Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks
This paper presents a novel hybrid Elman-LSTM method for battery remaining useful life prediction by combining the empirical model decomposition algorithm and long short-term memory and Elman neural networks. The empirical model decomposition algorithm is employed to decompose the recorded battery c...
Saved in:
Published in | Journal of energy storage Vol. 21; pp. 510 - 518 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a novel hybrid Elman-LSTM method for battery remaining useful life prediction by combining the empirical model decomposition algorithm and long short-term memory and Elman neural networks. The empirical model decomposition algorithm is employed to decompose the recorded battery capacity verse cycle number data into several sub-layers. The recurrent long short-term memory and Elman neural networks are then established to predict high- and low-frequency sub-layers, respectively. Comprehensive battery test datasets have been collected and used for model parameterization and performance evaluation. The comparison results indicate that the proposed hybrid Elman-LSTM model yields superior performance relative to the other counterparts and can predict the battery remaining useful life with high accuracy. The relative prediction errors are 3.3% and 3.21% based on two unseen datasets, respectively. |
---|---|
AbstractList | This paper presents a novel hybrid Elman-LSTM method for battery remaining useful life prediction by combining the empirical model decomposition algorithm and long short-term memory and Elman neural networks. The empirical model decomposition algorithm is employed to decompose the recorded battery capacity verse cycle number data into several sub-layers. The recurrent long short-term memory and Elman neural networks are then established to predict high- and low-frequency sub-layers, respectively. Comprehensive battery test datasets have been collected and used for model parameterization and performance evaluation. The comparison results indicate that the proposed hybrid Elman-LSTM model yields superior performance relative to the other counterparts and can predict the battery remaining useful life with high accuracy. The relative prediction errors are 3.3% and 3.21% based on two unseen datasets, respectively. |
Author | Dong, Peng Wang, Zhenpo Zhang, Lei Li, Xiaoyu |
Author_xml | – sequence: 1 givenname: Xiaoyu surname: Li fullname: Li, Xiaoyu organization: National Engineering Laboratory for Electric Vehicles, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China – sequence: 2 givenname: Lei orcidid: 0000-0002-2095-1976 surname: Zhang fullname: Zhang, Lei email: lei_zhang@bit.edu.cn organization: National Engineering Laboratory for Electric Vehicles, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China – sequence: 3 givenname: Zhenpo surname: Wang fullname: Wang, Zhenpo email: wangzhenpo@bit.edu.cn organization: National Engineering Laboratory for Electric Vehicles, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China – sequence: 4 givenname: Peng surname: Dong fullname: Dong, Peng organization: National Engineering Laboratory for Electric Vehicles, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China |
BookMark | eNp9kE1qHDEQRkWwIePxHCA7XaDbKrXVrcYrY5wfMASMA9kJSV3t0aQlGUmTMMfwja1hQhZZeFVfffAK6l2QsxADEvIJWAsM-qtdi7m0nIFsgbcM4ANZ8U7wBkQnz_5l_vMj2eS8Y6xCAmDsV-T1Eb12wYVnus847xe6uBnpS8LJ2eJioHNMtStbt_fNcTe6FEwOc00ZJ1orTbcHk9xEfZxwoTZ6czpZtkiXWEPexlSaynnq0cd0oDpM9H7xOtCA-6SXOsqfmH7lS3I-6yXj5u9ckx-f75_uvjYP3798u7t9aOw146XpBmE64EyAFdJIMOPQ48RHaVBiJ9mEhokZBy5A9twM48i1Nb1gchxQD6Jbk-F016aYc8JZWVf08eWStFsUMHWUq3aqylVHuQq4qnIrCf-RL8l5nQ7vMjcnButLvx0mla3DYKvmhLaoKbp36De3nJcV |
CitedBy_id | crossref_primary_10_1016_j_est_2022_106436 crossref_primary_10_3390_batteries10070220 crossref_primary_10_1016_j_est_2024_110816 crossref_primary_10_1016_j_measurement_2024_115312 crossref_primary_10_1007_s00202_023_01910_7 crossref_primary_10_1109_TII_2022_3155597 crossref_primary_10_1016_j_energy_2024_131700 crossref_primary_10_1115_1_4065762 crossref_primary_10_3390_en15238918 crossref_primary_10_3390_en15072498 crossref_primary_10_3390_machines12050342 crossref_primary_10_1016_j_jpowsour_2021_230572 crossref_primary_10_1016_j_egyr_2022_09_043 crossref_primary_10_1016_j_est_2023_107367 crossref_primary_10_3389_fenrg_2022_899804 crossref_primary_10_1109_ACCESS_2024_3419009 crossref_primary_10_1016_j_energy_2021_121857 crossref_primary_10_1016_j_est_2021_102598 crossref_primary_10_1049_esi2_12171 crossref_primary_10_1007_s10614_023_10354_x crossref_primary_10_3390_s22155744 crossref_primary_10_3390_en16010313 crossref_primary_10_1021_acs_iecr_3c02849 crossref_primary_10_1109_TIM_2022_3200093 crossref_primary_10_1155_2023_2267376 crossref_primary_10_1149_1945_7111_ad24c1 crossref_primary_10_3390_math13030464 crossref_primary_10_1089_big_2020_0159 crossref_primary_10_1016_j_est_2024_112442 