Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks

This paper presents a novel hybrid Elman-LSTM method for battery remaining useful life prediction by combining the empirical model decomposition algorithm and long short-term memory and Elman neural networks. The empirical model decomposition algorithm is employed to decompose the recorded battery c...

Full description

Saved in:
Bibliographic Details
Published inJournal of energy storage Vol. 21; pp. 510 - 518
Main Authors Li, Xiaoyu, Zhang, Lei, Wang, Zhenpo, Dong, Peng
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a novel hybrid Elman-LSTM method for battery remaining useful life prediction by combining the empirical model decomposition algorithm and long short-term memory and Elman neural networks. The empirical model decomposition algorithm is employed to decompose the recorded battery capacity verse cycle number data into several sub-layers. The recurrent long short-term memory and Elman neural networks are then established to predict high- and low-frequency sub-layers, respectively. Comprehensive battery test datasets have been collected and used for model parameterization and performance evaluation. The comparison results indicate that the proposed hybrid Elman-LSTM model yields superior performance relative to the other counterparts and can predict the battery remaining useful life with high accuracy. The relative prediction errors are 3.3% and 3.21% based on two unseen datasets, respectively.
AbstractList This paper presents a novel hybrid Elman-LSTM method for battery remaining useful life prediction by combining the empirical model decomposition algorithm and long short-term memory and Elman neural networks. The empirical model decomposition algorithm is employed to decompose the recorded battery capacity verse cycle number data into several sub-layers. The recurrent long short-term memory and Elman neural networks are then established to predict high- and low-frequency sub-layers, respectively. Comprehensive battery test datasets have been collected and used for model parameterization and performance evaluation. The comparison results indicate that the proposed hybrid Elman-LSTM model yields superior performance relative to the other counterparts and can predict the battery remaining useful life with high accuracy. The relative prediction errors are 3.3% and 3.21% based on two unseen datasets, respectively.
Author Dong, Peng
Wang, Zhenpo
Zhang, Lei
Li, Xiaoyu
Author_xml – sequence: 1
  givenname: Xiaoyu
  surname: Li
  fullname: Li, Xiaoyu
  organization: National Engineering Laboratory for Electric Vehicles, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
– sequence: 2
  givenname: Lei
  orcidid: 0000-0002-2095-1976
  surname: Zhang
  fullname: Zhang, Lei
  email: lei_zhang@bit.edu.cn
  organization: National Engineering Laboratory for Electric Vehicles, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
– sequence: 3
  givenname: Zhenpo
  surname: Wang
  fullname: Wang, Zhenpo
  email: wangzhenpo@bit.edu.cn
  organization: National Engineering Laboratory for Electric Vehicles, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
– sequence: 4
  givenname: Peng
  surname: Dong
  fullname: Dong, Peng
  organization: National Engineering Laboratory for Electric Vehicles, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
BookMark eNp9kE1qHDEQRkWwIePxHCA7XaDbKrXVrcYrY5wfMASMA9kJSV3t0aQlGUmTMMfwja1hQhZZeFVfffAK6l2QsxADEvIJWAsM-qtdi7m0nIFsgbcM4ANZ8U7wBkQnz_5l_vMj2eS8Y6xCAmDsV-T1Eb12wYVnus847xe6uBnpS8LJ2eJioHNMtStbt_fNcTe6FEwOc00ZJ1orTbcHk9xEfZxwoTZ6czpZtkiXWEPexlSaynnq0cd0oDpM9H7xOtCA-6SXOsqfmH7lS3I-6yXj5u9ckx-f75_uvjYP3798u7t9aOw146XpBmE64EyAFdJIMOPQ48RHaVBiJ9mEhokZBy5A9twM48i1Nb1gchxQD6Jbk-F016aYc8JZWVf08eWStFsUMHWUq3aqylVHuQq4qnIrCf-RL8l5nQ7vMjcnButLvx0mla3DYKvmhLaoKbp36De3nJcV
CitedBy_id crossref_primary_10_1016_j_est_2022_106436
crossref_primary_10_3390_batteries10070220
crossref_primary_10_1016_j_est_2024_110816
crossref_primary_10_1016_j_measurement_2024_115312
crossref_primary_10_1007_s00202_023_01910_7
crossref_primary_10_1109_TII_2022_3155597
crossref_primary_10_1016_j_energy_2024_131700
crossref_primary_10_1115_1_4065762
crossref_primary_10_3390_en15238918
crossref_primary_10_3390_en15072498
crossref_primary_10_3390_machines12050342
crossref_primary_10_1016_j_jpowsour_2021_230572
crossref_primary_10_1016_j_egyr_2022_09_043
crossref_primary_10_1016_j_est_2023_107367
crossref_primary_10_3389_fenrg_2022_899804
crossref_primary_10_1109_ACCESS_2024_3419009
crossref_primary_10_1016_j_energy_2021_121857
crossref_primary_10_1016_j_est_2021_102598
crossref_primary_10_1049_esi2_12171
crossref_primary_10_1007_s10614_023_10354_x
crossref_primary_10_3390_s22155744
crossref_primary_10_3390_en16010313
crossref_primary_10_1021_acs_iecr_3c02849
crossref_primary_10_1109_TIM_2022_3200093
crossref_primary_10_1155_2023_2267376
crossref_primary_10_1149_1945_7111_ad24c1
crossref_primary_10_3390_math13030464
crossref_primary_10_1089_big_2020_0159
crossref_primary_10_1016_j_est_2024_112442
crossref_primary_10_1109_TVT_2020_3039553
crossref_primary_10_1016_j_isci_2021_103265
crossref_primary_10_1016_j_est_2021_103558
crossref_primary_10_3390_en13092380
crossref_primary_10_1016_j_apenergy_2019_114169
crossref_primary_10_3389_fenrg_2021_769818
crossref_primary_10_1080_08839514_2021_1901033
crossref_primary_10_3390_batteries9080414
crossref_primary_10_1016_j_est_2022_104472
crossref_primary_10_1007_s11708_023_0906_4
crossref_primary_10_1088_1361_6501_ace925
crossref_primary_10_1109_TTE_2024_3354107
crossref_primary_10_1080_17445302_2023_2211241
crossref_primary_10_2139_ssrn_4103968
crossref_primary_10_3390_en15062237
crossref_primary_10_1007_s11581_024_05868_9
crossref_primary_10_3390_pr9050795
crossref_primary_10_1016_j_isatra_2023_09_019
crossref_primary_10_3390_machines10121226
crossref_primary_10_1016_j_ress_2023_109185
crossref_primary_10_1109_TTE_2023_3305555
crossref_primary_10_1016_j_asoc_2022_108421
crossref_primary_10_1016_j_measurement_2020_107904
crossref_primary_10_1149_1945_7111_ad0492
crossref_primary_10_1109_ACCESS_2023_3267960
crossref_primary_10_1016_j_est_2022_105333
crossref_primary_10_1016_j_est_2023_106728
crossref_primary_10_1016_j_jpowsour_2020_228983
crossref_primary_10_1515_astro_2022_0031
crossref_primary_10_1038_s41598_024_70415_5
crossref_primary_10_1109_TPEL_2022_3173464
crossref_primary_10_1109_TITS_2022_3226493
crossref_primary_10_3390_e24121818
crossref_primary_10_3390_en17071704
crossref_primary_10_1016_j_rser_2023_113627
crossref_primary_10_1007_s12274_023_5494_4
crossref_primary_10_3390_batteries10050152
crossref_primary_10_1016_j_est_2023_109798
crossref_primary_10_1007_s11760_023_02532_z
crossref_primary_10_1016_j_ress_2022_108481
crossref_primary_10_1016_j_est_2019_100758
crossref_primary_10_1093_ijlct_ctae034
crossref_primary_10_1016_j_energy_2019_06_095
crossref_primary_10_1016_j_energy_2025_134697
crossref_primary_10_1007_s10854_023_11531_2
crossref_primary_10_1016_j_seta_2021_101790
crossref_primary_10_1088_1742_6596_2320_1_012005
crossref_primary_10_1109_TVT_2021_3138959
crossref_primary_10_1115_1_4052093
crossref_primary_10_3390_act10090234
crossref_primary_10_1109_ACCESS_2019_2937550
crossref_primary_10_1002_er_7160
crossref_primary_10_3390_en18020337
crossref_primary_10_1002_est2_70080
crossref_primary_10_1002_er_4560
crossref_primary_10_3390_batteries9070388
crossref_primary_10_1016_j_est_2024_112075
crossref_primary_10_1109_TTE_2022_3173918
crossref_primary_10_1109_ACCESS_2020_2977429
crossref_primary_10_1002_er_5413
crossref_primary_10_3390_en15124399
crossref_primary_10_1109_TIE_2021_3060675
crossref_primary_10_1109_JSEN_2024_3472648
crossref_primary_10_1109_TIE_2021_3086706
crossref_primary_10_1016_j_est_2023_106903
crossref_primary_10_3390_app10238644
crossref_primary_10_1007_s00170_025_15169_8
crossref_primary_10_1016_j_geits_2024_100160
crossref_primary_10_1007_s00521_022_07322_1
crossref_primary_10_1109_JESTIE_2024_3356974
crossref_primary_10_1016_j_conbuildmat_2024_138316
crossref_primary_10_1016_j_jpowsour_2021_230024
crossref_primary_10_1109_ACCESS_2024_3488596
crossref_primary_10_1016_j_est_2024_113172
crossref_primary_10_1016_j_ress_2021_108082
crossref_primary_10_1016_j_applthermaleng_2023_120482
crossref_primary_10_48175_IJARSCT_19529
crossref_primary_10_1016_j_jpowsour_2022_231736
crossref_primary_10_3390_en15072448
crossref_primary_10_1016_j_est_2022_105558
crossref_primary_10_3390_batteries9090441
crossref_primary_10_1016_j_est_2022_104313
crossref_primary_10_1016_j_jpowsour_2025_236187
crossref_primary_10_1109_ACCESS_2020_2968939
crossref_primary_10_1016_j_est_2021_102893
crossref_primary_10_1016_j_microrel_2021_114405
crossref_primary_10_3390_pr11041080
crossref_primary_10_1016_j_rser_2023_114224
crossref_primary_10_1002_ese3_1992
crossref_primary_10_1016_j_ref_2022_06_001
crossref_primary_10_3389_fmech_2021_719718
crossref_primary_10_3390_batteries10030074
crossref_primary_10_3390_wevj13080148
crossref_primary_10_1016_j_apenergy_2024_124746
crossref_primary_10_1109_TIM_2022_3154003
crossref_primary_10_3390_wevj10020017
crossref_primary_10_1016_j_est_2021_102535
crossref_primary_10_1049_cps2_12086
crossref_primary_10_1002_est2_218
crossref_primary_10_1016_j_etran_2022_100164
crossref_primary_10_1016_j_jclepro_2021_125814
crossref_primary_10_1109_TPEL_2019_2952620
crossref_primary_10_3390_wevj15050177
crossref_primary_10_1016_j_isatra_2022_10_003
crossref_primary_10_1016_j_rser_2021_111843
crossref_primary_10_1109_TPEL_2021_3096164
crossref_primary_10_1016_j_jpowsour_2019_227149
crossref_primary_10_1109_ACCESS_2021_3089032
crossref_primary_10_1155_2022_9807511
crossref_primary_10_3390_a13070173
crossref_primary_10_1002_est2_102
crossref_primary_10_3390_en12091685
crossref_primary_10_1115_1_4053141
crossref_primary_10_1016_j_eswa_2023_122034
crossref_primary_10_1016_j_jechem_2025_01_063
crossref_primary_10_3390_electronics12244951
crossref_primary_10_1016_j_est_2021_102990
crossref_primary_10_1109_ACCESS_2024_3374776
crossref_primary_10_1016_j_apenergy_2022_120114
crossref_primary_10_55546_jmm_1193510
crossref_primary_10_1109_ACCESS_2020_3022505
crossref_primary_10_1109_TPEL_2020_3033297
crossref_primary_10_1016_j_ijoes_2023_100166
crossref_primary_10_1016_j_est_2024_111068
crossref_primary_10_1039_D2SE01209J
crossref_primary_10_1016_j_est_2023_106790
crossref_primary_10_1109_ACCESS_2023_3320058
crossref_primary_10_1109_TVT_2024_3373632
crossref_primary_10_1016_j_jpowsour_2019_03_008
crossref_primary_10_1016_j_est_2021_103846
crossref_primary_10_1109_TTE_2023_3288394
crossref_primary_10_1007_s10462_020_09838_1
crossref_primary_10_1016_j_est_2019_100951
crossref_primary_10_1088_1361_6501_ad006d
crossref_primary_10_1109_TTE_2020_3028784
crossref_primary_10_1016_j_est_2022_105752
crossref_primary_10_1109_ACCESS_2022_3167759
crossref_primary_10_1016_j_measurement_2024_115146
crossref_primary_10_1109_TEC_2024_3443629
crossref_primary_10_1002_tee_23801
crossref_primary_10_1109_TTE_2023_3247614
crossref_primary_10_1016_j_energy_2023_128761
crossref_primary_10_1109_TVT_2021_3071622
crossref_primary_10_1016_j_mtsust_2024_100999
crossref_primary_10_1007_s11760_023_02607_x
crossref_primary_10_1016_j_energy_2022_123366
crossref_primary_10_1038_s41598_025_92262_8
crossref_primary_10_1109_ACCESS_2020_2972344
crossref_primary_10_1016_j_est_2024_113372
crossref_primary_10_1016_j_heliyon_2024_e36236
crossref_primary_10_1016_j_jpowsour_2020_228132
crossref_primary_10_1016_j_est_2021_102867
crossref_primary_10_1016_j_microrel_2023_115027
crossref_primary_10_1016_j_est_2021_103158
crossref_primary_10_1016_j_energy_2021_122419
crossref_primary_10_1016_j_est_2023_106788
crossref_primary_10_3390_app14135662
crossref_primary_10_1016_j_apenergy_2019_113900
crossref_primary_10_1109_TEC_2023_3321045
crossref_primary_10_1016_j_jpowsour_2020_228358
crossref_primary_10_1007_s10443_023_10134_8
crossref_primary_10_1016_j_est_2023_110279
crossref_primary_10_3390_en14248498
crossref_primary_10_1115_1_4065146
crossref_primary_10_1016_j_jpowsour_2024_234912
crossref_primary_10_1016_j_est_2023_109285
crossref_primary_10_1016_j_energy_2022_124344
crossref_primary_10_1115_1_4050886
crossref_primary_10_3390_app131810079
crossref_primary_10_1016_j_ymssp_2024_111551
crossref_primary_10_1109_ACCESS_2020_2981261
crossref_primary_10_1007_s42154_022_00181_5
crossref_primary_10_3390_batteries7040066
crossref_primary_10_1016_j_est_2022_104520
crossref_primary_10_1109_ACCESS_2023_3304699
crossref_primary_10_3390_en18030746
crossref_primary_10_3390_pr10122525
crossref_primary_10_1016_j_est_2022_106263
crossref_primary_10_1016_j_energy_2019_116467
crossref_primary_10_1002_ente_202400996
crossref_primary_10_1049_cje_2020_10_012
crossref_primary_10_1002_tcr_202200131
crossref_primary_10_1016_j_cie_2020_106494
crossref_primary_10_1108_IJICC_09_2020_0131
crossref_primary_10_1109_JAS_2023_123024
crossref_primary_10_1016_j_energy_2024_130773
crossref_primary_10_3390_su15129176
crossref_primary_10_1039_D2RA06004C
crossref_primary_10_1016_j_isatra_2020_08_031
crossref_primary_10_1016_j_est_2023_107161
crossref_primary_10_1016_j_jpowsour_2022_232432
crossref_primary_10_1007_s00500_020_05327_3
crossref_primary_10_1016_j_est_2020_101741
crossref_primary_10_1016_j_engappai_2022_105120
crossref_primary_10_1016_j_jpowsour_2020_228740
crossref_primary_10_32604_ee_2023_045270
crossref_primary_10_1002_er_6346
crossref_primary_10_1155_2021_4826409
crossref_primary_10_1002_est2_70118
crossref_primary_10_1016_j_apenergy_2021_118348
crossref_primary_10_1007_s11269_022_03220_2
crossref_primary_10_1016_j_est_2021_102260
crossref_primary_10_1016_j_scs_2022_104004
crossref_primary_10_3390_jmse10111746
crossref_primary_10_1016_j_jclepro_2021_126044
crossref_primary_10_1051_e3sconf_202129701043
crossref_primary_10_1016_j_apenergy_2023_121660
crossref_primary_10_1016_j_est_2023_107270
crossref_primary_10_1016_j_est_2020_101999
crossref_primary_10_1016_j_est_2023_107031
crossref_primary_10_3390_wevj12040228
crossref_primary_10_1016_j_engappai_2024_109278
crossref_primary_10_1002_er_7548
crossref_primary_10_3390_vehicles6010002
crossref_primary_10_1002_er_7785
crossref_primary_10_3390_batteries9050280
crossref_primary_10_1016_j_est_2022_106457
crossref_primary_10_1541_ieejjia_22004793
