Linear relation between leaf xylem water potential and transpiration in pearl millet during soil drying
Aims As soil dries, the loss of soil hydraulic conductivity limits water supply to the leaves, which is expected to generate a nonlinear relationship between leaf water potential ( ψ leaf ) and transpiration ( E ). The effect of soil drying and root properties on ψ leaf and E remains elusive. Method...
Saved in:
Published in | Plant and soil Vol. 447; no. 1-2; pp. 565 - 578 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.02.2020
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aims
As soil dries, the loss of soil hydraulic conductivity limits water supply to the leaves, which is expected to generate a nonlinear relationship between leaf water potential (
ψ
leaf
) and transpiration (
E
). The effect of soil drying and root properties on
ψ
leaf
and
E
remains elusive.
Methods
We measured
E
and
ψ
leaf
of pearl millet for varying
E
and soil moisture using a root pressure chamber. A model of water flow in soil and plant was used to fit the
ψ
leaf
(
E
) relationship.
Results
The relation between
ψ
leaf
and
E
was linear at all soil moistures. The slope of
ψ
leaf
(
E
) increased with decreasing soil moisture due to the decreasing soil-root conductance. The fact that the relation remained linear also in dry soils and high
E
is surprising. Indeed, it indicates that the gradients in soil water potential (
ψ
soil
) were small, probably because of the large root surface (13.5 cm cm
−3
) active in water uptake.
ψ
leaf
at
E
= 0 was less negative than
ψ
soil
, indicating a more negative osmotic potential in the xylem than in the soil.
Conclusions
We propose that the linearity between
ψ
leaf
and
E
and the high
ψ
leaf
(
E
= 0) compared to
ψ
soil
support transpiration in drying soils. |
---|---|
AbstractList | Aims As soil dries, the loss of soil hydraulic conductivity limits water supply to the leaves, which is expected to generate a nonlinear relationship between leaf water potential ([psi].sub.leaf) and transpiration (E). The effect of soil drying and root properties on [psi].sub.leaf and E remains elusive. Methods We measured E and [psi].sub.leaf of pearl millet for varying E and soil moisture using a root pressure chamber. A model of water flow in soil and plant was used to fit the [psi].sub.leaf (E) relationship. Results The relation between [psi].sub.leaf and E was linear at all soil moistures. The slope of [psi].sub.leaf (E) increased with decreasing soil moisture due to the decreasing soil-root conductance. The fact that the relation remained linear also in dry soils and high E is surprising. Indeed, it indicates that the gradients in soil water potential ([psi].sub.soil) were small, probably because of the large root surface (13.5 cm cm.sup.-3) active in water uptake. [psi].sub.leaf at E = 0 was less negative than [psi].sub.soil, indicating a more negative osmotic potential in the xylem than in the soil. Conclusions We propose that the linearity between [psi].sub.leaf and E and the high [psi].sub.leaf (E = 0) compared to [psi].sub.soil support transpiration in drying soils. AimsAs soil dries, the loss of soil hydraulic conductivity limits water supply to the leaves, which is expected to generate a nonlinear relationship between leaf water potential (ψleaf) and transpiration (E). The effect of soil drying and root properties on ψleaf and E remains elusive.MethodsWe measured E and ψleaf of pearl millet for varying E and soil moisture using a root pressure chamber. A model of water flow in soil and plant was used to fit the ψleaf (E) relationship.ResultsThe relation between ψleaf and E was linear at all soil moistures. The slope of ψleaf (E) increased with decreasing soil moisture due to the decreasing soil-root conductance. The fact that the relation remained linear also in dry soils and high E is surprising. Indeed, it indicates that the gradients in soil water potential (ψsoil) were small, probably because of the large root surface (13.5 cm cm−3) active in water uptake. ψleaf at E = 0 was less negative than ψsoil, indicating a more negative osmotic potential in the xylem than in the soil.ConclusionsWe propose that the linearity between ψleaf and E and the high ψleaf (E = 0) compared to ψsoil support transpiration in drying soils. Aims As soil dries, the loss of soil hydraulic conductivity limits water supply to the leaves, which is expected to generate a nonlinear relationship between leaf water potential ( ψ leaf ) and transpiration ( E ). The effect of soil drying and root properties on ψ leaf and E remains elusive. Methods We measured E and ψ leaf of pearl millet for varying E and soil moisture using a root pressure chamber. A model of water flow in soil and plant was used to fit the ψ leaf ( E ) relationship. Results The relation between ψ leaf and E was linear at all soil moistures. The slope of ψ leaf ( E ) increased with decreasing soil moisture due to the decreasing soil-root conductance. The fact that the relation remained linear also in dry soils and high E is surprising. Indeed, it indicates that the gradients in soil water potential ( ψ soil ) were small, probably because of the large root surface (13.5 cm cm −3 ) active in water uptake. ψ leaf at E = 0 was less negative than ψ soil , indicating a more negative osmotic potential in the xylem than in the soil. Conclusions We propose that the linearity between ψ leaf and E and the high ψ leaf ( E = 0) compared to ψ soil support transpiration in drying soils. |
Audience | Academic |
Author | Cai, Gaochao Dippold, Michaela A. Zarebanadkouki, Mohsen Ahmed, Mutez Ali Carminati, Andrea |
Author_xml | – sequence: 1 givenname: Gaochao orcidid: 0000-0003-4484-1146 surname: Cai fullname: Cai, Gaochao email: gaochao.cai@uni-bayreuth.de organization: University of Bayreuth, Bayreuth Center of Ecology and Environmental Research (BayCEER), Chair of Soil Physics, Biogeochemistry of Agroecosystems, University of Göttingen – sequence: 2 givenname: Mutez Ali surname: Ahmed fullname: Ahmed, Mutez Ali organization: University of Bayreuth, Bayreuth Center of Ecology and Environmental Research (BayCEER), Chair of Soil Physics, Biogeochemistry of Agroecosystems, University of Göttingen – sequence: 3 givenname: Michaela A. surname: Dippold fullname: Dippold, Michaela A. organization: Biogeochemistry of Agroecosystems, University of Göttingen – sequence: 4 givenname: Mohsen surname: Zarebanadkouki fullname: Zarebanadkouki, Mohsen organization: University of Bayreuth, Bayreuth Center of Ecology and Environmental Research (BayCEER), Chair of Soil Physics – sequence: 5 givenname: Andrea surname: Carminati fullname: Carminati, Andrea organization: University of Bayreuth, Bayreuth Center of Ecology and Environmental Research (BayCEER), Chair of Soil Physics |
BookMark | eNp9kU9r3DAQxUVJoJs_XyAnQc9OR5Ys28cQ2qawkEsKvYmxPF4UtLIraUk3n77auFDoIeggjZjfG968C3YW5kCM3Qi4FQDt5ySEAFWB6CtQCrrq9QPbiKaVVQNSn7ENgKwraPufH9lFSs9wqoXesN3WBcLII3nMbg58oPxCFLgnnPjvo6c9f8FMkS9zppAdeo5h5DliSIuLK-QCX4qK53vnPWU-HqILO55m5_kYj-V9xc4n9Imu_96X7MfXL0_3D9X28dv3-7ttZRXUuZIoRS-VatoRsdZ2KK5qJLBApMdm6GgCPelOyXbosO4b1Gg7aYXtWhzkIC_Zp1V3ifOvA6VsnudDDGWkqWWroFd9q0vX7dq1Q0_GhWkufmw5I-2dLaudXPm_00L3spUCCtCtgI1zSpEmY11-815A540Ac8rBrDmYkoN5y8G8FrT-D12i22M8vg_JFUrLaZMU_9l4h_oD2WWe9g |
CitedBy_id | crossref_primary_10_1007_s11104_022_05656_2 crossref_primary_10_1093_plphys_kiab271 crossref_primary_10_3390_plants11081013 crossref_primary_10_1093_treephys_tpac006 crossref_primary_10_1093_aob_mcac147 crossref_primary_10_1111_pce_13939 crossref_primary_10_1093_jxb_erab251 crossref_primary_10_1111_pce_14536 crossref_primary_10_1111_pce_14259 crossref_primary_10_3389_fpls_2023_1140938 crossref_primary_10_1093_aob_mcab141 crossref_primary_10_1016_j_agwat_2024_108741 crossref_primary_10_1093_plphys_kiac229 crossref_primary_10_1002_eco_2386 |
Cites_doi | 10.1007/s11104-004-7904-z 10.1093/jxb/erj145 10.1016/j.advwatres.2015.09.014 10.1016/S0140-1963(05)80053-9 10.1046/j.0016-8025.2001.00799.x 10.1007/BF00201396 10.1002/2015WR018150 10.1111/j.1365-3040.1993.tb00870.x 10.1093/jexbot/53.367.195 10.1071/pp9840341 10.1071/FP13330 10.1007/s004420100738 10.1016/j.jhydrol.2015.05.020 10.1002/2013WR014756 10.1071/ar9890943 10.1016/S1146-609X(99)80015-0 10.2134/agronj1994.00021962008600050005x 10.1111/j.1365-3040.1991.tb01507.x 10.1104/pp.102.019851 10.1111/nph.14450 10.1038/srep12449 10.1071/FP15115 10.2136/vzj2007.0115 10.1016/0378-4290(94)90060-4 10.1111/j.1365-3040.1996.tb00216.x 10.1007/s11104-010-0283-8 10.1093/jxb/43.11.1441 10.1104/pp.113.2.559 10.1046/j.0016-8025.2001.00785.x 10.1071/PP9860459 10.1111/j.1365-3040.1993.tb00880.x 10.1016/j.advwatres.2018.12.009 10.1007/s004420050850 10.1093/jxb/erq013 10.2134/agronj2005.0197 10.1071/pp9840351 10.1104/pp.17.00078 10.1111/nph.13354 10.1093/jxb/33.1.78 10.2136/vzj2007.0083 10.1007/s11104-013-1736-7 10.1093/aob/mcw113 10.1071/fp02079 10.1046/j.1365-3040.1997.d01-136.x 10.1626/pps.8.454 10.1093/jxb/31.1.333 10.1046/j.1365-3040.1998.00353.x 10.1111/j.1438-8677.1991.tb00250.x 10.1016/S0378-4290(01)00165-4 10.5194/hess-16-2957-2012 10.1146/annurev.pp.40.060189.000315 10.2136/vzj2008.0116 10.1093/jxb/erx439 10.17660/ActaHortic.2020.1300.17 10.1111/nph.14715 10.1101/574285 10.1146/annurev.arplant.52.1.627 10.1104/pp.82.2.597 10.5194/hess-22-2449-2018 |
ContentType | Journal Article |
Copyright | Springer Nature Switzerland AG 2020. corrected publication 2020 COPYRIGHT 2020 Springer Plant and Soil is a copyright of Springer, (2020). All Rights Reserved. |
Copyright_xml | – notice: Springer Nature Switzerland AG 2020. corrected publication 2020 – notice: COPYRIGHT 2020 Springer – notice: Plant and Soil is a copyright of Springer, (2020). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7SN 7ST 7T7 7X2 88A 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI RC3 SOI |
DOI | 10.1007/s11104-019-04408-z |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Biology Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Agricultural Science Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Ecology Botany |
EISSN | 1573-5036 |
EndPage | 578 |
ExternalDocumentID | A616937310 10_1007_s11104_019_04408_z |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GrantInformation_xml | – fundername: Robert Bosch Junior Professorship to MD grantid: - – fundername: Deutsch-Israelische Wassertechnologie-Kooperation grantid: Project 02WIL1489 |