crossref_primary_10_1109_TVT_2020_3039553 crossref_primary_10_1016_j_isci_2021_103265 crossref_primary_10_1016_j_est_2021_103558 crossref_primary_10_3390_en13092380 crossref_primary_10_1016_j_apenergy_2019_114169 crossref_primary_10_3389_fenrg_2021_769818 crossref_primary_10_1080_08839514_2021_1901033 crossref_primary_10_3390_batteries9080414 crossref_primary_10_1016_j_est_2022_104472 crossref_primary_10_1007_s11708_023_0906_4 crossref_primary_10_1088_1361_6501_ace925 crossref_primary_10_1109_TTE_2024_3354107 crossref_primary_10_1080_17445302_2023_2211241 crossref_primary_10_2139_ssrn_4103968 crossref_primary_10_3390_en15062237 crossref_primary_10_1007_s11581_024_05868_9 crossref_primary_10_3390_pr9050795 crossref_primary_10_1016_j_isatra_2023_09_019 crossref_primary_10_3390_machines10121226 crossref_primary_10_1016_j_ress_2023_109185 crossref_primary_10_1109_TTE_2023_3305555 crossref_primary_10_1016_j_asoc_2022_108421 crossref_primary_10_1016_j_measurement_2020_107904 crossref_primary_10_1149_1945_7111_ad0492 crossref_primary_10_1109_ACCESS_2023_3267960 crossref_primary_10_1016_j_est_2022_105333 crossref_primary_10_1016_j_est_2023_106728 crossref_primary_10_1016_j_jpowsour_2020_228983 crossref_primary_10_1515_astro_2022_0031 crossref_primary_10_1038_s41598_024_70415_5 crossref_primary_10_1109_TPEL_2022_3173464 crossref_primary_10_1109_TITS_2022_3226493 crossref_primary_10_3390_e24121818 crossref_primary_10_3390_en17071704 crossref_primary_10_1016_j_rser_2023_113627 crossref_primary_10_1007_s12274_023_5494_4 crossref_primary_10_3390_batteries10050152 crossref_primary_10_1016_j_est_2023_109798 crossref_primary_10_1007_s11760_023_02532_z crossref_primary_10_1016_j_ress_2022_108481 crossref_primary_10_1016_j_est_2019_100758 crossref_primary_10_1093_ijlct_ctae034 crossref_primary_10_1016_j_energy_2019_06_095 crossref_primary_10_1016_j_energy_2025_134697 crossref_primary_10_1007_s10854_023_11531_2 crossref_primary_10_1016_j_seta_2021_101790 crossref_primary_10_1088_1742_6596_2320_1_012005 crossref_primary_10_1109_TVT_2021_3138959 crossref_primary_10_1115_1_4052093 crossref_primary_10_3390_act10090234 crossref_primary_10_1109_ACCESS_2019_2937550 crossref_primary_10_1002_er_7160 crossref_primary_10_3390_en18020337 crossref_primary_10_1002_est2_70080 crossref_primary_10_1002_er_4560 crossref_primary_10_3390_batteries9070388 crossref_primary_10_1016_j_est_2024_112075 crossref_primary_10_1109_TTE_2022_3173918 crossref_primary_10_1109_ACCESS_2020_2977429 crossref_primary_10_1002_er_5413 crossref_primary_10_3390_en15124399 crossref_primary_10_1109_TIE_2021_3060675 crossref_primary_10_1109_JSEN_2024_3472648 crossref_primary_10_1109_TIE_2021_3086706 crossref_primary_10_1016_j_est_2023_106903 crossref_primary_10_3390_app10238644 crossref_primary_10_1007_s00170_025_15169_8 crossref_primary_10_1016_j_geits_2024_100160 crossref_primary_10_1007_s00521_022_07322_1 crossref_primary_10_1109_JESTIE_2024_3356974 crossref_primary_10_1016_j_conbuildmat_2024_138316 crossref_primary_10_1016_j_jpowsour_2021_230024 crossref_primary_10_1109_ACCESS_2024_3488596 crossref_primary_10_1016_j_est_2024_113172 crossref_primary_10_1016_j_ress_2021_108082 crossref_primary_10_1016_j_applthermaleng_2023_120482 crossref_primary_10_48175_IJARSCT_19529 crossref_primary_10_1016_j_jpowsour_2022_231736 crossref_primary_10_3390_en15072448 crossref_primary_10_1016_j_est_2022_105558 crossref_primary_10_3390_batteries9090441 crossref_primary_10_1016_j_est_2022_104313 crossref_primary_10_1016_j_jpowsour_2025_236187 crossref_primary_10_1109_ACCESS_2020_2968939 crossref_primary_10_1016_j_est_2021_102893 crossref_primary_10_1016_j_microrel_2021_114405 crossref_primary_10_3390_pr11041080 crossref_primary_10_1016_j_rser_2023_114224 crossref_primary_10_1002_ese3_1992 crossref_primary_10_1016_j_ref_2022_06_001 crossref_primary_10_3389_fmech_2021_719718 crossref_primary_10_3390_batteries10030074 crossref_primary_10_3390_wevj13080148 crossref_primary_10_1016_j_apenergy_2024_124746 crossref_primary_10_1109_TIM_2022_3154003 crossref_primary_10_3390_wevj10020017 crossref_primary_10_1016_j_est_2021_102535 crossref_primary_10_1049_cps2_12086 crossref_primary_10_1002_est2_218 crossref_primary_10_1016_j_etran_2022_100164 crossref_primary_10_1016_j_jclepro_2021_125814 crossref_primary_10_1109_TPEL_2019_2952620 crossref_primary_10_3390_wevj15050177 crossref_primary_10_1016_j_isatra_2022_10_003 crossref_primary_10_1016_j_rser_2021_111843 crossref_primary_10_1109_TPEL_2021_3096164 crossref_primary_10_1016_j_jpowsour_2019_227149 crossref_primary_10_1109_ACCESS_2021_3089032 crossref_primary_10_1155_2022_9807511 crossref_primary_10_3390_a13070173 crossref_primary_10_1002_est2_102 crossref_primary_10_3390_en12091685 crossref_primary_10_1115_1_4053141 crossref_primary_10_1016_j_eswa_2023_122034 crossref_primary_10_1016_j_jechem_2025_01_063 crossref_primary_10_3390_electronics12244951 crossref_primary_10_1016_j_est_2021_102990 crossref_primary_10_1109_ACCESS_2024_3374776 crossref_primary_10_1016_j_apenergy_2022_120114 crossref_primary_10_55546_jmm_1193510 crossref_primary_10_1109_ACCESS_2020_3022505 crossref_primary_10_1109_TPEL_2020_3033297 crossref_primary_10_1016_j_ijoes_2023_100166 crossref_primary_10_1016_j_est_2024_111068 crossref_primary_10_1039_D2SE01209J crossref_primary_10_1016_j_est_2023_106790 crossref_primary_10_1109_ACCESS_2023_3320058 crossref_primary_10_1109_TVT_2024_3373632 crossref_primary_10_1016_j_jpowsour_2019_03_008 crossref_primary_10_1016_j_est_2021_103846 crossref_primary_10_1109_TTE_2023_3288394 crossref_primary_10_1007_s10462_020_09838_1 crossref_primary_10_1016_j_est_2019_100951 crossref_primary_10_1088_1361_6501_ad006d crossref_primary_10_1109_TTE_2020_3028784 crossref_primary_10_1016_j_est_2022_105752 crossref_primary_10_1109_ACCESS_2022_3167759 crossref_primary_10_1016_j_measurement_2024_115146 crossref_primary_10_1109_TEC_2024_3443629 crossref_primary_10_1002_tee_23801 crossref_primary_10_1109_TTE_2023_3247614 crossref_primary_10_1016_j_energy_2023_128761 crossref_primary_10_1109_TVT_2021_3071622 crossref_primary_10_1016_j_mtsust_2024_100999 crossref_primary_10_1007_s11760_023_02607_x crossref_primary_10_1016_j_energy_2022_123366 crossref_primary_10_1038_s41598_025_92262_8 crossref_primary_10_1109_ACCESS_2020_2972344 crossref_primary_10_1016_j_est_2024_113372 crossref_primary_10_1016_j_heliyon_2024_e36236 crossref_primary_10_1016_j_jpowsour_2020_228132 crossref_primary_10_1016_j_est_2021_102867 crossref_primary_10_1016_j_microrel_2023_115027 crossref_primary_10_1016_j_est_2021_103158 crossref_primary_10_1016_j_energy_2021_122419 crossref_primary_10_1016_j_est_2023_106788 crossref_primary_10_3390_app14135662 crossref_primary_10_1016_j_apenergy_2019_113900 crossref_primary_10_1109_TEC_2023_3321045 crossref_primary_10_1016_j_jpowsour_2020_228358 crossref_primary_10_1007_s10443_023_10134_8 crossref_primary_10_1016_j_est_2023_110279 crossref_primary_10_3390_en14248498 crossref_primary_10_1115_1_4065146 crossref_primary_10_1016_j_jpowsour_2024_234912 crossref_primary_10_1016_j_est_2023_109285 crossref_primary_10_1016_j_energy_2022_124344 crossref_primary_10_1115_1_4050886 crossref_primary_10_3390_app131810079 crossref_primary_10_1016_j_ymssp_2024_111551 crossref_primary_10_1109_ACCESS_2020_2981261 crossref_primary_10_1007_s42154_022_00181_5 crossref_primary_10_3390_batteries7040066 crossref_primary_10_1016_j_est_2022_104520 crossref_primary_10_1109_ACCESS_2023_3304699 crossref_primary_10_3390_en18030746 crossref_primary_10_3390_pr10122525 crossref_primary_10_1016_j_est_2022_106263 crossref_primary_10_1016_j_energy_2019_116467 crossref_primary_10_1002_ente_202400996 crossref_primary_10_1049_cje_2020_10_012 crossref_primary_10_1002_tcr_202200131 crossref_primary_10_1016_j_cie_2020_106494 crossref_primary_10_1108_IJICC_09_2020_0131 crossref_primary_10_1109_JAS_2023_123024 crossref_primary_10_1016_j_energy_2024_130773 crossref_primary_10_3390_su15129176 crossref_primary_10_1039_D2RA06004C crossref_primary_10_1016_j_isatra_2020_08_031 crossref_primary_10_1016_j_est_2023_107161 crossref_primary_10_1016_j_jpowsour_2022_232432 crossref_primary_10_1007_s00500_020_05327_3 crossref_primary_10_1016_j_est_2020_101741 crossref_primary_10_1016_j_engappai_2022_105120 crossref_primary_10_1016_j_jpowsour_2020_228740 crossref_primary_10_32604_ee_2023_045270 crossref_primary_10_1002_er_6346 crossref_primary_10_1155_2021_4826409 crossref_primary_10_1002_est2_70118 crossref_primary_10_1016_j_apenergy_2021_118348 crossref_primary_10_1007_s11269_022_03220_2 crossref_primary_10_1016_j_est_2021_102260 crossref_primary_10_1016_j_scs_2022_104004 crossref_primary_10_3390_jmse10111746 crossref_primary_10_1016_j_jclepro_2021_126044 crossref_primary_10_1051_e3sconf_202129701043 crossref_primary_10_1016_j_apenergy_2023_121660 crossref_primary_10_1016_j_est_2023_107270 crossref_primary_10_1016_j_est_2020_101999 crossref_primary_10_1016_j_est_2023_107031 crossref_primary_10_3390_wevj12040228 crossref_primary_10_1016_j_engappai_2024_109278 crossref_primary_10_1002_er_7548 crossref_primary_10_3390_vehicles6010002 crossref_primary_10_1002_er_7785 crossref_primary_10_3390_batteries9050280 crossref_primary_10_1016_j_est_2022_106457 crossref_primary_10_1541_ieejjia_22004793 crossref_primary_10_1016_j_inffus_2025_102972 crossref_primary_10_1177_09544070231174118 crossref_primary_10_1088_1742_6596_2433_1_012020 crossref_primary_10_1061__ASCE_EY_1943_7897_0000865 crossref_primary_10_1109_TTE_2021_3118691 crossref_primary_10_1002_asmb_2930 crossref_primary_10_1021_acs_iecr_0c01942 crossref_primary_10_1109_TTE_2021_3128018 crossref_primary_10_1007_s40031_024_01123_x crossref_primary_10_1016_j_est_2023_108034 crossref_primary_10_1016_j_jechem_2023_03_026 crossref_primary_10_3390_s24113454 crossref_primary_10_1088_1402_4896_adaa35 crossref_primary_10_3233_JIFS_201952 crossref_primary_10_1016_j_est_2020_101404 crossref_primary_10_1016_j_est_2019_100811 crossref_primary_10_1016_j_est_2020_101643 crossref_primary_10_1016_j_est_2020_101885 crossref_primary_10_1016_j_est_2019_100812 crossref_primary_10_1002_qre_3524 crossref_primary_10_1016_j_est_2022_106469 crossref_primary_10_3390_a15110393 crossref_primary_10_3390_electronics10243126 crossref_primary_10_1016_j_egyr_2021_09_054 crossref_primary_10_1016_j_energy_2024_131398 crossref_primary_10_1115_1_4051802 crossref_primary_10_1016_j_energy_2023_126880 crossref_primary_10_3390_su152115283 crossref_primary_10_1016_j_eswa_2021_116075 crossref_primary_10_1109_TVT_2021_3055811 crossref_primary_10_1080_15567036_2024_2404500 crossref_primary_10_1016_j_ijhydene_2019_03_101 crossref_primary_10_1016_j_est_2023_109352 crossref_primary_10_1016_j_energy_2021_121022 crossref_primary_10_1016_j_energy_2023_128137 crossref_primary_10_1016_j_ress_2025_110975 crossref_primary_10_3389_fenrg_2022_1032660 crossref_primary_10_1016_j_ymssp_2024_111585 crossref_primary_10_1016_j_etran_2020_100078 crossref_primary_10_1016_j_ifacol_2020_11_064 crossref_primary_10_1016_j_est_2023_106645 |
Cites_doi | 10.1016/j.rser.2016.08.039 10.1207/s15516709cog1402_1 10.1016/j.jpowsour.2017.05.004 10.1109/TR.2018.2803798 10.1016/j.energy.2016.12.004 10.1016/j.jpowsour.2018.04.012 10.1016/j.microrel.2012.12.004 10.1016/j.microrel.2015.06.133 10.1016/j.jpowsour.2014.07.176 10.4271/2011-01-2247 10.1016/j.measurement.2014.11.031 10.1016/j.apenergy.2015.08.119 10.1109/ACCESS.2017.2759094 10.1109/ACCESS.2018.2824838 10.1109/ICPHM.2017.7998298 10.1016/j.ress.2010.08.009 10.1098/rspa.1998.0193 10.1016/j.jpowsour.2018.10.069 10.1016/j.energy.2017.08.017 10.36001/phmconf.2010.v2i1.1896 10.1016/j.neucom.2004.10.077 10.1016/j.ijepes.2013.10.020 10.1016/j.apenergy.2013.12.020 10.1109/TIE.2016.2623260 10.1016/j.microrel.2017.06.045 10.1016/j.apenergy.2014.03.086 10.20964/2018.05.84 10.1149/2.0251701jes 10.1016/j.jclepro.2018.06.182 10.1109/TVT.2017.2762368 10.1016/j.ymssp.2017.02.027 10.1016/j.microrel.2017.02.012 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.est.2018.12.011 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2352-1538 |
EndPage | 518 |
ExternalDocumentID | 10_1016_j_est_2018_12_011 S2352152X1830450X |
GroupedDBID | --M 0R~ 457 4G. 7-5 AACTN AAEDT AAEDW AAHCO AAIAV AAKOC AALRI AAOAW AARIN AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AFKWA AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM AXJTR BELTK BJAXD BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN KOM O9- OAUVE ROL SPC SPCBC SSB SSD SSR SST SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c402t-375b312051c58b81b976ed298be8e380deb05fe7251862b7992acb650897ea753 |
IEDL.DBID | AIKHN |
ISSN | 2352-152X |
IngestDate | Tue Jul 01 03:34:14 EDT 2025 Thu Apr 24 23:10:08 EDT 2025 Fri Feb 23 02:21:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium-ion batteries Long short-term memory Electric vehicles Remaining useful life Elman neural network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-375b312051c58b81b976ed298be8e380deb05fe7251862b7992acb650897ea753 |
ORCID | 0000-0002-2095-1976 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1016_j_est_2018_12_011 crossref_primary_10_1016_j_est_2018_12_011 elsevier_sciencedirect_doi_10_1016_j_est_2018_12_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-01 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of energy storage |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhang, Xiong, He, Pecht (bib0040) 2018 Richardson, Osborne, Howey (bib0025) 2017; 357 Richardson, Berkl, Osborne, Howey (bib0060) 2018 Wang, Zhang, Liu, Pan, Chen (bib0035) 2018; 389 Voronov, Frisk, Krysander (bib0045) 2018; 67 Hu, Jain, Tamirisa, Gorka (bib0100) 2014; 126 Liu, Zhou, Pan, Peng, Peng (bib0110) 2015; 63 7–13. Qin, Zeng, Guo (bib0135) 2015; 55 Zio, Peloni (bib0070) 2011; 96 J. Liu, A. Saxena, G. Kai, B. Saha, W. Wang. An adaptive recurrent neural network for remaining useful life prediction of lithium-ion batteries. Dong, Jin, Lou, Wang (bib0125) 2014; 271 Zhang, Hu, Wang, Sun, Deng, Dorrell (bib0020) 2018; 67 Elman (bib0170) 1990; 14 G. Zhao, G. Zhang, Y. Liu, B. Zhang, C. Hu. Lithium-ion battery remaining useful life prediction with deep belief network and relevance vector machine. Wang, Ma, Zhang (bib0050) 2017; 5 Ng, Xing, Tsui (bib0075) 2014; 118 Zhang, Zhang, Sun, Wang (bib0015) 2018; 6 Wang, Zhao, Yang, Tsui (bib0055) 2017; 93 Yang, Peng, Wang, Yuan, Wu (bib0065) 2018; 13 Chen, Zheng, Jiang, Zhang, Jiang, Chen (bib0085) 2017; 138 Lyu, Lai, Ge, Yu, Wang, Ma (bib0090) 2017; 120 Huang (bib0160) 1998; 454 Li, Wang, Zhang, Zou, Dorrell (bib0030) 2019; 410-411 . Zhang, Xiong, He, Liu (bib0155) 2017 Miao, Xie, Cui, Liang, Pecht (bib0080) 2013; 53 Khelif, Chebel-Morello, Malinowski, Laajili, Fnaiech, Zerhouni (bib0105) 2017; 64 Rezvani, Lee, Lee (bib0150) 2011 Song, Liu, Yang, Peng (bib0130) 2017; 75 Liang, Bressler, Desimone, Fries (bib0165) 2005; 65 Liu, Song, Li, Liao, Peng (bib0115) 2018; 199 Peters, Baumann, Zimmermann, Braun, Weil (bib0005) 2017; 67 Zhang, Miao, Liu (bib0095) 2017; 75 Patil (bib0120) 2015; 159 Li, Li, Xiong, Chai, Zhang (bib0175) 2014; 55 Blomgren (bib0010) 2017; 164 Zhang (10.1016/j.est.2018.12.011_bib0095) 2017; 75 10.1016/j.est.2018.12.011_bib0140 Dong (10.1016/j.est.2018.12.011_bib0125) 2014; 271 Li (10.1016/j.est.2018.12.011_bib0175) 2014; 55 Wang (10.1016/j.est.2018.12.011_bib0050) 2017; 5 Zhang (10.1016/j.est.2018.12.011_bib0020) 2018; 67 Patil (10.1016/j.est.2018.12.011_bib0120) 2015; 159 Richardson (10.1016/j.est.2018.12.011_bib0025) 2017; 357 Chen (10.1016/j.est.2018.12.011_bib0085) 2017; 138 Zio (10.1016/j.est.2018.12.011_bib0070) 2011; 96 Qin (10.1016/j.est.2018.12.011_bib0135) 2015; 55 Richardson (10.1016/j.est.2018.12.011_bib0060) 2018 Peters (10.1016/j.est.2018.12.011_bib0005) 2017; 67 Zhang (10.1016/j.est.2018.12.011_bib0015) 2018; 6 Miao (10.1016/j.est.2018.12.011_bib0080) 2013; 53 Voronov (10.1016/j.est.2018.12.011_bib0045) 2018; 67 Liu (10.1016/j.est.2018.12.011_bib0110) 2015; 63 Liang (10.1016/j.est.2018.12.011_bib0165) 2005; 65 Liu (10.1016/j.est.2018.12.011_bib0115) 2018; 199 Rezvani (10.1016/j.est.2018.12.011_bib0150) 2011 Li (10.1016/j.est.2018.12.011_bib0030) 2019; 410-411 Lyu (10.1016/j.est.2018.12.011_bib0090) 2017; 120 Khelif (10.1016/j.est.2018.12.011_bib0105) 2017; 64 Elman (10.1016/j.est.2018.12.011_bib0170) 1990; 14 Hu (10.1016/j.est.2018.12.011_bib0100) 2014; 126 Song (10.1016/j.est.2018.12.011_bib0130) 2017; 75 Yang (10.1016/j.est.2018.12.011_bib0065) 2018; 13 Wang (10.1016/j.est.2018.12.011_bib0035) 2018; 389 Zhang (10.1016/j.est.2018.12.011_bib0155) 2017 Wang (10.1016/j.est.2018.12.011_bib0055) 2017; 93 10.1016/j.est.2018.12.011_bib0145 Huang (10.1016/j.est.2018.12.011_bib0160) 1998; 454 Ng (10.1016/j.est.2018.12.011_bib0075) 2014; 118 Zhang (10.1016/j.est.2018.12.011_bib0040) 2018 Blomgren (10.1016/j.est.2018.12.011_bib0010) 2017; 164 |
References_xml | – volume: 13 start-page: 4991 year: 2018 end-page: 5004 ident: bib0065 article-title: The remaining useful life estimation of lithium-ion battery based on improved extreme learning machine algorithm publication-title: Int. J. Electrochem. Sci. – reference: G. Zhao, G. Zhang, Y. Liu, B. Zhang, C. Hu. Lithium-ion battery remaining useful life prediction with deep belief network and relevance vector machine. – year: 2018 ident: bib0060 article-title: Gaussian process regression for in-situ capacity estimation of lithium-ion batteries publication-title: IEEE Trans. Ind. Informat. – volume: 75 start-page: 288 year: 2017 end-page: 295 ident: bib0095 article-title: Remaining useful life prediction of lithium-ion battery using an improved UPF method based on MCMC publication-title: Microelectron. Reliab. – volume: 55 start-page: 749 year: 2014 end-page: 759 ident: bib0175 article-title: Application of a hybrid quantized Elman neural network in short-term load forecasting publication-title: Int. J. Electric. Power Energy Syst. – reference: , 7–13. – volume: 389 start-page: 93 year: 2018 end-page: 105 ident: bib0035 article-title: Multi-timescale power and energy assessment of lithium-ion battery and supercapacitor hybrid system using extended Kalman filter publication-title: J. Power Sources – volume: 199 start-page: 1050 year: 2018 end-page: 1065 ident: bib0115 article-title: On-line life cycle health assessment for lithium-ion battery in electric vehicles publication-title: J. Cleaner Prod. – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: bib0160 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. – volume: 96 start-page: 403 year: 2011 end-page: 409 ident: bib0070 article-title: Particle filtering prognostic estimation of the remaining useful life of nonlinear components publication-title: Reliab. Eng. Syst. Saf. – volume: 55 start-page: 1280 year: 2015 end-page: 1284 ident: bib0135 article-title: Robust prognostics for state of health estimation of lithium-ion batteries based on an improved PSO–SVR model publication-title: Microelectron. Reliab. – volume: 164 start-page: A5019 year: 2017 end-page: A5025 ident: bib0010 article-title: The development and future of lithium ion batteries publication-title: J. Electrochem. Soc. – volume: 120 start-page: 975 year: 2017 end-page: 984 ident: bib0090 article-title: A lead-acid battery’s remaining useful life prediction by using electrochemical model in the particle filtering framework publication-title: Energy – volume: 64 start-page: 2276 year: 2017 end-page: 2285 ident: bib0105 article-title: Direct remaining useful life estimation based on support vector regression publication-title: IEEE Trans. Ind. Electron. – volume: 410-411 start-page: 106 year: 2019 end-page: 114 ident: bib0030 article-title: State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis publication-title: J. Power Sources – volume: 75 start-page: 142 year: 2017 end-page: 153 ident: bib0130 article-title: Data-driven hybrid remaining useful life estimation approach for spacecraft lithium-ion battery publication-title: Microelectron. Reliab. – volume: 67 start-page: 491 year: 2017 end-page: 506 ident: bib0005 article-title: The environmental impact of Li-ion batteries and the role of key parameters–a review publication-title: Renew. Sustain. Energy Rev. – volume: 118 start-page: 114 year: 2014 end-page: 123 ident: bib0075 article-title: A naive Bayes model for robust remaining useful life prediction of lithium-ion battery publication-title: Appl. Energy – volume: 93 start-page: 531 year: 2017 end-page: 544 ident: bib0055 article-title: Nonlinear-drifted Brownian motion with multiple hidden states for remaining useful life prediction of rechargeable batteries publication-title: Mech. Syst. Sig. Process. – volume: 126 start-page: 182 year: 2014 end-page: 189 ident: bib0100 article-title: Method for estimating capacity and predicting remaining useful life of lithium-ion battery publication-title: Appl. Energy – start-page: 1 year: 2017 end-page: 4 ident: bib0155 article-title: A LSTM-RNN method for the lithuim-ion battery remaining useful life prediction publication-title: 2017 Prognostics and System Health Management Conference (PHM-Harbin) – volume: 67 start-page: 623 year: 2018 end-page: 639 ident: bib0045 article-title: Data-driven battery lifetime prediction and confidence estimation for heavy-duty trucks publication-title: IEEE Trans. Reliab. – volume: 63 start-page: 143 year: 2015 end-page: 151 ident: bib0110 article-title: Lithium-ion battery remaining useful life estimation with an optimized relevance vector machine algorithm with incremental learning publication-title: Measurement – volume: 271 start-page: 114 year: 2014 end-page: 123 ident: bib0125 article-title: Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter publication-title: J. Power Sources – volume: 14 start-page: 179 year: 1990 end-page: 211 ident: bib0170 article-title: Finding structure in time publication-title: Cogn. Sci. – volume: 6 start-page: 23848 year: 2018 end-page: 23863 ident: bib0015 article-title: An overview on thermal safety issues of lithium-ion batteries for electric vehicle application publication-title: IEEE Access – volume: 5 start-page: 21286 year: 2017 end-page: 21295 ident: bib0050 article-title: State-of-health estimation for lithium-ion batteries based on the multi-island genetic algorithm and the gaussian process regression publication-title: IEEE Access – volume: 53 start-page: 805 year: 2013 end-page: 810 ident: bib0080 article-title: Remaining useful life prediction of lithium-ion battery with unscented particle filter technique publication-title: Microelectron. Reliab. – reference: . – year: 2011 ident: bib0150 article-title: A comparative analysis of techniques for electric vehicle battery prognostics and health management (PHM) publication-title: SAE Technical Paper – volume: 159 start-page: 285 year: 2015 end-page: 297 ident: bib0120 article-title: A novel multistage support vector machine based approach for Li ion battery remaining useful life estimation publication-title: Appl. Energy – volume: 67 start-page: 1027 year: 2018 end-page: 1035 ident: bib0020 article-title: Multiobjective optimal sizing of hybrid energy storage system for electric vehicles publication-title: IEEE Trans. Veh. Technol. – volume: 138 start-page: 1199 year: 2017 end-page: 1208 ident: bib0085 article-title: Practical failure recognition model of lithium-ion batteries based on partial charging process publication-title: Energy – reference: J. Liu, A. Saxena, G. Kai, B. Saha, W. Wang. An adaptive recurrent neural network for remaining useful life prediction of lithium-ion batteries. – volume: 357 start-page: 209 year: 2017 end-page: 219 ident: bib0025 article-title: Gaussian process regression for forecasting battery state of health publication-title: J. Power Sources – volume: 65 start-page: 801 year: 2005 end-page: 807 ident: bib0165 article-title: Empirical mode decomposition: a method for analyzing neural data publication-title: Neurocomputing – year: 2018 ident: bib0040 article-title: Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries publication-title: IEEE Trans. Veh. Technol. – volume: 67 start-page: 491 year: 2017 ident: 10.1016/j.est.2018.12.011_bib0005 article-title: The environmental impact of Li-ion batteries and the role of key parameters–a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.08.039 – volume: 14 start-page: 179 issue: 2 year: 1990 ident: 10.1016/j.est.2018.12.011_bib0170 article-title: Finding structure in time publication-title: Cogn. Sci. doi: 10.1207/s15516709cog1402_1 – volume: 357 start-page: 209 year: 2017 ident: 10.1016/j.est.2018.12.011_bib0025 article-title: Gaussian process regression for forecasting battery state of health publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.05.004 – volume: 67 start-page: 623 issue: 2 year: 2018 ident: 10.1016/j.est.2018.12.011_bib0045 article-title: Data-driven battery lifetime prediction and confidence estimation for heavy-duty trucks publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2018.2803798 – volume: 120 start-page: 975 year: 2017 ident: 10.1016/j.est.2018.12.011_bib0090 article-title: A lead-acid battery’s remaining useful life prediction by using electrochemical model in the particle filtering framework publication-title: Energy doi: 10.1016/j.energy.2016.12.004 – volume: 389 start-page: 93 year: 2018 ident: 10.1016/j.est.2018.12.011_bib0035 article-title: Multi-timescale power and energy assessment of lithium-ion battery and supercapacitor hybrid system using extended Kalman filter publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.04.012 – volume: 53 start-page: 805 issue: 6 year: 2013 ident: 10.1016/j.est.2018.12.011_bib0080 article-title: Remaining useful life prediction of lithium-ion battery with unscented particle filter technique publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2012.12.004 – volume: 55 start-page: 1280 issue: 9 year: 2015 ident: 10.1016/j.est.2018.12.011_bib0135 article-title: Robust prognostics for state of health estimation of lithium-ion batteries based on an improved PSO–SVR model publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2015.06.133 – volume: 271 start-page: 114 year: 2014 ident: 10.1016/j.est.2018.12.011_bib0125 article-title: Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.07.176 – year: 2011 ident: 10.1016/j.est.2018.12.011_bib0150 article-title: A comparative analysis of techniques for electric vehicle battery prognostics and health management (PHM) doi: 10.4271/2011-01-2247 – volume: 63 start-page: 143 year: 2015 ident: 10.1016/j.est.2018.12.011_bib0110 article-title: Lithium-ion battery remaining useful life estimation with an optimized relevance vector machine algorithm with incremental learning publication-title: Measurement doi: 10.1016/j.measurement.2014.11.031 – volume: 159 start-page: 285 year: 2015 ident: 10.1016/j.est.2018.12.011_bib0120 article-title: A novel multistage support vector machine based approach for Li ion battery remaining useful life estimation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.08.119 – volume: 5 start-page: 21286 year: 2017 ident: 10.1016/j.est.2018.12.011_bib0050 article-title: State-of-health estimation for lithium-ion batteries based on the multi-island genetic algorithm and the gaussian process regression publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2759094 – volume: 6 start-page: 23848 year: 2018 ident: 10.1016/j.est.2018.12.011_bib0015 article-title: An overview on thermal safety issues of lithium-ion batteries for electric vehicle application publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2824838 – ident: 10.1016/j.est.2018.12.011_bib0140 doi: 10.1109/ICPHM.2017.7998298 – volume: 96 start-page: 403 issue: 3 year: 2011 ident: 10.1016/j.est.2018.12.011_bib0070 article-title: Particle filtering prognostic estimation of the remaining useful life of nonlinear components publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2010.08.009 – volume: 454 start-page: 903 issue: 1971 year: 1998 ident: 10.1016/j.est.2018.12.011_bib0160 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. doi: 10.1098/rspa.1998.0193 – volume: 410-411 start-page: 106 year: 2019 ident: 10.1016/j.est.2018.12.011_bib0030 article-title: State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.10.069 – volume: 138 start-page: 1199 year: 2017 ident: 10.1016/j.est.2018.12.011_bib0085 article-title: Practical failure recognition model of lithium-ion batteries based on partial charging process publication-title: Energy doi: 10.1016/j.energy.2017.08.017 – ident: 10.1016/j.est.2018.12.011_bib0145 doi: 10.36001/phmconf.2010.v2i1.1896 – start-page: 1 year: 2017 ident: 10.1016/j.est.2018.12.011_bib0155 article-title: A LSTM-RNN method for the lithuim-ion battery remaining useful life prediction – volume: 65 start-page: 801 year: 2005 ident: 10.1016/j.est.2018.12.011_bib0165 article-title: Empirical mode decomposition: a method for analyzing neural data publication-title: Neurocomputing doi: 10.1016/j.neucom.2004.10.077 – volume: 55 start-page: 749 year: 2014 ident: 10.1016/j.est.2018.12.011_bib0175 article-title: Application of a hybrid quantized Elman neural network in short-term load forecasting publication-title: Int. J. Electric. Power Energy Syst. doi: 10.1016/j.ijepes.2013.10.020 – volume: 118 start-page: 114 year: 2014 ident: 10.1016/j.est.2018.12.011_bib0075 article-title: A naive Bayes model for robust remaining useful life prediction of lithium-ion battery publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.12.020 – volume: 64 start-page: 2276 issue: 3 year: 2017 ident: 10.1016/j.est.2018.12.011_bib0105 article-title: Direct remaining useful life estimation based on support vector regression publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2016.2623260 – volume: 75 start-page: 142 year: 2017 ident: 10.1016/j.est.2018.12.011_bib0130 article-title: Data-driven hybrid remaining useful life estimation approach for spacecraft lithium-ion battery publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2017.06.045 – volume: 126 start-page: 182 year: 2014 ident: 10.1016/j.est.2018.12.011_bib0100 article-title: Method for estimating capacity and predicting remaining useful life of lithium-ion battery publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.03.086 – volume: 13 start-page: 4991 year: 2018 ident: 10.1016/j.est.2018.12.011_bib0065 article-title: The remaining useful life estimation of lithium-ion battery based on improved extreme learning machine algorithm publication-title: Int. J. Electrochem. Sci. doi: 10.20964/2018.05.84 – volume: 164 start-page: A5019 issue: 1 year: 2017 ident: 10.1016/j.est.2018.12.011_bib0010 article-title: The development and future of lithium ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/2.0251701jes – year: 2018 ident: 10.1016/j.est.2018.12.011_bib0040 article-title: Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries publication-title: IEEE Trans. Veh. Technol. – volume: 199 start-page: 1050 year: 2018 ident: 10.1016/j.est.2018.12.011_bib0115 article-title: On-line life cycle health assessment for lithium-ion battery in electric vehicles publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2018.06.182 – volume: 67 start-page: 1027 issue: 2 year: 2018 ident: 10.1016/j.est.2018.12.011_bib0020 article-title: Multiobjective optimal sizing of hybrid energy storage system for electric vehicles publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2017.2762368 – volume: 93 start-page: 531 year: 2017 ident: 10.1016/j.est.2018.12.011_bib0055 article-title: Nonlinear-drifted Brownian motion with multiple hidden states for remaining useful life prediction of rechargeable batteries publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2017.02.027 – year: 2018 ident: 10.1016/j.est.2018.12.011_bib0060 article-title: Gaussian process regression for in-situ capacity estimation of lithium-ion batteries publication-title: IEEE Trans. Ind. Informat. – volume: 75 start-page: 288 year: 2017 ident: 10.1016/j.est.2018.12.011_bib0095 article-title: Remaining useful life prediction of lithium-ion battery using an improved UPF method based on MCMC publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2017.02.012 |
SSID | ssj0001651196 |
Score | 2.5819826 |
Snippet | This paper presents a novel hybrid Elman-LSTM method for battery remaining useful life prediction by combining the empirical model decomposition algorithm and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 510 |
SubjectTerms | Electric vehicles Elman neural network Lithium-ion batteries Long short-term memory Remaining useful life |
Title | Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks |
URI | https://dx.doi.org/10.1016/j.est.2018.12.011 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GdoED4inGSzlwQorWV9L2OE1DA8QOwKTeqqRJtaK2m7b2sJ_BP8bpA4YEHLg1UV1Ftmt_ThwboRsam0y6wibgGzlxnMgmQpmSKE_YKmaU-1RfFH6assnMeQho0EGj9i6MTqtsbH9t0ytr3cwMGm4OlkkyeLEAO4D3CUApAZcYwQ7qWbbPQLV7w_vHyfRrq4Xpw7K6zRy1iKZpzzerTC8wvzrHy6v2BU3zZw-15XXuDtB-AxfxsF7RIeqo_AjtbRURPEbvzyqr2zzgcq3iMsVpEiu8XOkjGM12DLgU5op5UmZEj0VVUxNCZKx9mMQwxfF8o-9u4aozDgZuiPqTgA9xuoCH9RyAOtGGHGc6O3eDeS7xOM14jnVRTFhlXqeUr0_Q7G78OpqQptECiSB8LMDIUGGbFvyfEfUEAFnAKEpavieUp2zPkEoYNFYuYCEIgITr-xaPhMZ2vqs4BDynqJsvcnWGMBWmISWLHWnYDvNsTzgs5ixmXEhl-m4fGS1zw6ipQq6bYaRhm272FoI8Qi2P0LRCkEcf3X6SLOsSHH-97LQSC7_pUQgu4ney8_-RXaBdGPl1Fvcl6harUl0BSCnEdaOEH1yY55A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7R5EB7qIC2KlDaPfRUaRW_dm0fowgUyONAQcpttetdK0GOiUhy4Gfwj5nxowUJOHCz1x5rNbOe-WZndgbgt8h9aWMTcrSNmkdRFnLjfMtdYkKXS6FTQQeFJ1M5vI4uZmK2A4P2LAylVTa6v9bplbZuRnoNN3urxaL3N0DsgNZnhosScYk3-wBdqk4lOtDtn4-G0_9bLZKCZXWbORFwomnjm1WmF6pfyvFKqn1B33_ZQj2xOmd78LmBi6xfz2gfdlx5AJ-eFBH8Ag-Xblm3eWDbtcu3BSsWuWOrOwrBENsZ4lIc28wX2yWne1PV1EQXmZENswyHNJvf09ktVnXGYcgNU38S8SErbvFiPUegzkmRsyVl594zXVp2Wix1yagoJs6yrFPK11_h-uz0ajDkTaMFnqH7uEElI0zoB_h_ZiIxCGQRozgbpIlxiQsTzzrjidzFiIXQATJxmgY6M4Tt0thpdHi-Qae8Ld13YML4nrUyj6wXRjIJExPJXMtcamOdn8aH4LXMVVlThZyaYRSqTTe7USgPRfJQfqBQHofw5x_Jqi7B8dbLUSsx9WwdKTQRr5MdvY_sF-wOryZjNT6fjo7hIz5J64zuH9DZ3G3dCQKWjfnZLMhHTYDqdg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remaining+useful+life+prediction+for+lithium-ion+batteries+based+on+a+hybrid+model+combining+the+long+short-term+memory+and+Elman+neural+networks&rft.jtitle=Journal+of+energy+storage&rft.au=Li%2C+Xiaoyu&rft.au=Zhang%2C+Lei&rft.au=Wang%2C+Zhenpo&rft.au=Dong%2C+Peng&rft.date=2019-02-01&rft.issn=2352-152X&rft.volume=21&rft.spage=510&rft.epage=518&rft_id=info:doi/10.1016%2Fj.est.2018.12.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_est_2018_12_011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-152X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-152X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-152X&client=summon |