crossref_primary_10_1016_j_inffus_2025_102972
crossref_primary_10_1177_09544070231174118
crossref_primary_10_1088_1742_6596_2433_1_012020
crossref_primary_10_1061__ASCE_EY_1943_7897_0000865
crossref_primary_10_1109_TTE_2021_3118691
crossref_primary_10_1002_asmb_2930
crossref_primary_10_1021_acs_iecr_0c01942
crossref_primary_10_1109_TTE_2021_3128018
crossref_primary_10_1007_s40031_024_01123_x
crossref_primary_10_1016_j_est_2023_108034
crossref_primary_10_1016_j_jechem_2023_03_026
crossref_primary_10_3390_s24113454
crossref_primary_10_1088_1402_4896_adaa35
crossref_primary_10_3233_JIFS_201952
crossref_primary_10_1016_j_est_2020_101404
crossref_primary_10_1016_j_est_2019_100811
crossref_primary_10_1016_j_est_2020_101643
crossref_primary_10_1016_j_est_2020_101885
crossref_primary_10_1016_j_est_2019_100812
crossref_primary_10_1002_qre_3524
crossref_primary_10_1016_j_est_2022_106469
crossref_primary_10_3390_a15110393
crossref_primary_10_3390_electronics10243126
crossref_primary_10_1016_j_egyr_2021_09_054
crossref_primary_10_1016_j_energy_2024_131398
crossref_primary_10_1115_1_4051802
crossref_primary_10_1016_j_energy_2023_126880
crossref_primary_10_3390_su152115283
crossref_primary_10_1016_j_eswa_2021_116075
crossref_primary_10_1109_TVT_2021_3055811
crossref_primary_10_1080_15567036_2024_2404500
crossref_primary_10_1016_j_ijhydene_2019_03_101
crossref_primary_10_1016_j_est_2023_109352
crossref_primary_10_1016_j_energy_2021_121022
crossref_primary_10_1016_j_energy_2023_128137
crossref_primary_10_1016_j_ress_2025_110975
crossref_primary_10_3389_fenrg_2022_1032660
crossref_primary_10_1016_j_ymssp_2024_111585
crossref_primary_10_1016_j_etran_2020_100078
crossref_primary_10_1016_j_ifacol_2020_11_064
crossref_primary_10_1016_j_est_2023_106645
Cites_doi 10.1016/j.rser.2016.08.039
10.1207/s15516709cog1402_1
10.1016/j.jpowsour.2017.05.004
10.1109/TR.2018.2803798
10.1016/j.energy.2016.12.004
10.1016/j.jpowsour.2018.04.012
10.1016/j.microrel.2012.12.004
10.1016/j.microrel.2015.06.133
10.1016/j.jpowsour.2014.07.176
10.4271/2011-01-2247
10.1016/j.measurement.2014.11.031
10.1016/j.apenergy.2015.08.119
10.1109/ACCESS.2017.2759094
10.1109/ACCESS.2018.2824838
10.1109/ICPHM.2017.7998298
10.1016/j.ress.2010.08.009
10.1098/rspa.1998.0193
10.1016/j.jpowsour.2018.10.069
10.1016/j.energy.2017.08.017
10.36001/phmconf.2010.v2i1.1896
10.1016/j.neucom.2004.10.077
10.1016/j.ijepes.2013.10.020
10.1016/j.apenergy.2013.12.020
10.1109/TIE.2016.2623260
10.1016/j.microrel.2017.06.045
10.1016/j.apenergy.2014.03.086
10.20964/2018.05.84
10.1149/2.0251701jes
10.1016/j.jclepro.2018.06.182
10.1109/TVT.2017.2762368
10.1016/j.ymssp.2017.02.027
10.1016/j.microrel.2017.02.012
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.est.2018.12.011
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2352-1538
EndPage 518
ExternalDocumentID 10_1016_j_est_2018_12_011
S2352152X1830450X
GroupedDBID --M
0R~
457
4G.
7-5
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAKOC
AALRI
AAOAW
AARIN
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AFKWA
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
KOM
O9-
OAUVE
ROL
SPC
SPCBC
SSB
SSD
SSR
SST
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c402t-375b312051c58b81b976ed298be8e380deb05fe7251862b7992acb650897ea753
IEDL.DBID AIKHN
ISSN 2352-152X
IngestDate Tue Jul 01 03:34:14 EDT 2025
Thu Apr 24 23:10:08 EDT 2025
Fri Feb 23 02:21:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion batteries
Long short-term memory
Electric vehicles
Remaining useful life
Elman neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-375b312051c58b81b976ed298be8e380deb05fe7251862b7992acb650897ea753
ORCID 0000-0002-2095-1976
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_est_2018_12_011
crossref_primary_10_1016_j_est_2018_12_011
elsevier_sciencedirect_doi_10_1016_j_est_2018_12_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of energy storage
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Xiong, He, Pecht (bib0040) 2018
Richardson, Osborne, Howey (bib0025) 2017; 357
Richardson, Berkl, Osborne, Howey (bib0060) 2018
Wang, Zhang, Liu, Pan, Chen (bib0035) 2018; 389
Voronov, Frisk, Krysander (bib0045) 2018; 67
Hu, Jain, Tamirisa, Gorka (bib0100) 2014; 126
Liu, Zhou, Pan, Peng, Peng (bib0110) 2015; 63
7–13.
Qin, Zeng, Guo (bib0135) 2015; 55
Zio, Peloni (bib0070) 2011; 96
J. Liu, A. Saxena, G. Kai, B. Saha, W. Wang. An adaptive recurrent neural network for remaining useful life prediction of lithium-ion batteries.
Dong, Jin, Lou, Wang (bib0125) 2014; 271
Zhang, Hu, Wang, Sun, Deng, Dorrell (bib0020) 2018; 67
Elman (bib0170) 1990; 14
G. Zhao, G. Zhang, Y. Liu, B. Zhang, C. Hu. Lithium-ion battery remaining useful life prediction with deep belief network and relevance vector machine.
Wang, Ma, Zhang (bib0050) 2017; 5
Ng, Xing, Tsui (bib0075) 2014; 118
Zhang, Zhang, Sun, Wang (bib0015) 2018; 6
Wang, Zhao, Yang, Tsui (bib0055) 2017; 93
Yang, Peng, Wang, Yuan, Wu (bib0065) 2018; 13
Chen, Zheng, Jiang, Zhang, Jiang, Chen (bib0085) 2017; 138
Lyu, Lai, Ge, Yu, Wang, Ma (bib0090) 2017; 120
Huang (bib0160) 1998; 454
Li, Wang, Zhang, Zou, Dorrell (bib0030) 2019; 410-411
.
Zhang, Xiong, He, Liu (bib0155) 2017
Miao, Xie, Cui, Liang, Pecht (bib0080) 2013; 53
Khelif, Chebel-Morello, Malinowski, Laajili, Fnaiech, Zerhouni (bib0105) 2017; 64
Rezvani, Lee, Lee (bib0150) 2011
Song, Liu, Yang, Peng (bib0130) 2017; 75
Liang, Bressler, Desimone, Fries (bib0165) 2005; 65
Liu, Song, Li, Liao, Peng (bib0115) 2018; 199
Peters, Baumann, Zimmermann, Braun, Weil (bib0005) 2017; 67
Zhang, Miao, Liu (bib0095) 2017; 75
Patil (bib0120) 2015; 159
Li, Li, Xiong, Chai, Zhang (bib0175) 2014; 55
Blomgren (bib0010) 2017; 164
Zhang (10.1016/j.est.2018.12.011_bib0095) 2017; 75
10.1016/j.est.2018.12.011_bib0140
Dong (10.1016/j.est.2018.12.011_bib0125) 2014; 271
Li (10.1016/j.est.2018.12.011_bib0175) 2014; 55
Wang (10.1016/j.est.2018.12.011_bib0050) 2017; 5
Zhang (10.1016/j.est.2018.12.011_bib0020) 2018; 67
Patil (10.1016/j.est.2018.12.011_bib0120) 2015; 159
Richardson (10.1016/j.est.2018.12.011_bib0025) 2017; 357
Chen (10.1016/j.est.2018.12.011_bib0085) 2017; 138
Zio (10.1016/j.est.2018.12.011_bib0070) 2011; 96
Qin (10.1016/j.est.2018.12.011_bib0135) 2015; 55
Richardson (10.1016/j.est.2018.12.011_bib0060) 2018
Peters (10.1016/j.est.2018.12.011_bib0005) 2017; 67
Zhang (10.1016/j.est.2018.12.011_bib0015) 2018; 6
Miao (10.1016/j.est.2018.12.011_bib0080) 2013; 53
Voronov (10.1016/j.est.2018.12.011_bib0045) 2018; 67
Liu (10.1016/j.est.2018.12.011_bib0110) 2015; 63
Liang (10.1016/j.est.2018.12.011_bib0165) 2005; 65
Liu (10.1016/j.est.2018.12.011_bib0115) 2018; 199
Rezvani (10.1016/j.est.2018.12.011_bib0150) 2011
Li (10.1016/j.est.2018.12.011_bib0030) 2019; 410-411
Lyu (10.1016/j.est.2018.12.011_bib0090) 2017; 120
Khelif (10.1016/j.est.2018.12.011_bib0105) 2017; 64
Elman (10.1016/j.est.2018.12.011_bib0170) 1990; 14
Hu (10.1016/j.est.2018.12.011_bib0100) 2014; 126
Song (10.1016/j.est.2018.12.011_bib0130) 2017; 75
Yang (10.1016/j.est.2018.12.011_bib0065) 2018; 13
Wang (10.1016/j.est.2018.12.011_bib0035) 2018; 389
Zhang (10.1016/j.est.2018.12.011_bib0155) 2017
Wang (10.1016/j.est.2018.12.011_bib0055) 2017; 93
10.1016/j.est.2018.12.011_bib0145
Huang (10.1016/j.est.2018.12.011_bib0160) 1998; 454
Ng (10.1016/j.est.2018.12.011_bib0075) 2014; 118
Zhang (10.1016/j.est.2018.12.011_bib0040) 2018
Blomgren (10.1016/j.est.2018.12.011_bib0010) 2017; 164
References_xml – volume: 13
  start-page: 4991
  year: 2018
  end-page: 5004
  ident: bib0065
  article-title: The remaining useful life estimation of lithium-ion battery based on improved extreme learning machine algorithm
  publication-title: Int. J. Electrochem. Sci.
– reference: G. Zhao, G. Zhang, Y. Liu, B. Zhang, C. Hu. Lithium-ion battery remaining useful life prediction with deep belief network and relevance vector machine.
– year: 2018
  ident: bib0060
  article-title: Gaussian process regression for in-situ capacity estimation of lithium-ion batteries
  publication-title: IEEE Trans. Ind. Informat.
– volume: 75
  start-page: 288
  year: 2017
  end-page: 295
  ident: bib0095
  article-title: Remaining useful life prediction of lithium-ion battery using an improved UPF method based on MCMC
  publication-title: Microelectron. Reliab.
– volume: 55
  start-page: 749
  year: 2014
  end-page: 759
  ident: bib0175
  article-title: Application of a hybrid quantized Elman neural network in short-term load forecasting
  publication-title: Int. J. Electric. Power Energy Syst.
– reference: , 7–13.
– volume: 389
  start-page: 93
  year: 2018
  end-page: 105
  ident: bib0035
  article-title: Multi-timescale power and energy assessment of lithium-ion battery and supercapacitor hybrid system using extended Kalman filter
  publication-title: J. Power Sources
– volume: 199
  start-page: 1050
  year: 2018
  end-page: 1065
  ident: bib0115
  article-title: On-line life cycle health assessment for lithium-ion battery in electric vehicles
  publication-title: J. Cleaner Prod.
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: bib0160
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci.
– volume: 96
  start-page: 403
  year: 2011
  end-page: 409
  ident: bib0070
  article-title: Particle filtering prognostic estimation of the remaining useful life of nonlinear components
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 55
  start-page: 1280
  year: 2015
  end-page: 1284
  ident: bib0135
  article-title: Robust prognostics for state of health estimation of lithium-ion batteries based on an improved PSO–SVR model
  publication-title: Microelectron. Reliab.
– volume: 164
  start-page: A5019
  year: 2017
  end-page: A5025
  ident: bib0010
  article-title: The development and future of lithium ion batteries
  publication-title: J. Electrochem. Soc.
– volume: 120
  start-page: 975
  year: 2017
  end-page: 984
  ident: bib0090
  article-title: A lead-acid battery’s remaining useful life prediction by using electrochemical model in the particle filtering framework
  publication-title: Energy
– volume: 64
  start-page: 2276
  year: 2017
  end-page: 2285
  ident: bib0105
  article-title: Direct remaining useful life estimation based on support vector regression
  publication-title: IEEE Trans. Ind. Electron.
– volume: 410-411
  start-page: 106
  year: 2019
  end-page: 114
  ident: bib0030
  article-title: State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis
  publication-title: J. Power Sources
– volume: 75
  start-page: 142
  year: 2017
  end-page: 153
  ident: bib0130
  article-title: Data-driven hybrid remaining useful life estimation approach for spacecraft lithium-ion battery
  publication-title: Microelectron. Reliab.
– volume: 67
  start-page: 491
  year: 2017
  end-page: 506
  ident: bib0005
  article-title: The environmental impact of Li-ion batteries and the role of key parameters–a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 118
  start-page: 114
  year: 2014
  end-page: 123
  ident: bib0075
  article-title: A naive Bayes model for robust remaining useful life prediction of lithium-ion battery
  publication-title: Appl. Energy
– volume: 93
  start-page: 531
  year: 2017
  end-page: 544
  ident: bib0055
  article-title: Nonlinear-drifted Brownian motion with multiple hidden states for remaining useful life prediction of rechargeable batteries
  publication-title: Mech. Syst. Sig. Process.
– volume: 126
  start-page: 182
  year: 2014
  end-page: 189
  ident: bib0100
  article-title: Method for estimating capacity and predicting remaining useful life of lithium-ion battery
  publication-title: Appl. Energy
– start-page: 1
  year: 2017
  end-page: 4
  ident: bib0155
  article-title: A LSTM-RNN method for the lithuim-ion battery remaining useful life prediction
  publication-title: 2017 Prognostics and System Health Management Conference (PHM-Harbin)
– volume: 67
  start-page: 623
  year: 2018
  end-page: 639
  ident: bib0045
  article-title: Data-driven battery lifetime prediction and confidence estimation for heavy-duty trucks
  publication-title: IEEE Trans. Reliab.
– volume: 63
  start-page: 143
  year: 2015
  end-page: 151
  ident: bib0110
  article-title: Lithium-ion battery remaining useful life estimation with an optimized relevance vector machine algorithm with incremental learning
  publication-title: Measurement
– volume: 271
  start-page: 114
  year: 2014
  end-page: 123
  ident: bib0125
  article-title: Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter
  publication-title: J. Power Sources
– volume: 14
  start-page: 179
  year: 1990
  end-page: 211
  ident: bib0170
  article-title: Finding structure in time
  publication-title: Cogn. Sci.
– volume: 6
  start-page: 23848
  year: 2018
  end-page: 23863
  ident: bib0015
  article-title: An overview on thermal safety issues of lithium-ion batteries for electric vehicle application
  publication-title: IEEE Access
– volume: 5
  start-page: 21286
  year: 2017
  end-page: 21295
  ident: bib0050
  article-title: State-of-health estimation for lithium-ion batteries based on the multi-island genetic algorithm and the gaussian process regression
  publication-title: IEEE Access
– volume: 53
  start-page: 805
  year: 2013
  end-page: 810
  ident: bib0080
  article-title: Remaining useful life prediction of lithium-ion battery with unscented particle filter technique
  publication-title: Microelectron. Reliab.
– reference: .
– year: 2011
  ident: bib0150
  article-title: A comparative analysis of techniques for electric vehicle battery prognostics and health management (PHM)
  publication-title: SAE Technical Paper
– volume: 159
  start-page: 285
  year: 2015
  end-page: 297
  ident: bib0120
  article-title: A novel multistage support vector machine based approach for Li ion battery remaining useful life estimation
  publication-title: Appl. Energy
– volume: 67
  start-page: 1027
  year: 2018
  end-page: 1035
  ident: bib0020
  article-title: Multiobjective optimal sizing of hybrid energy storage system for electric vehicles
  publication-title: IEEE Trans. Veh. Technol.
– volume: 138
  start-page: 1199
  year: 2017
  end-page: 1208
  ident: bib0085
  article-title: Practical failure recognition model of lithium-ion batteries based on partial charging process
  publication-title: Energy
– reference: J. Liu, A. Saxena, G. Kai, B. Saha, W. Wang. An adaptive recurrent neural network for remaining useful life prediction of lithium-ion batteries.
– volume: 357
  start-page: 209
  year: 2017
  end-page: 219
  ident: bib0025
  article-title: Gaussian process regression for forecasting battery state of health
  publication-title: J. Power Sources
– volume: 65
  start-page: 801
  year: 2005
  end-page: 807
  ident: bib0165
  article-title: Empirical mode decomposition: a method for analyzing neural data
  publication-title: Neurocomputing
– year: 2018
  ident: bib0040
  article-title: Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries
  publication-title: IEEE Trans. Veh. Technol.
– volume: 67
  start-page: 491
  year: 2017
  ident: 10.1016/j.est.2018.12.011_bib0005
  article-title: The environmental impact of Li-ion batteries and the role of key parameters–a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.08.039
– volume: 14
  start-page: 179
  issue: 2
  year: 1990
  ident: 10.1016/j.est.2018.12.011_bib0170
  article-title: Finding structure in time
  publication-title: Cogn. Sci.
  doi: 10.1207/s15516709cog1402_1
– volume: 357
  start-page: 209
  year: 2017
  ident: 10.1016/j.est.2018.12.011_bib0025
  article-title: Gaussian process regression for forecasting battery state of health
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.05.004
– volume: 67
  start-page: 623
  issue: 2
  year: 2018
  ident: 10.1016/j.est.2018.12.011_bib0045
  article-title: Data-driven battery lifetime prediction and confidence estimation for heavy-duty trucks
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2018.2803798
– volume: 120
  start-page: 975
  year: 2017
  ident: 10.1016/j.est.2018.12.011_bib0090
  article-title: A lead-acid battery’s remaining useful life prediction by using electrochemical model in the particle filtering framework
  publication-title: Energy
  doi: 10.1016/j.energy.2016.12.004
– volume: 389
  start-page: 93
  year: 2018
  ident: 10.1016/j.est.2018.12.011_bib0035
  article-title: Multi-timescale power and energy assessment of lithium-ion battery and supercapacitor hybrid system using extended Kalman filter
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.04.012
– volume: 53
  start-page: 805
  issue: 6
  year: 2013
  ident: 10.1016/j.est.2018.12.011_bib0080
  article-title: Remaining useful life prediction of lithium-ion battery with unscented particle filter technique
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2012.12.004
– volume: 55
  start-page: 1280
  issue: 9
  year: 2015
  ident: 10.1016/j.est.2018.12.011_bib0135
  article-title: Robust prognostics for state of health estimation of lithium-ion batteries based on an improved PSO–SVR model
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2015.06.133
– volume: 271
  start-page: 114
  year: 2014
  ident: 10.1016/j.est.2018.12.011_bib0125
  article-title: Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.07.176
– year: 2011
  ident: 10.1016/j.est.2018.12.011_bib0150
  article-title: A comparative analysis of techniques for electric vehicle battery prognostics and health management (PHM)
  doi: 10.4271/2011-01-2247
– volume: 63
  start-page: 143
  year: 2015
  ident: 10.1016/j.est.2018.12.011_bib0110
  article-title: Lithium-ion battery remaining useful life estimation with an optimized relevance vector machine algorithm with incremental learning
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.11.031
– volume: 159
  start-page: 285
  year: 2015
  ident: 10.1016/j.est.2018.12.011_bib0120
  article-title: A novel multistage support vector machine based approach for Li ion battery remaining useful life estimation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.08.119
– volume: 5
  start-page: 21286
  year: 2017
  ident: 10.1016/j.est.2018.12.011_bib0050
  article-title: State-of-health estimation for lithium-ion batteries based on the multi-island genetic algorithm and the gaussian process regression
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2759094
– volume: 6
  start-page: 23848
  year: 2018
  ident: 10.1016/j.est.2018.12.011_bib0015
  article-title: An overview on thermal safety issues of lithium-ion batteries for electric vehicle application
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2824838
– ident: 10.1016/j.est.2018.12.011_bib0140
  doi: 10.1109/ICPHM.2017.7998298
– volume: 96
  start-page: 403
  issue: 3
  year: 2011
  ident: 10.1016/j.est.2018.12.011_bib0070
  article-title: Particle filtering prognostic estimation of the remaining useful life of nonlinear components
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2010.08.009
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  ident: 10.1016/j.est.2018.12.011_bib0160
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
– volume: 410-411
  start-page: 106
  year: 2019
  ident: 10.1016/j.est.2018.12.011_bib0030
  article-title: State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.10.069
– volume: 138
  start-page: 1199
  year: 2017
  ident: 10.1016/j.est.2018.12.011_bib0085
  article-title: Practical failure recognition model of lithium-ion batteries based on partial charging process
  publication-title: Energy
  doi: 10.1016/j.energy.2017.08.017
– ident: 10.1016/j.est.2018.12.011_bib0145
  doi: 10.36001/phmconf.2010.v2i1.1896
– start-page: 1
  year: 2017
  ident: 10.1016/j.est.2018.12.011_bib0155
  article-title: A LSTM-RNN method for the lithuim-ion battery remaining useful life prediction
– volume: 65
  start-page: 801
  year: 2005
  ident: 10.1016/j.est.2018.12.011_bib0165
  article-title: Empirical mode decomposition: a method for analyzing neural data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2004.10.077
– volume: 55
  start-page: 749
  year: 2014
  ident: 10.1016/j.est.2018.12.011_bib0175
  article-title: Application of a hybrid quantized Elman neural network in short-term load forecasting
  publication-title: Int. J. Electric. Power Energy Syst.
  doi: 10.1016/j.ijepes.2013.10.020
– volume: 118
  start-page: 114
  year: 2014
  ident: 10.1016/j.est.2018.12.011_bib0075
  article-title: A naive Bayes model for robust remaining useful life prediction of lithium-ion battery
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.12.020
– volume: 64
  start-page: 2276
  issue: 3
  year: 2017
  ident: 10.1016/j.est.2018.12.011_bib0105
  article-title: Direct remaining useful life estimation based on support vector regression
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2623260
– volume: 75
  start-page: 142
  year: 2017
  ident: 10.1016/j.est.2018.12.011_bib0130
  article-title: Data-driven hybrid remaining useful life estimation approach for spacecraft lithium-ion battery
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2017.06.045
– volume: 126
  start-page: 182
  year: 2014
  ident: 10.1016/j.est.2018.12.011_bib0100
  article-title: Method for estimating capacity and predicting remaining useful life of lithium-ion battery
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.03.086
– volume: 13
  start-page: 4991
  year: 2018
  ident: 10.1016/j.est.2018.12.011_bib0065
  article-title: The remaining useful life estimation of lithium-ion battery based on improved extreme learning machine algorithm
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.20964/2018.05.84
– volume: 164
  start-page: A5019
  issue: 1
  year: 2017
  ident: 10.1016/j.est.2018.12.011_bib0010
  article-title: The development and future of lithium ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0251701jes
– year: 2018
  ident: 10.1016/j.est.2018.12.011_bib0040
  article-title: Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries
  publication-title: IEEE Trans. Veh. Technol.
– volume: 199
  start-page: 1050
  year: 2018
  ident: 10.1016/j.est.2018.12.011_bib0115
  article-title: On-line life cycle health assessment for lithium-ion battery in electric vehicles
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2018.06.182
– volume: 67
  start-page: 1027
  issue: 2
  year: 2018
  ident: 10.1016/j.est.2018.12.011_bib0020
  article-title: Multiobjective optimal sizing of hybrid energy storage system for electric vehicles
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2017.2762368
– volume: 93
  start-page: 531
  year: 2017
  ident: 10.1016/j.est.2018.12.011_bib0055
  article-title: Nonlinear-drifted Brownian motion with multiple hidden states for remaining useful life prediction of rechargeable batteries
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2017.02.027
– year: 2018
  ident: 10.1016/j.est.2018.12.011_bib0060
  article-title: Gaussian process regression for in-situ capacity estimation of lithium-ion batteries
  publication-title: IEEE Trans. Ind. Informat.
– volume: 75
  start-page: 288
  year: 2017
  ident: 10.1016/j.est.2018.12.011_bib0095
  article-title: Remaining useful life prediction of lithium-ion battery using an improved UPF method based on MCMC
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2017.02.012
SSID ssj0001651196
Score 2.5819826
Snippet This paper presents a novel hybrid Elman-LSTM method for battery remaining useful life prediction by combining the empirical model decomposition algorithm and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 510
SubjectTerms Electric vehicles
Elman neural network
Lithium-ion batteries
Long short-term memory
Remaining useful life
Title Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks
URI https://dx.doi.org/10.1016/j.est.2018.12.011
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GdoED4inGSzlwQorWV9L2OE1DA8QOwKTeqqRJtaK2m7b2sJ_BP8bpA4YEHLg1UV1Ftmt_ThwboRsam0y6wibgGzlxnMgmQpmSKE_YKmaU-1RfFH6assnMeQho0EGj9i6MTqtsbH9t0ytr3cwMGm4OlkkyeLEAO4D3CUApAZcYwQ7qWbbPQLV7w_vHyfRrq4Xpw7K6zRy1iKZpzzerTC8wvzrHy6v2BU3zZw-15XXuDtB-AxfxsF7RIeqo_AjtbRURPEbvzyqr2zzgcq3iMsVpEiu8XOkjGM12DLgU5op5UmZEj0VVUxNCZKx9mMQwxfF8o-9u4aozDgZuiPqTgA9xuoCH9RyAOtGGHGc6O3eDeS7xOM14jnVRTFhlXqeUr0_Q7G78OpqQptECiSB8LMDIUGGbFvyfEfUEAFnAKEpavieUp2zPkEoYNFYuYCEIgITr-xaPhMZ2vqs4BDynqJsvcnWGMBWmISWLHWnYDvNsTzgs5ixmXEhl-m4fGS1zw6ipQq6bYaRhm272FoI8Qi2P0LRCkEcf3X6SLOsSHH-97LQSC7_pUQgu4ney8_-RXaBdGPl1Fvcl6harUl0BSCnEdaOEH1yY55A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7R5EB7qIC2KlDaPfRUaRW_dm0fowgUyONAQcpttetdK0GOiUhy4Gfwj5nxowUJOHCz1x5rNbOe-WZndgbgt8h9aWMTcrSNmkdRFnLjfMtdYkKXS6FTQQeFJ1M5vI4uZmK2A4P2LAylVTa6v9bplbZuRnoNN3urxaL3N0DsgNZnhosScYk3-wBdqk4lOtDtn4-G0_9bLZKCZXWbORFwomnjm1WmF6pfyvFKqn1B33_ZQj2xOmd78LmBi6xfz2gfdlx5AJ-eFBH8Ag-Xblm3eWDbtcu3BSsWuWOrOwrBENsZ4lIc28wX2yWne1PV1EQXmZENswyHNJvf09ktVnXGYcgNU38S8SErbvFiPUegzkmRsyVl594zXVp2Wix1yagoJs6yrFPK11_h-uz0ajDkTaMFnqH7uEElI0zoB_h_ZiIxCGQRozgbpIlxiQsTzzrjidzFiIXQATJxmgY6M4Tt0thpdHi-Qae8Ld13YML4nrUyj6wXRjIJExPJXMtcamOdn8aH4LXMVVlThZyaYRSqTTe7USgPRfJQfqBQHofw5x_Jqi7B8dbLUSsx9WwdKTQRr5MdvY_sF-wOryZjNT6fjo7hIz5J64zuH9DZ3G3dCQKWjfnZLMhHTYDqdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remaining+useful+life+prediction+for+lithium-ion+batteries+based+on+a+hybrid+model+combining+the+long+short-term+memory+and+Elman+neural+networks&rft.jtitle=Journal+of+energy+storage&rft.au=Li%2C+Xiaoyu&rft.au=Zhang%2C+Lei&rft.au=Wang%2C+Zhenpo&rft.au=Dong%2C+Peng&rft.date=2019-02-01&rft.issn=2352-152X&rft.volume=21&rft.spage=510&rft.epage=518&rft_id=info:doi/10.1016%2Fj.est.2018.12.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_est_2018_12_011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-152X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-152X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-152X&client=summon