GroupedDBID | -4W -56 -5G -BR -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2XV 2~F 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7X2 88A 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBHK ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ABXSQ ACAOD ACBXY ACDTI ACGFS ACHIC ACHSB ACHXU ACKIV ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADULT ADURQ ADYFF ADYPR ADZKW AEBTG AEEJZ AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIDBO AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS AQVQM ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DATOO DDRTE DL5 DNIVK DPUIP EAD EAP EBD EBLON EBS ECGQY EDH EIOEI EJD EMK EN4 EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAG IAO IEP IHE IJ- IKXTQ IPSME ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JAAYA JBMMH JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST JZLTJ KDC KOV KOW KPH LAK LK8 LLZTM M0K M0L M4Y M7P MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 PF0 PQQKQ PROAC PT4 PT5 Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SA0 SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 XOL Y6R YLTOR Z45 Z5O Z7U Z7V Z7W Z7Y Z83 Z86 Z8O Z8P Z8Q Z8S Z8W Z92 ZCG ZMTXR ZOVNA ~02 ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT AEIIB PMFND 7SN 7ST 7T7 8FD 8FK ABRTQ AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQUKI RC3 SOI |
ID | FETCH-LOGICAL-c402t-3a31934457daa26cb1042ae0c0ee6d5b8ef06f68437b8a295a6ac83c1c87ab3b3 |
IEDL.DBID | BENPR |
ISSN | 0032-079X |
IngestDate | Fri Jul 25 18:58:52 EDT 2025 Tue Jun 10 20:33:10 EDT 2025 Tue Jul 01 01:47:08 EDT 2025 Thu Apr 24 23:09:12 EDT 2025 Fri Feb 21 02:33:34 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Root pressure chamber Balancing pressure (L.) R.Br Plant hydraulic conductance Vapor pressure deficit Stomatal conductance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-3a31934457daa26cb1042ae0c0ee6d5b8ef06f68437b8a295a6ac83c1c87ab3b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4484-1146 |
OpenAccessLink | https://resolver.sub.uni-goettingen.de/purl?gro-2/71220 |
PQID | 2374094976 |
PQPubID | 54098 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2374094976 gale_infotracacademiconefile_A616937310 crossref_citationtrail_10_1007_s11104_019_04408_z crossref_primary_10_1007_s11104_019_04408_z springer_journals_10_1007_s11104_019_04408_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200200 2020-02-00 20200201 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 2 year: 2020 text: 20200200 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Journal on Plant-Soil Relationships |
PublicationTitle | Plant and soil |
PublicationTitleAbbrev | Plant Soil |
PublicationYear | 2020 |
Publisher | Springer International Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
References | Flowers, Hajibagherp, Yeo (CR20) 1991; 14 Ahmed, Kroener, Holz (CR1) 2014; 41 Matzner, Comstock (CR33) 2001; 24 CR34 Saliendra, Sperry, Comstock (CR44) 1995; 196 Comstock, Mencuccini (CR11) 1998; 21 Sperry, Love (CR53) 2015; 207 Doussan, Pierret, Garrigues, Pagès (CR17) 2006; 283 Sperry, Hacke, Oren, Comstock (CR55) 2002; 25 Tyree, Sperry (CR59) 1989; 40 Huang, Nobel (CR26) 1994; 86 Passioura, Munns (CR40) 1984; 11 Nobel (CR36) 2009 Sellin (CR49) 1999; 20 Fuchs, Livingston (CR21) 1996; 19 Solari, DeJong (CR52) 2006; 57 Sperry, Pockman (CR54) 1993; 16 CR2 CR6 CR5 Schmidhalter (CR45) 1997; 20 van Oosterom, Carberry, Hargreaves, O’Leary (CR61) 2001; 72 CR9 CR47 Zegada-Lizarazu, Iijima (CR63) 2005; 8 Tombesi, Nardini, Frioni (CR58) 2015; 5 Donovan, Linton, Richards (CR16) 2001; 129 Passioura (CR38) 1980; 31 Couvreur, Vanderborght, Javaux (CR12) 2012; 16 Lovisolo, Hartung, Schubert (CR32) 2002; 29 Skelton, Brodribb, Choat (CR50) 2017; 214 Schwartz, Carminati, Javaux (CR48) 2016; 52 Benard, Kroener, Vontobel (CR3) 2016; 95 Faye, Diouf, Guissé (CR18) 2006; 98 Rebafka, Hebel, Bationo (CR42) 1994; 36 Schröder, Javaux, Vanderborght (CR46) 2009; 8 CR19 Peters, Iden, Durner (CR41) 2015; 527 Kholová, Hash, Kumar (CR29) 2010; 61 Passioura (CR39) 1991; 104 Donovan, Grisé, West (CR15) 1999; 120 Henson (CR24) 1982; 33 Kholová, Zindy, Malayee (CR30) 2016; 43 Huang, Nobel (CR25) 1992; 43 Brodribb, McAdam (CR4) 2017; 174 Carminati, Moradi, Vetterlein (CR7) 2010; 332 Javaux, Schröder, Vanderborght, Vereecken (CR27) 2008; 7 Richards, Passioura (CR43) 1989; 40 Carminati, Zarebanadkouki, Kroener (CR8) 2016; 118 Katayama, Ito, Adu-Gyamfi, Rao (CR28) 2000; 34 Kroener, Zarebanadkouki, Kaestner, Carminati (CR31) 2014; 50 Munns, Passioura (CR35) 1984; 11 Deery, Passioura, Condon, Katupitiya (CR14) 2013; 368 Slatyer (CR51) 1967 Comstock (CR10) 2002; 53 CR60 Wilkinson, Davies (CR62) 1997; 113 Hayat, Ahmed, Zarebanadkouki (CR23) 2019; 124 Stiller, Lafitte, Sperry (CR56) 2003; 132 Tardieu, Davies (CR57) 1993; 16 Ourcival, Floret, Le Floc’h, Pontanier (CR37) 1994; 28 de Jong van Lier, van Dam, Metselaar (CR13) 2008; 7 Gollan, Passioura, Munns (CR22) 1986; 13 A Carminati (4408_CR7) 2010; 332 LI Solari (4408_CR52) 2006; 57 TJ Flowers (4408_CR20) 1991; 14 C Lovisolo (4408_CR32) 2002; 29 NZ Saliendra (4408_CR44) 1995; 196 MA Ahmed (4408_CR1) 2014; 41 IE Henson (4408_CR24) 1982; 33 F-P Rebafka (4408_CR42) 1994; 36 A Carminati (4408_CR8) 2016; 118 B Huang (4408_CR25) 1992; 43 N Schwartz (4408_CR48) 2016; 52 F Tardieu (4408_CR57) 1993; 16 K Katayama (4408_CR28) 2000; 34 4408_CR19 JB Passioura (4408_CR39) 1991; 104 JS Sperry (4408_CR53) 2015; 207 C Doussan (4408_CR17) 2006; 283 L Donovan (4408_CR16) 2001; 129 I Faye (4408_CR18) 2006; 98 JM Ourcival (4408_CR37) 1994; 28 T Gollan (4408_CR22) 1986; 13 A Sellin (4408_CR49) 1999; 20 V Stiller (4408_CR56) 2003; 132 R Munns (4408_CR35) 1984; 11 EJ van Oosterom (4408_CR61) 2001; 72 J Kholová (4408_CR30) 2016; 43 EE Fuchs (4408_CR21) 1996; 19 E Kroener (4408_CR31) 2014; 50 W Zegada-Lizarazu (4408_CR63) 2005; 8 4408_CR47 JS Sperry (4408_CR54) 1993; 16 TJ Brodribb (4408_CR4) 2017; 174 M Javaux (4408_CR27) 2008; 7 LA Donovan (4408_CR15) 1999; 120 MT Tyree (4408_CR59) 1989; 40 V Couvreur (4408_CR12) 2012; 16 4408_CR5 J Kholová (4408_CR29) 2010; 61 J Comstock (4408_CR11) 1998; 21 4408_CR2 JP Comstock (4408_CR10) 2002; 53 T Schröder (4408_CR46) 2009; 8 A Peters (4408_CR41) 2015; 527 RP Skelton (4408_CR50) 2017; 214 F Hayat (4408_CR23) 2019; 124 RA Richards (4408_CR43) 1989; 40 4408_CR9 JS Sperry (4408_CR55) 2002; 25 S Tombesi (4408_CR58) 2015; 5 4408_CR6 PS Nobel (4408_CR36) 2009 RO Slatyer (4408_CR51) 1967 Q de Jong van Lier (4408_CR13) 2008; 7 4408_CR34 DM Deery (4408_CR14) 2013; 368 JB Passioura (4408_CR38) 1980; 31 S Wilkinson (4408_CR62) 1997; 113 B Huang (4408_CR26) 1994; 86 P Benard (4408_CR3) 2016; 95 U Schmidhalter (4408_CR45) 1997; 20 JB Passioura (4408_CR40) 1984; 11 S Matzner (4408_CR33) 2001; 24 4408_CR60 |
References_xml | – volume: 283 start-page: 99 year: 2006 end-page: 117 ident: CR17 article-title: Water uptake by plant roots: II – modelling of water transfer in the soil root-system with explicit account of flow within the root system – comparison with experiments publication-title: Plant Soil doi: 10.1007/s11104-004-7904-z – volume: 57 start-page: 1981 year: 2006 end-page: 1989 ident: CR52 article-title: The effect of root pressurization on water relations, shoot growth, and leaf gas exchange of peach (Prunus persica) trees on rootstocks with differing growth potential and hydraulic conductance publication-title: J Exp Bot doi: 10.1093/jxb/erj145 – volume: 95 start-page: 190 year: 2016 end-page: 198 ident: CR3 article-title: Water percolation through the root-soil interface publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2015.09.014 – volume: 28 start-page: 333 year: 1994 end-page: 350 ident: CR37 article-title: Water relations between two perennial species in the steppes of southern Tunisia publication-title: J Arid Environ doi: 10.1016/S0140-1963(05)80053-9 – volume: 25 start-page: 251 year: 2002 end-page: 263 ident: CR55 article-title: Water deficits and hydraulic limits to leaf water supply publication-title: Plant Cell Environ doi: 10.1046/j.0016-8025.2001.00799.x – volume: 196 start-page: 357 year: 1995 end-page: 366 ident: CR44 article-title: Influence of leaf water status on stomatal response to humidity, hydraulic conductance, and soil drought in Betula occidentalis publication-title: Planta doi: 10.1007/BF00201396 – volume: 52 start-page: 264 year: 2016 end-page: 277 ident: CR48 article-title: The impact of mucilage on root water uptake—a numerical study publication-title: Water Resour Res doi: 10.1002/2015WR018150 – volume: 16 start-page: 279 year: 1993 end-page: 287 ident: CR54 article-title: Limitation of transpiration by hydraulic conductance and xylem cavitation in Betula occidentalis publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.1993.tb00870.x – volume: 53 start-page: 195 year: 2002 end-page: 200 ident: CR10 article-title: Hydraulic and chemical signalling in the control of stomatal conductance and transpiration publication-title: J Exp Bot doi: 10.1093/jexbot/53.367.195 – volume: 11 start-page: 341 year: 1984 end-page: 350 ident: CR40 article-title: Hydraulic resistance of plants. II. Effects of rooting medium, and time of day, in barley and lupin publication-title: Funct Plant Biol doi: 10.1071/pp9840341 – volume: 41 start-page: 1129 year: 2014 end-page: 1137 ident: CR1 article-title: Mucilage exudation facilitates root water uptake in dry soils publication-title: Funct Plant Biol doi: 10.1071/FP13330 – volume: 129 start-page: 328 year: 2001 end-page: 335 ident: CR16 article-title: Predawn plant water potential does not necessarily equilibrate with soil water potential under well-watered conditions publication-title: Oecologia doi: 10.1007/s004420100738 – volume: 527 start-page: 531 year: 2015 end-page: 542 ident: CR41 article-title: Revisiting the simplified evaporation method: identification of hydraulic functions considering vapor, film and corner flow publication-title: J Hydrol doi: 10.1016/j.jhydrol.2015.05.020 – volume: 50 start-page: 6479 year: 2014 end-page: 6495 ident: CR31 article-title: Nonequilibrium water dynamics in the rhizosphere: how mucilage affects water flow in soils publication-title: Water Resour Res doi: 10.1002/2013WR014756 – volume: 40 start-page: 943 year: 1989 end-page: 950 ident: CR43 article-title: A breeding program to reduce the diameter of the major xylem vessel in the seminal roots of wheat and its effect on grain yield in rain-fed environments publication-title: Aust J Agric Res doi: 10.1071/ar9890943 – volume: 20 start-page: 51 year: 1999 end-page: 59 ident: CR49 article-title: Does pre-dawn water potential reflect conditions of equilibrium in plant and soil water status? publication-title: Acta Oecol doi: 10.1016/S1146-609X(99)80015-0 – volume: 86 start-page: 767 year: 1994 end-page: 774 ident: CR26 article-title: Root hydraulic conductivity and its components, with emphasis on desert succulents publication-title: Agron J doi: 10.2134/agronj1994.00021962008600050005x – year: 1967 ident: CR51 publication-title: Plant-water relationships – volume: 14 start-page: 319 year: 1991 end-page: 325 ident: CR20 article-title: Ion accumulation in the cell walls of rice plants growing under saline conditions: evidence for the Oertli hypothesis publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.1991.tb01507.x – ident: CR19 – volume: 132 start-page: 1698 year: 2003 end-page: 1706 ident: CR56 article-title: Hydraulic properties of Rice and the response of gas exchange to water stress publication-title: Plant Physiol doi: 10.1104/pp.102.019851 – ident: CR9 – volume: 214 start-page: 561 year: 2017 end-page: 569 ident: CR50 article-title: Casting light on xylem vulnerability in an herbaceous species reveals a lack of segmentation publication-title: New Phytol doi: 10.1111/nph.14450 – volume: 5 start-page: 12449 year: 2015 ident: CR58 article-title: Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine publication-title: Sci Rep doi: 10.1038/srep12449 – volume: 43 start-page: 423 year: 2016 ident: CR30 article-title: Component traits of plant water use are modulated by vapour pressure deficit in pearl millet (Pennisetum glaucum (L.) R.Br.) publication-title: Funct Plant Biol doi: 10.1071/FP15115 – ident: CR60 – ident: CR5 – volume: 7 start-page: 1079 year: 2008 end-page: 1088 ident: CR27 article-title: Use of a three-dimensional detailed modeling approach for predicting root water uptake publication-title: Vadose Zone J doi: 10.2136/vzj2007.0115 – volume: 36 start-page: 113 year: 1994 end-page: 124 ident: CR42 article-title: Short- and long-term effects of crop residues and of phosphorus fertilization on pearl millet yield on an acid sandy soil in Niger, West Africa publication-title: Field Crops Res doi: 10.1016/0378-4290(94)90060-4 – volume: 19 start-page: 1091 year: 1996 end-page: 1098 ident: CR21 article-title: Hydraulic control of stomatal conductance in Douglas fir [Pseudotsuga menziesii (Mirb.) Franco] and alder [Alnus rubra (Bong)] seedlings publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.1996.tb00216.x – volume: 332 start-page: 163 year: 2010 end-page: 176 ident: CR7 article-title: Dynamics of soil water content in the rhizosphere publication-title: Plant Soil doi: 10.1007/s11104-010-0283-8 – volume: 43 start-page: 1441 year: 1992 end-page: 1449 ident: CR25 article-title: Hydraulic conductivity and anatomy for lateral roots of Agave deserti during root growth and drought-induced abscission publication-title: J Exp Bot doi: 10.1093/jxb/43.11.1441 – ident: CR47 – volume: 113 start-page: 559 year: 1997 end-page: 573 ident: CR62 article-title: Xylem sap pH increase: a drought signal received at the Apoplastic face of the guard cell that involves the suppression of Saturable Abscisic acid uptake by the epidermal Symplast publication-title: Plant Physiol doi: 10.1104/pp.113.2.559 – volume: 24 start-page: 1299 year: 2001 end-page: 1307 ident: CR33 article-title: The temperature dependence of shoot hydraulic resistance: implications for stomatal behaviour and hydraulic limitation publication-title: Plant Cell Environ doi: 10.1046/j.0016-8025.2001.00785.x – ident: CR2 – volume: 13 start-page: 459 year: 1986 ident: CR22 article-title: Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leaves publication-title: Aust J Plant Physiol doi: 10.1071/PP9860459 – volume: 16 start-page: 341 year: 1993 end-page: 349 ident: CR57 article-title: Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.1993.tb00880.x – volume: 124 start-page: 96 year: 2019 end-page: 105 ident: CR23 article-title: Measurements and simulation of leaf xylem water potential and root water uptake in heterogeneous soil water contents publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2018.12.009 – volume: 120 start-page: 209 year: 1999 end-page: 217 ident: CR15 article-title: Predawn disequilibrium between plant and soil water potentials in two cold-desert shrubs publication-title: Oecologia doi: 10.1007/s004420050850 – volume: 61 start-page: 1431 year: 2010 end-page: 1440 ident: CR29 article-title: Terminal drought-tolerant pearl millet [Pennisetum glaucum (L.) R. Br.] have high leaf ABA and limit transpiration at high vapour pressure deficit publication-title: J Exp Bot doi: 10.1093/jxb/erq013 – ident: CR6 – volume: 98 start-page: 1187 year: 2006 end-page: 1194 ident: CR18 article-title: Characterizing root responses to low phosphorus in pearl millet [Pennisetum glaucum (L.) R. Br.] publication-title: Agron J doi: 10.2134/agronj2005.0197 – volume: 11 start-page: 351 year: 1984 end-page: 359 ident: CR35 article-title: Hydraulic resistance of plants. III. Effects of NaCl in barley and lupin publication-title: Funct Plant Biol doi: 10.1071/pp9840351 – volume: 174 start-page: 639 year: 2017 end-page: 649 ident: CR4 article-title: Evolution of the stomatal regulation of plant water content publication-title: Plant Physiol doi: 10.1104/pp.17.00078 – volume: 207 start-page: 14 year: 2015 end-page: 27 ident: CR53 article-title: What plant hydraulics can tell us about responses to climate-change droughts publication-title: New Phytol doi: 10.1111/nph.13354 – volume: 33 start-page: 78 year: 1982 end-page: 87 ident: CR24 article-title: Osmotic adjustment to water stress in pearl millet (Pennisetum americanum (L. ) Leeke) in a controlled environment publication-title: J Exp Bot doi: 10.1093/jxb/33.1.78 – volume: 7 start-page: 1065 year: 2008 ident: CR13 article-title: Macroscopic root water uptake distribution using a matric flux potential approach publication-title: Vadose Zone J doi: 10.2136/vzj2007.0083 – volume: 368 start-page: 649 year: 2013 end-page: 667 ident: CR14 article-title: Uptake of water from a Kandosol subsoil. II. Control of water uptake by roots publication-title: Plant Soil doi: 10.1007/s11104-013-1736-7 – volume: 118 start-page: 561 year: 2016 end-page: 571 ident: CR8 article-title: Biophysical rhizosphere processes affecting root water uptake publication-title: Ann Bot doi: 10.1093/aob/mcw113 – volume: 29 start-page: 1349 year: 2002 end-page: 1356 ident: CR32 article-title: Whole-plant hydraulic conductance and root-to-shoot flow of abscisic acid are independently affected by water stress in grapevines publication-title: Funct Plant Biol doi: 10.1071/fp02079 – volume: 34 start-page: 81 year: 2000 end-page: 86 ident: CR28 article-title: Analysis of relationship between root length density and water uptake by roots of five crops using minirhizotron in the semi-arid tropics publication-title: JARQ – volume: 20 start-page: 953 year: 1997 end-page: 960 ident: CR45 article-title: The gradient between pre-dawn rhizoplane and bulk soil matric potentials, and its relation to the pre-dawn root and leaf water potentials of four species publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.1997.d01-136.x – volume: 8 start-page: 454 year: 2005 end-page: 460 ident: CR63 article-title: Deep root water uptake ability and water use efficiency of pearl millet in comparison to other millet species publication-title: Plant Prod Sci doi: 10.1626/pps.8.454 – volume: 31 start-page: 333 year: 1980 end-page: 345 ident: CR38 article-title: The transport of water from soil to shoot in wheat seedlings publication-title: J Exp Bot doi: 10.1093/jxb/31.1.333 – year: 2009 ident: CR36 publication-title: Physicochemical and environmental plant physiology – ident: CR34 – volume: 21 start-page: 1029 year: 1998 end-page: 1038 ident: CR11 article-title: Control of stomatal conductance by leaf water potential in Hymenoclea salsola (T. & G.), a desert subshrub publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.1998.00353.x – volume: 104 start-page: 405 year: 1991 end-page: 411 ident: CR39 article-title: An impasse in plant water relations? publication-title: Bot Acta doi: 10.1111/j.1438-8677.1991.tb00250.x – volume: 72 start-page: 67 year: 2001 end-page: 91 ident: CR61 article-title: Simulating growth, development, and yield of tillering pearl millet: II. Simulation of canopy development publication-title: Field Crops Res doi: 10.1016/S0378-4290(01)00165-4 – volume: 16 start-page: 2957 year: 2012 end-page: 2971 ident: CR12 article-title: A simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-16-2957-2012 – volume: 40 start-page: 19 year: 1989 end-page: 36 ident: CR59 article-title: Vulnerability of xylem to cavitation and embolism publication-title: Annu Rev Plant Physiol Plant Mol Biol doi: 10.1146/annurev.pp.40.060189.000315 – volume: 8 start-page: 783 year: 2009 end-page: 792 ident: CR46 article-title: Implementation of a microscopic soil–root hydraulic conductivity drop function in a three-dimensional soil–root architecture water transfer model publication-title: Vadose Zone J doi: 10.2136/vzj2008.0116 – volume: 332 start-page: 163 year: 2010 ident: 4408_CR7 publication-title: Plant Soil doi: 10.1007/s11104-010-0283-8 – volume: 53 start-page: 195 year: 2002 ident: 4408_CR10 publication-title: J Exp Bot doi: 10.1093/jexbot/53.367.195 – volume: 16 start-page: 279 year: 1993 ident: 4408_CR54 publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.1993.tb00870.x – ident: 4408_CR2 doi: 10.1093/jxb/erx439 – volume-title: Plant-water relationships year: 1967 ident: 4408_CR51 – volume: 132 start-page: 1698 year: 2003 ident: 4408_CR56 publication-title: Plant Physiol doi: 10.1104/pp.102.019851 – volume: 16 start-page: 341 year: 1993 ident: 4408_CR57 publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.1993.tb00880.x – volume: 8 start-page: 454 year: 2005 ident: 4408_CR63 publication-title: Plant Prod Sci doi: 10.1626/pps.8.454 – volume: 368 start-page: 649 year: 2013 ident: 4408_CR14 publication-title: Plant Soil doi: 10.1007/s11104-013-1736-7 – volume: 104 start-page: 405 year: 1991 ident: 4408_CR39 publication-title: Bot Acta doi: 10.1111/j.1438-8677.1991.tb00250.x – volume: 11 start-page: 341 year: 1984 ident: 4408_CR40 publication-title: Funct Plant Biol doi: 10.1071/pp9840341 – volume: 40 start-page: 943 year: 1989 ident: 4408_CR43 publication-title: Aust J Agric Res doi: 10.1071/ar9890943 – volume: 16 start-page: 2957 year: 2012 ident: 4408_CR12 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-16-2957-2012 – ident: 4408_CR6 doi: 10.17660/ActaHortic.2020.1300.17 – volume: 21 start-page: 1029 year: 1998 ident: 4408_CR11 publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.1998.00353.x – volume-title: Physicochemical and environmental plant physiology year: 2009 ident: 4408_CR36 – volume: 283 start-page: 99 year: 2006 ident: 4408_CR17 publication-title: Plant Soil doi: 10.1007/s11104-004-7904-z – volume: 207 start-page: 14 year: 2015 ident: 4408_CR53 publication-title: New Phytol doi: 10.1111/nph.13354 – volume: 33 start-page: 78 year: 1982 ident: 4408_CR24 publication-title: J Exp Bot doi: 10.1093/jxb/33.1.78 – volume: 20 start-page: 51 year: 1999 ident: 4408_CR49 publication-title: Acta Oecol doi: 10.1016/S1146-609X(99)80015-0 – volume: 41 start-page: 1129 year: 2014 ident: 4408_CR1 publication-title: Funct Plant Biol doi: 10.1071/FP13330 – volume: 98 start-page: 1187 year: 2006 ident: 4408_CR18 publication-title: Agron J doi: 10.2134/agronj2005.0197 – volume: 129 start-page: 328 year: 2001 ident: 4408_CR16 publication-title: Oecologia doi: 10.1007/s004420100738 – volume: 19 start-page: 1091 year: 1996 ident: 4408_CR21 publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.1996.tb00216.x – volume: 7 start-page: 1079 year: 2008 ident: 4408_CR27 publication-title: Vadose Zone J doi: 10.2136/vzj2007.0115 – volume: 5 start-page: 12449 year: 2015 ident: 4408_CR58 publication-title: Sci Rep doi: 10.1038/srep12449 – volume: 174 start-page: 639 year: 2017 ident: 4408_CR4 publication-title: Plant Physiol doi: 10.1104/pp.17.00078 – volume: 28 start-page: 333 year: 1994 ident: 4408_CR37 publication-title: J Arid Environ doi: 10.1016/S0140-1963(05)80053-9 – volume: 36 start-page: 113 year: 1994 ident: 4408_CR42 publication-title: Field Crops Res doi: 10.1016/0378-4290(94)90060-4 – volume: 40 start-page: 19 year: 1989 ident: 4408_CR59 publication-title: Annu Rev Plant Physiol Plant Mol Biol doi: 10.1146/annurev.pp.40.060189.000315 – volume: 8 start-page: 783 year: 2009 ident: 4408_CR46 publication-title: Vadose Zone J doi: 10.2136/vzj2008.0116 – volume: 527 start-page: 531 year: 2015 ident: 4408_CR41 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2015.05.020 – volume: 24 start-page: 1299 year: 2001 ident: 4408_CR33 publication-title: Plant Cell Environ doi: 10.1046/j.0016-8025.2001.00785.x – ident: 4408_CR9 doi: 10.1111/nph.14715 – volume: 20 start-page: 953 year: 1997 ident: 4408_CR45 publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.1997.d01-136.x – volume: 13 start-page: 459 year: 1986 ident: 4408_CR22 publication-title: Aust J Plant Physiol doi: 10.1071/PP9860459 – ident: 4408_CR19 doi: 10.1101/574285 – volume: 31 start-page: 333 year: 1980 ident: 4408_CR38 publication-title: J Exp Bot doi: 10.1093/jxb/31.1.333 – ident: 4408_CR47 doi: 10.1146/annurev.arplant.52.1.627 – ident: 4408_CR60 doi: 10.1104/pp.82.2.597 – volume: 196 start-page: 357 year: 1995 ident: 4408_CR44 publication-title: Planta doi: 10.1007/BF00201396 – ident: 4408_CR5 doi: 10.5194/hess-22-2449-2018 – volume: 11 start-page: 351 year: 1984 ident: 4408_CR35 publication-title: Funct Plant Biol doi: 10.1071/pp9840351 – volume: 34 start-page: 81 year: 2000 ident: 4408_CR28 publication-title: JARQ – volume: 118 start-page: 561 year: 2016 ident: 4408_CR8 publication-title: Ann Bot doi: 10.1093/aob/mcw113 – volume: 86 start-page: 767 year: 1994 ident: 4408_CR26 publication-title: Agron J doi: 10.2134/agronj1994.00021962008600050005x – volume: 29 start-page: 1349 year: 2002 ident: 4408_CR32 publication-title: Funct Plant Biol doi: 10.1071/fp02079 – volume: 14 start-page: 319 year: 1991 ident: 4408_CR20 publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.1991.tb01507.x – ident: 4408_CR34 – volume: 95 start-page: 190 year: 2016 ident: 4408_CR3 publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2015.09.014 – volume: 120 start-page: 209 year: 1999 ident: 4408_CR15 publication-title: Oecologia doi: 10.1007/s004420050850 – volume: 113 start-page: 559 year: 1997 ident: 4408_CR62 publication-title: Plant Physiol doi: 10.1104/pp.113.2.559 – volume: 43 start-page: 1441 year: 1992 ident: 4408_CR25 publication-title: J Exp Bot doi: 10.1093/jxb/43.11.1441 – volume: 124 start-page: 96 year: 2019 ident: 4408_CR23 publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2018.12.009 – volume: 57 start-page: 1981 year: 2006 ident: 4408_CR52 publication-title: J Exp Bot doi: 10.1093/jxb/erj145 – volume: 7 start-page: 1065 year: 2008 ident: 4408_CR13 publication-title: Vadose Zone J doi: 10.2136/vzj2007.0083 – volume: 25 start-page: 251 year: 2002 ident: 4408_CR55 publication-title: Plant Cell Environ doi: 10.1046/j.0016-8025.2001.00799.x – volume: 61 start-page: 1431 year: 2010 ident: 4408_CR29 publication-title: J Exp Bot doi: 10.1093/jxb/erq013 – volume: 72 start-page: 67 year: 2001 ident: 4408_CR61 publication-title: Field Crops Res doi: 10.1016/S0378-4290(01)00165-4 – volume: 52 start-page: 264 year: 2016 ident: 4408_CR48 publication-title: Water Resour Res doi: 10.1002/2015WR018150 – volume: 214 start-page: 561 year: 2017 ident: 4408_CR50 publication-title: New Phytol doi: 10.1111/nph.14450 – volume: 50 start-page: 6479 year: 2014 ident: 4408_CR31 publication-title: Water Resour Res doi: 10.1002/2013WR014756 – volume: 43 start-page: 423 year: 2016 ident: 4408_CR30 publication-title: Funct Plant Biol doi: 10.1071/FP15115 |
SSID | ssj0003216 |
Score | 2.3992674 |
Snippet | Aims
As soil dries, the loss of soil hydraulic conductivity limits water supply to the leaves, which is expected to generate a nonlinear relationship between... Aims As soil dries, the loss of soil hydraulic conductivity limits water supply to the leaves, which is expected to generate a nonlinear relationship between... AimsAs soil dries, the loss of soil hydraulic conductivity limits water supply to the leaves, which is expected to generate a nonlinear relationship between... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 565 |
SubjectTerms | Analysis Barley Biomedical and Life Sciences Conductance Drying Ecology Electric properties Flowers & plants Hydraulic measurements Hydraulics Hydrogeology Leaves Life Sciences Linearity Measurement methods Millet Moisture content Osmotic potential Pennisetum glaucum Plant Physiology Plant Sciences Pressure chambers Regular Article Resistance Soil conductivity Soil erosion Soil moisture Soil properties Soil Science & Conservation Soil water Soil water potential Soils Transpiration Water flow Water potential Water shortages Water supply Water uptake Xylem |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-6doP2YXTZRtO1RQ-DPWwGV5Il5zEdLaXQPi2QN6GvlIDnBMdjS__63jlywz5hbwbbktF96M663-8A3nOnlRpJSd4vZtJ6ndlSRDT3gOrMA_pMwg7f3qnribyZFtMEClv11e79kWTnqbdgN9ypqGKCfubLvMwensFeQbk7avGEj5_8r-Bdw1O6yHI9miaozJ_H-Gk7-tUp_3Y62m06V4fwMkWLbLwR7yvYifUADsb3TWLMiAN4frHA-G49gBeXHQH1-jXcY4KJCsyaVOjGUjEWq6KdsR_rKn5l3zHGbNhy0VK1EE5h68Dajuh8vtEJNq_ZEkepGDUmii3bABrZajGvWGgIHfUGJleXXz5fZ6mhQuYxTWwzYdHghJSFDtZy5R0uBrcx93mMKhSujLNczVQphXal5aPCKutL4c99qa0TTryF3XpRxyNgmnj0lc-dxniEoAQY2JQuShs0D2FUDOG8X1fjE9s4Nb2ozJYnmWRhUBamk4V5GMLHp3eWG66Nfz79gcRlyBBxZG8TngC_jyitzFgRz4zG8HUIJ71ETbLQleFCU2qL0dgQPvVS3t7--7zH__f4O9jnlKJ3hd4nsNs23-IpxjGtO-vU9hFtcOgn priority: 102 providerName: Springer Nature |
Title | Linear relation between leaf xylem water potential and transpiration in pearl millet during soil drying |
URI | https://link.springer.com/article/10.1007/s11104-019-04408-z https://www.proquest.com/docview/2374094976 |
Volume | 447 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-xlQf2gMYAURiVH5B4gIjMduz0CaWsZQIxIUSl8hQ5tjtVCkmXBsH213OXuKsAsadESnKJct_23e8AXvBCKzWWkqyfj6SxOjKp8KjuDsWZO7SZ1Dv86VydzeWHRbIIC26bUFa5tYmdoXa1pTXyN1xoSkXQe75dX0Y0NYp2V8MIjT0YoAlOMfkaTKbnn7_c2GLBu-GndBLFerwIbTN98xx6PqrAoM0BGafR9R-u6W8D_c9OaeeAZodwP0SOLOtZ_QDu-OoIDrKLJqBn-CO4O6kx1rt6CBeYYqIIsyaUurFQjsVKb5bs11Xpv7OfGGU2bF23VC-EhE3lWNtBna96qWCriq2RSsloNJFvWd_SyDb1qmSuof6oRzCfTb--O4vCSIXIYqLYRsKgygkpE-2M4coW-Au48bGNvVcuKVK_jNVSpVLoIjV8nBhlbCrsiU21KUQhHsN-VVf-CTBNSPrKxoXGiISaCTC0SQsvjdPcuXEyhJPt38xtwBunsRdlvkNKJg7kyIG840B-PYRXN8-se7SNW-9-SUzKSRWRsjWhowC_j0Ct8kwR0ozGAHYIx1s-5kFHN_lOoobwesvb3eX_v_fp7dSewT1OSXlX2n0M-23zwz_HyKUtRjDIJqeTGR3ff_s4HQVxHcHenGe_AdA_7Ts |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NDgl4QDBAFAb4AcQDRGS2E6cPCHWwqWNbhdAm9S1zbHeqlCVdGjS6P4q_kbvEWQWIve2tUppL5Dvfj_i-7wBe80zF8UBK8n4ukNqoQCfC4Xa3aM7cos8k7PDhOB4dy6-TaLIGvzosDLVVdj6xcdS2NPSN_AMXikoRjJ6f5ucBTY2i09VuhEZrFvtueYEl2-Lj3hfU7xvOd3eOPo8CP1UgMFgr1YHQaHVCykhZrXlsMixIuHahCZ2LbZQlbhrG0ziRQmWJ5oNIx9okwmyZROlMZALl3oJ1KbCU6cH69s742_cr3y94M2yVfgShGkw8TKcF62GkpY4POoyQYRJc_hEK_w4I_5zMNgFv9wHc95kqG7am9RDWXLEB94anlWfrcBtwe7vE3HL5CE6xpMW1YZVvrWO-_YvlTk_Zz2XuztgFZrUVm5c19SehYF1YVjfU6rPWCtmsYHOUkjMaheRq1kIo2aKc5cxWhMd6DMc3sthPoFeUhXsKTBFzf2zCTGEGROAFTKWSzEltFbd2EPVhq1vN1Hh-cxqzkacrZmbSQIoaSBsNpJd9eHd1z7xl97j2329JSSltfZRstEcw4PsRiVY6jInZRmHC3IfNTo-p9wmLdGXBfXjf6XZ1-f_PfXa9tFdwZ3R0eJAe7I33n8NdTh8EmrbyTejV1Q_3ArOmOnvpTZXByU3vjt_vDiaI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NDiF4QDBAdAzwA4gHiJY5iZ0-INSxVRuDakJM6pvn2O5UKSRdGjS6P42_jrvEWQWIve2tUppL5Dvfj_i-7wBe8UwKMYhj8n4uiLWRgU4jh9vdojlziz6TsMNfxuLgJP40SSZr8KvDwlBbZecTG0dtS0PfyLd5JKkUwei5PfVtEcd7ow_z84AmSNFJazdOozWRI7e8wPJt8f5wD3X9mvPR_rePB4GfMBAYrJvqINJogVEcJ9JqzYXJsDjh2oUmdE7YJEvdNBRTkcaRzFLNB4kW2qSR2TGp1FmURSj3Fqzjm8mwB-u7--Pjr1dxIOLN4FX6EYRyMPGQnRa4h1GXuj_oYCIO0-Dyj7D4d3D455S2CX6jB3DfZ61s2JrZQ1hzxQbcG55VnrnDbcDt3RLzzOUjOMPyFteGVb7NjvlWMJY7PWU_l7n7zi4ww63YvKypVwkF68KyuqFZn7UWyWYFm6OUnNFYJFezFk7JFuUsZ7YibNZjOLmRxX4CvaIs3FNgklj8hQkzidkQARkwrUozF2srubWDpA873Woq47nOaeRGrlYszaQBhRpQjQbUZR_eXt0zb5k-rv33G1KSIjeAko32aAZ8PyLUUkNBLDcSk-c-bHV6VN4_LNTKmvvwrtPt6vL_n7t5vbSXcAd3hfp8OD56Bnc5fRtoOsy3oFdXP9xzTKDq7IW3VAanN705fgOtlyq9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+relation+between+leaf+xylem+water+potential+and+transpiration+in+pearl+millet+during+soil+drying&rft.jtitle=Plant+and+soil&rft.au=Cai+Gaochao&rft.au=Ahmed+Mutez+Ali&rft.au=Dippold%2C+Michaela+A&rft.au=Zarebanadkouki+Mohsen&rft.date=2020-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0032-079X&rft.eissn=1573-5036&rft.volume=447&rft.issue=1-2&rft.spage=565&rft.epage=578&rft_id=info:doi/10.1007%2Fs11104-019-04408-z&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon |