures and gaseous and electrochemical hydrogen storage behaviors of the alloys were investigated. The analysis of X-ray diffraction (XRD), transmission electron microscope (TEM), and scanning electron microscope (SEM) linked with energy-dispersive spectroscopy (EDS) reveals that all the as-cast alloys hold a multiphase structure, involving the main phase Mg 2 Ni and some secondary phases such as Mg 6 Ni, Nd 5 Mg 41 , and NdNi. The as-spun Nd-free alloy displays an entire nanocrystalline structure, whereas the as-spun Nd-added alloys hold a nanocrystalline and amorphous structure, and the amorphization degree visibly increases with the spinning rate increasing. The melt spinning ameliorates the hydrogen storage performances of the alloys dramatically. When the spinning rate rises from 0 (the as-cast was defined as the spinning rate of 0 m·s −1 ) to 40 m·s −1 , the discharge capacity increases from 86.4 to 452.8 mAh·g −1 , the S 20 (the capacity maintain rate at 20th cycle) value increases from 53.2 % to 89.7 %, the hydrogen absorption saturation ratio ( R 5 a , a ratio of the hydrogen absorption quantity in 5 min to the saturated hydrogen absorption capacity) increases from 36.9 % to 91.5 %, and the hydrogen desorption ratio ( R 1 0 d , a ratio of the hydrogen desorption quantity in 10 min to the saturated hydrogen absorption capacity) increases from 16.4 % to 47.7 % for the ( x  = 10) alloy, respectively.
Author Yang-Huan Zhang Sheng-Long Liu Tai Yang Guo-Fang Zhang Xia Li Dong-Liang Zhao
AuthorAffiliation Key Laboratory of Integrated Exploitation of Baiyun Obo MultiMetal Resources, Inner Mongolia University of Science and Technology Department of Functional Material Research, Central Iron and Steel Research Institute
Author_xml – sequence: 1
  givenname: Yang-Huan
  surname: Zhang
  fullname: Zhang, Yang-Huan
  email: zhangyh59@sina.com
  organization: Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Department of Functional Material Research, Central Iron and Steel Research Institute
– sequence: 2
  givenname: Sheng-Long
  surname: Liu
  fullname: Liu, Sheng-Long
  organization: Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology
– sequence: 3
  givenname: Tai
  surname: Yang
  fullname: Yang, Tai
  organization: Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Department of Functional Material Research, Central Iron and Steel Research Institute
– sequence: 4
  givenname: Guo-Fang
  surname: Zhang
  fullname: Zhang, Guo-Fang
  organization: Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology
– sequence: 5
  givenname: Xia
  surname: Li
  fullname: Li, Xia
  organization: Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology
– sequence: 6
  givenname: Dong-Liang
  surname: Zhao
  fullname: Zhao, Dong-Liang
  organization: Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Department of Functional Material Research, Central Iron and Steel Research Institute
BookMark eNp9kMlOxDAQRC0EEusHcMsPGNpb7BwRYpOG4QLnyOMlyShjD3ZAyt_jYRAHDpy61apXrapTdBhicAhdErgiAPI6EyoahYFwDIwwzA_QCVG1xJIocVh2AIJBUHKMTnNeA3Be13CC0oPOLn7kSgdbudGZKUXTu81g9Fj1s02xc6HKU0y6c9XK9fpziClX0VdBh2jSnCc9jkNw3w56E9O23_ktLdbWOls9d3Q54GneFsU4xjmfoyOvx-wufuYZeru_e719xIuXh6fbmwU2HOiEmSeN89KDs8AVo9JLahlt_Aqk1hIk08RTU9crZxpeUqpysZ4JT2phmGJnSO59TYo5J-dbM0x6GmKYkh7GlkC7q67dV9eW6tpddS0vJPlDbtOw0Wn-l6F7Jhdt6Fxq1_EjhRLwX4j9POpj6N4L9_tJKdXIkluU8LwRjCshyqYEZV8ULpPx
CitedBy_id crossref_primary_10_1007_s12598_017_0929_2
crossref_primary_10_1007_s12598_018_1147_2
crossref_primary_10_1016_j_ijhydene_2024_02_334
crossref_primary_10_18321_ectj1635
crossref_primary_10_1007_s12598_015_0576_4
Cites_doi 10.1016/j.jallcom.2006.11.078
10.1016/S0925-8388(99)00821-X
10.1016/j.jallcom.2011.02.085
10.1016/j.ijhydene.2006.11.022
10.1016/j.jallcom.2007.02.003
10.1007/s003390100771
10.1039/C0JM01921F
10.1016/j.jallcom.2007.07.028
10.1016/j.ijhydene.2008.11.082
10.1016/j.jpowsour.2005.12.072
10.1007/s12598-013-0201-3
10.1557/JMR.2004.0417
10.1016/S0925-8388(98)00680-X
10.1016/j.matchemphys.2008.12.024
10.1007/s12598-013-0040-2
10.1016/j.ijhydene.2008.01.006
10.1016/j.jallcom.2007.11.128
10.1016/j.scriptamat.2007.01.003
10.1016/S0925-8388(99)00035-3
10.1038/35104634
10.1016/S0925-8388(01)01594-8
10.1016/j.jallcom.2012.12.016
ContentType Journal Article
Copyright The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2014
Copyright_xml – notice: The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2014
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
DOI 10.1007/s12598-014-0313-4
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Gaseous and electrochemical hydrogen storage behaviors of nanocrystalline and amorphous Nd-added Mg2Ni-type alloys
EISSN 1867-7185
EndPage 471
ExternalDocumentID 10_1007_s12598_014_0313_4
88897483504849534855484852
GroupedDBID --K
-EM
06D
0R~
0VY
188
1B1
29P
2B.
2C0
2KG
2RA
2VQ
30V
4.4
406
408
40D
5VR
5VS
8FE
8FG
8RM
8TC
92H
92I
92L
92R
93N
96X
AAAVM
AAEDT
AAFGU
AAHNG
AAIAL
AAJKR
AALRI
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAXUO
AAYFA
AAYIU
AAYQN
AAYTO
AAZMS
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADMDM
ADMUD
ADOXG
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETCA
AEVLU
AEVTX
AEXYK
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BA0
BENPR
BGLVJ
BGNMA
CAG
CCEZO
CCPQU
CDRFL
CHBEP
COF
CQIGP
CW9
D1I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EO9
ESBYG
FA0
FDB
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
I~X
J-C
JBSCW
JZLTJ
KB.
KOV
LLZTM
M41
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P9N
PDBOC
PT4
Q2X
R9I
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDC
SDG
SDH
SHX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
T13
TCJ
TGT
TSG
U2A
UG4
UGNYK
UOJIU
UTJUX
UZ4
UZXMN
VC2
VFIZW
W48
W92
WK8
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
~A9
~WA
-SB
-S~
5XA
5XC
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ABWVN
ACDTI
ACPIV
ACRPL
ADMLS
ADNMO
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CAJEB
H13
Q--
SJYHP
U1G
U5L
UY8
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIGII
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ID FETCH-LOGICAL-c402t-3f19ef7f0ed048327f72d329fb07aa7073a1f2c66bec94185873adf35f165c383
IEDL.DBID U2A
ISSN 1001-0521
IngestDate Tue Jul 01 01:30:01 EDT 2025
Thu Apr 24 22:56:16 EDT 2025
Fri Feb 21 02:43:30 EST 2025
Wed Feb 14 10:20:38 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Melt spinning
Hydrogen storage behaviors
Mg
Ni-type alloy
Nanocrystalline and amorphous
Element addition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-3f19ef7f0ed048327f72d329fb07aa7073a1f2c66bec94185873adf35f165c383
Notes Melt spinning technology was used to prepare the Mg2Ni-type(Mg24Ni10Cu2)100-xNdx(x = 0, 5, 10, 15,20) alloys in order to obtain a nanocrystalline and amorphous structure.The effects of the spinning rate on the structures and gaseous and electrochemical hydrogen storage behaviors of the alloys were investigated.The analysis of X-ray diffraction(XRD), transmission electron microscope(TEM), and scanning electron microscope(SEM) linked with energy-dispersive spectroscopy(EDS)reveals that all the as-cast alloys hold a multiphase structure, involving the main phase Mg2 Ni and some secondary phases such as Mg6 Ni, Nd5Mg41, and Nd Ni.The as-spun Nd-free alloy displays an entire nanocrystalline structure,whereas the as-spun Nd-added alloys hold a nanocrystalline and amorphous structure, and the amorphization degree visibly increases with the spinning rate increasing.The melt spinning ameliorates the hydrogen storage performances of the alloys dramatically.When the spinning rate rises from 0(the as-cast was defined as the spinning rate of 0 m s-1) to 40 m s-1, the discharge capacity increases from 86.4 to 452.8 m Ah g-1, the S20(the capacity maintain rate at 20 th cycle) value increases from53.2 % to 89.7 %, the hydrogen absorption saturation ratio(Ra5, a ratio of the hydrogen absorption quantity in 5 min to the saturated hydrogen absorption capacity) increases from36.9 % to 91.5 %, and the hydrogen desorption ratio(Rd10,a ratio of the hydrogen desorption quantity in 10 min to the saturated hydrogen absorption capacity) increases from16.4 % to 47.7 % for the(x = 10) alloy, respectively.
Mg2Ni-type alloy;Element addition;Melt spinning;Na
Yang-Huan Zhang;Sheng-Long Liu;Tai Yang;Guo-Fang Zhang;Xia Li;Dong-Liang Zhao;Key Laboratory of Integrated Exploitation of Baiyun Obo MultiMetal Resources, Inner Mongolia University of Science and Technology;Department of Functional Material Research, Central Iron and Steel Research Institute
11-2112/TF
PageCount 9
ParticipantIDs crossref_citationtrail_10_1007_s12598_014_0313_4
crossref_primary_10_1007_s12598_014_0313_4
springer_journals_10_1007_s12598_014_0313_4
chongqing_primary_88897483504849534855484852
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-07-01
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Rare metals
PublicationTitleAbbrev Rare Met
PublicationTitleAlternate Rare Metals
PublicationYear 2015
Publisher Nonferrous Metals Society of China
Publisher_xml – name: Nonferrous Metals Society of China
References Schlapbach, Züttel (CR8) 2001; 414
Chandra, Sharma, Chellappa, Cathey, Lynch, Bowman, Wermer, Paglieri (CR7) 2008; 452
Ren, Zhang, Li, Zhao, Guo, Wang (CR23) 2009; 34
Spassov, Köster (CR14) 1998; 279
Song, Kwon, Bae, Hong (CR13) 2008; 33
Zhang, Li, Ren, Hu, Zhang, Guo (CR21) 2011; 509
Huang, Liang, Sun, Wu (CR15) 2006; 160
Zhang, Li, Ren, Guo, Wu, Wang (CR16) 2009; 115
Ebrahimi-Porkani, Kashani-Bozorg (CR6) 2008; 456
Liu, Pan, Gao, Wang (CR2) 2011; 21
Zhu, Han, Zhao, Li, Liu (CR4) 2014; 33
Zhang, Zhao, Yang, Shang, Xu, Zhao (CR17) 2013; 555
Zhang, Ren, Yang, Zhao, Chen, Shang, Zhao (CR3) 2013; 32
Dornheim, Doppiu, Barkhordarian, Boesenberg, Klassen, Gutfleisch, Bormann (CR20) 2007; 56
Mulas, Schiffini, Cocco (CR10) 2004; 19
Wu, Han, Zhou, Lototsky, Solberg, Yartys (CR22) 2008; 466
Kuji, Nakano, Aizawa (CR9) 2002; 330–332
Skintuna, Lamati-Darkrim, Hirscher (CR5) 2007; 32
Zhang, Luo, Zeng, Wang, Kang (CR1) 2013; 37
Orimo, Fujii (CR18) 2001; 72
Wu, Wu, Wang, Wan (CR11) 2000; 302
Kumar, Viswanathan, Murthy (CR12) 2008; 461
Spassov, Köster (CR19) 1999; 287
B Skintuna (313_CR5) 2007; 32
MY Song (313_CR13) 2008; 33
D Chandra (313_CR7) 2008; 452
YH Zhang (313_CR16) 2009; 115
MS Wu (313_CR11) 2000; 302
XL Zhu (313_CR4) 2014; 33
SC Zhang (313_CR1) 2013; 37
L Schlapbach (313_CR8) 2001; 414
YF Liu (313_CR2) 2011; 21
M Dornheim (313_CR20) 2007; 56
Y Wu (313_CR22) 2008; 466
S Orimo (313_CR18) 2001; 72
LH Kumar (313_CR12) 2008; 461
YH Zhang (313_CR21) 2011; 509
YH Zhang (313_CR3) 2013; 32
T Kuji (313_CR9) 2002; 330–332
LJ Huang (313_CR15) 2006; 160
YH Zhang (313_CR17) 2013; 555
G Mulas (313_CR10) 2004; 19
T Spassov (313_CR19) 1999; 287
HP Ren (313_CR23) 2009; 34
A Ebrahimi-Porkani (313_CR6) 2008; 456
T Spassov (313_CR14) 1998; 279
References_xml – volume: 37
  start-page: 511
  issue: 4
  year: 2013
  ident: CR1
  article-title: Influence of magnesium content on self-discharge property of A B -Type RE-Mg-Ni hydrogen storage alloys
  publication-title: Chin J Rare Met
– volume: 452
  start-page: 312
  issue: 2
  year: 2008
  ident: CR7
  article-title: Hydriding and structural characteristics of thermally cycled and cold-worked V–0.5 at %C alloy
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2006.11.078
– volume: 302
  start-page: 248
  issue: 1–2
  year: 2000
  ident: CR11
  article-title: Surface treatment for hydrogen storage alloy of nickel/metal hydride battery
  publication-title: J Alloys Compd
  doi: 10.1016/S0925-8388(99)00821-X
– volume: 509
  start-page: 5604
  issue: 18
  year: 2011
  ident: CR21
  article-title: Gaseous and electrochemical hydrogen storage kinetics of nanocrystalline Mg Ni-type alloy prepared by rapid quenching
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2011.02.085
– volume: 32
  start-page: 1121
  issue: 9
  year: 2007
  ident: CR5
  article-title: Metal hydride materials for solid hydrogen storage: a review
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2006.11.022
– volume: 456
  start-page: 211
  issue: 1–2
  year: 2008
  ident: CR6
  article-title: Nanocrystalline Mg Ni-based powders produced by high-energy ball milling and subsequent annealing
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2007.02.003
– volume: 72
  start-page: 167
  issue: 2
  year: 2001
  ident: CR18
  article-title: Materials science of Mg-Ni-based new hydrides
  publication-title: Appl Phys A
  doi: 10.1007/s003390100771
– volume: 21
  start-page: 4743
  issue: 13
  year: 2011
  ident: CR2
  article-title: Advanced hydrogen storage alloys for Ni/MH rechargeable batteries
  publication-title: J Mater Chem
  doi: 10.1039/C0JM01921F
– volume: 461
  start-page: 72
  issue: 1–2
  year: 2008
  ident: CR12
  article-title: Hydrogen absorption by Mg Ni prepared by polyol reduction
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2007.07.028
– volume: 34
  start-page: 1429
  issue: 3
  year: 2009
  ident: CR23
  article-title: Influence of the substitution of La for Mg on the microstructure and hydrogen storage characteristics of Mg La Ni (  = 0–6) alloys
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.11.082
– volume: 160
  start-page: 684
  issue: 1
  year: 2006
  ident: CR15
  article-title: Electrode properties of melt-spun Mg–Ni–Nd amorphous alloys
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2005.12.072
– volume: 33
  start-page: 86
  issue: 1
  year: 2014
  ident: CR4
  article-title: Improving hydrogen storage performance of Li–Mg–N–H system by adding niobium hydride
  publication-title: Rare Met
  doi: 10.1007/s12598-013-0201-3
– volume: 19
  start-page: 3279
  issue: 11
  year: 2004
  ident: CR10
  article-title: Mechanochemical study of the hydriding properties of nanostructured Mg Ni-Ni composites
  publication-title: J Mater Res
  doi: 10.1557/JMR.2004.0417
– volume: 279
  start-page: 279
  issue: 2
  year: 1998
  ident: CR14
  article-title: Thermal stability and hydriding properties of nanocrystalline melt-spun Mg Ni Y alloy
  publication-title: J Alloys Compd
  doi: 10.1016/S0925-8388(98)00680-X
– volume: 115
  start-page: 328
  issue: 1
  year: 2009
  ident: CR16
  article-title: An investigation on the hydrogen storage characteristics of the melt-spun nanocrystalline and amorphous Mg La Ni (  = 0, 2) hydrogen storage alloys
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2008.12.024
– volume: 32
  start-page: 150
  issue: 2
  year: 2013
  ident: CR3
  article-title: Electrochemical performances of as-cast and annealed La Nd Mg Ni Al Si (  = 0–0.4) alloys applied to Ni/metal hydride (MH) battery
  publication-title: Rare Met
  doi: 10.1007/s12598-013-0040-2
– volume: 33
  start-page: 1711
  issue: 6
  year: 2008
  ident: CR13
  article-title: Hydrogen-storage properties of Mg–23.5Ni–(0 and 5) Cu prepared by melt spinning and crystallization heat treatment
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.01.006
– volume: 466
  start-page: 176
  issue: 1–2
  year: 2008
  ident: CR22
  article-title: Microstructure and hydrogenation behavior of ball-milled and melt-spun Mg–10Ni–2Mn alloys
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2007.11.128
– volume: 56
  start-page: 841
  issue: 10
  year: 2007
  ident: CR20
  article-title: Hydrogen storage in magnesium-based hydrides and hydride composites
  publication-title: Scr Mater
  doi: 10.1016/j.scriptamat.2007.01.003
– volume: 287
  start-page: 243
  issue: 1–2
  year: 1999
  ident: CR19
  article-title: Hydrogenation of amorphous and nanocrystalline Mg-based alloys
  publication-title: J Alloys Compd
  doi: 10.1016/S0925-8388(99)00035-3
– volume: 414
  start-page: 353
  year: 2001
  ident: CR8
  article-title: Hydrogen-storage materials for mobile applications
  publication-title: Nature
  doi: 10.1038/35104634
– volume: 330–332
  start-page: 590
  year: 2002
  ident: CR9
  article-title: Hydrogen absorption and electrochemical properties of Mg Ni (  = 0–0.5) alloys prepared by bulk mechanical alloying
  publication-title: J Alloys Compd
  doi: 10.1016/S0925-8388(01)01594-8
– volume: 555
  start-page: 131
  year: 2013
  ident: CR17
  article-title: Comparative study of electrochemical performances of the as-melt Mg Ni M (M = None, Cu Co, Mn;  = 0, 4) alloys applied to Ni/metal hydride (MH) battery
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2012.12.016
– volume: 461
  start-page: 72
  issue: 1–2
  year: 2008
  ident: 313_CR12
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2007.07.028
– volume: 115
  start-page: 328
  issue: 1
  year: 2009
  ident: 313_CR16
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2008.12.024
– volume: 287
  start-page: 243
  issue: 1–2
  year: 1999
  ident: 313_CR19
  publication-title: J Alloys Compd
  doi: 10.1016/S0925-8388(99)00035-3
– volume: 509
  start-page: 5604
  issue: 18
  year: 2011
  ident: 313_CR21
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2011.02.085
– volume: 555
  start-page: 131
  year: 2013
  ident: 313_CR17
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2012.12.016
– volume: 56
  start-page: 841
  issue: 10
  year: 2007
  ident: 313_CR20
  publication-title: Scr Mater
  doi: 10.1016/j.scriptamat.2007.01.003
– volume: 32
  start-page: 1121
  issue: 9
  year: 2007
  ident: 313_CR5
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2006.11.022
– volume: 279
  start-page: 279
  issue: 2
  year: 1998
  ident: 313_CR14
  publication-title: J Alloys Compd
  doi: 10.1016/S0925-8388(98)00680-X
– volume: 330–332
  start-page: 590
  year: 2002
  ident: 313_CR9
  publication-title: J Alloys Compd
  doi: 10.1016/S0925-8388(01)01594-8
– volume: 160
  start-page: 684
  issue: 1
  year: 2006
  ident: 313_CR15
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2005.12.072
– volume: 34
  start-page: 1429
  issue: 3
  year: 2009
  ident: 313_CR23
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.11.082
– volume: 452
  start-page: 312
  issue: 2
  year: 2008
  ident: 313_CR7
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2006.11.078
– volume: 414
  start-page: 353
  year: 2001
  ident: 313_CR8
  publication-title: Nature
  doi: 10.1038/35104634
– volume: 37
  start-page: 511
  issue: 4
  year: 2013
  ident: 313_CR1
  publication-title: Chin J Rare Met
– volume: 19
  start-page: 3279
  issue: 11
  year: 2004
  ident: 313_CR10
  publication-title: J Mater Res
  doi: 10.1557/JMR.2004.0417
– volume: 21
  start-page: 4743
  issue: 13
  year: 2011
  ident: 313_CR2
  publication-title: J Mater Chem
  doi: 10.1039/C0JM01921F
– volume: 33
  start-page: 86
  issue: 1
  year: 2014
  ident: 313_CR4
  publication-title: Rare Met
  doi: 10.1007/s12598-013-0201-3
– volume: 302
  start-page: 248
  issue: 1–2
  year: 2000
  ident: 313_CR11
  publication-title: J Alloys Compd
– volume: 72
  start-page: 167
  issue: 2
  year: 2001
  ident: 313_CR18
  publication-title: Appl Phys A
  doi: 10.1007/s003390100771
– volume: 456
  start-page: 211
  issue: 1–2
  year: 2008
  ident: 313_CR6
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2007.02.003
– volume: 466
  start-page: 176
  issue: 1–2
  year: 2008
  ident: 313_CR22
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2007.11.128
– volume: 33
  start-page: 1711
  issue: 6
  year: 2008
  ident: 313_CR13
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.01.006
– volume: 32
  start-page: 150
  issue: 2
  year: 2013
  ident: 313_CR3
  publication-title: Rare Met
  doi: 10.1007/s12598-013-0040-2
SSID ssj0044660
Score 2.019926
Snippet Melt spinning technology was used to prepare the Mg2Ni-type(Mg24Ni10Cu2)100-xNdx(x = 0, 5, 10, 15,20) alloys in order to obtain a nanocrystalline and amorphous...
Melt spinning technology was used to prepare the Mg 2 Ni-type (Mg 24 Ni 10 Cu 2 ) 100− x Nd x ( x  = 0, 5, 10, 15, 20) alloys in order to obtain a...
SourceID crossref
springer
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 463
SubjectTerms addition;Melt
alloy;Element
Biomaterials
Chemistry and Materials Science
Energy
Materials Engineering
Materials Science
Metallic Materials
Mg2Ni-type
Nanoscale Science and Technology
Physical Chemistry
spinning;Na
Title Gaseous and electrochemical hydrogen storage behaviors of nanocrystalline and amorphous Nd-added Mg2Ni-type alloys
URI http://lib.cqvip.com/qk/85314X/201507/88897483504849534855484852.html
https://link.springer.com/article/10.1007/s12598-014-0313-4
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gu8AB8RTjMeXACYjU9bkeJ9hDwHaBSeMUJU2yIUEL7Tjs32P3sTEJkDi1qtJEilPbX21_JuRCSu2DodBMespmbqgjJkPTZo5lpAw9oY3EiO5w5A_G7t3Em5R13FmV7V6FJHNNvSp2A08dE69chnyDzN0kdQ-hOxzisd2p1C_GJwsKAsTJYJyqUOZPUyChwiyJpx-w3LphWo-K5samt0t2Si-Rdgqx7pENHe-T7W_cgQck7YP9AdhORaxo2cwmKqv_6Wyh0gSOBsXcR9AYtKrGz2hiaCziJEoX4BciIbfOZxBvCew4zjdSDLWRosOpPXph-I-WYnR-kR2Sca_7dDNgZQMFFgEsnDPHtEJtAmNphczxdmACWzl2aKQVCBHA1y1axo58HwQZIotNG54o43im5XsRYNcjUouTWB8TGioDvkokgrwxh-sL4xihseoVRKsc0yDXy53k7wVRBgd0DXAFfDxYHfNYkYgG7tqe3SBWtdk8KsnIsSfGK1_RKKOsOMiKo6y42yCXy1eqBf4YfFVJkJcfZfb76JN_jT4lW-A1eUXO7hmpzdNPfQ6eyVw2Sb1zO3x4xGv_-b7bzE_mF4Zp3LU
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gHIAD4inGMwdOQKSu7x4nxBiw9bRJu0VJk2xI0EI3Dvv32H1sTAIkblWVJlKc2J9r-zMhV1JqHwyFZtJTNnMjnTAZmZA5lpEy8oQ2EiO6_djvDt2nkTeq6rindbZ7HZIsNPWy2A2QOiZeuQz5Bpm7TjYAC4SYxzW027X6xfhkSUGAfjIYpzqU-dMUSKgwydLxByy3aphWo6KFsenskp0KJdJ2KdY9sqbTfbL9jTvwgOQPYH_AbaciVbRqZpNU1f90Mld5BkeDYu4jaAxaV-NPaWZoKtIsyeeAC5GQWxcziLcMdhznixVDbaRof2zHLwz_0VKMzs-nh2TYuR_cdVnVQIEl4BbOmGNakTaBsbRC5ng7MIGtHDsy0gqECOB2i5axE98HQUbIYhPCG2Ucz7R8LwHf9Yg00izVx4RGygBWSURQNOZwfWEcIzRWvYJolWOa5Haxk_y9JMrg4F2DuwIYD1bHPFYkooGn0LObxKo3mycVGTn2xHjlSxpllBUHWXGUFXeb5HrxSb3AH4Nvagny6lJOfx998q_Rl2SzO-j3eO8xfj4lW4CgvDJ_94w0ZvmnPgeUMpMXxan8Aj3N3IA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UE6MH4zPiswdPaiPskz0SFfEB8SAJt6bddsBEdxHwwL93ht0FSdTE22bTbZN-7Tx2Zr5h7ExrG6CisEL7xhFeZGOhI6gJtwJaR76yoCmi22oHzY730PW7eZ_TUZHtXoQks5oGYmlKxlcDA1fzwje02ikJyxPEPSi8ZbaC0rhKx7rj1AtRTLHKjI6AfGZUVEVY86cpiFyhnya9D1x6UUktRkiniqexyTZyi5HXM4i32JJNttn6Nx7BHTa8Q12ELjxXieF5Y5s4ZwLg_YkZpnhMOOVBovTgRWX-iKfAE5Wk8XCCNiKRc9vpDOo9xd2n-dpGkGQyvNVz2q-C_tdyitRPRrus07h9uW6KvJmCiNFFHAsXqpGFECrWEIu8E0LoGNeJQFdCpUK86aoKThwECGpEjDY1fGPA9aEa-DH6sXuslKSJ3Wc8MoB2S6zCaZMOL1DggrJUAYswGxfK7HK2k3KQkWZI9LTRdUF7D1ennFYipcGnmu-UWaXYbBnnxOTUH-NNzimVCSuJWEnCSnpldj77pFjgj8EXBYIyv6Cj30cf_Gv0KVt9vmnIp_v24yFbQ2PKz1J5j1hpPPy0x2iwjPXJ9FB-ASXk4Lw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gaseous+and+electrochemical+hydrogen+storage+behaviors+of+nanocrystalline+and+amorphous+Nd-added+Mg2Ni-type+alloys&rft.jtitle=Rare+metals&rft.au=Zhang%2C+Yang-Huan&rft.au=Liu%2C+Sheng-Long&rft.au=Yang%2C+Tai&rft.au=Zhang%2C+Guo-Fang&rft.date=2015-07-01&rft.issn=1001-0521&rft.eissn=1867-7185&rft.volume=34&rft.issue=7&rft.spage=463&rft.epage=471&rft_id=info:doi/10.1007%2Fs12598-014-0313-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12598_014_0313_4
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85314X%2F85314X.jpg