Multistage robust optimization for the day-ahead scheduling of hybrid thermal-hydro-wind-solar systems

The integration of large-scale uncertain and uncontrollable wind and solar power generation has brought new challenges to the operations of modern power systems. In a power system with abundant water resources, hydroelectric generation with high operational flexibility is a powerful tool to promote...

Full description

Saved in:
Bibliographic Details
Published inJournal of global optimization Vol. 88; no. 4; pp. 999 - 1034
Main Authors Zhong, Zhiming, Fan, Neng, Wu, Lei
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2024
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The integration of large-scale uncertain and uncontrollable wind and solar power generation has brought new challenges to the operations of modern power systems. In a power system with abundant water resources, hydroelectric generation with high operational flexibility is a powerful tool to promote a higher penetration of wind and solar power generation. In this paper, we study the day-ahead scheduling of a thermal-hydro-wind-solar power system. The uncertainties of renewable energy generation, including uncertain natural water inflow and wind/solar power output, are taken into consideration. We explore how the operational flexibility of hydroelectric generation and the coordination of thermal-hydro power can be utilized to hedge against uncertain wind/solar power under a multistage robust optimization (MRO) framework. To address the computational issue, mixed decision rules are employed to reformulate the original MRO model with a multi-level structure into a bi-level one. Column-and-constraint generation (C &CG) algorithm is extended into the MRO case to solve the bi-level model. The proposed optimization approach is tested in three real-world cases. The computational results demonstrate the capability of hydroelectric generation to promote the accommodation of uncertain wind and solar power.
AbstractList The integration of large-scale uncertain and uncontrollable wind and solar power generation has brought new challenges to the operations of modern power systems. In a power system with abundant water resources, hydroelectric generation with high operational flexibility is a powerful tool to promote a higher penetration of wind and solar power generation. In this paper, we study the day-ahead scheduling of a thermal-hydro-wind-solar power system. The uncertainties of renewable energy generation, including uncertain natural water inflow and wind/solar power output, are taken into consideration. We explore how the operational flexibility of hydroelectric generation and the coordination of thermal-hydro power can be utilized to hedge against uncertain wind/solar power under a multistage robust optimization (MRO) framework. To address the computational issue, mixed decision rules are employed to reformulate the original MRO model with a multi-level structure into a bi-level one. Column-and-constraint generation (C &CG) algorithm is extended into the MRO case to solve the bi-level model. The proposed optimization approach is tested in three real-world cases. The computational results demonstrate the capability of hydroelectric generation to promote the accommodation of uncertain wind and solar power.
Audience Academic
Author Zhong, Zhiming
Fan, Neng
Wu, Lei
Author_xml – sequence: 1
  givenname: Zhiming
  surname: Zhong
  fullname: Zhong, Zhiming
  organization: Department of Systems and Industrial Engineering, University of Arizona
– sequence: 2
  givenname: Neng
  orcidid: 0000-0003-4333-3721
  surname: Fan
  fullname: Fan, Neng
  email: nfan@arizona.edu
  organization: Department of Systems and Industrial Engineering, University of Arizona
– sequence: 3
  givenname: Lei
  surname: Wu
  fullname: Wu, Lei
  organization: Department of Electrical and Computer Engineering, Stevens Institute of Technology
BookMark eNp9kc1q3TAQhUVJoDc_L9CVIGulI-lakpchtGkhIZvshWxJ1wq2dSvJFPfpo8SBQhZhFgPD-WaYc87QyRxnh9A3CtcUQH7PFFSrCDBOgHKmCPuCdrSRnLCWihO0g5Y1pAGgX9FZzs8A0KqG7ZB_WMYScjEHh1PsllxwPJYwhX-mhDhjHxMug8PWrMQMzlic-8HZZQzzAUePh7VLwb5K0mRGMqw2RfI3zJbkOJqE85qLm_IFOvVmzO7yvZ-jp58_nm5_kfvHu9-3N_ek3wMrhDvuOie6VjFvO8lEx9R-L433HQjpG9VJIZ1XRrbeNr0TkoPnvAfWghWKn6Orbe0xxT-Ly0U_xyXN9aLmwIA1QklRVdeb6mBGp8PsY0mmr2XdFPpqrA91fiOVYrzZM1oBtQF9ijkn53Ufyps_FQyjpqBfU9BbCrqmoN9S0Kyi7AN6TGEyaf0c4huUq3g-uPT_jU-oF3lVnak
CitedBy_id crossref_primary_10_1088_1742_6596_2876_1_012026
crossref_primary_10_3934_energy_2024055
crossref_primary_10_3390_en18061405
crossref_primary_10_1109_TASE_2024_3368088
crossref_primary_10_1016_j_energy_2025_134918
crossref_primary_10_1016_j_est_2024_115109
crossref_primary_10_1016_j_ejor_2024_05_011
Cites_doi 10.1007/s10898-021-01041-y
10.1049/gtd2.12141
10.1007/s10898-009-9401-7
10.1109/TPWRS.2002.804951
10.1109/TPWRS.2016.2593422
10.1287/opre.2015.1456
10.1016/j.orl.2013.05.003
10.1109/TPWRS.2006.876672
10.1016/j.ejor.2022.06.061
10.1109/TPWRS.2020.3031324
10.1016/j.apenergy.2021.116612
10.1109/TPWRS.2017.2655078
10.1109/TSTE.2020.3031054
10.1109/TPWRS.2017.2686701
10.1016/j.apenergy.2018.09.102
10.1016/j.jclepro.2019.119267
10.1109/TPWRS.2012.2205021
10.1049/gtd2.12232
10.1016/j.compchemeng.2021.107252
10.1016/j.enbenv.2021.04.002
10.1109/TPWRS.2015.2418158
10.1109/TSTE.2018.2864296
10.1016/j.renene.2020.11.061
10.1007/s10107-017-1135-6
10.1109/TSG.2018.2806973
10.1109/PTC.2003.1304379
10.1109/TSG.2018.2810247
10.1109/TPWRS.2020.3028480
10.1109/TPWRS.2021.3097270
10.1016/j.ijepes.2019.01.020
10.1007/978-1-4614-0237-4
10.1016/j.compchemeng.2022.107891
10.1109/TII.2020.2973740
10.1109/TSTE.2019.2915049
10.1007/s11081-021-09703-2
10.1109/TSG.2021.3119972
10.1109/TPWRS.2017.2695963
10.1007/s10898-017-0572-3
10.1109/TSTE.2020.2979925
10.1016/j.energy.2018.03.002
10.1007/s10898-007-9261-y
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2024 Springer
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2024 Springer
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10898-023-01328-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central - New (Subscription)
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Computer Science
EISSN 1573-2916
EndPage 1034
ExternalDocumentID A788235421
10_1007_s10898_023_01328_2
GrantInformation_xml – fundername: Water Power Technologies Office
  grantid: DE-EE0008944
  funderid: http://dx.doi.org/10.13039/100011031
GroupedDBID -52
-57
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8U
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c402t-3e3ebe6b982fdb726b28447affb067f58b767ef8a79fd5ce6730f33c0290d683
IEDL.DBID BENPR
ISSN 0925-5001
IngestDate Sat Aug 16 21:25:14 EDT 2025
Tue Jun 10 20:57:34 EDT 2025
Tue Jul 01 00:53:02 EDT 2025
Thu Apr 24 23:07:23 EDT 2025
Fri Feb 21 02:43:53 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Multistage robust optimization
Hybrid power system
Renewable energy
Day-ahead scheduling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-3e3ebe6b982fdb726b28447affb067f58b767ef8a79fd5ce6730f33c0290d683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4333-3721
OpenAccessLink https://www.osti.gov/biblio/2438046
PQID 3020256876
PQPubID 29930
PageCount 36
ParticipantIDs proquest_journals_3020256876
gale_infotracacademiconefile_A788235421
crossref_citationtrail_10_1007_s10898_023_01328_2
crossref_primary_10_1007_s10898_023_01328_2
springer_journals_10_1007_s10898_023_01328_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240400
2024-04-00
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 4
  year: 2024
  text: 20240400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering
PublicationTitle Journal of global optimization
PublicationTitleAbbrev J Glob Optim
PublicationYear 2024
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References ZhangYLiuYShuSZhengFHuangZA data-driven distributionally robust optimization model for multi-energy coupled system considering the temporal-spatial correlation and distribution uncertainty of renewable energy sourcesEnergy2021216
ZhongZFanNWuLA hybrid robust-stochastic optimization approach for day-ahead scheduling of cascaded hydroelectric system in restructured electricity marketEur. J. Oper. Res.202330629099264527398
PistikopoulosENBarbosa-PovoaALeeJHMisenerRMitsosAReklaitisGVVenkatasubramanianVYouFGaniRProcess systems engineering—the generation next?Comput. Chem. Eng.2021147
TongXSunHLuoXZhengQDistributionally robust chance constrained optimization for economic dispatch in renewable energy integrated systemsJ. Glob. Optim.20187011311583745796
LorcaASunXAMultistage robust unit commitment with dynamic uncertainty sets and energy storageIEEE Trans. Power Syst.201632316781688
PenaIMartinez-AnidoCBHodgeBMAn extended IEEE 118-bus test system with high renewable penetrationIEEE Trans. Power Syst.2017331281289
DebKScope of stationary multi-objective evolutionary optimization: a case study on a hydro-thermal power dispatch problemJ. Glob. Optim.20084144795152413124
ZhouYShahidehpourMWeiZSunGChenSMultistage robust look-ahead unit commitment with probabilistic forecasting in multi-carrier energy systemsIEEE Trans. Sustain. Energy20201217082
WiebeJMisenerRROmodel: modeling robust optimization problems in PyomoOptim. Eng.2022234187318944503468
ZhaoZChengCLiaoSLiYLüQA MILP based framework for the hydro unit commitment considering irregular forbidden zone related constraintsIEEE Trans. Power Syst.202036318191832
DoepfertMCastroRTechno-economic optimization of a 100% renewable energy system in 2050 for countries with high shares of hydropower: the case of PortugalRenew. Energy2021165491503
Growe-Kuska, N., Heitsch, H., Romisch, W.: Scenario reduction and scenario tree construction for power management problems. In: 2003 IEEE Bologna Power Tech Conference Proceedings, vol. 3 (2003)
ChenCSunHShenXGuoYGuoQXiaTTwo-stage robust planning-operation co-optimization of energy hub considering precise energy storage economic modelAppl. Energy2019252
IEA: World energy outlook 2021. https://www.iea.org/reports/world-energy-outlook-2021. Accessed Feb 22, 2022
ZhouYZhaiQWuLMultistage transmission-constrained unit commitment with renewable energy and energy storage: Implicit and explicit decision methodsIEEE Trans. Sustain. Energy202012210321043
ConejoAJArroyoJMContrerasJVillamorFASelf-scheduling of a hydro producer in a pool-based electricity marketIEEE Trans. Power Syst.200217412651272
LorcaASunXALitvinovEZhengTMultistage adaptive robust optimization for the unit commitment problemOper. Res.201664132513463260
ZhangCXuYLiZDongZYRobustly coordinated operation of a multi-energy microgrid with flexible electric and thermal loadsIEEE Trans. Smart Grid201810327652775
BirgeJRLouveauxFIntroduction to Stochastic Programming2011BerlinSpringer
LiXZhaiQMulti-stage robust transmission constrained unit commitment: a decomposition framework with implicit decision rulesInt. J. Electr. Power2019108372381
DongFLiWJiZFatemaSBidding strategy of thermal power compound differential evolution game under the market mechanism of peak regulation auxiliary serviceIET Gener. Transm. Distrib.2021151218711883
LiZZhangQGuoQNojavanSPumped hydro energy storage arbitrage in the day-ahead market in smart grid using stochastic p-robust optimization methodSustain. Cities Soc.202175
ChrisandinaNVedantSIakovouEPistikopoulosEEl-HalwagiMMulti-scale integration for enhanced resilience of sustainable energy supply chains: perspectives and challengesComput. Chem. Eng.2022164
Tejada-ArangoDASánchez-MartınPRamosASecurity constrained unit commitment using line outage distribution factorsIEEE Trans. Power Syst.2017331329337
VellosoAStreetAPozoDArroyoJMCobosNGTwo-stage robust unit commitment for co-optimized electricity markets: an adaptive data-driven approach for scenario-based uncertainty setsIEEE Trans. Sustain. Energy2019112958969
ShiYDongSGuoCChenZWangLEnhancing the flexibility of storage integrated power system by multi-stage robust dispatchIEEE Trans. Power Syst.202036323142322
WangFXieYXuJReliable-economical equilibrium based short-term scheduling towards hybrid hydro-photovoltaic generation systems: case study from ChinaAppl. Energy2019253
HuBWuLRobust SCUC considering continuous/discrete uncertainties and quick-start units: a two-stage robust optimization with mixed-integer recourseIEEE Trans. Power Syst.201531214071419
ZhangYWangJZengBHuZChance-constrained two-stage unit commitment under uncertain load and wind power output using bilinear benders decompositionIEEE Trans. Power Syst.201732536373647
LiQQiuYYangHXuYChenWWangPStability-constrained two-stage robust optimization for integrated hydrogen hybrid energy systemCSEE J. Power Energy202071162171
DaneshvarMMohammadi-IvatlooBZareKAsadiSTwo-stage robust stochastic model scheduling for transactive energy based renewable microgridsIEEE Trans. Ind. Inform.2020161168576867
CarriónMArroyoJMA computationally efficient mixed-integer linear formulation for the thermal unit commitment problemIEEE Trans. Power Syst.200621313711378
HuangBChenYBaldickRA configuration based pumped storage hydro model in the miso day-ahead marketIEEE Trans. Power Syst.2021371132141
BertsimasDGeorghioABinary decision rules for multistage adaptive mixed-integer optimizationMath. Program.201816723954333755738
Ammari, C., Belatrache, D., Touhami, B., Makhloufi, S.: Sizing, optimization, control and energy management of hybrid renewable energy system—a review. Energy Built Environ. (2021)
BiswasPPSuganthanPNQuBYAmaratungaGAMultiobjective economic-environmental power dispatch with stochastic wind-solar-small hydro powerEnergy201815010391057
SinghBKnuevenBLagrangian relaxation based heuristics for a chance-constrained optimization model of a hybrid solar-battery storage systemJ. Glob. Optim.20218049659894287553
BertsimasDLitvinovESunXAZhaoJZhengTAdaptive robust optimization for the security constrained unit commitment problemIEEE Trans. Power Syst.20122815263
CobosNGArroyoJMAlguacilNStreetANetwork-constrained unit commitment under significant wind penetration: a multistage robust approach with non-fixed recourseAppl. Energy2018232489503
Du, M., Huang, Y., Liu, J., Wu, G., Jawad, S.: Cvar-based generation expansion planning of cascaded hydro-photovoltaic-pumped storage system with uncertain solar power considering flexibility constraints. IET Gener. Transm. Distrib. (2021)
HuangKLiuPMingBKimJSGongYEconomic operation of a wind-solar-hydro complementary system considering risks of output shortage, power curtailment and spilled waterAppl. Energy2021290
GongYLiuPLiuYHuangKRobust operation interval of a large-scale hydro-photovoltaic power system to cope with emergenciesAppl. Energy2021290
LiZWuLXuYMoazeniSTangZMulti-stage real-time operation of a multi-energy microgrid with electrical and thermal energy storage assets: a data-driven MPC-ADP approachIEEE Trans. Smart Grid2021131213226
HouWWeiHData-driven robust day-ahead unit commitment model for hydro/thermal/wind/photovoltaic/nuclear power systemsInt. J. Electr. Power2021125
YanMZhangNAiXShahidehpourMKangCWenJRobust two-stage regional-district scheduling of multi-carrier energy systems with a large penetration of wind powerIEEE Trans. Sustain. Energy201810312271239
QiuHZhaoBGuWBoRBi-level two-stage robust optimal scheduling for AC/DC hybrid multi-microgridsIEEE Trans. Smart Grid20189554555466
DaneshvarMMohammadi-IvatlooBZareKTwo-stage optimal robust scheduling of hybrid energy system considering the demand response programsJ. Clean. Prod.2020248
BalendraSBogleIDLModular global optimisation in chemical engineeringJ. Glob. Optim.2009451691852533747
ZengBZhaoLSolving two-stage robust optimization problems using a column-and-constraint generation methodOper. Res. Lett.20134154574613102689
AJ Conejo (1328_CR11) 2002; 17
M Yan (1328_CR41) 2018; 10
M Daneshvar (1328_CR12) 2020; 248
F Wang (1328_CR39) 2019; 253
A Lorca (1328_CR29) 2016; 32
X Tong (1328_CR37) 2018; 70
C Zhang (1328_CR44) 2018; 10
Y Zhang (1328_CR43) 2017; 32
C Chen (1328_CR8) 2019; 252
1328_CR19
W Hou (1328_CR20) 2021; 125
B Singh (1328_CR35) 2021; 80
Y Shi (1328_CR34) 2020; 36
1328_CR17
PP Biswas (1328_CR6) 2018; 150
S Balendra (1328_CR2) 2009; 45
F Dong (1328_CR16) 2021; 15
A Velloso (1328_CR38) 2019; 11
K Huang (1328_CR23) 2021; 290
Z Li (1328_CR28) 2021; 75
M Doepfert (1328_CR15) 2021; 165
Y Gong (1328_CR18) 2021; 290
A Lorca (1328_CR30) 2016; 64
JR Birge (1328_CR5) 2011
D Bertsimas (1328_CR3) 2018; 167
1328_CR24
1328_CR1
M Daneshvar (1328_CR13) 2020; 16
Z Zhong (1328_CR47) 2023; 306
I Pena (1328_CR31) 2017; 33
B Zeng (1328_CR42) 2013; 41
K Deb (1328_CR14) 2008; 41
DA Tejada-Arango (1328_CR36) 2017; 33
J Wiebe (1328_CR40) 2022; 23
Y Zhou (1328_CR49) 2020; 12
D Bertsimas (1328_CR4) 2012; 28
Z Zhao (1328_CR46) 2020; 36
Z Li (1328_CR27) 2021; 13
X Li (1328_CR25) 2019; 108
B Hu (1328_CR21) 2015; 31
NG Cobos (1328_CR10) 2018; 232
B Huang (1328_CR22) 2021; 37
Y Zhang (1328_CR45) 2021; 216
H Qiu (1328_CR33) 2018; 9
N Chrisandina (1328_CR9) 2022; 164
EN Pistikopoulos (1328_CR32) 2021; 147
M Carrión (1328_CR7) 2006; 21
Y Zhou (1328_CR48) 2020; 12
Q Li (1328_CR26) 2020; 7
References_xml – reference: TongXSunHLuoXZhengQDistributionally robust chance constrained optimization for economic dispatch in renewable energy integrated systemsJ. Glob. Optim.20187011311583745796
– reference: WiebeJMisenerRROmodel: modeling robust optimization problems in PyomoOptim. Eng.2022234187318944503468
– reference: ZengBZhaoLSolving two-stage robust optimization problems using a column-and-constraint generation methodOper. Res. Lett.20134154574613102689
– reference: BirgeJRLouveauxFIntroduction to Stochastic Programming2011BerlinSpringer
– reference: ChenCSunHShenXGuoYGuoQXiaTTwo-stage robust planning-operation co-optimization of energy hub considering precise energy storage economic modelAppl. Energy2019252
– reference: ZhangYWangJZengBHuZChance-constrained two-stage unit commitment under uncertain load and wind power output using bilinear benders decompositionIEEE Trans. Power Syst.201732536373647
– reference: VellosoAStreetAPozoDArroyoJMCobosNGTwo-stage robust unit commitment for co-optimized electricity markets: an adaptive data-driven approach for scenario-based uncertainty setsIEEE Trans. Sustain. Energy2019112958969
– reference: ZhouYShahidehpourMWeiZSunGChenSMultistage robust look-ahead unit commitment with probabilistic forecasting in multi-carrier energy systemsIEEE Trans. Sustain. Energy20201217082
– reference: IEA: World energy outlook 2021. https://www.iea.org/reports/world-energy-outlook-2021. Accessed Feb 22, 2022
– reference: LiQQiuYYangHXuYChenWWangPStability-constrained two-stage robust optimization for integrated hydrogen hybrid energy systemCSEE J. Power Energy202071162171
– reference: PenaIMartinez-AnidoCBHodgeBMAn extended IEEE 118-bus test system with high renewable penetrationIEEE Trans. Power Syst.2017331281289
– reference: BertsimasDLitvinovESunXAZhaoJZhengTAdaptive robust optimization for the security constrained unit commitment problemIEEE Trans. Power Syst.20122815263
– reference: DaneshvarMMohammadi-IvatlooBZareKAsadiSTwo-stage robust stochastic model scheduling for transactive energy based renewable microgridsIEEE Trans. Ind. Inform.2020161168576867
– reference: PistikopoulosENBarbosa-PovoaALeeJHMisenerRMitsosAReklaitisGVVenkatasubramanianVYouFGaniRProcess systems engineering—the generation next?Comput. Chem. Eng.2021147
– reference: ZhouYZhaiQWuLMultistage transmission-constrained unit commitment with renewable energy and energy storage: Implicit and explicit decision methodsIEEE Trans. Sustain. Energy202012210321043
– reference: LiXZhaiQMulti-stage robust transmission constrained unit commitment: a decomposition framework with implicit decision rulesInt. J. Electr. Power2019108372381
– reference: WangFXieYXuJReliable-economical equilibrium based short-term scheduling towards hybrid hydro-photovoltaic generation systems: case study from ChinaAppl. Energy2019253
– reference: BiswasPPSuganthanPNQuBYAmaratungaGAMultiobjective economic-environmental power dispatch with stochastic wind-solar-small hydro powerEnergy201815010391057
– reference: HuBWuLRobust SCUC considering continuous/discrete uncertainties and quick-start units: a two-stage robust optimization with mixed-integer recourseIEEE Trans. Power Syst.201531214071419
– reference: HuangKLiuPMingBKimJSGongYEconomic operation of a wind-solar-hydro complementary system considering risks of output shortage, power curtailment and spilled waterAppl. Energy2021290
– reference: ShiYDongSGuoCChenZWangLEnhancing the flexibility of storage integrated power system by multi-stage robust dispatchIEEE Trans. Power Syst.202036323142322
– reference: DaneshvarMMohammadi-IvatlooBZareKTwo-stage optimal robust scheduling of hybrid energy system considering the demand response programsJ. Clean. Prod.2020248
– reference: LiZZhangQGuoQNojavanSPumped hydro energy storage arbitrage in the day-ahead market in smart grid using stochastic p-robust optimization methodSustain. Cities Soc.202175
– reference: SinghBKnuevenBLagrangian relaxation based heuristics for a chance-constrained optimization model of a hybrid solar-battery storage systemJ. Glob. Optim.20218049659894287553
– reference: DoepfertMCastroRTechno-economic optimization of a 100% renewable energy system in 2050 for countries with high shares of hydropower: the case of PortugalRenew. Energy2021165491503
– reference: Tejada-ArangoDASánchez-MartınPRamosASecurity constrained unit commitment using line outage distribution factorsIEEE Trans. Power Syst.2017331329337
– reference: BalendraSBogleIDLModular global optimisation in chemical engineeringJ. Glob. Optim.2009451691852533747
– reference: LorcaASunXAMultistage robust unit commitment with dynamic uncertainty sets and energy storageIEEE Trans. Power Syst.201632316781688
– reference: Du, M., Huang, Y., Liu, J., Wu, G., Jawad, S.: Cvar-based generation expansion planning of cascaded hydro-photovoltaic-pumped storage system with uncertain solar power considering flexibility constraints. IET Gener. Transm. Distrib. (2021)
– reference: HuangBChenYBaldickRA configuration based pumped storage hydro model in the miso day-ahead marketIEEE Trans. Power Syst.2021371132141
– reference: ZhangCXuYLiZDongZYRobustly coordinated operation of a multi-energy microgrid with flexible electric and thermal loadsIEEE Trans. Smart Grid201810327652775
– reference: GongYLiuPLiuYHuangKRobust operation interval of a large-scale hydro-photovoltaic power system to cope with emergenciesAppl. Energy2021290
– reference: QiuHZhaoBGuWBoRBi-level two-stage robust optimal scheduling for AC/DC hybrid multi-microgridsIEEE Trans. Smart Grid20189554555466
– reference: LiZWuLXuYMoazeniSTangZMulti-stage real-time operation of a multi-energy microgrid with electrical and thermal energy storage assets: a data-driven MPC-ADP approachIEEE Trans. Smart Grid2021131213226
– reference: Growe-Kuska, N., Heitsch, H., Romisch, W.: Scenario reduction and scenario tree construction for power management problems. In: 2003 IEEE Bologna Power Tech Conference Proceedings, vol. 3 (2003)
– reference: ZhangYLiuYShuSZhengFHuangZA data-driven distributionally robust optimization model for multi-energy coupled system considering the temporal-spatial correlation and distribution uncertainty of renewable energy sourcesEnergy2021216
– reference: ZhongZFanNWuLA hybrid robust-stochastic optimization approach for day-ahead scheduling of cascaded hydroelectric system in restructured electricity marketEur. J. Oper. Res.202330629099264527398
– reference: CarriónMArroyoJMA computationally efficient mixed-integer linear formulation for the thermal unit commitment problemIEEE Trans. Power Syst.200621313711378
– reference: ConejoAJArroyoJMContrerasJVillamorFASelf-scheduling of a hydro producer in a pool-based electricity marketIEEE Trans. Power Syst.200217412651272
– reference: ZhaoZChengCLiaoSLiYLüQA MILP based framework for the hydro unit commitment considering irregular forbidden zone related constraintsIEEE Trans. Power Syst.202036318191832
– reference: HouWWeiHData-driven robust day-ahead unit commitment model for hydro/thermal/wind/photovoltaic/nuclear power systemsInt. J. Electr. Power2021125
– reference: ChrisandinaNVedantSIakovouEPistikopoulosEEl-HalwagiMMulti-scale integration for enhanced resilience of sustainable energy supply chains: perspectives and challengesComput. Chem. Eng.2022164
– reference: CobosNGArroyoJMAlguacilNStreetANetwork-constrained unit commitment under significant wind penetration: a multistage robust approach with non-fixed recourseAppl. Energy2018232489503
– reference: BertsimasDGeorghioABinary decision rules for multistage adaptive mixed-integer optimizationMath. Program.201816723954333755738
– reference: DebKScope of stationary multi-objective evolutionary optimization: a case study on a hydro-thermal power dispatch problemJ. Glob. Optim.20084144795152413124
– reference: Ammari, C., Belatrache, D., Touhami, B., Makhloufi, S.: Sizing, optimization, control and energy management of hybrid renewable energy system—a review. Energy Built Environ. (2021)
– reference: DongFLiWJiZFatemaSBidding strategy of thermal power compound differential evolution game under the market mechanism of peak regulation auxiliary serviceIET Gener. Transm. Distrib.2021151218711883
– reference: YanMZhangNAiXShahidehpourMKangCWenJRobust two-stage regional-district scheduling of multi-carrier energy systems with a large penetration of wind powerIEEE Trans. Sustain. Energy201810312271239
– reference: LorcaASunXALitvinovEZhengTMultistage adaptive robust optimization for the unit commitment problemOper. Res.201664132513463260
– volume: 80
  start-page: 965
  issue: 4
  year: 2021
  ident: 1328_CR35
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-021-01041-y
– volume: 15
  start-page: 1871
  issue: 12
  year: 2021
  ident: 1328_CR16
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/gtd2.12141
– volume: 45
  start-page: 169
  year: 2009
  ident: 1328_CR2
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-009-9401-7
– volume: 125
  year: 2021
  ident: 1328_CR20
  publication-title: Int. J. Electr. Power
– volume: 17
  start-page: 1265
  issue: 4
  year: 2002
  ident: 1328_CR11
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2002.804951
– volume: 32
  start-page: 1678
  issue: 3
  year: 2016
  ident: 1328_CR29
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2016.2593422
– volume: 64
  start-page: 32
  issue: 1
  year: 2016
  ident: 1328_CR30
  publication-title: Oper. Res.
  doi: 10.1287/opre.2015.1456
– volume: 216
  year: 2021
  ident: 1328_CR45
  publication-title: Energy
– volume: 41
  start-page: 457
  issue: 5
  year: 2013
  ident: 1328_CR42
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2013.05.003
– volume: 21
  start-page: 1371
  issue: 3
  year: 2006
  ident: 1328_CR7
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2006.876672
– volume: 290
  year: 2021
  ident: 1328_CR23
  publication-title: Appl. Energy
– volume: 306
  start-page: 909
  issue: 2
  year: 2023
  ident: 1328_CR47
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2022.06.061
– volume: 36
  start-page: 2314
  issue: 3
  year: 2020
  ident: 1328_CR34
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2020.3031324
– volume: 290
  year: 2021
  ident: 1328_CR18
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.116612
– volume: 32
  start-page: 3637
  issue: 5
  year: 2017
  ident: 1328_CR43
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2017.2655078
– volume: 12
  start-page: 1032
  issue: 2
  year: 2020
  ident: 1328_CR49
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2020.3031054
– volume: 33
  start-page: 329
  issue: 1
  year: 2017
  ident: 1328_CR36
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2017.2686701
– volume: 232
  start-page: 489
  year: 2018
  ident: 1328_CR10
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.09.102
– volume: 248
  year: 2020
  ident: 1328_CR12
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.119267
– volume: 28
  start-page: 52
  issue: 1
  year: 2012
  ident: 1328_CR4
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2012.2205021
– ident: 1328_CR17
  doi: 10.1049/gtd2.12232
– volume: 147
  year: 2021
  ident: 1328_CR32
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2021.107252
– ident: 1328_CR1
  doi: 10.1016/j.enbenv.2021.04.002
– volume: 31
  start-page: 1407
  issue: 2
  year: 2015
  ident: 1328_CR21
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2015.2418158
– volume: 10
  start-page: 1227
  issue: 3
  year: 2018
  ident: 1328_CR41
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2018.2864296
– volume: 7
  start-page: 162
  issue: 1
  year: 2020
  ident: 1328_CR26
  publication-title: CSEE J. Power Energy
– volume: 165
  start-page: 491
  year: 2021
  ident: 1328_CR15
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.11.061
– volume: 253
  year: 2019
  ident: 1328_CR39
  publication-title: Appl. Energy
– volume: 167
  start-page: 395
  issue: 2
  year: 2018
  ident: 1328_CR3
  publication-title: Math. Program.
  doi: 10.1007/s10107-017-1135-6
– volume: 9
  start-page: 5455
  issue: 5
  year: 2018
  ident: 1328_CR33
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2018.2806973
– ident: 1328_CR19
  doi: 10.1109/PTC.2003.1304379
– volume: 10
  start-page: 2765
  issue: 3
  year: 2018
  ident: 1328_CR44
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2018.2810247
– volume: 36
  start-page: 1819
  issue: 3
  year: 2020
  ident: 1328_CR46
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2020.3028480
– volume: 37
  start-page: 132
  issue: 1
  year: 2021
  ident: 1328_CR22
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2021.3097270
– volume: 108
  start-page: 372
  year: 2019
  ident: 1328_CR25
  publication-title: Int. J. Electr. Power
  doi: 10.1016/j.ijepes.2019.01.020
– volume-title: Introduction to Stochastic Programming
  year: 2011
  ident: 1328_CR5
  doi: 10.1007/978-1-4614-0237-4
– volume: 252
  year: 2019
  ident: 1328_CR8
  publication-title: Appl. Energy
– volume: 164
  year: 2022
  ident: 1328_CR9
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.107891
– ident: 1328_CR24
– volume: 16
  start-page: 6857
  issue: 11
  year: 2020
  ident: 1328_CR13
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2020.2973740
– volume: 75
  year: 2021
  ident: 1328_CR28
  publication-title: Sustain. Cities Soc.
– volume: 11
  start-page: 958
  issue: 2
  year: 2019
  ident: 1328_CR38
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2019.2915049
– volume: 23
  start-page: 1873
  issue: 4
  year: 2022
  ident: 1328_CR40
  publication-title: Optim. Eng.
  doi: 10.1007/s11081-021-09703-2
– volume: 13
  start-page: 213
  issue: 1
  year: 2021
  ident: 1328_CR27
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2021.3119972
– volume: 33
  start-page: 281
  issue: 1
  year: 2017
  ident: 1328_CR31
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2017.2695963
– volume: 70
  start-page: 131
  issue: 1
  year: 2018
  ident: 1328_CR37
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-017-0572-3
– volume: 12
  start-page: 70
  issue: 1
  year: 2020
  ident: 1328_CR48
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2020.2979925
– volume: 150
  start-page: 1039
  year: 2018
  ident: 1328_CR6
  publication-title: Energy
  doi: 10.1016/j.energy.2018.03.002
– volume: 41
  start-page: 479
  issue: 4
  year: 2008
  ident: 1328_CR14
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-007-9261-y
SSID ssj0009852
Score 2.4573255
Snippet The integration of large-scale uncertain and uncontrollable wind and solar power generation has brought new challenges to the operations of modern power...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 999
SubjectTerms Algorithms
Analysis
Aquatic resources
Columnar structure
Computer Science
Decision-making
Flexibility
Green technology
Hybrid systems
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Power
Real Functions
Scheduling
Solar energy
Solar power generation
Water resources
Water-power
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-wwFD742OjCx6g4vshC8F6ugU4ySdvlIIoIulJwF_K8LnQq0xGZf-9JJ3V8g3RVepqUnuQ8yPm-A3AorMsMXlQyltO-CyU1QWpaCIPOume91U2V75U8v-lf3IrbBAqr22r39kiysdRvwG5FhIOxWP_DGep3HhZFzN1xFd-wwYxqt2j67GQlE1SgFU5Qma_HeOeOPhrlT6ejjdM5W4OVFC2SwVS96zDnhx1YbTsxkLQxO7D8hlYQ7y5fuVjrDqwnqZr8SRzTfzcgNMBbjAz_ezKqzFM9JhUaj4eEyiQYyhIcgzg9oRrttSOYBaNXiuB1UgVyN4lIryiChv2e3k3cqKLPmN_TOubKZEoQXW_C9dnp9ck5TS0XqMVEcky556hVacqCBWdyJg26r36uQzDo1oIoTC5zHwqdl8EJ6yUaiMC5zViZOVnwLVgYVkO_DUSz0hba5yFgSCY9K4UJuWManaOzvMy60Gt_vLKJjjx2xbhXMyLlqCyFylKNshTrwr_Xdx6nZBw_Sh9Ffaq4U3FkqxPgAL8vcl6pAWb_jIs-63Vhr1W5Slu4VhwDaYwH0Vt04bhdBrPH38-78zvxXVjCiVI10B4sjEdPfh8DnbE5aNb1CytQ9Ao
  priority: 102
  providerName: Springer Nature
Title Multistage robust optimization for the day-ahead scheduling of hybrid thermal-hydro-wind-solar systems
URI https://link.springer.com/article/10.1007/s10898-023-01328-2
https://www.proquest.com/docview/3020256876
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFH8CetkOaLBNKx-VD0gb2qyldu04p6mbWhCTEEIgsZPlz3FgDTRFU__7PacuZZtAuUSJ40T52b_3nv0-AA6E84XFg0rGSjrwsaI2SkOVsCis-y4403r5nsrjy8HJlbjKC25NdqtccmJL1L52aY38M0e9BsUzTt4vt3c0VY1Ku6u5hMY6dJCCFRpfna-j07PzVdpd1dbcKSomqEBGzmEzOXhOpfAylvyJOMPx8pdo-peg_9spbQXQ-BVsZs2RDBdQb8FamGzDy0f5BLdhK8_UhnzI6aQPX0NsY2xRCfwZyLS2982M1MgTv3IAJkGtlaAWSLyZU4PU7AkavCiAUpw6qSO5nqegrtQEOfyGXs_9tKa_0ZSnTTKLySIXdPMGLsaji2_HNFdXoA5txhnlgSOA0laKRW9LJi1KqkFpYrQowaJQtpRliMqUVfTCBYlcEDl3BasKLxV_CxuTehLeATGscsqEMkbUvmRglbCx9MygHPSOV0UX-sv_ql3OPJ4KYNzoVc7khIVGLHSLhWZd-PjwzO0i78azrd8nuHSalNizMzm2AL8vpbfSQzT0GRcD1u_C3hJRnWdro1djqwufliivbj_93p3ne9uFF3iaHX32YGM2vQ_7qMPMbA_W1fioB53h0Y_vo14etnj1kg3_AAo08QQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiBYQWwr4AAIEVrN2bCcHhCpg2dLS0yL1ZvlJkdpN2WxV7Y_iPzLOOiwP0VuVWx5OlBl_30zibwbgqXC-sLhRyZiipY81tVEaWgmLZD10wZlule-hHH8pPx2JozX40Wth0rLKHhM7oPaNS9_IdzjGNUjPOHnfnn2nqWtU-rvat9BYusV-WFxgyta-2XuP9n3G2OjD5N2Y5q4C1GGuNKc8cHxwaeuKRW8VkxYRulQmRovIHUVllVQhVkbV0QsXJM6ByLkrWF14WXEc9hpcLzmv04SqRh9XNX6rrsFPUTNBBcJ_1uhkpV6VtGwsLV7iDJ3zDx78mw3--S3bsd3oDtzOYSrZXfrVBqyF6Sbc-q144SZsZFhoyYtcu_rlXYidoBcjzq-BzBp73s5Jg6B0mtWeBENkgiEn8WZBDfKAJ5hdI9slUTxpIjleJAVZOgUJ44QeL_ysoRffpp62KQcny8LT7T2YXMVLvw_r02YaHgAxrHaVCSpGDPVkYLWwUXlmkHS943UxgGH_XrXLZc5Tt40TvSrQnGyh0Ra6s4VmA3j165qzZZGPS89-nsylEwLgyM5kIQM-X6qlpXcVZi1clGw4gO3eojpDQ6tXjjyA172VV4f_f9-ty0d7AjfGk88H-mDvcP8h3MTdeYXRNqzPZ-fhEQZPc_u4c1kC-oqnyE94ACkm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggGgBsaWADyBAYDVrr-3kgFChXbUUrSpUpN4sPylSuymbrar9afw7xlmH5SF6q3JLHOcx4_lmkvlmAJ4J5wuLG5WMKTr0saI2SkNLYRGsBy4402b5juXel-HHY3G8Aj86LkxKq-xsYmuofe3SN_Itjn4NwjMu3q2Y0yIOd0bvzr_T1EEq_Wnt2mksVOQgzC8xfGve7u-grJ8zNto9-rBHc4cB6jBumlEeOD6EtFXJoreKSYvWeqhMjBateBSlVVKFWBpVRS9ckLgeIueuYFXhZclx2huwqjAoKnqw-n53fPh5WfG3bNv9FBUTVCAYZMZO5u2VidnGUioTZ6iqf6Di39jwz0_aFvtGd-FOdlrJ9kLL1mAlTNbh9m-lDNdhLRuJhrzMlaxf3YPY0nvR__wayLS2F82M1GiizjL3k6DDTNABJd7MqUFU8ARjbcS-RJEndSQn88QnS0MQPk7pydxPa3r5beJpkyJysihD3dyHo-t47Q-gN6kn4SEQwypXmqBiRMdPBlYJG5VnBiHYO14VfRh071W7XPQ89d441ctyzUkWGmWhW1lo1ofXv845X5T8uHL0iyQunewBzuxMpjXg_aXKWnpbYQzDxZAN-rDZSVRnQ9HopVr34U0n5eXh_1934-rZnsJNXB760_744BHcwr053WgTerPpRXiMntTMPsk6S0Bf8yr5CVs9Lrg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multistage+robust+optimization+for+the+day-ahead+scheduling+of+hybrid+thermal-hydro-wind-solar+systems&rft.jtitle=Journal+of+global+optimization&rft.au=Zhong%2C+Zhiming&rft.au=Fan%2C+Neng&rft.au=Wu%2C+Lei&rft.date=2024-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=88&rft.issue=4&rft.spage=999&rft.epage=1034&rft_id=info:doi/10.1007%2Fs10898-023-01328-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon