Multistage robust optimization for the day-ahead scheduling of hybrid thermal-hydro-wind-solar systems
The integration of large-scale uncertain and uncontrollable wind and solar power generation has brought new challenges to the operations of modern power systems. In a power system with abundant water resources, hydroelectric generation with high operational flexibility is a powerful tool to promote...
Saved in:
Published in | Journal of global optimization Vol. 88; no. 4; pp. 999 - 1034 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2024
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The integration of large-scale uncertain and uncontrollable wind and solar power generation has brought new challenges to the operations of modern power systems. In a power system with abundant water resources, hydroelectric generation with high operational flexibility is a powerful tool to promote a higher penetration of wind and solar power generation. In this paper, we study the day-ahead scheduling of a thermal-hydro-wind-solar power system. The uncertainties of renewable energy generation, including uncertain natural water inflow and wind/solar power output, are taken into consideration. We explore how the operational flexibility of hydroelectric generation and the coordination of thermal-hydro power can be utilized to hedge against uncertain wind/solar power under a multistage robust optimization (MRO) framework. To address the computational issue, mixed decision rules are employed to reformulate the original MRO model with a multi-level structure into a bi-level one. Column-and-constraint generation (C &CG) algorithm is extended into the MRO case to solve the bi-level model. The proposed optimization approach is tested in three real-world cases. The computational results demonstrate the capability of hydroelectric generation to promote the accommodation of uncertain wind and solar power. |
---|---|
AbstractList | The integration of large-scale uncertain and uncontrollable wind and solar power generation has brought new challenges to the operations of modern power systems. In a power system with abundant water resources, hydroelectric generation with high operational flexibility is a powerful tool to promote a higher penetration of wind and solar power generation. In this paper, we study the day-ahead scheduling of a thermal-hydro-wind-solar power system. The uncertainties of renewable energy generation, including uncertain natural water inflow and wind/solar power output, are taken into consideration. We explore how the operational flexibility of hydroelectric generation and the coordination of thermal-hydro power can be utilized to hedge against uncertain wind/solar power under a multistage robust optimization (MRO) framework. To address the computational issue, mixed decision rules are employed to reformulate the original MRO model with a multi-level structure into a bi-level one. Column-and-constraint generation (C &CG) algorithm is extended into the MRO case to solve the bi-level model. The proposed optimization approach is tested in three real-world cases. The computational results demonstrate the capability of hydroelectric generation to promote the accommodation of uncertain wind and solar power. |
Audience | Academic |
Author | Zhong, Zhiming Fan, Neng Wu, Lei |
Author_xml | – sequence: 1 givenname: Zhiming surname: Zhong fullname: Zhong, Zhiming organization: Department of Systems and Industrial Engineering, University of Arizona – sequence: 2 givenname: Neng orcidid: 0000-0003-4333-3721 surname: Fan fullname: Fan, Neng email: nfan@arizona.edu organization: Department of Systems and Industrial Engineering, University of Arizona – sequence: 3 givenname: Lei surname: Wu fullname: Wu, Lei organization: Department of Electrical and Computer Engineering, Stevens Institute of Technology |
BookMark | eNp9kc1q3TAQhUVJoDc_L9CVIGulI-lakpchtGkhIZvshWxJ1wq2dSvJFPfpo8SBQhZhFgPD-WaYc87QyRxnh9A3CtcUQH7PFFSrCDBOgHKmCPuCdrSRnLCWihO0g5Y1pAGgX9FZzs8A0KqG7ZB_WMYScjEHh1PsllxwPJYwhX-mhDhjHxMug8PWrMQMzlic-8HZZQzzAUePh7VLwb5K0mRGMqw2RfI3zJbkOJqE85qLm_IFOvVmzO7yvZ-jp58_nm5_kfvHu9-3N_ek3wMrhDvuOie6VjFvO8lEx9R-L433HQjpG9VJIZ1XRrbeNr0TkoPnvAfWghWKn6Orbe0xxT-Ly0U_xyXN9aLmwIA1QklRVdeb6mBGp8PsY0mmr2XdFPpqrA91fiOVYrzZM1oBtQF9ijkn53Ufyps_FQyjpqBfU9BbCrqmoN9S0Kyi7AN6TGEyaf0c4huUq3g-uPT_jU-oF3lVnak |
CitedBy_id | crossref_primary_10_1088_1742_6596_2876_1_012026 crossref_primary_10_3934_energy_2024055 crossref_primary_10_3390_en18061405 crossref_primary_10_1109_TASE_2024_3368088 crossref_primary_10_1016_j_energy_2025_134918 crossref_primary_10_1016_j_est_2024_115109 crossref_primary_10_1016_j_ejor_2024_05_011 |
Cites_doi | 10.1007/s10898-021-01041-y 10.1049/gtd2.12141 10.1007/s10898-009-9401-7 10.1109/TPWRS.2002.804951 10.1109/TPWRS.2016.2593422 10.1287/opre.2015.1456 10.1016/j.orl.2013.05.003 10.1109/TPWRS.2006.876672 10.1016/j.ejor.2022.06.061 10.1109/TPWRS.2020.3031324 10.1016/j.apenergy.2021.116612 10.1109/TPWRS.2017.2655078 10.1109/TSTE.2020.3031054 10.1109/TPWRS.2017.2686701 10.1016/j.apenergy.2018.09.102 10.1016/j.jclepro.2019.119267 10.1109/TPWRS.2012.2205021 10.1049/gtd2.12232 10.1016/j.compchemeng.2021.107252 10.1016/j.enbenv.2021.04.002 10.1109/TPWRS.2015.2418158 10.1109/TSTE.2018.2864296 10.1016/j.renene.2020.11.061 10.1007/s10107-017-1135-6 10.1109/TSG.2018.2806973 10.1109/PTC.2003.1304379 10.1109/TSG.2018.2810247 10.1109/TPWRS.2020.3028480 10.1109/TPWRS.2021.3097270 10.1016/j.ijepes.2019.01.020 10.1007/978-1-4614-0237-4 10.1016/j.compchemeng.2022.107891 10.1109/TII.2020.2973740 10.1109/TSTE.2019.2915049 10.1007/s11081-021-09703-2 10.1109/TSG.2021.3119972 10.1109/TPWRS.2017.2695963 10.1007/s10898-017-0572-3 10.1109/TSTE.2020.2979925 10.1016/j.energy.2018.03.002 10.1007/s10898-007-9261-y |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. COPYRIGHT 2024 Springer |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: COPYRIGHT 2024 Springer |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1007/s10898-023-01328-2 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central - New (Subscription) Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Sciences (General) Computer Science |
EISSN | 1573-2916 |
EndPage | 1034 |
ExternalDocumentID | A788235421 10_1007_s10898_023_01328_2 |
GrantInformation_xml | – fundername: Water Power Technologies Office grantid: DE-EE0008944 funderid: http://dx.doi.org/10.13039/100011031 |
GroupedDBID | -52 -57 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9M PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCLPG SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8T Z8U Z8W Z92 ZMTXR ZWQNP ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT AEIIB PMFND 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c402t-3e3ebe6b982fdb726b28447affb067f58b767ef8a79fd5ce6730f33c0290d683 |
IEDL.DBID | BENPR |
ISSN | 0925-5001 |
IngestDate | Sat Aug 16 21:25:14 EDT 2025 Tue Jun 10 20:57:34 EDT 2025 Tue Jul 01 00:53:02 EDT 2025 Thu Apr 24 23:07:23 EDT 2025 Fri Feb 21 02:43:53 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Multistage robust optimization Hybrid power system Renewable energy Day-ahead scheduling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-3e3ebe6b982fdb726b28447affb067f58b767ef8a79fd5ce6730f33c0290d683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4333-3721 |
OpenAccessLink | https://www.osti.gov/biblio/2438046 |
PQID | 3020256876 |
PQPubID | 29930 |
PageCount | 36 |
ParticipantIDs | proquest_journals_3020256876 gale_infotracacademiconefile_A788235421 crossref_citationtrail_10_1007_s10898_023_01328_2 crossref_primary_10_1007_s10898_023_01328_2 springer_journals_10_1007_s10898_023_01328_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240400 2024-04-00 20240401 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 4 year: 2024 text: 20240400 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering |
PublicationTitle | Journal of global optimization |
PublicationTitleAbbrev | J Glob Optim |
PublicationYear | 2024 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | ZhangYLiuYShuSZhengFHuangZA data-driven distributionally robust optimization model for multi-energy coupled system considering the temporal-spatial correlation and distribution uncertainty of renewable energy sourcesEnergy2021216 ZhongZFanNWuLA hybrid robust-stochastic optimization approach for day-ahead scheduling of cascaded hydroelectric system in restructured electricity marketEur. J. Oper. Res.202330629099264527398 PistikopoulosENBarbosa-PovoaALeeJHMisenerRMitsosAReklaitisGVVenkatasubramanianVYouFGaniRProcess systems engineering—the generation next?Comput. Chem. Eng.2021147 TongXSunHLuoXZhengQDistributionally robust chance constrained optimization for economic dispatch in renewable energy integrated systemsJ. Glob. Optim.20187011311583745796 LorcaASunXAMultistage robust unit commitment with dynamic uncertainty sets and energy storageIEEE Trans. Power Syst.201632316781688 PenaIMartinez-AnidoCBHodgeBMAn extended IEEE 118-bus test system with high renewable penetrationIEEE Trans. Power Syst.2017331281289 DebKScope of stationary multi-objective evolutionary optimization: a case study on a hydro-thermal power dispatch problemJ. Glob. Optim.20084144795152413124 ZhouYShahidehpourMWeiZSunGChenSMultistage robust look-ahead unit commitment with probabilistic forecasting in multi-carrier energy systemsIEEE Trans. Sustain. Energy20201217082 WiebeJMisenerRROmodel: modeling robust optimization problems in PyomoOptim. Eng.2022234187318944503468 ZhaoZChengCLiaoSLiYLüQA MILP based framework for the hydro unit commitment considering irregular forbidden zone related constraintsIEEE Trans. Power Syst.202036318191832 DoepfertMCastroRTechno-economic optimization of a 100% renewable energy system in 2050 for countries with high shares of hydropower: the case of PortugalRenew. Energy2021165491503 Growe-Kuska, N., Heitsch, H., Romisch, W.: Scenario reduction and scenario tree construction for power management problems. In: 2003 IEEE Bologna Power Tech Conference Proceedings, vol. 3 (2003) ChenCSunHShenXGuoYGuoQXiaTTwo-stage robust planning-operation co-optimization of energy hub considering precise energy storage economic modelAppl. Energy2019252 IEA: World energy outlook 2021. https://www.iea.org/reports/world-energy-outlook-2021. Accessed Feb 22, 2022 ZhouYZhaiQWuLMultistage transmission-constrained unit commitment with renewable energy and energy storage: Implicit and explicit decision methodsIEEE Trans. Sustain. Energy202012210321043 ConejoAJArroyoJMContrerasJVillamorFASelf-scheduling of a hydro producer in a pool-based electricity marketIEEE Trans. Power Syst.200217412651272 LorcaASunXALitvinovEZhengTMultistage adaptive robust optimization for the unit commitment problemOper. Res.201664132513463260 ZhangCXuYLiZDongZYRobustly coordinated operation of a multi-energy microgrid with flexible electric and thermal loadsIEEE Trans. Smart Grid201810327652775 BirgeJRLouveauxFIntroduction to Stochastic Programming2011BerlinSpringer LiXZhaiQMulti-stage robust transmission constrained unit commitment: a decomposition framework with implicit decision rulesInt. J. Electr. Power2019108372381 DongFLiWJiZFatemaSBidding strategy of thermal power compound differential evolution game under the market mechanism of peak regulation auxiliary serviceIET Gener. Transm. Distrib.2021151218711883 LiZZhangQGuoQNojavanSPumped hydro energy storage arbitrage in the day-ahead market in smart grid using stochastic p-robust optimization methodSustain. Cities Soc.202175 ChrisandinaNVedantSIakovouEPistikopoulosEEl-HalwagiMMulti-scale integration for enhanced resilience of sustainable energy supply chains: perspectives and challengesComput. Chem. Eng.2022164 Tejada-ArangoDASánchez-MartınPRamosASecurity constrained unit commitment using line outage distribution factorsIEEE Trans. Power Syst.2017331329337 VellosoAStreetAPozoDArroyoJMCobosNGTwo-stage robust unit commitment for co-optimized electricity markets: an adaptive data-driven approach for scenario-based uncertainty setsIEEE Trans. Sustain. Energy2019112958969 ShiYDongSGuoCChenZWangLEnhancing the flexibility of storage integrated power system by multi-stage robust dispatchIEEE Trans. Power Syst.202036323142322 WangFXieYXuJReliable-economical equilibrium based short-term scheduling towards hybrid hydro-photovoltaic generation systems: case study from ChinaAppl. Energy2019253 HuBWuLRobust SCUC considering continuous/discrete uncertainties and quick-start units: a two-stage robust optimization with mixed-integer recourseIEEE Trans. Power Syst.201531214071419 ZhangYWangJZengBHuZChance-constrained two-stage unit commitment under uncertain load and wind power output using bilinear benders decompositionIEEE Trans. Power Syst.201732536373647 LiQQiuYYangHXuYChenWWangPStability-constrained two-stage robust optimization for integrated hydrogen hybrid energy systemCSEE J. Power Energy202071162171 DaneshvarMMohammadi-IvatlooBZareKAsadiSTwo-stage robust stochastic model scheduling for transactive energy based renewable microgridsIEEE Trans. Ind. Inform.2020161168576867 CarriónMArroyoJMA computationally efficient mixed-integer linear formulation for the thermal unit commitment problemIEEE Trans. Power Syst.200621313711378 HuangBChenYBaldickRA configuration based pumped storage hydro model in the miso day-ahead marketIEEE Trans. Power Syst.2021371132141 BertsimasDGeorghioABinary decision rules for multistage adaptive mixed-integer optimizationMath. Program.201816723954333755738 Ammari, C., Belatrache, D., Touhami, B., Makhloufi, S.: Sizing, optimization, control and energy management of hybrid renewable energy system—a review. Energy Built Environ. (2021) BiswasPPSuganthanPNQuBYAmaratungaGAMultiobjective economic-environmental power dispatch with stochastic wind-solar-small hydro powerEnergy201815010391057 SinghBKnuevenBLagrangian relaxation based heuristics for a chance-constrained optimization model of a hybrid solar-battery storage systemJ. Glob. Optim.20218049659894287553 BertsimasDLitvinovESunXAZhaoJZhengTAdaptive robust optimization for the security constrained unit commitment problemIEEE Trans. Power Syst.20122815263 CobosNGArroyoJMAlguacilNStreetANetwork-constrained unit commitment under significant wind penetration: a multistage robust approach with non-fixed recourseAppl. Energy2018232489503 Du, M., Huang, Y., Liu, J., Wu, G., Jawad, S.: Cvar-based generation expansion planning of cascaded hydro-photovoltaic-pumped storage system with uncertain solar power considering flexibility constraints. IET Gener. Transm. Distrib. (2021) HuangKLiuPMingBKimJSGongYEconomic operation of a wind-solar-hydro complementary system considering risks of output shortage, power curtailment and spilled waterAppl. Energy2021290 GongYLiuPLiuYHuangKRobust operation interval of a large-scale hydro-photovoltaic power system to cope with emergenciesAppl. Energy2021290 LiZWuLXuYMoazeniSTangZMulti-stage real-time operation of a multi-energy microgrid with electrical and thermal energy storage assets: a data-driven MPC-ADP approachIEEE Trans. Smart Grid2021131213226 HouWWeiHData-driven robust day-ahead unit commitment model for hydro/thermal/wind/photovoltaic/nuclear power systemsInt. J. Electr. Power2021125 YanMZhangNAiXShahidehpourMKangCWenJRobust two-stage regional-district scheduling of multi-carrier energy systems with a large penetration of wind powerIEEE Trans. Sustain. Energy201810312271239 QiuHZhaoBGuWBoRBi-level two-stage robust optimal scheduling for AC/DC hybrid multi-microgridsIEEE Trans. Smart Grid20189554555466 DaneshvarMMohammadi-IvatlooBZareKTwo-stage optimal robust scheduling of hybrid energy system considering the demand response programsJ. Clean. Prod.2020248 BalendraSBogleIDLModular global optimisation in chemical engineeringJ. Glob. Optim.2009451691852533747 ZengBZhaoLSolving two-stage robust optimization problems using a column-and-constraint generation methodOper. Res. Lett.20134154574613102689 AJ Conejo (1328_CR11) 2002; 17 M Yan (1328_CR41) 2018; 10 M Daneshvar (1328_CR12) 2020; 248 F Wang (1328_CR39) 2019; 253 A Lorca (1328_CR29) 2016; 32 X Tong (1328_CR37) 2018; 70 C Zhang (1328_CR44) 2018; 10 Y Zhang (1328_CR43) 2017; 32 C Chen (1328_CR8) 2019; 252 1328_CR19 W Hou (1328_CR20) 2021; 125 B Singh (1328_CR35) 2021; 80 Y Shi (1328_CR34) 2020; 36 1328_CR17 PP Biswas (1328_CR6) 2018; 150 S Balendra (1328_CR2) 2009; 45 F Dong (1328_CR16) 2021; 15 A Velloso (1328_CR38) 2019; 11 K Huang (1328_CR23) 2021; 290 Z Li (1328_CR28) 2021; 75 M Doepfert (1328_CR15) 2021; 165 Y Gong (1328_CR18) 2021; 290 A Lorca (1328_CR30) 2016; 64 JR Birge (1328_CR5) 2011 D Bertsimas (1328_CR3) 2018; 167 1328_CR24 1328_CR1 M Daneshvar (1328_CR13) 2020; 16 Z Zhong (1328_CR47) 2023; 306 I Pena (1328_CR31) 2017; 33 B Zeng (1328_CR42) 2013; 41 K Deb (1328_CR14) 2008; 41 DA Tejada-Arango (1328_CR36) 2017; 33 J Wiebe (1328_CR40) 2022; 23 Y Zhou (1328_CR49) 2020; 12 D Bertsimas (1328_CR4) 2012; 28 Z Zhao (1328_CR46) 2020; 36 Z Li (1328_CR27) 2021; 13 X Li (1328_CR25) 2019; 108 B Hu (1328_CR21) 2015; 31 NG Cobos (1328_CR10) 2018; 232 B Huang (1328_CR22) 2021; 37 Y Zhang (1328_CR45) 2021; 216 H Qiu (1328_CR33) 2018; 9 N Chrisandina (1328_CR9) 2022; 164 EN Pistikopoulos (1328_CR32) 2021; 147 M Carrión (1328_CR7) 2006; 21 Y Zhou (1328_CR48) 2020; 12 Q Li (1328_CR26) 2020; 7 |
References_xml | – reference: TongXSunHLuoXZhengQDistributionally robust chance constrained optimization for economic dispatch in renewable energy integrated systemsJ. Glob. Optim.20187011311583745796 – reference: WiebeJMisenerRROmodel: modeling robust optimization problems in PyomoOptim. Eng.2022234187318944503468 – reference: ZengBZhaoLSolving two-stage robust optimization problems using a column-and-constraint generation methodOper. Res. Lett.20134154574613102689 – reference: BirgeJRLouveauxFIntroduction to Stochastic Programming2011BerlinSpringer – reference: ChenCSunHShenXGuoYGuoQXiaTTwo-stage robust planning-operation co-optimization of energy hub considering precise energy storage economic modelAppl. Energy2019252 – reference: ZhangYWangJZengBHuZChance-constrained two-stage unit commitment under uncertain load and wind power output using bilinear benders decompositionIEEE Trans. Power Syst.201732536373647 – reference: VellosoAStreetAPozoDArroyoJMCobosNGTwo-stage robust unit commitment for co-optimized electricity markets: an adaptive data-driven approach for scenario-based uncertainty setsIEEE Trans. Sustain. Energy2019112958969 – reference: ZhouYShahidehpourMWeiZSunGChenSMultistage robust look-ahead unit commitment with probabilistic forecasting in multi-carrier energy systemsIEEE Trans. Sustain. Energy20201217082 – reference: IEA: World energy outlook 2021. https://www.iea.org/reports/world-energy-outlook-2021. Accessed Feb 22, 2022 – reference: LiQQiuYYangHXuYChenWWangPStability-constrained two-stage robust optimization for integrated hydrogen hybrid energy systemCSEE J. Power Energy202071162171 – reference: PenaIMartinez-AnidoCBHodgeBMAn extended IEEE 118-bus test system with high renewable penetrationIEEE Trans. Power Syst.2017331281289 – reference: BertsimasDLitvinovESunXAZhaoJZhengTAdaptive robust optimization for the security constrained unit commitment problemIEEE Trans. Power Syst.20122815263 – reference: DaneshvarMMohammadi-IvatlooBZareKAsadiSTwo-stage robust stochastic model scheduling for transactive energy based renewable microgridsIEEE Trans. Ind. Inform.2020161168576867 – reference: PistikopoulosENBarbosa-PovoaALeeJHMisenerRMitsosAReklaitisGVVenkatasubramanianVYouFGaniRProcess systems engineering—the generation next?Comput. Chem. Eng.2021147 – reference: ZhouYZhaiQWuLMultistage transmission-constrained unit commitment with renewable energy and energy storage: Implicit and explicit decision methodsIEEE Trans. Sustain. Energy202012210321043 – reference: LiXZhaiQMulti-stage robust transmission constrained unit commitment: a decomposition framework with implicit decision rulesInt. J. Electr. Power2019108372381 – reference: WangFXieYXuJReliable-economical equilibrium based short-term scheduling towards hybrid hydro-photovoltaic generation systems: case study from ChinaAppl. Energy2019253 – reference: BiswasPPSuganthanPNQuBYAmaratungaGAMultiobjective economic-environmental power dispatch with stochastic wind-solar-small hydro powerEnergy201815010391057 – reference: HuBWuLRobust SCUC considering continuous/discrete uncertainties and quick-start units: a two-stage robust optimization with mixed-integer recourseIEEE Trans. Power Syst.201531214071419 – reference: HuangKLiuPMingBKimJSGongYEconomic operation of a wind-solar-hydro complementary system considering risks of output shortage, power curtailment and spilled waterAppl. Energy2021290 – reference: ShiYDongSGuoCChenZWangLEnhancing the flexibility of storage integrated power system by multi-stage robust dispatchIEEE Trans. Power Syst.202036323142322 – reference: DaneshvarMMohammadi-IvatlooBZareKTwo-stage optimal robust scheduling of hybrid energy system considering the demand response programsJ. Clean. Prod.2020248 – reference: LiZZhangQGuoQNojavanSPumped hydro energy storage arbitrage in the day-ahead market in smart grid using stochastic p-robust optimization methodSustain. Cities Soc.202175 – reference: SinghBKnuevenBLagrangian relaxation based heuristics for a chance-constrained optimization model of a hybrid solar-battery storage systemJ. Glob. Optim.20218049659894287553 – reference: DoepfertMCastroRTechno-economic optimization of a 100% renewable energy system in 2050 for countries with high shares of hydropower: the case of PortugalRenew. Energy2021165491503 – reference: Tejada-ArangoDASánchez-MartınPRamosASecurity constrained unit commitment using line outage distribution factorsIEEE Trans. Power Syst.2017331329337 – reference: BalendraSBogleIDLModular global optimisation in chemical engineeringJ. Glob. Optim.2009451691852533747 – reference: LorcaASunXAMultistage robust unit commitment with dynamic uncertainty sets and energy storageIEEE Trans. Power Syst.201632316781688 – reference: Du, M., Huang, Y., Liu, J., Wu, G., Jawad, S.: Cvar-based generation expansion planning of cascaded hydro-photovoltaic-pumped storage system with uncertain solar power considering flexibility constraints. IET Gener. Transm. Distrib. (2021) – reference: HuangBChenYBaldickRA configuration based pumped storage hydro model in the miso day-ahead marketIEEE Trans. Power Syst.2021371132141 – reference: ZhangCXuYLiZDongZYRobustly coordinated operation of a multi-energy microgrid with flexible electric and thermal loadsIEEE Trans. Smart Grid201810327652775 – reference: GongYLiuPLiuYHuangKRobust operation interval of a large-scale hydro-photovoltaic power system to cope with emergenciesAppl. Energy2021290 – reference: QiuHZhaoBGuWBoRBi-level two-stage robust optimal scheduling for AC/DC hybrid multi-microgridsIEEE Trans. Smart Grid20189554555466 – reference: LiZWuLXuYMoazeniSTangZMulti-stage real-time operation of a multi-energy microgrid with electrical and thermal energy storage assets: a data-driven MPC-ADP approachIEEE Trans. Smart Grid2021131213226 – reference: Growe-Kuska, N., Heitsch, H., Romisch, W.: Scenario reduction and scenario tree construction for power management problems. In: 2003 IEEE Bologna Power Tech Conference Proceedings, vol. 3 (2003) – reference: ZhangYLiuYShuSZhengFHuangZA data-driven distributionally robust optimization model for multi-energy coupled system considering the temporal-spatial correlation and distribution uncertainty of renewable energy sourcesEnergy2021216 – reference: ZhongZFanNWuLA hybrid robust-stochastic optimization approach for day-ahead scheduling of cascaded hydroelectric system in restructured electricity marketEur. J. Oper. Res.202330629099264527398 – reference: CarriónMArroyoJMA computationally efficient mixed-integer linear formulation for the thermal unit commitment problemIEEE Trans. Power Syst.200621313711378 – reference: ConejoAJArroyoJMContrerasJVillamorFASelf-scheduling of a hydro producer in a pool-based electricity marketIEEE Trans. Power Syst.200217412651272 – reference: ZhaoZChengCLiaoSLiYLüQA MILP based framework for the hydro unit commitment considering irregular forbidden zone related constraintsIEEE Trans. Power Syst.202036318191832 – reference: HouWWeiHData-driven robust day-ahead unit commitment model for hydro/thermal/wind/photovoltaic/nuclear power systemsInt. J. Electr. Power2021125 – reference: ChrisandinaNVedantSIakovouEPistikopoulosEEl-HalwagiMMulti-scale integration for enhanced resilience of sustainable energy supply chains: perspectives and challengesComput. Chem. Eng.2022164 – reference: CobosNGArroyoJMAlguacilNStreetANetwork-constrained unit commitment under significant wind penetration: a multistage robust approach with non-fixed recourseAppl. Energy2018232489503 – reference: BertsimasDGeorghioABinary decision rules for multistage adaptive mixed-integer optimizationMath. Program.201816723954333755738 – reference: DebKScope of stationary multi-objective evolutionary optimization: a case study on a hydro-thermal power dispatch problemJ. Glob. Optim.20084144795152413124 – reference: Ammari, C., Belatrache, D., Touhami, B., Makhloufi, S.: Sizing, optimization, control and energy management of hybrid renewable energy system—a review. Energy Built Environ. (2021) – reference: DongFLiWJiZFatemaSBidding strategy of thermal power compound differential evolution game under the market mechanism of peak regulation auxiliary serviceIET Gener. Transm. Distrib.2021151218711883 – reference: YanMZhangNAiXShahidehpourMKangCWenJRobust two-stage regional-district scheduling of multi-carrier energy systems with a large penetration of wind powerIEEE Trans. Sustain. Energy201810312271239 – reference: LorcaASunXALitvinovEZhengTMultistage adaptive robust optimization for the unit commitment problemOper. Res.201664132513463260 – volume: 80 start-page: 965 issue: 4 year: 2021 ident: 1328_CR35 publication-title: J. Glob. Optim. doi: 10.1007/s10898-021-01041-y – volume: 15 start-page: 1871 issue: 12 year: 2021 ident: 1328_CR16 publication-title: IET Gener. Transm. Distrib. doi: 10.1049/gtd2.12141 – volume: 45 start-page: 169 year: 2009 ident: 1328_CR2 publication-title: J. Glob. Optim. doi: 10.1007/s10898-009-9401-7 – volume: 125 year: 2021 ident: 1328_CR20 publication-title: Int. J. Electr. Power – volume: 17 start-page: 1265 issue: 4 year: 2002 ident: 1328_CR11 publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2002.804951 – volume: 32 start-page: 1678 issue: 3 year: 2016 ident: 1328_CR29 publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2016.2593422 – volume: 64 start-page: 32 issue: 1 year: 2016 ident: 1328_CR30 publication-title: Oper. Res. doi: 10.1287/opre.2015.1456 – volume: 216 year: 2021 ident: 1328_CR45 publication-title: Energy – volume: 41 start-page: 457 issue: 5 year: 2013 ident: 1328_CR42 publication-title: Oper. Res. Lett. doi: 10.1016/j.orl.2013.05.003 – volume: 21 start-page: 1371 issue: 3 year: 2006 ident: 1328_CR7 publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2006.876672 – volume: 290 year: 2021 ident: 1328_CR23 publication-title: Appl. Energy – volume: 306 start-page: 909 issue: 2 year: 2023 ident: 1328_CR47 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2022.06.061 – volume: 36 start-page: 2314 issue: 3 year: 2020 ident: 1328_CR34 publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2020.3031324 – volume: 290 year: 2021 ident: 1328_CR18 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.116612 – volume: 32 start-page: 3637 issue: 5 year: 2017 ident: 1328_CR43 publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2017.2655078 – volume: 12 start-page: 1032 issue: 2 year: 2020 ident: 1328_CR49 publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2020.3031054 – volume: 33 start-page: 329 issue: 1 year: 2017 ident: 1328_CR36 publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2017.2686701 – volume: 232 start-page: 489 year: 2018 ident: 1328_CR10 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.09.102 – volume: 248 year: 2020 ident: 1328_CR12 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.119267 – volume: 28 start-page: 52 issue: 1 year: 2012 ident: 1328_CR4 publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2012.2205021 – ident: 1328_CR17 doi: 10.1049/gtd2.12232 – volume: 147 year: 2021 ident: 1328_CR32 publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2021.107252 – ident: 1328_CR1 doi: 10.1016/j.enbenv.2021.04.002 – volume: 31 start-page: 1407 issue: 2 year: 2015 ident: 1328_CR21 publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2015.2418158 – volume: 10 start-page: 1227 issue: 3 year: 2018 ident: 1328_CR41 publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2018.2864296 – volume: 7 start-page: 162 issue: 1 year: 2020 ident: 1328_CR26 publication-title: CSEE J. Power Energy – volume: 165 start-page: 491 year: 2021 ident: 1328_CR15 publication-title: Renew. Energy doi: 10.1016/j.renene.2020.11.061 – volume: 253 year: 2019 ident: 1328_CR39 publication-title: Appl. Energy – volume: 167 start-page: 395 issue: 2 year: 2018 ident: 1328_CR3 publication-title: Math. Program. doi: 10.1007/s10107-017-1135-6 – volume: 9 start-page: 5455 issue: 5 year: 2018 ident: 1328_CR33 publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2018.2806973 – ident: 1328_CR19 doi: 10.1109/PTC.2003.1304379 – volume: 10 start-page: 2765 issue: 3 year: 2018 ident: 1328_CR44 publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2018.2810247 – volume: 36 start-page: 1819 issue: 3 year: 2020 ident: 1328_CR46 publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2020.3028480 – volume: 37 start-page: 132 issue: 1 year: 2021 ident: 1328_CR22 publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2021.3097270 – volume: 108 start-page: 372 year: 2019 ident: 1328_CR25 publication-title: Int. J. Electr. Power doi: 10.1016/j.ijepes.2019.01.020 – volume-title: Introduction to Stochastic Programming year: 2011 ident: 1328_CR5 doi: 10.1007/978-1-4614-0237-4 – volume: 252 year: 2019 ident: 1328_CR8 publication-title: Appl. Energy – volume: 164 year: 2022 ident: 1328_CR9 publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2022.107891 – ident: 1328_CR24 – volume: 16 start-page: 6857 issue: 11 year: 2020 ident: 1328_CR13 publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2020.2973740 – volume: 75 year: 2021 ident: 1328_CR28 publication-title: Sustain. Cities Soc. – volume: 11 start-page: 958 issue: 2 year: 2019 ident: 1328_CR38 publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2019.2915049 – volume: 23 start-page: 1873 issue: 4 year: 2022 ident: 1328_CR40 publication-title: Optim. Eng. doi: 10.1007/s11081-021-09703-2 – volume: 13 start-page: 213 issue: 1 year: 2021 ident: 1328_CR27 publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2021.3119972 – volume: 33 start-page: 281 issue: 1 year: 2017 ident: 1328_CR31 publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2017.2695963 – volume: 70 start-page: 131 issue: 1 year: 2018 ident: 1328_CR37 publication-title: J. Glob. Optim. doi: 10.1007/s10898-017-0572-3 – volume: 12 start-page: 70 issue: 1 year: 2020 ident: 1328_CR48 publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2020.2979925 – volume: 150 start-page: 1039 year: 2018 ident: 1328_CR6 publication-title: Energy doi: 10.1016/j.energy.2018.03.002 – volume: 41 start-page: 479 issue: 4 year: 2008 ident: 1328_CR14 publication-title: J. Glob. Optim. doi: 10.1007/s10898-007-9261-y |
SSID | ssj0009852 |
Score | 2.4573255 |
Snippet | The integration of large-scale uncertain and uncontrollable wind and solar power generation has brought new challenges to the operations of modern power... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 999 |
SubjectTerms | Algorithms Analysis Aquatic resources Columnar structure Computer Science Decision-making Flexibility Green technology Hybrid systems Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Power Real Functions Scheduling Solar energy Solar power generation Water resources Water-power |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-wwFD742OjCx6g4vshC8F6ugU4ySdvlIIoIulJwF_K8LnQq0xGZf-9JJ3V8g3RVepqUnuQ8yPm-A3AorMsMXlQyltO-CyU1QWpaCIPOume91U2V75U8v-lf3IrbBAqr22r39kiysdRvwG5FhIOxWP_DGep3HhZFzN1xFd-wwYxqt2j67GQlE1SgFU5Qma_HeOeOPhrlT6ejjdM5W4OVFC2SwVS96zDnhx1YbTsxkLQxO7D8hlYQ7y5fuVjrDqwnqZr8SRzTfzcgNMBbjAz_ezKqzFM9JhUaj4eEyiQYyhIcgzg9oRrttSOYBaNXiuB1UgVyN4lIryiChv2e3k3cqKLPmN_TOubKZEoQXW_C9dnp9ck5TS0XqMVEcky556hVacqCBWdyJg26r36uQzDo1oIoTC5zHwqdl8EJ6yUaiMC5zViZOVnwLVgYVkO_DUSz0hba5yFgSCY9K4UJuWManaOzvMy60Gt_vLKJjjx2xbhXMyLlqCyFylKNshTrwr_Xdx6nZBw_Sh9Ffaq4U3FkqxPgAL8vcl6pAWb_jIs-63Vhr1W5Slu4VhwDaYwH0Vt04bhdBrPH38-78zvxXVjCiVI10B4sjEdPfh8DnbE5aNb1CytQ9Ao priority: 102 providerName: Springer Nature |
Title | Multistage robust optimization for the day-ahead scheduling of hybrid thermal-hydro-wind-solar systems |
URI | https://link.springer.com/article/10.1007/s10898-023-01328-2 https://www.proquest.com/docview/3020256876 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFH8CetkOaLBNKx-VD0gb2qyldu04p6mbWhCTEEIgsZPlz3FgDTRFU__7PacuZZtAuUSJ40T52b_3nv0-AA6E84XFg0rGSjrwsaI2SkOVsCis-y4403r5nsrjy8HJlbjKC25NdqtccmJL1L52aY38M0e9BsUzTt4vt3c0VY1Ku6u5hMY6dJCCFRpfna-j07PzVdpd1dbcKSomqEBGzmEzOXhOpfAylvyJOMPx8pdo-peg_9spbQXQ-BVsZs2RDBdQb8FamGzDy0f5BLdhK8_UhnzI6aQPX0NsY2xRCfwZyLS2982M1MgTv3IAJkGtlaAWSLyZU4PU7AkavCiAUpw6qSO5nqegrtQEOfyGXs_9tKa_0ZSnTTKLySIXdPMGLsaji2_HNFdXoA5txhnlgSOA0laKRW9LJi1KqkFpYrQowaJQtpRliMqUVfTCBYlcEDl3BasKLxV_CxuTehLeATGscsqEMkbUvmRglbCx9MygHPSOV0UX-sv_ql3OPJ4KYNzoVc7khIVGLHSLhWZd-PjwzO0i78azrd8nuHSalNizMzm2AL8vpbfSQzT0GRcD1u_C3hJRnWdro1djqwufliivbj_93p3ne9uFF3iaHX32YGM2vQ_7qMPMbA_W1fioB53h0Y_vo14etnj1kg3_AAo08QQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiBYQWwr4AAIEVrN2bCcHhCpg2dLS0yL1ZvlJkdpN2WxV7Y_iPzLOOiwP0VuVWx5OlBl_30zibwbgqXC-sLhRyZiipY81tVEaWgmLZD10wZlule-hHH8pPx2JozX40Wth0rLKHhM7oPaNS9_IdzjGNUjPOHnfnn2nqWtU-rvat9BYusV-WFxgyta-2XuP9n3G2OjD5N2Y5q4C1GGuNKc8cHxwaeuKRW8VkxYRulQmRovIHUVllVQhVkbV0QsXJM6ByLkrWF14WXEc9hpcLzmv04SqRh9XNX6rrsFPUTNBBcJ_1uhkpV6VtGwsLV7iDJ3zDx78mw3--S3bsd3oDtzOYSrZXfrVBqyF6Sbc-q144SZsZFhoyYtcu_rlXYidoBcjzq-BzBp73s5Jg6B0mtWeBENkgiEn8WZBDfKAJ5hdI9slUTxpIjleJAVZOgUJ44QeL_ysoRffpp62KQcny8LT7T2YXMVLvw_r02YaHgAxrHaVCSpGDPVkYLWwUXlmkHS943UxgGH_XrXLZc5Tt40TvSrQnGyh0Ra6s4VmA3j165qzZZGPS89-nsylEwLgyM5kIQM-X6qlpXcVZi1clGw4gO3eojpDQ6tXjjyA172VV4f_f9-ty0d7AjfGk88H-mDvcP8h3MTdeYXRNqzPZ-fhEQZPc_u4c1kC-oqnyE94ACkm |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggGgBsaWADyBAYDVrr-3kgFChXbUUrSpUpN4sPylSuymbrar9afw7xlmH5SF6q3JLHOcx4_lmkvlmAJ4J5wuLG5WMKTr0saI2SkNLYRGsBy4402b5juXel-HHY3G8Aj86LkxKq-xsYmuofe3SN_Itjn4NwjMu3q2Y0yIOd0bvzr_T1EEq_Wnt2mksVOQgzC8xfGve7u-grJ8zNto9-rBHc4cB6jBumlEeOD6EtFXJoreKSYvWeqhMjBateBSlVVKFWBpVRS9ckLgeIueuYFXhZclx2huwqjAoKnqw-n53fPh5WfG3bNv9FBUTVCAYZMZO5u2VidnGUioTZ6iqf6Di39jwz0_aFvtGd-FOdlrJ9kLL1mAlTNbh9m-lDNdhLRuJhrzMlaxf3YPY0nvR__wayLS2F82M1GiizjL3k6DDTNABJd7MqUFU8ARjbcS-RJEndSQn88QnS0MQPk7pydxPa3r5beJpkyJysihD3dyHo-t47Q-gN6kn4SEQwypXmqBiRMdPBlYJG5VnBiHYO14VfRh071W7XPQ89d441ctyzUkWGmWhW1lo1ofXv845X5T8uHL0iyQunewBzuxMpjXg_aXKWnpbYQzDxZAN-rDZSVRnQ9HopVr34U0n5eXh_1934-rZnsJNXB760_744BHcwr053WgTerPpRXiMntTMPsk6S0Bf8yr5CVs9Lrg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multistage+robust+optimization+for+the+day-ahead+scheduling+of+hybrid+thermal-hydro-wind-solar+systems&rft.jtitle=Journal+of+global+optimization&rft.au=Zhong%2C+Zhiming&rft.au=Fan%2C+Neng&rft.au=Wu%2C+Lei&rft.date=2024-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=88&rft.issue=4&rft.spage=999&rft.epage=1034&rft_id=info:doi/10.1007%2Fs10898-023-01328-2&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon |