Using digital image processing for counting whiteflies on soybean leaves

This paper presents a new system, based on digital image processing, to quantify whiteflies on soybean leaves. This approach allows counting to be fully automated, considerably speeding up the process in comparison with the manual approach. The proposed algorithm is capable of detecting and quantify...

Full description

Saved in:
Bibliographic Details
Published inJournal of Asia-Pacific entomology Vol. 17; no. 4; pp. 685 - 694
Main Author Barbedo, Jayme Garcia Arnal
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2014
한국응용곤충학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a new system, based on digital image processing, to quantify whiteflies on soybean leaves. This approach allows counting to be fully automated, considerably speeding up the process in comparison with the manual approach. The proposed algorithm is capable of detecting and quantifying not only adult whiteflies, but also specimens in the nymph stage. A complete performance evaluation is presented, with emphasis on the conditions and situations for which the algorithm succeeds, and also on the circumstances that need further work. Although this proposal was entirely developed using soybean leaves, it can be easily extended to other kinds of crops with little or no changes in the algorithm. The system employs only widely used image processing operations, so it can be easily implemented in any image processing software package. [Display omitted] •A new method for counting whiteflies in soybean leaves is presented.•The method is based on conventional digital images.•The method employs only well known morphological operations and heuristic rules.•The method is capable of identifying whiteflies in different stages of their life cycle.•The method provides good count estimates even under conditions moderately far from ideal.
AbstractList This paper presents a new system, based on digital image processing, to quantify whiteflies on soybean leaves. This approach allows counting to be fully automated, considerably speeding up the process in comparison with the manual approach. The proposed algorithm is capable of detecting and quantifying not only adult whiteflies, but also specimens in the nymph stage. A complete performance evaluation is presented, with emphasis on the conditions and situations for which the algorithm succeeds, and also on the circumstances that need further work. Although this proposal was entirely developed using soybean leaves, it can be easily extended to other kinds of crops with little or no changes in the algorithm. The system employs only widely used image processing operations, so it can be easily implemented in any image processing software package.
This paper presents a new system, based on digital image processing, to quantify whiteflies on soybean leaves. This approach allows counting to be fully automated, considerably speeding up the process in comparison with the manual approach. The proposed algorithm is capable of detecting and quantifying not only adult whiteflies, but also specimens in the nymph stage. A complete performance evaluation is presented, with emphasis on the conditions and situations for which the algorithm succeeds, and also on the circumstances that need further work. Although this proposal was entirely developed using soybean leaves, it can be easily extended to other kinds of crops with little or no changes in the algorithm. The system employs only widely used image processing operations, so it can be easily implemented in any image processing software package. [Display omitted] •A new method for counting whiteflies in soybean leaves is presented.•The method is based on conventional digital images.•The method employs only well known morphological operations and heuristic rules.•The method is capable of identifying whiteflies in different stages of their life cycle.•The method provides good count estimates even under conditions moderately far from ideal.
This paper presents a new system, based on digital image processing, to quantify whiteflies on soybean leaves. This approach allows counting to be fully automated, considerably speeding up the process in comparisonwith the manual approach. The proposed algorithm is capable of detecting and quantifying not only adultwhiteflies,but also specimens in the nymph stage. A complete performance evaluation is presented, with emphasis onthe conditions and situations for which the algorithm succeeds, and also on the circumstances that need furtherwork. Although this proposal was entirely developed using soybean leaves, it can be easily extended to otherkinds of crops with little or no changes in the algorithm. The systememploys only widely used image processingoperations, so it can be easily implemented in any image processing software package. KCI Citation Count: 12
Author Barbedo, Jayme Garcia Arnal
Author_xml – sequence: 1
  givenname: Jayme Garcia Arnal
  surname: Barbedo
  fullname: Barbedo, Jayme Garcia Arnal
  email: jayme.barbedo@embrapa.br
  organization: Embrapa Agricultural Informatics, Av. André Tosello, 209-Barão Geraldo, C.P. 6041, 13083-886 Campinas, SP, Brazil
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001931832$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNqFkUFr3DAQhUVJoEmaX9CLj73YGUm2bB16CKFtAoFASc6DLI232jjSVvKm5N9XuxsI9NCcnga9b2DeO2VHIQZi7DOHhgNXF-vG5A2FRgBvG1BNkQ_shA-9qnut4ai8hVD1oHj3kZ3mvAZQXAz8hF0_ZB9WlfMrv5i58k9mRdUmRUt5_zHFVNm4Dctu-PPLLzTNnnIVQ5Xjy0gmVDOZZ8qf2PFk5kznr3rGHr5_u7-6rm_vftxcXd7WtgWx1MLpQShptFaD0aa1Ro6udd0Ao9Wmc7oVTo265071zqmuc85K2bducpz3fJRn7Mthb0gTPlqP0fi9riI-Jrz8eX-DQ8lB9W_Wcs_vLeUFn3y2NM8mUNxmFAAghJQg3rVy1fYArexUseqD1aaYc6IJbYlu8TEsyfgZOeCuE1zjvhPcdYKgsEhh5T_sJpXI08s71NcDRSXXZ08Js_UULDmfyC7oov8v_xcMsKhw
CitedBy_id crossref_primary_10_1016_j_atech_2024_100517
crossref_primary_10_1109_LGRS_2019_2954735
crossref_primary_10_1080_15538362_2024_2438062
crossref_primary_10_1016_j_compag_2022_107132
crossref_primary_10_1093_jee_toaf035
crossref_primary_10_3390_jimaging10050114
crossref_primary_10_1016_j_ifacol_2018_08_066
crossref_primary_10_3390_ai1020013
crossref_primary_10_1017_S002185962200017X
crossref_primary_10_3390_inventions9010008
crossref_primary_10_1177_1687814016686265
crossref_primary_10_1016_j_compag_2023_108420
crossref_primary_10_1007_s42853_019_00036_8
crossref_primary_10_1016_j_ecoinf_2023_102384
crossref_primary_10_1016_j_jarmap_2022_100382
crossref_primary_10_1186_s13007_018_0369_5
crossref_primary_10_1371_journal_pone_0189732
crossref_primary_10_1002_csc2_20373
crossref_primary_10_1016_j_compag_2020_105836
crossref_primary_10_1186_s43897_024_00112_4
crossref_primary_10_1111_afe_12667
crossref_primary_10_2174_1872208314666200312094447
crossref_primary_10_1016_j_atech_2023_100209
crossref_primary_10_1016_j_atech_2022_100125
crossref_primary_10_1016_j_biosystemseng_2019_04_007
crossref_primary_10_1016_j_compag_2016_07_008
crossref_primary_10_1016_j_aspen_2019_11_006
crossref_primary_10_1016_j_compag_2018_06_026
crossref_primary_10_15446_agron_colomb_v34n2_54084
crossref_primary_10_3390_ai1020021
crossref_primary_10_3389_fpls_2022_839572
crossref_primary_10_3390_agronomy8080129
crossref_primary_10_1155_2023_5546373
crossref_primary_10_1016_j_atech_2023_100372
crossref_primary_10_1016_j_compag_2019_105200
crossref_primary_10_1016_j_inpa_2017_09_005
crossref_primary_10_1371_journal_pone_0276456
crossref_primary_10_1016_j_compag_2022_106739
crossref_primary_10_1002_ppj2_20089
crossref_primary_10_1016_j_biosystemseng_2015_11_005
crossref_primary_10_1016_j_compag_2022_106933
Cites_doi 10.1145/965139.807361
10.1016/j.compag.2007.11.009
10.17660/ActaHortic.2005.691.95
10.9790/2834-565763
10.11646/zootaxa.1492.1.1
ContentType Journal Article
Copyright 2014 Korean Society of Applied Entomology, Taiwan Entomological Society and Malaysian Plant Protection Society.
Copyright_xml – notice: 2014 Korean Society of Applied Entomology, Taiwan Entomological Society and Malaysian Plant Protection Society.
DBID AAYXX
CITATION
7SS
7S9
L.6
ACYCR
DOI 10.1016/j.aspen.2014.06.014
DatabaseName CrossRef
Entomology Abstracts (Full archive)
AGRICOLA
AGRICOLA - Academic
Korean Citation Index
DatabaseTitle CrossRef
Entomology Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Entomology Abstracts


AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1876-7990
EndPage 694
ExternalDocumentID oai_kci_go_kr_ARTI_820167
10_1016_j_aspen_2014_06_014
S1226861514000855
GroupedDBID --K
--M
.UV
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9ZL
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABGRD
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
J1W
KOM
KVFHK
M41
MO0
MZR
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
SDF
SES
SPCBC
SSA
SSZ
T5K
ZZE
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SS
7S9
EFKBS
L.6
85H
ABPIF
ABYKQ
ACYCR
AJBFU
CBWCG
ID FETCH-LOGICAL-c402t-2d98263a9968a9a4ca3bd4d580bc9a5d942d6b971d67dd655ddc3374dfd1171b3
IEDL.DBID .~1
ISSN 1226-8615
IngestDate Fri Nov 17 19:27:09 EST 2023
Mon Jul 21 10:05:13 EDT 2025
Fri Jul 11 12:10:37 EDT 2025
Thu Apr 24 23:10:31 EDT 2025
Tue Jul 01 01:23:20 EDT 2025
Thu May 30 20:25:11 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Whiteflies
Soybean leaves
Counting
Digital image processing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-2d98263a9968a9a4ca3bd4d580bc9a5d942d6b971d67dd655ddc3374dfd1171b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
G704-000694.2014.17.4.001
PQID 1647004356
PQPubID 23462
PageCount 10
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_820167
proquest_miscellaneous_2000223302
proquest_miscellaneous_1647004356
crossref_citationtrail_10_1016_j_aspen_2014_06_014
crossref_primary_10_1016_j_aspen_2014_06_014
elsevier_sciencedirect_doi_10_1016_j_aspen_2014_06_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of Asia-Pacific entomology
PublicationYear 2014
Publisher Elsevier B.V
한국응용곤충학회
Publisher_xml – name: Elsevier B.V
– name: 한국응용곤충학회
References Smith (bb0075) 1978; 12
Bechar, Moisan (bb0020) 2010
Pokharkar, Thool (bb0065) 2012; 1
Martin, Moisan, Paris, Nicolas (bb0055) 2011
Faithpraise, Birch, Young, Obu, Faithpraise, Chatwin (bb0035) 2013; 4
Barbedo (bb0005) 2012
Martin, Mound (bb0050) 2007; 1492
Huddar, Gowri, Keerthana, Vasanthi, Rupanagudi (bb0045) 2012
Barbedo (bb0010) 2013
Boissard, Martin, Moisan (bb0025) 2008; 62
Mundada, Gohokar (bb0060) 2013; 5
Powers (bb0070) 2011; 2
Souza (bb0080) 2004
Bauch, Rath (bb0015) 2005; 691
Cho, Choi, Qiao, Ji, Kim, Uhm, Chon (bb0030) 2007; 1
Flint (bb0040) 2002
Bauch (10.1016/j.aspen.2014.06.014_bb0015) 2005; 691
Martin (10.1016/j.aspen.2014.06.014_bb0050) 2007; 1492
Flint (10.1016/j.aspen.2014.06.014_bb0040) 2002
Powers (10.1016/j.aspen.2014.06.014_bb0070) 2011; 2
Cho (10.1016/j.aspen.2014.06.014_bb0030) 2007; 1
Pokharkar (10.1016/j.aspen.2014.06.014_bb0065) 2012; 1
Barbedo (10.1016/j.aspen.2014.06.014_bb0005) 2012
Boissard (10.1016/j.aspen.2014.06.014_bb0025) 2008; 62
Mundada (10.1016/j.aspen.2014.06.014_bb0060) 2013; 5
Faithpraise (10.1016/j.aspen.2014.06.014_bb0035) 2013; 4
Martin (10.1016/j.aspen.2014.06.014_bb0055) 2011
Smith (10.1016/j.aspen.2014.06.014_bb0075) 1978; 12
Souza (10.1016/j.aspen.2014.06.014_bb0080) 2004
Barbedo (10.1016/j.aspen.2014.06.014_bb0010) 2013
Huddar (10.1016/j.aspen.2014.06.014_bb0045) 2012
Bechar (10.1016/j.aspen.2014.06.014_bb0020) 2010
References_xml – volume: 4
  start-page: 189
  year: 2013
  end-page: 199
  ident: bb0035
  article-title: Automatic plant pest detection and recognition using k-means clustering algorithm and correspondence filters
  publication-title: Int. J. Adv. Biotechnol. Res.
– volume: 62
  start-page: 81
  year: 2008
  end-page: 93
  ident: bb0025
  article-title: A cognitive vision approach to early pest detection in greenhouse crops
  publication-title: Comput. Electron. Agric.
– volume: 1492
  start-page: 1
  year: 2007
  end-page: 84
  ident: bb0050
  article-title: An annotated check list of the world's whiteflies (
  publication-title: Zootaxa
– start-page: 1
  year: 2012
  end-page: 5
  ident: bb0045
  article-title: Novel algorithm for segmentation and automatic identification of pests on plants using image processing
  publication-title: Proc. Int. Conf. Comp. Comm. & Netw. Tech
– volume: 5
  start-page: 57
  year: 2013
  end-page: 63
  ident: bb0060
  article-title: Detection and classification of pests in greenhouse using image processing
  publication-title: IOSR J. Electr. Commun. Eng.
– start-page: 12
  year: 2011
  end-page: 15
  ident: bb0055
  article-title: Towards a video camera network for early pest detection in greenhouses
  publication-title: Proc. Int. Conf. Diversif. Crop Prot.
– volume: 1
  start-page: 46
  year: 2007
  end-page: 53
  ident: bb0030
  article-title: Automatic identification of whiteflies, aphids and thrips in greenhouse based on image analysis
  publication-title: J. Math. Comput. Simul.
– year: 2013
  ident: bb0010
  article-title: Automatic method for counting and measuring whiteflies in soybean leaves using digital image processing
  publication-title: Proc. IX Braz. Congr. Agroinf
– volume: 691
  start-page: 773
  year: 2005
  end-page: 779
  ident: bb0015
  article-title: Prototype of a vision based system for measurements of white fly infestation
  publication-title: Acta Hortic.
– volume: 1
  start-page: 1
  year: 2012
  end-page: 6
  ident: bb0065
  article-title: Early pest identification in greenhouse crops using image processing techniques
  publication-title: Int. J. Comput. Sci. Netw.
– volume: 12
  start-page: 12
  year: 1978
  end-page: 19
  ident: bb0075
  article-title: Color gamut transform pairs
  publication-title: Comp. Graph.
– start-page: 83
  year: 2012
  end-page: 87
  ident: bb0005
  article-title: Method for counting microorganisms and colonies in microscopic images
  publication-title: Proc. Int. Conf. Comp. Sci. Appl
– volume: 2
  start-page: 37
  year: 2011
  end-page: 63
  ident: bb0070
  article-title: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness & correlation
  publication-title: J. Mach. Learn. Technol.
– year: 2004
  ident: bb0080
  article-title: Atividade inseticida e modo de ação de extratos de meliáceas sobre
– year: 2010
  ident: bb0020
  article-title: On-line counting of pests in a greenhouse using computer vision
  publication-title: Proc. Vis. Obs. Anal Anim. Insect Behav
– year: 2002
  ident: bb0040
  article-title: Whiteflies: integrated pest management for home gardeners and professional landscapers
  publication-title: University of California, Davies, Tech. Report
– volume: 12
  start-page: 12
  year: 1978
  ident: 10.1016/j.aspen.2014.06.014_bb0075
  article-title: Color gamut transform pairs
  publication-title: Comp. Graph.
  doi: 10.1145/965139.807361
– volume: 62
  start-page: 81
  year: 2008
  ident: 10.1016/j.aspen.2014.06.014_bb0025
  article-title: A cognitive vision approach to early pest detection in greenhouse crops
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2007.11.009
– start-page: 1
  year: 2012
  ident: 10.1016/j.aspen.2014.06.014_bb0045
  article-title: Novel algorithm for segmentation and automatic identification of pests on plants using image processing
– volume: 2
  start-page: 37
  year: 2011
  ident: 10.1016/j.aspen.2014.06.014_bb0070
  article-title: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness & correlation
  publication-title: J. Mach. Learn. Technol.
– year: 2004
  ident: 10.1016/j.aspen.2014.06.014_bb0080
– volume: 691
  start-page: 773
  year: 2005
  ident: 10.1016/j.aspen.2014.06.014_bb0015
  article-title: Prototype of a vision based system for measurements of white fly infestation
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2005.691.95
– year: 2010
  ident: 10.1016/j.aspen.2014.06.014_bb0020
  article-title: On-line counting of pests in a greenhouse using computer vision
– year: 2002
  ident: 10.1016/j.aspen.2014.06.014_bb0040
  article-title: Whiteflies: integrated pest management for home gardeners and professional landscapers
– volume: 1
  start-page: 46
  year: 2007
  ident: 10.1016/j.aspen.2014.06.014_bb0030
  article-title: Automatic identification of whiteflies, aphids and thrips in greenhouse based on image analysis
  publication-title: J. Math. Comput. Simul.
– volume: 1
  start-page: 1
  year: 2012
  ident: 10.1016/j.aspen.2014.06.014_bb0065
  article-title: Early pest identification in greenhouse crops using image processing techniques
  publication-title: Int. J. Comput. Sci. Netw.
– volume: 5
  start-page: 57
  year: 2013
  ident: 10.1016/j.aspen.2014.06.014_bb0060
  article-title: Detection and classification of pests in greenhouse using image processing
  publication-title: IOSR J. Electr. Commun. Eng.
  doi: 10.9790/2834-565763
– start-page: 83
  year: 2012
  ident: 10.1016/j.aspen.2014.06.014_bb0005
  article-title: Method for counting microorganisms and colonies in microscopic images
– start-page: 12
  year: 2011
  ident: 10.1016/j.aspen.2014.06.014_bb0055
  article-title: Towards a video camera network for early pest detection in greenhouses
– year: 2013
  ident: 10.1016/j.aspen.2014.06.014_bb0010
  article-title: Automatic method for counting and measuring whiteflies in soybean leaves using digital image processing
– volume: 1492
  start-page: 1
  year: 2007
  ident: 10.1016/j.aspen.2014.06.014_bb0050
  article-title: An annotated check list of the world's whiteflies (Insecta: Hemiptera: Aleyrodidae)
  publication-title: Zootaxa
  doi: 10.11646/zootaxa.1492.1.1
– volume: 4
  start-page: 189
  year: 2013
  ident: 10.1016/j.aspen.2014.06.014_bb0035
  article-title: Automatic plant pest detection and recognition using k-means clustering algorithm and correspondence filters
  publication-title: Int. J. Adv. Biotechnol. Res.
SSID ssj0061281
Score 2.2155564
Snippet This paper presents a new system, based on digital image processing, to quantify whiteflies on soybean leaves. This approach allows counting to be fully...
This paper presents a new system, based on digital image processing, to quantify whiteflies on soybean leaves. This approach allows counting to be fully...
SourceID nrf
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 685
SubjectTerms adults
Aleyrodidae
algorithms
computer software
Counting
crops
Digital image processing
digital images
image analysis
leaves
Soybean leaves
soybeans
Whiteflies
농수해양학
Title Using digital image processing for counting whiteflies on soybean leaves
URI https://dx.doi.org/10.1016/j.aspen.2014.06.014
https://www.proquest.com/docview/1647004356
https://www.proquest.com/docview/2000223302
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001931832
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Asia-Pacific Entomology, 2014, 17(4), , pp.685-694
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7riuBFfOJzieDRuqZN0_Qoi8uuj0V8gHgJSZNKfbTLdlW8-NvNpK0gogdPoc0EwiSdzHS-fIPQXsqBA8UoL7HRgkc5JZ5KqPRMamholFTccXeej9jghp7chrct1GvuwgCssrb9lU131rp-06212R1nWfeKWM-Bw4FMK7QV3GCnEezyg48vmAeDTBEEXVbYA-mGechhvGQ5NkCCSqgj8ST0t9NpJp-kP6y1O4L6i2ih9h3xUTW9JdQy-TKauyvcn_EVNHDpf6yzeygEgrNnayrwuLoIAB3WPcVNaQj8BumD1DqgJS5yXBbvysgcPxn5aspVdNM_vu4NvLpQAmjYn3q-jm2UEEgbu3AZS5rIQGmqQ36okliGOqa-ZiqOiGaR1iwMtU6CIKI61YRERAVrqJ0XuVlHmBI_5SlJpbahn5K2T7PEMKV4HCnO5AbyGwWJpGYRh2IWT6KBiz0Ip1UBWhUAmiN0A-1_DRpXJBp_i7NG8-LbXhDWzP89cNeuk3hMMgGs2dDeF-JxImxsMBTg67DIyjSrKOyXBOkRmZvipRTArAaJ0ZD9LuM7wqAgOPQ3_zvJLTQPTxUkZhu1p5MXs2Mdm6nquJ3bQbNHvcuzC2iHp4PRJyhQ-Zw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-UwEB_0iehl8RN1V43g0fJMm6bpUWSlz493UUG8hKRJpX60j9eny_73m0lbYRE9eCo0MxAm6WSm88tvAA4LgRwoVge5yxYCJhgNdM5UYAvLYquVFp6782rMs1t2fhffzcFpfxcGYZWd7299uvfW3ZthZ83hpCyH19RFDgIPZNaireZhAdmp4gEsnIwusnHvkDkWizDvcvIBKvTkQx7mpZqJRR5UyjyPJ2WfHVDz1bT44LD9KXS2Aj-68JGctDNchTlbrcHife1_jq9D5hEAxJQP2AuElC_OW5BJexcAB1yESvruEOQPVhAKF4M2pK5IU__VVlXk2ao322zA7dnvm9Ms6HoloJHDWRCa1CUKkXLpi1CpYrmKtGEmFsc6T1VsUhYartOEGp4Yw-PYmDyKEmYKQ2lCdbQJg6qu7BYQRsNCFLRQxmV_Wrkxw3PLtRZpogVX2xD2BpJ5RySO_SyeZY8Ye5TeqhKtKhE3R9k2HL0rTVoeja_FeW95-d92kM7Tf6144NZJPuWlROJsfD7U8mkqXXowkhju8MTJ9Kso3ceEFRJV2fq1kUiuhrXRmH8uE3rOoCg6Dne-O8l9WMpuri7l5Wh88ROWcaRFyPyCwWz6anddnDPTe90-_gfhK_q4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+digital+image+processing+for+counting+whiteflies+on+soybean+leaves&rft.jtitle=Journal+of+Asia-Pacific+entomology&rft.au=Barbedo%2C+Jayme+Garcia+Arnal&rft.date=2014-12-01&rft.issn=1226-8615&rft.volume=17&rft.issue=4&rft.spage=685&rft.epage=694&rft_id=info:doi/10.1016%2Fj.aspen.2014.06.014&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-8615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-8615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-8615&client=summon