Personalized models for facial emotion recognition through transfer learning

Emotions represent a key aspect of human life and behavior. In recent years, automatic recognition of emotions has become an important component in the fields of affective computing and human-machine interaction. Among many physiological and kinematic signals that could be used to recognize emotions...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 79; no. 47-48; pp. 35811 - 35828
Main Authors Rescigno, Martina, Spezialetti, Matteo, Rossi, Silvia
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Emotions represent a key aspect of human life and behavior. In recent years, automatic recognition of emotions has become an important component in the fields of affective computing and human-machine interaction. Among many physiological and kinematic signals that could be used to recognize emotions, acquiring facial expression images is one of the most natural and inexpensive approaches. The creation of a generalized, inter-subject, model for emotion recognition from facial expression is still a challenge, due to anatomical, cultural and environmental differences. On the other hand, using traditional machine learning approaches to create a subject-customized, personal, model would require a large dataset of labelled samples. For these reasons, in this work, we propose the use of transfer learning to produce subject-specific models for extracting the emotional content of facial images in the valence/arousal dimensions. Transfer learning allows us to reuse the knowledge assimilated from a large multi-subject dataset by a deep-convolutional neural network and employ the feature extraction capability in the single subject scenario. In this way, it is possible to reduce the amount of labelled data necessary to train a personalized model, with respect to relying just on subjective data. Our results suggest that generalized transferred knowledge, in conjunction with a small amount of personal data, is sufficient to obtain high recognition performances and improvement with respect to both a generalized model and personal models. For both valence and arousal dimensions, quite good performances were obtained (RMSE = 0.09 and RMSE = 0.1 for valence and arousal, respectively). Overall results suggested that both the transferred knowledge and the personal data helped in achieving this improvement, even though they alternated in providing the main contribution. Moreover, in this task, we observed that the benefits of transferring knowledge are so remarkable that no specific active or passive sampling techniques are needed for selecting images to be labelled.
AbstractList Emotions represent a key aspect of human life and behavior. In recent years, automatic recognition of emotions has become an important component in the fields of affective computing and human-machine interaction. Among many physiological and kinematic signals that could be used to recognize emotions, acquiring facial expression images is one of the most natural and inexpensive approaches. The creation of a generalized, inter-subject, model for emotion recognition from facial expression is still a challenge, due to anatomical, cultural and environmental differences. On the other hand, using traditional machine learning approaches to create a subject-customized, personal, model would require a large dataset of labelled samples. For these reasons, in this work, we propose the use of transfer learning to produce subject-specific models for extracting the emotional content of facial images in the valence/arousal dimensions. Transfer learning allows us to reuse the knowledge assimilated from a large multi-subject dataset by a deep-convolutional neural network and employ the feature extraction capability in the single subject scenario. In this way, it is possible to reduce the amount of labelled data necessary to train a personalized model, with respect to relying just on subjective data. Our results suggest that generalized transferred knowledge, in conjunction with a small amount of personal data, is sufficient to obtain high recognition performances and improvement with respect to both a generalized model and personal models. For both valence and arousal dimensions, quite good performances were obtained (RMSE = 0.09 and RMSE = 0.1 for valence and arousal, respectively). Overall results suggested that both the transferred knowledge and the personal data helped in achieving this improvement, even though they alternated in providing the main contribution. Moreover, in this task, we observed that the benefits of transferring knowledge are so remarkable that no specific active or passive sampling techniques are needed for selecting images to be labelled.
Author Spezialetti, Matteo
Rescigno, Martina
Rossi, Silvia
Author_xml – sequence: 1
  givenname: Martina
  surname: Rescigno
  fullname: Rescigno, Martina
  organization: Department of Electrical Engineering and Information Technology, University of Naples Federico II
– sequence: 2
  givenname: Matteo
  surname: Spezialetti
  fullname: Spezialetti, Matteo
  organization: Department of Electrical Engineering and Information Technology, University of Naples Federico II
– sequence: 3
  givenname: Silvia
  orcidid: 0000-0002-3379-1756
  surname: Rossi
  fullname: Rossi, Silvia
  email: silvia.rossi@unina.it
  organization: Department of Electrical Engineering and Information Technology, University of Naples Federico II
BookMark eNp9kEtLAzEUhYNUsK3-AVcDrqM3j5lJl1J8QUEXug6ZTDJNmSY1mS7015t2BMFFV_dcON_lnjNDEx-8QeiawC0BqO8SIcApBgoYFhxKzM_QlJQ1w3VNySRrJgDXJZALNEtpA0CqkvIpWr2ZmIJXvfs2bbENrelTYUMsrNJO9YXZhsEFX0SjQ-fdUQ_rGPbduhii8smaWPRGRe98d4nOreqTufqdc_Tx-PC-fMar16eX5f0Kaw50wFSXgohGsUoLq1tTgqjzrhVvbaUEW5CFtapqBG0aMMIaXkHLWqW5JYQoxuboZry7i-Fzb9IgN2Efc4gkKa8ZE1XJaHaJ0aVjSCkaK7Ub1CFBftz1koA8dCfH7mTuTh67kzyj9B-6i26r4tdpiI1Qymbfmfj31QnqBxo3hK0
CitedBy_id crossref_primary_10_3390_info14080430
crossref_primary_10_1007_s11277_024_10993_9
crossref_primary_10_1016_j_cmpb_2022_106646
crossref_primary_10_1007_s11042_024_19646_2
crossref_primary_10_3389_fpsyg_2022_839440
crossref_primary_10_1007_s11042_022_14186_z
crossref_primary_10_1007_s12559_024_10281_5
crossref_primary_10_3390_su142114308
crossref_primary_10_1155_2023_2457898
crossref_primary_10_3390_electronics10121491
crossref_primary_10_1017_S1471068422000382
crossref_primary_10_1007_s11042_024_20079_0
crossref_primary_10_1016_j_imavis_2022_104583
crossref_primary_10_26634_jip_9_2_18968
Cites_doi 10.1109/TPAMI.2014.2366127
10.1109/FG.2011.5771374
10.1162/neco.1991.3.1.79
10.1007/BF02686918
10.1145/2818346.2829994
10.2190/DUGG-P24E-52WK-6CDG
10.3390/s18020401
10.4304/jmm.1.6.22-35
10.1109/FG.2013.6553805
10.1109/CVPR.2015.7298878
10.1109/ICME.2014.6890301
10.1016/j.ins.2018.09.060
10.1016/j.imavis.2008.08.005
10.1007/978-3-030-01424-7_27
10.1111/j.1745-6916.2007.00044.x
10.1109/CVPRW.2014.25
10.1037/h0077714
10.5334/pb-46-1-2-99
10.1007/978-3-319-96133-0_24
10.1109/ICSMC.2012.6378301
10.1109/CVPRW.2017.282
10.1007/s11263-015-0816-y
10.1109/ICCV.2015.341
10.1145/2808196.2811634
10.1109/ICIP.2016.7532431
10.1073/pnas.1200155109
10.1007/978-1-4614-6849-3
10.3390/s18072074
10.1002/cb.1710
10.1109/CVPR.2001.990517
10.1007/978-3-642-42051-1_16
10.1007/978-3-030-11027-7_24
10.1109/TAFFC.2017.2740923
10.1109/TKDE.2009.191
10.1177/1529100619832930
10.1109/CVPRW.2017.245
10.1080/02699939208411068
10.1109/CVPR.2015.7298594
10.1145/2623330.2623612
10.1177/0956797611435134
10.1073/pnas.1322355111
10.1109/TMM.2016.2523421
10.1007/s12008-018-0473-9
10.1145/2818346.2830596
10.1007/s10772-011-9125-1
10.1109/CVPRW.2017.248
10.1080/0144929X.2018.1485745
10.1609/aaai.v31i1.11231
10.1007/978-1-4614-7138-7
10.1109/CVPRW.2017.246
10.1109/CVPRW.2010.5543262
10.1145/2808196.2811642
10.1371/journal.pone.0032321
10.1016/j.patrec.2013.02.002
10.4108/icst.pervasivehealth.2013.252133
10.1109/AFGR.1998.670949
10.1109/CVPRW.2017.244
10.1109/T-AFFC.2013.4
10.3390/s130607714
10.1037/a0029038
10.1037/a0024244
10.3389/fpsyg.2016.00522
10.1109/TPAMI.2016.2547397
10.1109/T-AFFC.2012.16
10.1109/ROMAN.2018.8525514
10.1007/s00138-015-0677-y
10.1109/AFGR.2000.840611
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11042-020-09405-4
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 35828
ExternalDocumentID 10_1007_s11042_020_09405_4
GrantInformation_xml – fundername: Università degli Studi di Napoli Federico II
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c402t-2c5818ba36c8fcde508718bca4df6a83919ffa6b82bb0e8fe460d3dac4f111a33
IEDL.DBID BENPR
ISSN 1380-7501
IngestDate Fri Jul 25 04:10:09 EDT 2025
Thu Apr 24 23:09:30 EDT 2025
Tue Jul 01 04:13:05 EDT 2025
Fri Feb 21 02:37:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 47-48
Keywords Affective computing
Convolutional neural networks
Transfer learning
Facial emotion recognition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-2c5818ba36c8fcde508718bca4df6a83919ffa6b82bb0e8fe460d3dac4f111a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3379-1756
OpenAccessLink https://link.springer.com/10.1007/s11042-020-09405-4
PQID 2473386532
PQPubID 54626
PageCount 18
ParticipantIDs proquest_journals_2473386532
crossref_citationtrail_10_1007_s11042_020_09405_4
crossref_primary_10_1007_s11042_020_09405_4
springer_journals_10_1007_s11042_020_09405_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References BartlettMSLittlewortGFrankMGLainscsekCFaselIRMovellanJRAutomatic recognition of facial actions in spontaneous expressionsJ Multimed2006162235
EkmanPAn argument for basic emotionsCognit Emot199263–4169200
MollahosseiniAHasaniBMahoorMHAffectnet: a database for facial expression, valence, and arousal computing in the wildIEEE Trans Affect Comput20171011831
ZenGPorziLSanginetoERicciESebeNLearning personalized models for facial expression analysis and gesture recognitionIEEE Transactions on Multimedia2016184775788
SpezialettiMCinqueLTavaresJMRPlacidiGTowards EEG-based BCI driven by emotions for addressing BCI-illiteracy: a meta-analytic reviewBehav Inform Technol2018378855871
Kahou ES, Michalski V, Konda K, Memisevic R, Pal C (2015) Recurrent neural networks for emotion recognition in video. In: Proceedings of the 2015 ACM on international conference on multimodal interaction, pp 467–474
Chao L, Tao J, Yang M, Li Y, Wen Z (2015) Long short term memory recurrent neural network based multimodal dimensional emotion recognition. In: Proceedings of the 5th international workshop on audio/visual emotion challenge, pp 65–72
MehrabianAPleasure-arousal-dominance: a general framework for describing and measuring individual differences in temperamentCurr Psychol19961442612921714069
Susskind J, Anderson A, Hinton G (2010). The Toronto face database. Technical report, UTML TR 2010-001, University of Toronto.
Tan C, Sun F, Kong T, Zhang W, Yang C, Liu C (2018) A survey on deep transfer learning. In: International conference on artificial neural networks. Springer, Cham, pp 270–279
WaleckiRRudovicOPavlovicVSchullerBPanticMDeep structured learning for facial expression intensity estimationImage Vis Comput2017259143154
Picard RW (1999) Affective computing for HCI. In: HCI (1), pp 829–833
HarrisJMCiorciariJGountasJConsumer neuroscience for marketing researchersJ Consum Behav2018173239252
Li J, Chen Y, Xiao S, Zhao J, Roy S, Feng J, Yan S, Sim T (2017) Estimation of affective level in the wild with multiple memory networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 1–8
IzardCEBasic emotions, natural kinds, emotion schemas, and a new paradigmPerspect Psychol Sci200723260280
DuSTaoYMartinezAMCompound facial expressions of emotionProc Natl Acad Sci201411115E1454E1462
GalYUncertainty in deep learning2016CambridgeUniversity of Cambridge
Goodfellow IJ, Erhan D, Carrier PL, Courville A, Mirza M, Hamner B, Cukierski W et al (2013) Challenges in representation learning: a report on three machine learning contests. In: International conference on neural information processing, pp 117–124
Li M, Zhang T, Chen Y, Smola AJ (2014) Efficient mini-batch training for stochastic optimization. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, pp 661–670
MavadatiSMMahoorMHBartlettKTrinhPCohnJFDisfa: a spontaneous facial action intensity databaseIEEE Trans Affect Comput201342151160
JacobsRAJordanMINowlanSJHintonGEAdaptive mixtures of local expertsNeural Comput1991317987
RussellJA circumplex model of affectJ Pers Soc Psychol198039611611178
Jiang J (2008) A literature survey on domain adaptation of statistical classifiers. Technical report, University of Illinois at Urbana-Champaign
VerschuereBCrombezGKosterEUziebloKPsychopathy and physiological detection of concealed information: a reviewPsychol Belg20064699116
SaloveyPMayerJDEmotional intelligenceImagin Cogn Pers199093185211
Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: CVPR (1), vol 1, pp 511–518 3
KoBA brief review of facial emotion recognition based on visual informationSensors2018182401
JamesGWittenDHastieTTibshiraniRAn introduction to statistical learning2013New YorkSpringer1281.62147
Donahue J, Hendricks AL, Guadarrama S, Rohrbach M, Venugopalan S, Saenko K, Darrell T (2015) Long-term recurrent convolutional networks for visual recognition and description. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2625–2634
Guo R, Li S, He L, Gao W, Qi H, Owens G (2013) Pervasive and unobtrusive emotion sensing for human mental health. In: Proceedings of the 7th international conference on pervasive computing Technologies for Healthcare, Venice, Italy, 5–8 May 2013, pp 436–439
Lucey P, Cohn JF, Kanade T, Saragih J, Ambadar Z, Matthews I (2010) The extended cohn-kanade dataset (ck+): a complete dataset for action unit and emotion-specified expression. In: 2010 IEEE computer society conference on computer vision and pattern recognition-workshops, pp 94–101
TrnkaRLačevABalcarKKuškaMTavelPModeling semantic emotion space using a 3D hypercube-projection: an innovative analytical approach for the psychology of emotionsFront Psychol20167522
Arriaga O, Valdenegro-Toro M, Plӧger PG (2019) Real-time convolutional neural networks for emotion and gender classification. In: Proceedings of the 2019 European symposium on artificial neural networks, computational intelligence. ISBN 978-287-587-065-0
Ng HW, Nguyen VD, Vonikakis V, Winkler S (2015) Deep learning for emotion recognition on small datasets using transfer learning. In: Proceedings of the 2015 ACM on international conference on multimodal interaction. ACM, pp 443–449
Chang WY, Hsu SH, Chien JH (2017) FATAUVA-net: an integrated deep learning framework for facial attribute recognition, action unit detection, and valence-arousal estimation. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 17–25
Ringeval F, Sonderegger A, Sauer J, Lalanne D (2013) Introducing the RECOLA multimodal corpus of remote collaborative and affective interactions. In: 2013 10th IEEE international conference and workshops on automatic face and gesture recognition (FG), pp 1–8
KleinsmithABianchi-BerthouzeNAffective body expression perception and recognition: a surveyIEEE Trans Affect Comput2012411533
SariyanidiEGunesHCavallaroAAutomatic analysis of facial affect: a survey of registration, representation, and recognitionIEEE Trans Pattern Anal Mach Intell201437611131133
Hasani B, Mahoor MH (2017) Facial expression recognition using enhanced deep 3D convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 30–40
Feffer M, Picard RW (2018) A mixture of personalized experts for human affect estimation. In: International conference on machine learning and data mining in pattern recognition, pp 316–330
GhimireDLeeJGeometric feature-based facial expression recognition in image sequences using multi-class adaboost and support vector machinesSensors201313677147734
Ekman P, Keltner D (1997) Universal facial expressions of emotion. In: Segerstrale U, Molnar P (eds) Nonverbal communication: where nature meets culture, pp 27–46
Valstar MF, Jiang B, Mehu M, Pantic M, Scherer K (2011) The first facial expression recognition and analysis challenge. In: IEEE international conference on automatic face and gesture recognition and workshops (FG’11), pp 921–926
PlutchikRKellermanHTheories of emotion1980New YorkAcademic
Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-First AAAI Conference on Artificial Intelligence
ZhangXMahoorMHMavadatiSMFacial expression recognition using lp-norm MKL multiclass-SVMMach Vis Appl2015264467483
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, VanHoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9
Tsymbalov E, Panov M, Shapeev A (2018) Dropout-based active learning for regression. In: International conference on analysis of images, social networks and texts, pp 247–258
RussakovskyODengJSuHKrauseJSatheeshSMaSHuangZKarpathyAKhoslaABernsteinMBergACFei-FeiLImagenet large scale visual recognition challengeInt J Comput Vis201511532112523422482
PanSJYangQA survey on transfer learningIEEE Trans Knowl Data Eng2009221013451359
LindquistKASiegelEHQuigleyKSBarrettLFThe hundred-year emotion war: are emotions natural kinds or psychological constructions? Comment on Lench, Flores, and Bench (2011)Psychol Bull20131391255263
ChenJLiuXTuPAragonesALearning person-specific models for facial expression and action unit recognitionPattern Recogn Lett2013341519641970
ShanCGongSMcOwanPWFacial expression recognition based on local binary patterns: a comprehensive studyImage Vis Comput2009276803816
JackREGarrodOGYuHCaldaraRSchynsPGFacial expressions of emotion are not culturally universalProc Natl Acad Sci20121091972417244
KohaviRA study of cross-validation and bootstrap for accuracy estimation and model selectionIjcai199514211371145
BarrettLFAdolphsRMarsellaSMartinezAMPollakSDEmotional expressions reconsidered: challenges to inferring emotion from human facial movementsPsychol Sci Public Interest2019201168
TomkinsSSAffect imagery consciousness: the complete edition: two volumes2008New YorkSpringer publishing company
KaulardKCunninghamDWBülthoffHHWallravenCThe MPI facial expression database—a validated database of emotional and conversational facial expressionsPLoS One201273
Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
Wager S, Wang S, Liang PS (2013) Dropout training as adaptive regularization. In: Advances in neural information processing systems, pp 351–359
Izquierdo-ReyesJRamirez-MendozaRABustamante-BelloMRPons-RoviraJLGonzalez-VargasJEEmotion recognition for semi-autonomous vehicles frameworkInternational Journal on Interactive Design and Manufacturing (IJIDeM)201812414471454
Zafeiriou S, Kollias D, Nicolaou MA, Papaioannou A, Zhao G, Kotsia I (2017) Aff-wild: valence and arousal 'In-the-Wild' challenge. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 34–41
Pantic M, Valstar M, Rad
9405_CR68
9405_CR69
9405_CR26
9405_CR27
9405_CR28
J Izquierdo-Reyes (9405_CR22) 2018; 12
9405_CR29
HC Lench (9405_CR38) 2011; 137
D Ghimire (9405_CR15) 2013; 13
L Shu (9405_CR62) 2018; 18
LF Barrett (9405_CR2) 2019; 20
J Chen (9405_CR6) 2013; 34
X Zhang (9405_CR82) 2015; 26
A Mehrabian (9405_CR45) 1996; 14
MA Sayette (9405_CR60) 2012; 23
RE Jack (9405_CR23) 2012; 109
B Ko (9405_CR33) 2018; 18
WS Chu (9405_CR7) 2016; 39
SG Koolagudi (9405_CR35) 2012; 15
SM Mavadati (9405_CR44) 2013; 4
9405_CR63
9405_CR20
9405_CR64
A Mollahosseini (9405_CR47) 2017; 10
9405_CR66
B Verschuere (9405_CR75) 2006; 46
9405_CR67
9405_CR4
9405_CR13
9405_CR5
K Kaulard (9405_CR30) 2012; 7
SJ Pan (9405_CR49) 2009; 22
9405_CR16
9405_CR17
9405_CR1
9405_CR19
9405_CR8
9405_CR9
JM Harris (9405_CR18) 2018; 17
S Du (9405_CR10) 2014; 111
D Wu (9405_CR79) 2019; 474
9405_CR50
9405_CR51
R Trnka (9405_CR72) 2016; 7
R Plutchik (9405_CR52) 1980
9405_CR53
9405_CR54
9405_CR55
SS Tomkins (9405_CR71) 2008
G Zen (9405_CR81) 2016; 18
9405_CR12
9405_CR46
R Walecki (9405_CR78) 2017; 259
9405_CR48
MS Bartlett (9405_CR3) 2006; 1
C Shan (9405_CR61) 2009; 27
M Spezialetti (9405_CR65) 2018; 37
G James (9405_CR25) 2013
9405_CR80
RA Jacobs (9405_CR24) 1991; 3
A Kleinsmith (9405_CR32) 2012; 4
9405_CR40
9405_CR42
9405_CR43
9405_CR36
M Kuhn (9405_CR37) 2013
E Sariyanidi (9405_CR59) 2014; 37
9405_CR39
Y Gal (9405_CR14) 2016
KA Lindquist (9405_CR41) 2013; 139
R Kohavi (9405_CR34) 1995; 14
J Russell (9405_CR57) 1980; 39
CE Izard (9405_CR21) 2007; 2
9405_CR70
O Russakovsky (9405_CR56) 2015; 115
9405_CR73
9405_CR74
P Ekman (9405_CR11) 1992; 6
9405_CR31
P Salovey (9405_CR58) 1990; 9
9405_CR76
9405_CR77
References_xml – reference: LenchHCFloresSABenchSWDiscrete emotions predict changes in cognition, judgment, experience, behavior, and physiology: a meta-analysis of experimental emotion elicitationsPsychol Bull20111375834855
– reference: Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, VanHoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9
– reference: Goodfellow IJ, Erhan D, Carrier PL, Courville A, Mirza M, Hamner B, Cukierski W et al (2013) Challenges in representation learning: a report on three machine learning contests. In: International conference on neural information processing, pp 117–124
– reference: GhimireDLeeJGeometric feature-based facial expression recognition in image sequences using multi-class adaboost and support vector machinesSensors201313677147734
– reference: MollahosseiniAHasaniBMahoorMHAffectnet: a database for facial expression, valence, and arousal computing in the wildIEEE Trans Affect Comput20171011831
– reference: Ng HW, Nguyen VD, Vonikakis V, Winkler S (2015) Deep learning for emotion recognition on small datasets using transfer learning. In: Proceedings of the 2015 ACM on international conference on multimodal interaction. ACM, pp 443–449
– reference: BartlettMSLittlewortGFrankMGLainscsekCFaselIRMovellanJRAutomatic recognition of facial actions in spontaneous expressionsJ Multimed2006162235
– reference: Feffer M, Picard RW (2018) A mixture of personalized experts for human affect estimation. In: International conference on machine learning and data mining in pattern recognition, pp 316–330
– reference: SayetteMACreswellKGDimoffJDFairbairnCECohnJFHeckmanBWKirchnerTRLevineJMMorelandRLAlcohol and group formation a multimodal investigation of the effects of alcohol on emotion and social bondingPsychol Sci2012238869878
– reference: JackREGarrodOGYuHCaldaraRSchynsPGFacial expressions of emotion are not culturally universalProc Natl Acad Sci20121091972417244
– reference: Arriaga O, Valdenegro-Toro M, Plӧger PG (2019) Real-time convolutional neural networks for emotion and gender classification. In: Proceedings of the 2019 European symposium on artificial neural networks, computational intelligence. ISBN 978-287-587-065-0
– reference: JacobsRAJordanMINowlanSJHintonGEAdaptive mixtures of local expertsNeural Comput1991317987
– reference: Izquierdo-ReyesJRamirez-MendozaRABustamante-BelloMRPons-RoviraJLGonzalez-VargasJEEmotion recognition for semi-autonomous vehicles frameworkInternational Journal on Interactive Design and Manufacturing (IJIDeM)201812414471454
– reference: KohaviRA study of cross-validation and bootstrap for accuracy estimation and model selectionIjcai199514211371145
– reference: Suk M, Prabhakaran B (2014) Real-time mobile facial expression recognition system-a case study. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 132–137
– reference: ZenGPorziLSanginetoERicciESebeNLearning personalized models for facial expression analysis and gesture recognitionIEEE Transactions on Multimedia2016184775788
– reference: ChenJLiuXTuPAragonesALearning person-specific models for facial expression and action unit recognitionPattern Recogn Lett2013341519641970
– reference: Kahou ES, Michalski V, Konda K, Memisevic R, Pal C (2015) Recurrent neural networks for emotion recognition in video. In: Proceedings of the 2015 ACM on international conference on multimodal interaction, pp 467–474
– reference: Valstar MF, Jiang B, Mehu M, Pantic M, Scherer K (2011) The first facial expression recognition and analysis challenge. In: IEEE international conference on automatic face and gesture recognition and workshops (FG’11), pp 921–926
– reference: Li J, Chen Y, Xiao S, Zhao J, Roy S, Feng J, Yan S, Sim T (2017) Estimation of affective level in the wild with multiple memory networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 1–8
– reference: KaulardKCunninghamDWBülthoffHHWallravenCThe MPI facial expression database—a validated database of emotional and conversational facial expressionsPLoS One201273
– reference: HarrisJMCiorciariJGountasJConsumer neuroscience for marketing researchersJ Consum Behav2018173239252
– reference: Chang WY, Hsu SH, Chien JH (2017) FATAUVA-net: an integrated deep learning framework for facial attribute recognition, action unit detection, and valence-arousal estimation. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 17–25
– reference: ChuWSDe la TorreFCohnJFSelective transfer machine for personalized facial expression analysisIEEE Trans Pattern Anal Mach Intell2016393529545
– reference: Donahue J, Hendricks AL, Guadarrama S, Rohrbach M, Venugopalan S, Saenko K, Darrell T (2015) Long-term recurrent convolutional networks for visual recognition and description. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2625–2634
– reference: Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
– reference: Miranda-Correa JA, Abadi MK, Sebe N, Patras I (2018) AMIGOS: a dataset for affect, personality and mood research on individuals and groups. IEEE Trans Affect Comput
– reference: Picard RW (1999) Affective computing for HCI. In: HCI (1), pp 829–833
– reference: KuhnMJohnsonKApplied predictive modeling2013New YorkSpringer1306.62014
– reference: GalYUncertainty in deep learning2016CambridgeUniversity of Cambridge
– reference: Chao L, Tao J, Yang M, Li Y, Wen Z (2015) Long short term memory recurrent neural network based multimodal dimensional emotion recognition. In: Proceedings of the 5th international workshop on audio/visual emotion challenge, pp 65–72
– reference: ShuLXieJYangMLiZLiZLiaoDXuXYangXA review of emotion recognition using physiological signalsSensors20181872074
– reference: Jung H, Lee S, Yim J, Park S, Kim J (2015) Joint fine-tuning in deep neural networks for facial expression recognition. In: Proceedings of the IEEE international conference on computer vision, pp 2983–2991
– reference: DuSTaoYMartinezAMCompound facial expressions of emotionProc Natl Acad Sci201411115E1454E1462
– reference: WaleckiRRudovicOPavlovicVSchullerBPanticMDeep structured learning for facial expression intensity estimationImage Vis Comput2017259143154
– reference: Wager S, Wang S, Liang PS (2013) Dropout training as adaptive regularization. In: Advances in neural information processing systems, pp 351–359
– reference: PlutchikRKellermanHTheories of emotion1980New YorkAcademic
– reference: LindquistKASiegelEHQuigleyKSBarrettLFThe hundred-year emotion war: are emotions natural kinds or psychological constructions? Comment on Lench, Flores, and Bench (2011)Psychol Bull20131391255263
– reference: Ringeval F, Schuller B, Valstar M, Jaiswal S, Marchi E, Lalanne D, Cowie R, Pantic M (2015) Av+ ec 2015: the first affect recognition challenge bridging across audio, video, and physiological data. In: Proceedings of the 5th international workshop on audio/visual emotion challenge, pp 3–8
– reference: Khorrami P, Le Paine T, Brady K, Dagli C, Huang TS (2016) How deep neural networks can improve emotion recognition on video data. In: 2016 IEEE international conference on image processing (ICIP), pp 619–623
– reference: ZhangXMahoorMHMavadatiSMFacial expression recognition using lp-norm MKL multiclass-SVMMach Vis Appl2015264467483
– reference: MavadatiSMMahoorMHBartlettKTrinhPCohnJFDisfa: a spontaneous facial action intensity databaseIEEE Trans Affect Comput201342151160
– reference: Tsymbalov E, Panov M, Shapeev A (2018) Dropout-based active learning for regression. In: International conference on analysis of images, social networks and texts, pp 247–258
– reference: RussellJA circumplex model of affectJ Pers Soc Psychol198039611611178
– reference: IzardCEBasic emotions, natural kinds, emotion schemas, and a new paradigmPerspect Psychol Sci200723260280
– reference: Susskind J, Anderson A, Hinton G (2010). The Toronto face database. Technical report, UTML TR 2010-001, University of Toronto.
– reference: Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-First AAAI Conference on Artificial Intelligence
– reference: PanSJYangQA survey on transfer learningIEEE Trans Knowl Data Eng2009221013451359
– reference: Hasani B, Mahoor MH (2017) Facial affect estimation in the wild using deep residual and convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 9–16
– reference: Zafeiriou S, Kollias D, Nicolaou MA, Papaioannou A, Zhao G, Kotsia I (2017) Aff-wild: valence and arousal 'In-the-Wild' challenge. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 34–41
– reference: SpezialettiMCinqueLTavaresJMRPlacidiGTowards EEG-based BCI driven by emotions for addressing BCI-illiteracy: a meta-analytic reviewBehav Inform Technol2018378855871
– reference: Dhall A, Ramana Murthy O, Goecke R, Joshi J, Gedeon T (2015) Video and image based emotion recognition challenges in the wild: Emotiw 2015. In: Proceedings of the 2015 ACM on international conference on multi-modal interaction, pp 423–426
– reference: TrnkaRLačevABalcarKKuškaMTavelPModeling semantic emotion space using a 3D hypercube-projection: an innovative analytical approach for the psychology of emotionsFront Psychol20167522
– reference: WuDLinCTHuangJActive learning for regression using greedy samplingInf Sci2019474901053866975
– reference: SaloveyPMayerJDEmotional intelligenceImagin Cogn Pers199093185211
– reference: ShanCGongSMcOwanPWFacial expression recognition based on local binary patterns: a comprehensive studyImage Vis Comput2009276803816
– reference: Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: CVPR (1), vol 1, pp 511–518 3
– reference: Jiang J (2008) A literature survey on domain adaptation of statistical classifiers. Technical report, University of Illinois at Urbana-Champaign
– reference: VerschuereBCrombezGKosterEUziebloKPsychopathy and physiological detection of concealed information: a reviewPsychol Belg20064699116
– reference: Kanade T, Cohn JF, Tian Y (2000) Comprehensive database for facial expression analysis. In: Proceedings fourth IEEE international conference on automatic face and gesture recognition (cat. No. PR00580), pp 46–53
– reference: Tan C, Sun F, Kong T, Zhang W, Yang C, Liu C (2018) A survey on deep transfer learning. In: International conference on artificial neural networks. Springer, Cham, pp 270–279
– reference: EkmanPAn argument for basic emotionsCognit Emot199263–4169200
– reference: Pantic M, Valstar M, Rademaker R, Maat L (2005) Web-based database for facial expression analysis. In: 2005 IEEE international conference on multimedia and expo, p 5
– reference: KoolagudiSGRaoKSEmotion recognition from speech: a reviewInternational journal of speech technology201215299117
– reference: MehrabianAPleasure-arousal-dominance: a general framework for describing and measuring individual differences in temperamentCurr Psychol19961442612921714069
– reference: Ekman P, Keltner D (1997) Universal facial expressions of emotion. In: Segerstrale U, Molnar P (eds) Nonverbal communication: where nature meets culture, pp 27–46
– reference: BarrettLFAdolphsRMarsellaSMartinezAMPollakSDEmotional expressions reconsidered: challenges to inferring emotion from human facial movementsPsychol Sci Public Interest2019201168
– reference: SariyanidiEGunesHCavallaroAAutomatic analysis of facial affect: a survey of registration, representation, and recognitionIEEE Trans Pattern Anal Mach Intell201437611131133
– reference: Guo R, Li S, He L, Gao W, Qi H, Owens G (2013) Pervasive and unobtrusive emotion sensing for human mental health. In: Proceedings of the 7th international conference on pervasive computing Technologies for Healthcare, Venice, Italy, 5–8 May 2013, pp 436–439
– reference: KoBA brief review of facial emotion recognition based on visual informationSensors2018182401
– reference: Lyons M, Akamatsu S, Kamachi M, Gyoba J (1998) Coding facial expressions with gabor wavelets. In: Proceedings third IEEE international conference on automatic face and gesture recognition, pp 200–205
– reference: Ringeval F, Sonderegger A, Sauer J, Lalanne D (2013) Introducing the RECOLA multimodal corpus of remote collaborative and affective interactions. In: 2013 10th IEEE international conference and workshops on automatic face and gesture recognition (FG), pp 1–8
– reference: KleinsmithABianchi-BerthouzeNAffective body expression perception and recognition: a surveyIEEE Trans Affect Comput2012411533
– reference: Soleymani M, Pantic M (2012) Human-centered implicit tagging: overview and perspectives. In: 2012 IEEE international conference on systems, man, and cybernetics (SMC), pp 3304–3309
– reference: Hasani B, Mahoor MH (2017) Facial expression recognition using enhanced deep 3D convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 30–40
– reference: Soleymani M, Asghari-Esfeden S, Pantic M, Fu Y (2014) Continuous emotion detection using EEG signals and facial expressions. In: 2014 IEEE international conference on multimedia and expo (ICME), pp 1–6
– reference: Li M, Zhang T, Chen Y, Smola AJ (2014) Efficient mini-batch training for stochastic optimization. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, pp 661–670
– reference: TomkinsSSAffect imagery consciousness: the complete edition: two volumes2008New YorkSpringer publishing company
– reference: RussakovskyODengJSuHKrauseJSatheeshSMaSHuangZKarpathyAKhoslaABernsteinMBergACFei-FeiLImagenet large scale visual recognition challengeInt J Comput Vis201511532112523422482
– reference: Lucey P, Cohn JF, Kanade T, Saragih J, Ambadar Z, Matthews I (2010) The extended cohn-kanade dataset (ck+): a complete dataset for action unit and emotion-specified expression. In: 2010 IEEE computer society conference on computer vision and pattern recognition-workshops, pp 94–101
– reference: JamesGWittenDHastieTTibshiraniRAn introduction to statistical learning2013New YorkSpringer1281.62147
– reference: Rossi S, Ercolano G, Raggioli L, Savino E, Ruocco M (2018) The disappearing robot: an analysis of disengagement and distraction during non-interactive tasks. In: 2018 27th IEEE international symposium on robot and human interactive communication (RO-MAN), pp 522–527
– volume: 37
  start-page: 1113
  issue: 6
  year: 2014
  ident: 9405_CR59
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2014.2366127
– ident: 9405_CR74
  doi: 10.1109/FG.2011.5771374
– volume-title: Theories of emotion
  year: 1980
  ident: 9405_CR52
– volume: 3
  start-page: 79
  issue: 1
  year: 1991
  ident: 9405_CR24
  publication-title: Neural Comput
  doi: 10.1162/neco.1991.3.1.79
– volume: 14
  start-page: 261
  issue: 4
  year: 1996
  ident: 9405_CR45
  publication-title: Curr Psychol
  doi: 10.1007/BF02686918
– ident: 9405_CR8
  doi: 10.1145/2818346.2829994
– volume: 9
  start-page: 185
  issue: 3
  year: 1990
  ident: 9405_CR58
  publication-title: Imagin Cogn Pers
  doi: 10.2190/DUGG-P24E-52WK-6CDG
– volume: 18
  start-page: 401
  issue: 2
  year: 2018
  ident: 9405_CR33
  publication-title: Sensors
  doi: 10.3390/s18020401
– volume: 1
  start-page: 22
  issue: 6
  year: 2006
  ident: 9405_CR3
  publication-title: J Multimed
  doi: 10.4304/jmm.1.6.22-35
– ident: 9405_CR53
  doi: 10.1109/FG.2013.6553805
– volume: 14
  start-page: 1137
  issue: 2
  year: 1995
  ident: 9405_CR34
  publication-title: Ijcai
– ident: 9405_CR9
  doi: 10.1109/CVPR.2015.7298878
– ident: 9405_CR64
  doi: 10.1109/ICME.2014.6890301
– volume: 474
  start-page: 90
  year: 2019
  ident: 9405_CR79
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.09.060
– volume: 27
  start-page: 803
  issue: 6
  year: 2009
  ident: 9405_CR61
  publication-title: Image Vis Comput
  doi: 10.1016/j.imavis.2008.08.005
– ident: 9405_CR70
  doi: 10.1007/978-3-030-01424-7_27
– volume: 2
  start-page: 260
  issue: 3
  year: 2007
  ident: 9405_CR21
  publication-title: Perspect Psychol Sci
  doi: 10.1111/j.1745-6916.2007.00044.x
– ident: 9405_CR66
  doi: 10.1109/CVPRW.2014.25
– volume: 39
  start-page: 1161
  issue: 6
  year: 1980
  ident: 9405_CR57
  publication-title: J Pers Soc Psychol
  doi: 10.1037/h0077714
– volume: 46
  start-page: 99
  year: 2006
  ident: 9405_CR75
  publication-title: Psychol Belg
  doi: 10.5334/pb-46-1-2-99
– ident: 9405_CR13
  doi: 10.1007/978-3-319-96133-0_24
– ident: 9405_CR63
  doi: 10.1109/ICSMC.2012.6378301
– ident: 9405_CR19
  doi: 10.1109/CVPRW.2017.282
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 9405_CR56
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-015-0816-y
– ident: 9405_CR27
  doi: 10.1109/ICCV.2015.341
– ident: 9405_CR5
  doi: 10.1145/2808196.2811634
– ident: 9405_CR31
  doi: 10.1109/ICIP.2016.7532431
– ident: 9405_CR48
– volume: 109
  start-page: 7241
  issue: 19
  year: 2012
  ident: 9405_CR23
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1200155109
– volume-title: Applied predictive modeling
  year: 2013
  ident: 9405_CR37
  doi: 10.1007/978-1-4614-6849-3
– volume: 18
  start-page: 2074
  issue: 7
  year: 2018
  ident: 9405_CR62
  publication-title: Sensors
  doi: 10.3390/s18072074
– volume: 17
  start-page: 239
  issue: 3
  year: 2018
  ident: 9405_CR18
  publication-title: J Consum Behav
  doi: 10.1002/cb.1710
– ident: 9405_CR12
– volume-title: Affect imagery consciousness: the complete edition: two volumes
  year: 2008
  ident: 9405_CR71
– ident: 9405_CR76
  doi: 10.1109/CVPR.2001.990517
– ident: 9405_CR50
– ident: 9405_CR16
  doi: 10.1007/978-3-642-42051-1_16
– ident: 9405_CR73
  doi: 10.1007/978-3-030-11027-7_24
– volume: 10
  start-page: 18
  issue: 1
  year: 2017
  ident: 9405_CR47
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/TAFFC.2017.2740923
– volume: 22
  start-page: 1345
  issue: 10
  year: 2009
  ident: 9405_CR49
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2009.191
– volume: 20
  start-page: 1
  issue: 1
  year: 2019
  ident: 9405_CR2
  publication-title: Psychol Sci Public Interest
  doi: 10.1177/1529100619832930
– ident: 9405_CR20
  doi: 10.1109/CVPRW.2017.245
– volume: 6
  start-page: 169
  issue: 3–4
  year: 1992
  ident: 9405_CR11
  publication-title: Cognit Emot
  doi: 10.1080/02699939208411068
– ident: 9405_CR68
  doi: 10.1109/CVPR.2015.7298594
– ident: 9405_CR39
  doi: 10.1145/2623330.2623612
– volume: 23
  start-page: 869
  issue: 8
  year: 2012
  ident: 9405_CR60
  publication-title: Psychol Sci
  doi: 10.1177/0956797611435134
– volume: 111
  start-page: E1454
  issue: 15
  year: 2014
  ident: 9405_CR10
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1322355111
– volume: 18
  start-page: 775
  issue: 4
  year: 2016
  ident: 9405_CR81
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2016.2523421
– ident: 9405_CR26
– volume: 12
  start-page: 1447
  issue: 4
  year: 2018
  ident: 9405_CR22
  publication-title: International Journal on Interactive Design and Manufacturing (IJIDeM)
  doi: 10.1007/s12008-018-0473-9
– ident: 9405_CR28
  doi: 10.1145/2818346.2830596
– volume: 15
  start-page: 99
  issue: 2
  year: 2012
  ident: 9405_CR35
  publication-title: International journal of speech technology
  doi: 10.1007/s10772-011-9125-1
– ident: 9405_CR80
  doi: 10.1109/CVPRW.2017.248
– volume: 37
  start-page: 855
  issue: 8
  year: 2018
  ident: 9405_CR65
  publication-title: Behav Inform Technol
  doi: 10.1080/0144929X.2018.1485745
– ident: 9405_CR69
  doi: 10.1609/aaai.v31i1.11231
– ident: 9405_CR36
– volume-title: An introduction to statistical learning
  year: 2013
  ident: 9405_CR25
  doi: 10.1007/978-1-4614-7138-7
– ident: 9405_CR4
  doi: 10.1109/CVPRW.2017.246
– ident: 9405_CR42
  doi: 10.1109/CVPRW.2010.5543262
– ident: 9405_CR51
– ident: 9405_CR54
  doi: 10.1145/2808196.2811642
– volume: 259
  start-page: 143
  year: 2017
  ident: 9405_CR78
  publication-title: Image Vis Comput
– volume: 7
  issue: 3
  year: 2012
  ident: 9405_CR30
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0032321
– volume: 34
  start-page: 1964
  issue: 15
  year: 2013
  ident: 9405_CR6
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2013.02.002
– ident: 9405_CR17
  doi: 10.4108/icst.pervasivehealth.2013.252133
– ident: 9405_CR43
  doi: 10.1109/AFGR.1998.670949
– ident: 9405_CR40
  doi: 10.1109/CVPRW.2017.244
– volume: 4
  start-page: 151
  issue: 2
  year: 2013
  ident: 9405_CR44
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/T-AFFC.2013.4
– volume: 13
  start-page: 7714
  issue: 6
  year: 2013
  ident: 9405_CR15
  publication-title: Sensors
  doi: 10.3390/s130607714
– ident: 9405_CR46
– ident: 9405_CR67
– volume-title: Uncertainty in deep learning
  year: 2016
  ident: 9405_CR14
– volume: 139
  start-page: 255
  issue: 1
  year: 2013
  ident: 9405_CR41
  publication-title: Psychol Bull
  doi: 10.1037/a0029038
– ident: 9405_CR77
– volume: 137
  start-page: 834
  issue: 5
  year: 2011
  ident: 9405_CR38
  publication-title: Psychol Bull
  doi: 10.1037/a0024244
– volume: 7
  start-page: 522
  year: 2016
  ident: 9405_CR72
  publication-title: Front Psychol
  doi: 10.3389/fpsyg.2016.00522
– volume: 39
  start-page: 529
  issue: 3
  year: 2016
  ident: 9405_CR7
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2547397
– volume: 4
  start-page: 15
  issue: 1
  year: 2012
  ident: 9405_CR32
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/T-AFFC.2012.16
– ident: 9405_CR55
  doi: 10.1109/ROMAN.2018.8525514
– ident: 9405_CR1
– volume: 26
  start-page: 467
  issue: 4
  year: 2015
  ident: 9405_CR82
  publication-title: Mach Vis Appl
  doi: 10.1007/s00138-015-0677-y
– ident: 9405_CR29
  doi: 10.1109/AFGR.2000.840611
SSID ssj0016524
Score 2.3971133
Snippet Emotions represent a key aspect of human life and behavior. In recent years, automatic recognition of emotions has become an important component in the fields...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35811
SubjectTerms Affective computing
Arousal
Artificial neural networks
Computer Communication Networks
Computer Science
Customization
Data Structures and Information Theory
Datasets
Emotion recognition
Emotions
Feature extraction
Image acquisition
Machine learning
Multimedia Information Systems
Personal information
Sampling methods
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhEJ74uOjBR9VYrYaDNyVZWJbSY2NsGqPGg0162wALXkw1dr346x0o21WjJt42AeYwA8w3O8x8AGdOS-WNZNRZ76iwfUaNzDwevEoXzPelj-Vjt3dyPBHX02KaisLmzWv3JiUZb-q22I2FUpIQ7oSebwUVq7BehNgdd_GED5e5A1kkKluVUfSHLJXK_CzjqztqMea3tGj0NqMd2EowkQwXdt2FFTfrwHZDwUDSiezA5qd-gntwc99A63dXkUhyMyeISonX4c84cQvOHrJ8NYTfiaiH1BHBouzEI_G4D5PR1cPlmCa6BGoxCKwptwV6X6NzaZW3lUPohY7HWC0qLzUCITbwXkujuDGZU94JmVV5pa3weOHpPD-AtdnzzB0CGXBrVCa5VhmuNmhQRDleGxvSNiZXXWCN1kqbeokHSounsu2CHDRdoqbLqOlSdOF8ueZl0Unjz9m9xhhlOlXzkot-HjhKc96Fi8ZA7fDv0o7-N_0YNnjYI_HVSg_W6tc3d4LYozancat9AP7h0CA
  priority: 102
  providerName: Springer Nature
Title Personalized models for facial emotion recognition through transfer learning
URI https://link.springer.com/article/10.1007/s11042-020-09405-4
https://www.proquest.com/docview/2473386532
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEJ4oXPTgAzWiSHrwpo37LOVkgPCID0KMJHjatN3WiwGU9eKvd7p0QU3ksrtJtz3MtDNfO535AC61YNxI5lOtjKaRavhUMs_gwktF7JsGM3n62OOQDcbR3SSeuAO3hbtWWdjE3FCnM2XPyG-CqBFafsowuJ2_U8saZaOrjkJjG8pogjluvsrt7nD0tIojsNjR2nKPom_0XdrMMnnOt6kpdvtka8jFNPrtmtZ480-INPc8vQPYc5CRtJY6PoQtPa3AfkHHQNzqrMDuj9qCR_AwKmD2l05JTnizIIhQiRH2lJzoJX8PWd0gwm9H2kOyHM3i2I5T4vUYxr3uc2dAHXUCVbghzGigYvTEUoRMcaNSjTAMnZBUIkoNEwiK_KYxgkkeSOlpbnTEvDRMhYoMGj8RhidQms6m-hRIM1CSeywQ3MPeEpWLiMcIqWwIR4a8Cn4htUS5uuKW3uItWVdEtpJOUNJJLukkqsLVqs98WVVj49-1QhmJW2GLZD0fqnBdKGjd_P9oZ5tHO4edwM6J_MZKDUrZx6e-QNyRyTps816_DuVWr90e2nf_5b5bd1MOWzusg89x0PoGX0bacw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV09T8MwED0hGICBb0T59AATWCSO47oDQggoBQpiAIkt2I7NglqgRQh-FL-Rc-K0gAQbW6QkHs7Pd88-3z2ATauEdFrE1BpnKTf1mGoROVx4uUpjVxeuKB-7uBStG352m96OwEdVC-OvVVY-sXDUedf4M_JdxuuJ16dM2P7jE_WqUT67WklolLA4t2-vuGXr7Z0e4fxuMdY8vj5s0aAqQA3ulfqUmRSDlFaJMNKZ3CJDQf-sjeK5Ewr5QtxwTgktmdaRlc5yEeVJrgx36BeUPwBFlz_Gk6ThV5RsngyyFiINIroyohiJ41CkU5bqxb4Qxm_WfMe6lPLvgXDIbn8kZIs415yBqUBQyUGJqFkYsZ05mK7EH0jwBXMw-aWT4Ty0rypS_25zUsjr9AjyYeKUP5MntlQLIoP7SvgcJIJIv-DOOHZQsLhfgJt_MekijHa6HbsEpMGMlpFgSkb4t0YoIb9yShufMNKJrEFcWS0zoYu5F9N4yIb9l72lM7R0Vlg64zXYHvzzWPbw-PPr1WoysrCee9kQfTXYqSZo-Pr30Zb_Hm0DxlvXF-2sfXp5vgITzOOjuCuzCqP95xe7hoynr9cLmBG4-29cfwLLnxHU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2hVkJwYEcUCvgAJ7BInMRNDwixVaxVhUDiFmzH5oLK0iAEn8bXMU6cBpDg1lukJD6MxzNvPMsD2NCCx0Zyn2plNA1Vy6eSewYPXioi37S4ydvHLrv85CY8u41ux-Cz7IWxZZWlTcwNdfqo7B35DgtbgeWnDNiOcWURvaPO3tMztQxSNtNa0mkUKnKu398wfBvsnh7hXm8y1jm-PjyhjmGAKoybMspUhA5LioCr2KhUI1pBWy2VCFPDBWIHv22M4DJmUno6NjrkXhqkQoUGbYSwl6Fo_ustjIq8GtQPjru9q2EOg0eOUjf2KPpl37XsFI17vm2LsaGbnV8X0fCnW6yw7q_0bO71OjMw5eAq2S_0axbGdH8OpksqCOIswxxMfptrOA8XvRLif-iU5GQ7A4LomBhhb-iJLriDyLB6CZ8dYRDJciSNazs-i_sFuBmJUBeh1n_s6yUgbaZk7HEmYg__lqhYiLaMkMqmj2QQN8AvpZYoN9PcUms8JNU0ZivpBCWd5JJOwgZsDf95KiZ6_Pt1s9yMxJ3uQVLpYgO2yw2qXv-92vL_q63DOOp0cnHaPV-BCWbVIy-caUIte3nVqwh_Mrnm9IzA3ahV-wsZsRdm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalized+models+for+facial+emotion+recognition+through+transfer+learning&rft.jtitle=Multimedia+tools+and+applications&rft.au=Rescigno%2C+Martina&rft.au=Spezialetti%2C+Matteo&rft.au=Rossi%2C+Silvia&rft.date=2020-12-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=79&rft.issue=47-48&rft.spage=35811&rft.epage=35828&rft_id=info:doi/10.1007%2Fs11042-020-09405-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_020_09405_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon