Linear relation between leaf xylem water potential and transpiration in pearl millet during soil drying

Aims As soil dries, the loss of soil hydraulic conductivity limits water supply to the leaves, which is expected to generate a nonlinear relationship between leaf water potential ( ψ leaf ) and transpiration ( E ). The effect of soil drying and root properties on ψ leaf and E remains elusive. Method...

Full description

Saved in:
Bibliographic Details
Published inPlant and soil Vol. 447; no. 1-2; pp. 565 - 578
Main Authors Cai, Gaochao, Ahmed, Mutez Ali, Dippold, Michaela A., Zarebanadkouki, Mohsen, Carminati, Andrea
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.02.2020
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aims As soil dries, the loss of soil hydraulic conductivity limits water supply to the leaves, which is expected to generate a nonlinear relationship between leaf water potential ( ψ leaf ) and transpiration ( E ). The effect of soil drying and root properties on ψ leaf and E remains elusive. Methods We measured E and ψ leaf of pearl millet for varying E and soil moisture using a root pressure chamber. A model of water flow in soil and plant was used to fit the ψ leaf ( E ) relationship. Results The relation between ψ leaf and E was linear at all soil moistures. The slope of ψ leaf ( E ) increased with decreasing soil moisture due to the decreasing soil-root conductance. The fact that the relation remained linear also in dry soils and high E is surprising. Indeed, it indicates that the gradients in soil water potential ( ψ soil ) were small, probably because of the large root surface (13.5 cm cm −3 ) active in water uptake. ψ leaf at E  = 0 was less negative than ψ soil , indicating a more negative osmotic potential in the xylem than in the soil. Conclusions We propose that the linearity between ψ leaf and E and the high ψ leaf ( E  = 0) compared to ψ soil support transpiration in drying soils.
AbstractList Aims As soil dries, the loss of soil hydraulic conductivity limits water supply to the leaves, which is expected to generate a nonlinear relationship between leaf water potential ([psi].sub.leaf) and transpiration (E). The effect of soil drying and root properties on [psi].sub.leaf and E remains elusive. Methods We measured E and [psi].sub.leaf of pearl millet for varying E and soil moisture using a root pressure chamber. A model of water flow in soil and plant was used to fit the [psi].sub.leaf (E) relationship. Results The relation between [psi].sub.leaf and E was linear at all soil moistures. The slope of [psi].sub.leaf (E) increased with decreasing soil moisture due to the decreasing soil-root conductance. The fact that the relation remained linear also in dry soils and high E is surprising. Indeed, it indicates that the gradients in soil water potential ([psi].sub.soil) were small, probably because of the large root surface (13.5 cm cm.sup.-3) active in water uptake. [psi].sub.leaf at E = 0 was less negative than [psi].sub.soil, indicating a more negative osmotic potential in the xylem than in the soil. Conclusions We propose that the linearity between [psi].sub.leaf and E and the high [psi].sub.leaf (E = 0) compared to [psi].sub.soil support transpiration in drying soils.
AimsAs soil dries, the loss of soil hydraulic conductivity limits water supply to the leaves, which is expected to generate a nonlinear relationship between leaf water potential (ψleaf) and transpiration (E). The effect of soil drying and root properties on ψleaf and E remains elusive.MethodsWe measured E and ψleaf of pearl millet for varying E and soil moisture using a root pressure chamber. A model of water flow in soil and plant was used to fit the ψleaf (E) relationship.ResultsThe relation between ψleaf and E was linear at all soil moistures. The slope of ψleaf (E) increased with decreasing soil moisture due to the decreasing soil-root conductance. The fact that the relation remained linear also in dry soils and high E is surprising. Indeed, it indicates that the gradients in soil water potential (ψsoil) were small, probably because of the large root surface (13.5 cm cm−3) active in water uptake. ψleaf at E = 0 was less negative than ψsoil, indicating a more negative osmotic potential in the xylem than in the soil.ConclusionsWe propose that the linearity between ψleaf and E and the high ψleaf (E = 0) compared to ψsoil support transpiration in drying soils.
Aims As soil dries, the loss of soil hydraulic conductivity limits water supply to the leaves, which is expected to generate a nonlinear relationship between leaf water potential ( ψ leaf ) and transpiration ( E ). The effect of soil drying and root properties on ψ leaf and E remains elusive. Methods We measured E and ψ leaf of pearl millet for varying E and soil moisture using a root pressure chamber. A model of water flow in soil and plant was used to fit the ψ leaf ( E ) relationship. Results The relation between ψ leaf and E was linear at all soil moistures. The slope of ψ leaf ( E ) increased with decreasing soil moisture due to the decreasing soil-root conductance. The fact that the relation remained linear also in dry soils and high E is surprising. Indeed, it indicates that the gradients in soil water potential ( ψ soil ) were small, probably because of the large root surface (13.5 cm cm −3 ) active in water uptake. ψ leaf at E  = 0 was less negative than ψ soil , indicating a more negative osmotic potential in the xylem than in the soil. Conclusions We propose that the linearity between ψ leaf and E and the high ψ leaf ( E  = 0) compared to ψ soil support transpiration in drying soils.
Audience Academic
Author Cai, Gaochao
Dippold, Michaela A.
Zarebanadkouki, Mohsen
Ahmed, Mutez Ali
Carminati, Andrea
Author_xml – sequence: 1
  givenname: Gaochao
  orcidid: 0000-0003-4484-1146
  surname: Cai
  fullname: Cai, Gaochao
  email: gaochao.cai@uni-bayreuth.de
  organization: University of Bayreuth, Bayreuth Center of Ecology and Environmental Research (BayCEER), Chair of Soil Physics, Biogeochemistry of Agroecosystems, University of Göttingen
– sequence: 2
  givenname: Mutez Ali
  surname: Ahmed
  fullname: Ahmed, Mutez Ali
  organization: University of Bayreuth, Bayreuth Center of Ecology and Environmental Research (BayCEER), Chair of Soil Physics, Biogeochemistry of Agroecosystems, University of Göttingen
– sequence: 3
  givenname: Michaela A.
  surname: Dippold
  fullname: Dippold, Michaela A.
  organization: Biogeochemistry of Agroecosystems, University of Göttingen
– sequence: 4
  givenname: Mohsen
  surname: Zarebanadkouki
  fullname: Zarebanadkouki, Mohsen
  organization: University of Bayreuth, Bayreuth Center of Ecology and Environmental Research (BayCEER), Chair of Soil Physics
– sequence: 5
  givenname: Andrea
  surname: Carminati
  fullname: Carminati, Andrea
  organization: University of Bayreuth, Bayreuth Center of Ecology and Environmental Research (BayCEER), Chair of Soil Physics
BookMark eNp9kU9r3DAQxUVJoJs_XyAnQc9OR5Ys28cQ2qawkEsKvYmxPF4UtLIraUk3n77auFDoIeggjZjfG968C3YW5kCM3Qi4FQDt5ySEAFWB6CtQCrrq9QPbiKaVVQNSn7ENgKwraPufH9lFSs9wqoXesN3WBcLII3nMbg58oPxCFLgnnPjvo6c9f8FMkS9zppAdeo5h5DliSIuLK-QCX4qK53vnPWU-HqILO55m5_kYj-V9xc4n9Imu_96X7MfXL0_3D9X28dv3-7ttZRXUuZIoRS-VatoRsdZ2KK5qJLBApMdm6GgCPelOyXbosO4b1Gg7aYXtWhzkIC_Zp1V3ifOvA6VsnudDDGWkqWWroFd9q0vX7dq1Q0_GhWkufmw5I-2dLaudXPm_00L3spUCCtCtgI1zSpEmY11-815A540Ac8rBrDmYkoN5y8G8FrT-D12i22M8vg_JFUrLaZMU_9l4h_oD2WWe9g
CitedBy_id crossref_primary_10_1007_s11104_022_05656_2
crossref_primary_10_1093_plphys_kiab271
crossref_primary_10_3390_plants11081013
crossref_primary_10_1093_treephys_tpac006
crossref_primary_10_1093_aob_mcac147
crossref_primary_10_1111_pce_13939
crossref_primary_10_1093_jxb_erab251
crossref_primary_10_1111_pce_14536
crossref_primary_10_1111_pce_14259
crossref_primary_10_3389_fpls_2023_1140938
crossref_primary_10_1093_aob_mcab141
crossref_primary_10_1016_j_agwat_2024_108741
crossref_primary_10_1093_plphys_kiac229
crossref_primary_10_1002_eco_2386
Cites_doi 10.1007/s11104-004-7904-z
10.1093/jxb/erj145
10.1016/j.advwatres.2015.09.014
10.1016/S0140-1963(05)80053-9
10.1046/j.0016-8025.2001.00799.x
10.1007/BF00201396
10.1002/2015WR018150
10.1111/j.1365-3040.1993.tb00870.x
10.1093/jexbot/53.367.195
10.1071/pp9840341
10.1071/FP13330
10.1007/s004420100738
10.1016/j.jhydrol.2015.05.020
10.1002/2013WR014756
10.1071/ar9890943
10.1016/S1146-609X(99)80015-0
10.2134/agronj1994.00021962008600050005x
10.1111/j.1365-3040.1991.tb01507.x
10.1104/pp.102.019851
10.1111/nph.14450
10.1038/srep12449
10.1071/FP15115
10.2136/vzj2007.0115
10.1016/0378-4290(94)90060-4
10.1111/j.1365-3040.1996.tb00216.x
10.1007/s11104-010-0283-8
10.1093/jxb/43.11.1441
10.1104/pp.113.2.559
10.1046/j.0016-8025.2001.00785.x
10.1071/PP9860459
10.1111/j.1365-3040.1993.tb00880.x
10.1016/j.advwatres.2018.12.009
10.1007/s004420050850
10.1093/jxb/erq013
10.2134/agronj2005.0197
10.1071/pp9840351
10.1104/pp.17.00078
10.1111/nph.13354
10.1093/jxb/33.1.78
10.2136/vzj2007.0083
10.1007/s11104-013-1736-7
10.1093/aob/mcw113
10.1071/fp02079
10.1046/j.1365-3040.1997.d01-136.x
10.1626/pps.8.454
10.1093/jxb/31.1.333
10.1046/j.1365-3040.1998.00353.x
10.1111/j.1438-8677.1991.tb00250.x
10.1016/S0378-4290(01)00165-4
10.5194/hess-16-2957-2012
10.1146/annurev.pp.40.060189.000315
10.2136/vzj2008.0116
10.1093/jxb/erx439
10.17660/ActaHortic.2020.1300.17
10.1111/nph.14715
10.1101/574285
10.1146/annurev.arplant.52.1.627
10.1104/pp.82.2.597
10.5194/hess-22-2449-2018
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2020. corrected publication 2020
COPYRIGHT 2020 Springer
Plant and Soil is a copyright of Springer, (2020). All Rights Reserved.
Copyright_xml – notice: Springer Nature Switzerland AG 2020. corrected publication 2020
– notice: COPYRIGHT 2020 Springer
– notice: Plant and Soil is a copyright of Springer, (2020). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SN
7ST
7T7
7X2
88A
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
DOI 10.1007/s11104-019-04408-z
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Biology Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Agricultural Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Agricultural Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Ecology
Botany
EISSN 1573-5036
EndPage 578
ExternalDocumentID A616937310
10_1007_s11104_019_04408_z
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: Robert Bosch Junior Professorship to MD
  grantid: -
– fundername: Deutsch-Israelische Wassertechnologie-Kooperation
  grantid: Project 02WIL1489
GroupedDBID -4W
-56
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2XV
2~F
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67N
67Z
6NX
78A
7X2
88A
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXTN
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBHK
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ABXSQ
ACAOD
ACBXY
ACDTI
ACGFS
ACHIC
ACHSB
ACHXU
ACKIV
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADULT
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEEJZ
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUPB
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIDBO
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
AQVQM
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DATOO
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
EMK
EN4
EPAXT
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAG
IAO
IEP
IHE
IJ-
IKXTQ
IPSME
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JAAYA
JBMMH
JBSCW
JCJTX
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
JZLTJ
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0K
M0L
M4Y
M7P
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
PF0
PQQKQ
PROAC
PT4
PT5
Q2X
QF4
QM4
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SA0
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
XOL
Y6R
YLTOR
Z45
Z5O
Z7U
Z7V
Z7W
Z7Y
Z83
Z86
Z8O
Z8P
Z8Q
Z8S
Z8W
Z92
ZCG
ZMTXR
ZOVNA
~02
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
7SN
7ST
7T7
8FD
8FK
ABRTQ
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQUKI
RC3
SOI
ID FETCH-LOGICAL-c402t-3a31934457daa26cb1042ae0c0ee6d5b8ef06f68437b8a295a6ac83c1c87ab3b3
IEDL.DBID BENPR
ISSN 0032-079X
IngestDate Fri Jul 25 18:58:52 EDT 2025
Tue Jun 10 20:33:10 EDT 2025
Tue Jul 01 01:47:08 EDT 2025
Thu Apr 24 23:09:12 EDT 2025
Fri Feb 21 02:33:34 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Root pressure chamber
Balancing pressure
(L.) R.Br
Plant hydraulic conductance
Vapor pressure deficit
Stomatal conductance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-3a31934457daa26cb1042ae0c0ee6d5b8ef06f68437b8a295a6ac83c1c87ab3b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4484-1146
OpenAccessLink https://resolver.sub.uni-goettingen.de/purl?gro-2/71220
PQID 2374094976
PQPubID 54098
PageCount 14
ParticipantIDs proquest_journals_2374094976
gale_infotracacademiconefile_A616937310
crossref_citationtrail_10_1007_s11104_019_04408_z
crossref_primary_10_1007_s11104_019_04408_z
springer_journals_10_1007_s11104_019_04408_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200200
2020-02-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 2
  year: 2020
  text: 20200200
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Journal on Plant-Soil Relationships
PublicationTitle Plant and soil
PublicationTitleAbbrev Plant Soil
PublicationYear 2020
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References Flowers, Hajibagherp, Yeo (CR20) 1991; 14
Ahmed, Kroener, Holz (CR1) 2014; 41
Matzner, Comstock (CR33) 2001; 24
CR34
Saliendra, Sperry, Comstock (CR44) 1995; 196
Comstock, Mencuccini (CR11) 1998; 21
Sperry, Love (CR53) 2015; 207
Doussan, Pierret, Garrigues, Pagès (CR17) 2006; 283
Sperry, Hacke, Oren, Comstock (CR55) 2002; 25
Tyree, Sperry (CR59) 1989; 40
Huang, Nobel (CR26) 1994; 86
Passioura, Munns (CR40) 1984; 11
Nobel (CR36) 2009
Sellin (CR49) 1999; 20
Fuchs, Livingston (CR21) 1996; 19
Solari, DeJong (CR52) 2006; 57
Sperry, Pockman (CR54) 1993; 16
CR2
CR6
CR5
Schmidhalter (CR45) 1997; 20
van Oosterom, Carberry, Hargreaves, O’Leary (CR61) 2001; 72
CR9
CR47
Zegada-Lizarazu, Iijima (CR63) 2005; 8
Tombesi, Nardini, Frioni (CR58) 2015; 5
Donovan, Linton, Richards (CR16) 2001; 129
Passioura (CR38) 1980; 31
Couvreur, Vanderborght, Javaux (CR12) 2012; 16
Lovisolo, Hartung, Schubert (CR32) 2002; 29
Skelton, Brodribb, Choat (CR50) 2017; 214
Schwartz, Carminati, Javaux (CR48) 2016; 52
Benard, Kroener, Vontobel (CR3) 2016; 95
Faye, Diouf, Guissé (CR18) 2006; 98
Rebafka, Hebel, Bationo (CR42) 1994; 36
Schröder, Javaux, Vanderborght (CR46) 2009; 8
CR19
Peters, Iden, Durner (CR41) 2015; 527
Kholová, Hash, Kumar (CR29) 2010; 61
Passioura (CR39) 1991; 104
Donovan, Grisé, West (CR15) 1999; 120
Henson (CR24) 1982; 33
Kholová, Zindy, Malayee (CR30) 2016; 43
Huang, Nobel (CR25) 1992; 43
Brodribb, McAdam (CR4) 2017; 174
Carminati, Moradi, Vetterlein (CR7) 2010; 332
Javaux, Schröder, Vanderborght, Vereecken (CR27) 2008; 7
Richards, Passioura (CR43) 1989; 40
Carminati, Zarebanadkouki, Kroener (CR8) 2016; 118
Katayama, Ito, Adu-Gyamfi, Rao (CR28) 2000; 34
Kroener, Zarebanadkouki, Kaestner, Carminati (CR31) 2014; 50
Munns, Passioura (CR35) 1984; 11
Deery, Passioura, Condon, Katupitiya (CR14) 2013; 368
Slatyer (CR51) 1967
Comstock (CR10) 2002; 53
CR60
Wilkinson, Davies (CR62) 1997; 113
Hayat, Ahmed, Zarebanadkouki (CR23) 2019; 124
Stiller, Lafitte, Sperry (CR56) 2003; 132
Tardieu, Davies (CR57) 1993; 16
Ourcival, Floret, Le Floc’h, Pontanier (CR37) 1994; 28
de Jong van Lier, van Dam, Metselaar (CR13) 2008; 7
Gollan, Passioura, Munns (CR22) 1986; 13
A Carminati (4408_CR7) 2010; 332
LI Solari (4408_CR52) 2006; 57
TJ Flowers (4408_CR20) 1991; 14
C Lovisolo (4408_CR32) 2002; 29
NZ Saliendra (4408_CR44) 1995; 196
MA Ahmed (4408_CR1) 2014; 41
IE Henson (4408_CR24) 1982; 33
F-P Rebafka (4408_CR42) 1994; 36
A Carminati (4408_CR8) 2016; 118
B Huang (4408_CR25) 1992; 43
N Schwartz (4408_CR48) 2016; 52
F Tardieu (4408_CR57) 1993; 16
K Katayama (4408_CR28) 2000; 34
4408_CR19
JB Passioura (4408_CR39) 1991; 104
JS Sperry (4408_CR53) 2015; 207
C Doussan (4408_CR17) 2006; 283
L Donovan (4408_CR16) 2001; 129
I Faye (4408_CR18) 2006; 98
JM Ourcival (4408_CR37) 1994; 28
T Gollan (4408_CR22) 1986; 13
A Sellin (4408_CR49) 1999; 20
V Stiller (4408_CR56) 2003; 132
R Munns (4408_CR35) 1984; 11
EJ van Oosterom (4408_CR61) 2001; 72
J Kholová (4408_CR30) 2016; 43
EE Fuchs (4408_CR21) 1996; 19
E Kroener (4408_CR31) 2014; 50
W Zegada-Lizarazu (4408_CR63) 2005; 8
4408_CR47
JS Sperry (4408_CR54) 1993; 16
TJ Brodribb (4408_CR4) 2017; 174
M Javaux (4408_CR27) 2008; 7
LA Donovan (4408_CR15) 1999; 120
MT Tyree (4408_CR59) 1989; 40
V Couvreur (4408_CR12) 2012; 16
4408_CR5
J Kholová (4408_CR29) 2010; 61
J Comstock (4408_CR11) 1998; 21
4408_CR2
JP Comstock (4408_CR10) 2002; 53
T Schröder (4408_CR46) 2009; 8
A Peters (4408_CR41) 2015; 527
RP Skelton (4408_CR50) 2017; 214
F Hayat (4408_CR23) 2019; 124
RA Richards (4408_CR43) 1989; 40
4408_CR9
JS Sperry (4408_CR55) 2002; 25
S Tombesi (4408_CR58) 2015; 5
4408_CR6
PS Nobel (4408_CR36) 2009
RO Slatyer (4408_CR51) 1967
Q de Jong van Lier (4408_CR13) 2008; 7
4408_CR34
DM Deery (4408_CR14) 2013; 368
JB Passioura (4408_CR38) 1980; 31
S Wilkinson (4408_CR62) 1997; 113
B Huang (4408_CR26) 1994; 86
P Benard (4408_CR3) 2016; 95
U Schmidhalter (4408_CR45) 1997; 20
JB Passioura (4408_CR40) 1984; 11
S Matzner (4408_CR33) 2001; 24
4408_CR60
References_xml – volume: 283
  start-page: 99
  year: 2006
  end-page: 117
  ident: CR17
  article-title: Water uptake by plant roots: II – modelling of water transfer in the soil root-system with explicit account of flow within the root system – comparison with experiments
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-7904-z
– volume: 57
  start-page: 1981
  year: 2006
  end-page: 1989
  ident: CR52
  article-title: The effect of root pressurization on water relations, shoot growth, and leaf gas exchange of peach (Prunus persica) trees on rootstocks with differing growth potential and hydraulic conductance
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erj145
– volume: 95
  start-page: 190
  year: 2016
  end-page: 198
  ident: CR3
  article-title: Water percolation through the root-soil interface
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2015.09.014
– volume: 28
  start-page: 333
  year: 1994
  end-page: 350
  ident: CR37
  article-title: Water relations between two perennial species in the steppes of southern Tunisia
  publication-title: J Arid Environ
  doi: 10.1016/S0140-1963(05)80053-9
– volume: 25
  start-page: 251
  year: 2002
  end-page: 263
  ident: CR55
  article-title: Water deficits and hydraulic limits to leaf water supply
  publication-title: Plant Cell Environ
  doi: 10.1046/j.0016-8025.2001.00799.x
– volume: 196
  start-page: 357
  year: 1995
  end-page: 366
  ident: CR44
  article-title: Influence of leaf water status on stomatal response to humidity, hydraulic conductance, and soil drought in Betula occidentalis
  publication-title: Planta
  doi: 10.1007/BF00201396
– volume: 52
  start-page: 264
  year: 2016
  end-page: 277
  ident: CR48
  article-title: The impact of mucilage on root water uptake—a numerical study
  publication-title: Water Resour Res
  doi: 10.1002/2015WR018150
– volume: 16
  start-page: 279
  year: 1993
  end-page: 287
  ident: CR54
  article-title: Limitation of transpiration by hydraulic conductance and xylem cavitation in Betula occidentalis
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.1993.tb00870.x
– volume: 53
  start-page: 195
  year: 2002
  end-page: 200
  ident: CR10
  article-title: Hydraulic and chemical signalling in the control of stomatal conductance and transpiration
  publication-title: J Exp Bot
  doi: 10.1093/jexbot/53.367.195
– volume: 11
  start-page: 341
  year: 1984
  end-page: 350
  ident: CR40
  article-title: Hydraulic resistance of plants. II. Effects of rooting medium, and time of day, in barley and lupin
  publication-title: Funct Plant Biol
  doi: 10.1071/pp9840341
– volume: 41
  start-page: 1129
  year: 2014
  end-page: 1137
  ident: CR1
  article-title: Mucilage exudation facilitates root water uptake in dry soils
  publication-title: Funct Plant Biol
  doi: 10.1071/FP13330
– volume: 129
  start-page: 328
  year: 2001
  end-page: 335
  ident: CR16
  article-title: Predawn plant water potential does not necessarily equilibrate with soil water potential under well-watered conditions
  publication-title: Oecologia
  doi: 10.1007/s004420100738
– volume: 527
  start-page: 531
  year: 2015
  end-page: 542
  ident: CR41
  article-title: Revisiting the simplified evaporation method: identification of hydraulic functions considering vapor, film and corner flow
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2015.05.020
– volume: 50
  start-page: 6479
  year: 2014
  end-page: 6495
  ident: CR31
  article-title: Nonequilibrium water dynamics in the rhizosphere: how mucilage affects water flow in soils
  publication-title: Water Resour Res
  doi: 10.1002/2013WR014756
– volume: 40
  start-page: 943
  year: 1989
  end-page: 950
  ident: CR43
  article-title: A breeding program to reduce the diameter of the major xylem vessel in the seminal roots of wheat and its effect on grain yield in rain-fed environments
  publication-title: Aust J Agric Res
  doi: 10.1071/ar9890943
– volume: 20
  start-page: 51
  year: 1999
  end-page: 59
  ident: CR49
  article-title: Does pre-dawn water potential reflect conditions of equilibrium in plant and soil water status?
  publication-title: Acta Oecol
  doi: 10.1016/S1146-609X(99)80015-0
– volume: 86
  start-page: 767
  year: 1994
  end-page: 774
  ident: CR26
  article-title: Root hydraulic conductivity and its components, with emphasis on desert succulents
  publication-title: Agron J
  doi: 10.2134/agronj1994.00021962008600050005x
– year: 1967
  ident: CR51
  publication-title: Plant-water relationships
– volume: 14
  start-page: 319
  year: 1991
  end-page: 325
  ident: CR20
  article-title: Ion accumulation in the cell walls of rice plants growing under saline conditions: evidence for the Oertli hypothesis
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.1991.tb01507.x
– ident: CR19
– volume: 132
  start-page: 1698
  year: 2003
  end-page: 1706
  ident: CR56
  article-title: Hydraulic properties of Rice and the response of gas exchange to water stress
  publication-title: Plant Physiol
  doi: 10.1104/pp.102.019851
– ident: CR9
– volume: 214
  start-page: 561
  year: 2017
  end-page: 569
  ident: CR50
  article-title: Casting light on xylem vulnerability in an herbaceous species reveals a lack of segmentation
  publication-title: New Phytol
  doi: 10.1111/nph.14450
– volume: 5
  start-page: 12449
  year: 2015
  ident: CR58
  article-title: Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine
  publication-title: Sci Rep
  doi: 10.1038/srep12449
– volume: 43
  start-page: 423
  year: 2016
  ident: CR30
  article-title: Component traits of plant water use are modulated by vapour pressure deficit in pearl millet (Pennisetum glaucum (L.) R.Br.)
  publication-title: Funct Plant Biol
  doi: 10.1071/FP15115
– ident: CR60
– ident: CR5
– volume: 7
  start-page: 1079
  year: 2008
  end-page: 1088
  ident: CR27
  article-title: Use of a three-dimensional detailed modeling approach for predicting root water uptake
  publication-title: Vadose Zone J
  doi: 10.2136/vzj2007.0115
– volume: 36
  start-page: 113
  year: 1994
  end-page: 124
  ident: CR42
  article-title: Short- and long-term effects of crop residues and of phosphorus fertilization on pearl millet yield on an acid sandy soil in Niger, West Africa
  publication-title: Field Crops Res
  doi: 10.1016/0378-4290(94)90060-4
– volume: 19
  start-page: 1091
  year: 1996
  end-page: 1098
  ident: CR21
  article-title: Hydraulic control of stomatal conductance in Douglas fir [Pseudotsuga menziesii (Mirb.) Franco] and alder [Alnus rubra (Bong)] seedlings
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.1996.tb00216.x
– volume: 332
  start-page: 163
  year: 2010
  end-page: 176
  ident: CR7
  article-title: Dynamics of soil water content in the rhizosphere
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0283-8
– volume: 43
  start-page: 1441
  year: 1992
  end-page: 1449
  ident: CR25
  article-title: Hydraulic conductivity and anatomy for lateral roots of Agave deserti during root growth and drought-induced abscission
  publication-title: J Exp Bot
  doi: 10.1093/jxb/43.11.1441
– ident: CR47
– volume: 113
  start-page: 559
  year: 1997
  end-page: 573
  ident: CR62
  article-title: Xylem sap pH increase: a drought signal received at the Apoplastic face of the guard cell that involves the suppression of Saturable Abscisic acid uptake by the epidermal Symplast
  publication-title: Plant Physiol
  doi: 10.1104/pp.113.2.559
– volume: 24
  start-page: 1299
  year: 2001
  end-page: 1307
  ident: CR33
  article-title: The temperature dependence of shoot hydraulic resistance: implications for stomatal behaviour and hydraulic limitation
  publication-title: Plant Cell Environ
  doi: 10.1046/j.0016-8025.2001.00785.x
– ident: CR2
– volume: 13
  start-page: 459
  year: 1986
  ident: CR22
  article-title: Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leaves
  publication-title: Aust J Plant Physiol
  doi: 10.1071/PP9860459
– volume: 16
  start-page: 341
  year: 1993
  end-page: 349
  ident: CR57
  article-title: Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.1993.tb00880.x
– volume: 124
  start-page: 96
  year: 2019
  end-page: 105
  ident: CR23
  article-title: Measurements and simulation of leaf xylem water potential and root water uptake in heterogeneous soil water contents
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2018.12.009
– volume: 120
  start-page: 209
  year: 1999
  end-page: 217
  ident: CR15
  article-title: Predawn disequilibrium between plant and soil water potentials in two cold-desert shrubs
  publication-title: Oecologia
  doi: 10.1007/s004420050850
– volume: 61
  start-page: 1431
  year: 2010
  end-page: 1440
  ident: CR29
  article-title: Terminal drought-tolerant pearl millet [Pennisetum glaucum (L.) R. Br.] have high leaf ABA and limit transpiration at high vapour pressure deficit
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erq013
– ident: CR6
– volume: 98
  start-page: 1187
  year: 2006
  end-page: 1194
  ident: CR18
  article-title: Characterizing root responses to low phosphorus in pearl millet [Pennisetum glaucum (L.) R. Br.]
  publication-title: Agron J
  doi: 10.2134/agronj2005.0197
– volume: 11
  start-page: 351
  year: 1984
  end-page: 359
  ident: CR35
  article-title: Hydraulic resistance of plants. III. Effects of NaCl in barley and lupin
  publication-title: Funct Plant Biol
  doi: 10.1071/pp9840351
– volume: 174
  start-page: 639
  year: 2017
  end-page: 649
  ident: CR4
  article-title: Evolution of the stomatal regulation of plant water content
  publication-title: Plant Physiol
  doi: 10.1104/pp.17.00078
– volume: 207
  start-page: 14
  year: 2015
  end-page: 27
  ident: CR53
  article-title: What plant hydraulics can tell us about responses to climate-change droughts
  publication-title: New Phytol
  doi: 10.1111/nph.13354
– volume: 33
  start-page: 78
  year: 1982
  end-page: 87
  ident: CR24
  article-title: Osmotic adjustment to water stress in pearl millet (Pennisetum americanum (L. ) Leeke) in a controlled environment
  publication-title: J Exp Bot
  doi: 10.1093/jxb/33.1.78
– volume: 7
  start-page: 1065
  year: 2008
  ident: CR13
  article-title: Macroscopic root water uptake distribution using a matric flux potential approach
  publication-title: Vadose Zone J
  doi: 10.2136/vzj2007.0083
– volume: 368
  start-page: 649
  year: 2013
  end-page: 667
  ident: CR14
  article-title: Uptake of water from a Kandosol subsoil. II. Control of water uptake by roots
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1736-7
– volume: 118
  start-page: 561
  year: 2016
  end-page: 571
  ident: CR8
  article-title: Biophysical rhizosphere processes affecting root water uptake
  publication-title: Ann Bot
  doi: 10.1093/aob/mcw113
– volume: 29
  start-page: 1349
  year: 2002
  end-page: 1356
  ident: CR32
  article-title: Whole-plant hydraulic conductance and root-to-shoot flow of abscisic acid are independently affected by water stress in grapevines
  publication-title: Funct Plant Biol
  doi: 10.1071/fp02079
– volume: 34
  start-page: 81
  year: 2000
  end-page: 86
  ident: CR28
  article-title: Analysis of relationship between root length density and water uptake by roots of five crops using minirhizotron in the semi-arid tropics
  publication-title: JARQ
– volume: 20
  start-page: 953
  year: 1997
  end-page: 960
  ident: CR45
  article-title: The gradient between pre-dawn rhizoplane and bulk soil matric potentials, and its relation to the pre-dawn root and leaf water potentials of four species
  publication-title: Plant Cell Environ
  doi: 10.1046/j.1365-3040.1997.d01-136.x
– volume: 8
  start-page: 454
  year: 2005
  end-page: 460
  ident: CR63
  article-title: Deep root water uptake ability and water use efficiency of pearl millet in comparison to other millet species
  publication-title: Plant Prod Sci
  doi: 10.1626/pps.8.454
– volume: 31
  start-page: 333
  year: 1980
  end-page: 345
  ident: CR38
  article-title: The transport of water from soil to shoot in wheat seedlings
  publication-title: J Exp Bot
  doi: 10.1093/jxb/31.1.333
– year: 2009
  ident: CR36
  publication-title: Physicochemical and environmental plant physiology
– ident: CR34
– volume: 21
  start-page: 1029
  year: 1998
  end-page: 1038
  ident: CR11
  article-title: Control of stomatal conductance by leaf water potential in Hymenoclea salsola (T. & G.), a desert subshrub
  publication-title: Plant Cell Environ
  doi: 10.1046/j.1365-3040.1998.00353.x
– volume: 104
  start-page: 405
  year: 1991
  end-page: 411
  ident: CR39
  article-title: An impasse in plant water relations?
  publication-title: Bot Acta
  doi: 10.1111/j.1438-8677.1991.tb00250.x
– volume: 72
  start-page: 67
  year: 2001
  end-page: 91
  ident: CR61
  article-title: Simulating growth, development, and yield of tillering pearl millet: II. Simulation of canopy development
  publication-title: Field Crops Res
  doi: 10.1016/S0378-4290(01)00165-4
– volume: 16
  start-page: 2957
  year: 2012
  end-page: 2971
  ident: CR12
  article-title: A simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-16-2957-2012
– volume: 40
  start-page: 19
  year: 1989
  end-page: 36
  ident: CR59
  article-title: Vulnerability of xylem to cavitation and embolism
  publication-title: Annu Rev Plant Physiol Plant Mol Biol
  doi: 10.1146/annurev.pp.40.060189.000315
– volume: 8
  start-page: 783
  year: 2009
  end-page: 792
  ident: CR46
  article-title: Implementation of a microscopic soil–root hydraulic conductivity drop function in a three-dimensional soil–root architecture water transfer model
  publication-title: Vadose Zone J
  doi: 10.2136/vzj2008.0116
– volume: 332
  start-page: 163
  year: 2010
  ident: 4408_CR7
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0283-8
– volume: 53
  start-page: 195
  year: 2002
  ident: 4408_CR10
  publication-title: J Exp Bot
  doi: 10.1093/jexbot/53.367.195
– volume: 16
  start-page: 279
  year: 1993
  ident: 4408_CR54
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.1993.tb00870.x
– ident: 4408_CR2
  doi: 10.1093/jxb/erx439
– volume-title: Plant-water relationships
  year: 1967
  ident: 4408_CR51
– volume: 132
  start-page: 1698
  year: 2003
  ident: 4408_CR56
  publication-title: Plant Physiol
  doi: 10.1104/pp.102.019851
– volume: 16
  start-page: 341
  year: 1993
  ident: 4408_CR57
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.1993.tb00880.x
– volume: 8
  start-page: 454
  year: 2005
  ident: 4408_CR63
  publication-title: Plant Prod Sci
  doi: 10.1626/pps.8.454
– volume: 368
  start-page: 649
  year: 2013
  ident: 4408_CR14
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1736-7
– volume: 104
  start-page: 405
  year: 1991
  ident: 4408_CR39
  publication-title: Bot Acta
  doi: 10.1111/j.1438-8677.1991.tb00250.x
– volume: 11
  start-page: 341
  year: 1984
  ident: 4408_CR40
  publication-title: Funct Plant Biol
  doi: 10.1071/pp9840341
– volume: 40
  start-page: 943
  year: 1989
  ident: 4408_CR43
  publication-title: Aust J Agric Res
  doi: 10.1071/ar9890943
– volume: 16
  start-page: 2957
  year: 2012
  ident: 4408_CR12
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-16-2957-2012
– ident: 4408_CR6
  doi: 10.17660/ActaHortic.2020.1300.17
– volume: 21
  start-page: 1029
  year: 1998
  ident: 4408_CR11
  publication-title: Plant Cell Environ
  doi: 10.1046/j.1365-3040.1998.00353.x
– volume-title: Physicochemical and environmental plant physiology
  year: 2009
  ident: 4408_CR36
– volume: 283
  start-page: 99
  year: 2006
  ident: 4408_CR17
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-7904-z
– volume: 207
  start-page: 14
  year: 2015
  ident: 4408_CR53
  publication-title: New Phytol
  doi: 10.1111/nph.13354
– volume: 33
  start-page: 78
  year: 1982
  ident: 4408_CR24
  publication-title: J Exp Bot
  doi: 10.1093/jxb/33.1.78
– volume: 20
  start-page: 51
  year: 1999
  ident: 4408_CR49
  publication-title: Acta Oecol
  doi: 10.1016/S1146-609X(99)80015-0
– volume: 41
  start-page: 1129
  year: 2014
  ident: 4408_CR1
  publication-title: Funct Plant Biol
  doi: 10.1071/FP13330
– volume: 98
  start-page: 1187
  year: 2006
  ident: 4408_CR18
  publication-title: Agron J
  doi: 10.2134/agronj2005.0197
– volume: 129
  start-page: 328
  year: 2001
  ident: 4408_CR16
  publication-title: Oecologia
  doi: 10.1007/s004420100738
– volume: 19
  start-page: 1091
  year: 1996
  ident: 4408_CR21
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.1996.tb00216.x
– volume: 7
  start-page: 1079
  year: 2008
  ident: 4408_CR27
  publication-title: Vadose Zone J
  doi: 10.2136/vzj2007.0115
– volume: 5
  start-page: 12449
  year: 2015
  ident: 4408_CR58
  publication-title: Sci Rep
  doi: 10.1038/srep12449
– volume: 174
  start-page: 639
  year: 2017
  ident: 4408_CR4
  publication-title: Plant Physiol
  doi: 10.1104/pp.17.00078
– volume: 28
  start-page: 333
  year: 1994
  ident: 4408_CR37
  publication-title: J Arid Environ
  doi: 10.1016/S0140-1963(05)80053-9
– volume: 36
  start-page: 113
  year: 1994
  ident: 4408_CR42
  publication-title: Field Crops Res
  doi: 10.1016/0378-4290(94)90060-4
– volume: 40
  start-page: 19
  year: 1989
  ident: 4408_CR59
  publication-title: Annu Rev Plant Physiol Plant Mol Biol
  doi: 10.1146/annurev.pp.40.060189.000315
– volume: 8
  start-page: 783
  year: 2009
  ident: 4408_CR46
  publication-title: Vadose Zone J
  doi: 10.2136/vzj2008.0116
– volume: 527
  start-page: 531
  year: 2015
  ident: 4408_CR41
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2015.05.020
– volume: 24
  start-page: 1299
  year: 2001
  ident: 4408_CR33
  publication-title: Plant Cell Environ
  doi: 10.1046/j.0016-8025.2001.00785.x
– ident: 4408_CR9
  doi: 10.1111/nph.14715
– volume: 20
  start-page: 953
  year: 1997
  ident: 4408_CR45
  publication-title: Plant Cell Environ
  doi: 10.1046/j.1365-3040.1997.d01-136.x
– volume: 13
  start-page: 459
  year: 1986
  ident: 4408_CR22
  publication-title: Aust J Plant Physiol
  doi: 10.1071/PP9860459
– ident: 4408_CR19
  doi: 10.1101/574285
– volume: 31
  start-page: 333
  year: 1980
  ident: 4408_CR38
  publication-title: J Exp Bot
  doi: 10.1093/jxb/31.1.333
– ident: 4408_CR47
  doi: 10.1146/annurev.arplant.52.1.627
– ident: 4408_CR60
  doi: 10.1104/pp.82.2.597
– volume: 196
  start-page: 357
  year: 1995
  ident: 4408_CR44
  publication-title: Planta
  doi: 10.1007/BF00201396
– ident: 4408_CR5
  doi: 10.5194/hess-22-2449-2018
– volume: 11
  start-page: 351
  year: 1984
  ident: 4408_CR35
  publication-title: Funct Plant Biol
  doi: 10.1071/pp9840351
– volume: 34
  start-page: 81
  year: 2000
  ident: 4408_CR28
  publication-title: JARQ
– volume: 118
  start-page: 561
  year: 2016
  ident: 4408_CR8
  publication-title: Ann Bot
  doi: 10.1093/aob/mcw113
– volume: 86
  start-page: 767
  year: 1994
  ident: 4408_CR26
  publication-title: Agron J
  doi: 10.2134/agronj1994.00021962008600050005x
– volume: 29
  start-page: 1349
  year: 2002
  ident: 4408_CR32
  publication-title: Funct Plant Biol
  doi: 10.1071/fp02079
– volume: 14
  start-page: 319
  year: 1991
  ident: 4408_CR20
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.1991.tb01507.x
– ident: 4408_CR34
– volume: 95
  start-page: 190
  year: 2016
  ident: 4408_CR3
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2015.09.014
– volume: 120
  start-page: 209
  year: 1999
  ident: 4408_CR15
  publication-title: Oecologia
  doi: 10.1007/s004420050850
– volume: 113
  start-page: 559
  year: 1997
  ident: 4408_CR62
  publication-title: Plant Physiol
  doi: 10.1104/pp.113.2.559
– volume: 43
  start-page: 1441
  year: 1992
  ident: 4408_CR25
  publication-title: J Exp Bot
  doi: 10.1093/jxb/43.11.1441
– volume: 124
  start-page: 96
  year: 2019
  ident: 4408_CR23
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2018.12.009
– volume: 57
  start-page: 1981
  year: 2006
  ident: 4408_CR52
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erj145
– volume: 7
  start-page: 1065
  year: 2008
  ident: 4408_CR13
  publication-title: Vadose Zone J
  doi: 10.2136/vzj2007.0083
– volume: 25
  start-page: 251
  year: 2002
  ident: 4408_CR55
  publication-title: Plant Cell Environ
  doi: 10.1046/j.0016-8025.2001.00799.x
– volume: 61
  start-page: 1431
  year: 2010
  ident: 4408_CR29
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erq013
– volume: 72
  start-page: 67
  year: 2001
  ident: 4408_CR61
  publication-title: Field Crops Res
  doi: 10.1016/S0378-4290(01)00165-4
– volume: 52
  start-page: 264
  year: 2016
  ident: 4408_CR48
  publication-title: Water Resour Res
  doi: 10.1002/2015WR018150
– volume: 214
  start-page: 561
  year: 2017
  ident: 4408_CR50
  publication-title: New Phytol
  doi: 10.1111/nph.14450
– volume: 50
  start-page: 6479
  year: 2014
  ident: 4408_CR31
  publication-title: Water Resour Res
  doi: 10.1002/2013WR014756
– volume: 43
  start-page: 423
  year: 2016
  ident: 4408_CR30
  publication-title: Funct Plant Biol
  doi: 10.1071/FP15115
SSID ssj0003216
Score 2.3992674
Snippet Aims As soil dries, the loss of soil hydraulic conductivity limits water supply to the leaves, which is expected to generate a nonlinear relationship between...
Aims As soil dries, the loss of soil hydraulic conductivity limits water supply to the leaves, which is expected to generate a nonlinear relationship between...
AimsAs soil dries, the loss of soil hydraulic conductivity limits water supply to the leaves, which is expected to generate a nonlinear relationship between...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 565
SubjectTerms Analysis
Barley
Biomedical and Life Sciences
Conductance
Drying
Ecology
Electric properties
Flowers & plants
Hydraulic measurements
Hydraulics
Hydrogeology
Leaves
Life Sciences
Linearity
Measurement methods
Millet
Moisture content
Osmotic potential
Pennisetum glaucum
Plant Physiology
Plant Sciences
Pressure chambers
Regular Article
Resistance
Soil conductivity
Soil erosion
Soil moisture
Soil properties
Soil Science & Conservation
Soil water
Soil water potential
Soils
Transpiration
Water flow
Water potential
Water shortages
Water supply
Water uptake
Xylem
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-6doP2YXTZRtO1RQ-DPWwGV5Il5zEdLaXQPi2QN6GvlIDnBMdjS__63jlywz5hbwbbktF96M663-8A3nOnlRpJSd4vZtJ6ndlSRDT3gOrMA_pMwg7f3qnribyZFtMEClv11e79kWTnqbdgN9ypqGKCfubLvMwensFeQbk7avGEj5_8r-Bdw1O6yHI9miaozJ_H-Gk7-tUp_3Y62m06V4fwMkWLbLwR7yvYifUADsb3TWLMiAN4frHA-G49gBeXHQH1-jXcY4KJCsyaVOjGUjEWq6KdsR_rKn5l3zHGbNhy0VK1EE5h68Dajuh8vtEJNq_ZEkepGDUmii3bABrZajGvWGgIHfUGJleXXz5fZ6mhQuYxTWwzYdHghJSFDtZy5R0uBrcx93mMKhSujLNczVQphXal5aPCKutL4c99qa0TTryF3XpRxyNgmnj0lc-dxniEoAQY2JQuShs0D2FUDOG8X1fjE9s4Nb2ozJYnmWRhUBamk4V5GMLHp3eWG66Nfz79gcRlyBBxZG8TngC_jyitzFgRz4zG8HUIJ71ETbLQleFCU2qL0dgQPvVS3t7--7zH__f4O9jnlKJ3hd4nsNs23-IpxjGtO-vU9hFtcOgn
  priority: 102
  providerName: Springer Nature
Title Linear relation between leaf xylem water potential and transpiration in pearl millet during soil drying
URI https://link.springer.com/article/10.1007/s11104-019-04408-z
https://www.proquest.com/docview/2374094976
Volume 447
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-xlQf2gMYAURiVH5B4gIjMduz0CaWsZQIxIUSl8hQ5tjtVCkmXBsH213OXuKsAsadESnKJct_23e8AXvBCKzWWkqyfj6SxOjKp8KjuDsWZO7SZ1Dv86VydzeWHRbIIC26bUFa5tYmdoXa1pTXyN1xoSkXQe75dX0Y0NYp2V8MIjT0YoAlOMfkaTKbnn7_c2GLBu-GndBLFerwIbTN98xx6PqrAoM0BGafR9R-u6W8D_c9OaeeAZodwP0SOLOtZ_QDu-OoIDrKLJqBn-CO4O6kx1rt6CBeYYqIIsyaUurFQjsVKb5bs11Xpv7OfGGU2bF23VC-EhE3lWNtBna96qWCriq2RSsloNJFvWd_SyDb1qmSuof6oRzCfTb--O4vCSIXIYqLYRsKgygkpE-2M4coW-Au48bGNvVcuKVK_jNVSpVLoIjV8nBhlbCrsiU21KUQhHsN-VVf-CTBNSPrKxoXGiISaCTC0SQsvjdPcuXEyhJPt38xtwBunsRdlvkNKJg7kyIG840B-PYRXN8-se7SNW-9-SUzKSRWRsjWhowC_j0Ct8kwR0ozGAHYIx1s-5kFHN_lOoobwesvb3eX_v_fp7dSewT1OSXlX2n0M-23zwz_HyKUtRjDIJqeTGR3ff_s4HQVxHcHenGe_AdA_7Ts
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NDgl4QDBAFAb4AcQDRGS2E6cPCHWwqWNbhdAm9S1zbHeqlCVdGjS6P4q_kbvEWQWIve2tUppL5Dvfj_i-7wBe80zF8UBK8n4ukNqoQCfC4Xa3aM7cos8k7PDhOB4dy6-TaLIGvzosDLVVdj6xcdS2NPSN_AMXikoRjJ6f5ucBTY2i09VuhEZrFvtueYEl2-Lj3hfU7xvOd3eOPo8CP1UgMFgr1YHQaHVCykhZrXlsMixIuHahCZ2LbZQlbhrG0ziRQmWJ5oNIx9okwmyZROlMZALl3oJ1KbCU6cH69s742_cr3y94M2yVfgShGkw8TKcF62GkpY4POoyQYRJc_hEK_w4I_5zMNgFv9wHc95kqG7am9RDWXLEB94anlWfrcBtwe7vE3HL5CE6xpMW1YZVvrWO-_YvlTk_Zz2XuztgFZrUVm5c19SehYF1YVjfU6rPWCtmsYHOUkjMaheRq1kIo2aKc5cxWhMd6DMc3sthPoFeUhXsKTBFzf2zCTGEGROAFTKWSzEltFbd2EPVhq1vN1Hh-cxqzkacrZmbSQIoaSBsNpJd9eHd1z7xl97j2329JSSltfZRstEcw4PsRiVY6jInZRmHC3IfNTo-p9wmLdGXBfXjf6XZ1-f_PfXa9tFdwZ3R0eJAe7I33n8NdTh8EmrbyTejV1Q_3ArOmOnvpTZXByU3vjt_vDiaI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NDiF4QDBAdAzwA4gHiJY5iZ0-INSxVRuDakJM6pvn2O5UKSRdGjS6P42_jrvEWQWIve2tUppL5Dvfj_i-7wBe8UwKMYhj8n4uiLWRgU4jh9vdojlziz6TsMNfxuLgJP40SSZr8KvDwlBbZecTG0dtS0PfyLd5JKkUwei5PfVtEcd7ow_z84AmSNFJazdOozWRI7e8wPJt8f5wD3X9mvPR_rePB4GfMBAYrJvqINJogVEcJ9JqzYXJsDjh2oUmdE7YJEvdNBRTkcaRzFLNB4kW2qSR2TGp1FmURSj3Fqzjm8mwB-u7--Pjr1dxIOLN4FX6EYRyMPGQnRa4h1GXuj_oYCIO0-Dyj7D4d3D455S2CX6jB3DfZ61s2JrZQ1hzxQbcG55VnrnDbcDt3RLzzOUjOMPyFteGVb7NjvlWMJY7PWU_l7n7zi4ww63YvKypVwkF68KyuqFZn7UWyWYFm6OUnNFYJFezFk7JFuUsZ7YibNZjOLmRxX4CvaIs3FNgklj8hQkzidkQARkwrUozF2srubWDpA873Woq47nOaeRGrlYszaQBhRpQjQbUZR_eXt0zb5k-rv33G1KSIjeAko32aAZ8PyLUUkNBLDcSk-c-bHV6VN4_LNTKmvvwrtPt6vL_n7t5vbSXcAd3hfp8OD56Bnc5fRtoOsy3oFdXP9xzTKDq7IW3VAanN705fgOtlyq9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+relation+between+leaf+xylem+water+potential+and+transpiration+in+pearl+millet+during+soil+drying&rft.jtitle=Plant+and+soil&rft.au=Cai+Gaochao&rft.au=Ahmed+Mutez+Ali&rft.au=Dippold%2C+Michaela+A&rft.au=Zarebanadkouki+Mohsen&rft.date=2020-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0032-079X&rft.eissn=1573-5036&rft.volume=447&rft.issue=1-2&rft.spage=565&rft.epage=578&rft_id=info:doi/10.1007%2Fs11104-019-04408-z&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon