An Online Robot Collision Detection and Identification Scheme by Supervised Learning and Bayesian Decision Theory

This article is dedicated to developing an online collision detection and identification (CDI) scheme for human-collaborative robots. The scheme is composed of a signal classifier and an online diagnosor, which monitors the sensory signals of the robot system, detects the occurrence of a physical hu...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automation science and engineering Vol. 18; no. 3; pp. 1144 - 1156
Main Authors Zhang, Zengjie, Qian, Kun, Schuller, Bjorn W., Wollherr, Dirk
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article is dedicated to developing an online collision detection and identification (CDI) scheme for human-collaborative robots. The scheme is composed of a signal classifier and an online diagnosor, which monitors the sensory signals of the robot system, detects the occurrence of a physical human-robot interaction, and identifies its type within a short period. In the beginning, we conduct an experiment to construct a data set that contains the segmented physical interaction signals with ground truth. Then, we develop the signal classifier on the data set with the paradigm of supervised learning. To adapt the classifier to the online application with requirements on response time, an auxiliary online diagnosor is designed using the Bayesian decision theory. The diagnosor provides not only a collision identification result but also a confidence index which represents the reliability of the result. Compared to the previous works, the proposed scheme ensures rapid and accurate CDI even in the early stage of a physical interaction. As a result, safety mechanisms can be triggered before further injuries are caused, which is quite valuable and important toward a safe human-robot collaboration. In the end, the proposed scheme is validated on a robot manipulator and applied to a demonstration task with collision reaction strategies. The experimental results reveal that the collisions are detected and classified within 20 ms with an overall accuracy of 99.6%, which confirms the applicability of the scheme to collaborative robots in practice. Note to Practitioners -This article is intended to provide a novel online collision event handling scheme for robots in industrial environments. This scheme is designed to quickly and accurately detect an accidental collision and distinguish it from the intentional human-robot interaction. The method takes the raw signals from external torque sensors and provides a collision diagnosis result with a reliability index. The simple structure makes it easy to be implemented as a regular fault monitoring routine for collaborative robots. Different from the conventional methods, the proposed collision identification scheme in this article especially focuses on overcoming the following two challenges in practice: first, to timely and accurately report a collision within its early stage, and second, to ensure a high identification accuracy in a complicated environment, where ubiquitous disturbance and noise are unneglectable. The experimental validation at the end of this article confirms its promising application value in human-robot collaboration.
AbstractList This article is dedicated to developing an online collision detection and identification (CDI) scheme for human-collaborative robots. The scheme is composed of a signal classifier and an online diagnosor, which monitors the sensory signals of the robot system, detects the occurrence of a physical human-robot interaction, and identifies its type within a short period. In the beginning, we conduct an experiment to construct a data set that contains the segmented physical interaction signals with ground truth. Then, we develop the signal classifier on the data set with the paradigm of supervised learning. To adapt the classifier to the online application with requirements on response time, an auxiliary online diagnosor is designed using the Bayesian decision theory. The diagnosor provides not only a collision identification result but also a confidence index which represents the reliability of the result. Compared to the previous works, the proposed scheme ensures rapid and accurate CDI even in the early stage of a physical interaction. As a result, safety mechanisms can be triggered before further injuries are caused, which is quite valuable and important toward a safe human-robot collaboration. In the end, the proposed scheme is validated on a robot manipulator and applied to a demonstration task with collision reaction strategies. The experimental results reveal that the collisions are detected and classified within 20 ms with an overall accuracy of 99.6%, which confirms the applicability of the scheme to collaborative robots in practice. Note to Practitioners -This article is intended to provide a novel online collision event handling scheme for robots in industrial environments. This scheme is designed to quickly and accurately detect an accidental collision and distinguish it from the intentional human-robot interaction. The method takes the raw signals from external torque sensors and provides a collision diagnosis result with a reliability index. The simple structure makes it easy to be implemented as a regular fault monitoring routine for collaborative robots. Different from the conventional methods, the proposed collision identification scheme in this article especially focuses on overcoming the following two challenges in practice: first, to timely and accurately report a collision within its early stage, and second, to ensure a high identification accuracy in a complicated environment, where ubiquitous disturbance and noise are unneglectable. The experimental validation at the end of this article confirms its promising application value in human-robot collaboration.
Author Wollherr, Dirk
Zhang, Zengjie
Qian, Kun
Schuller, Bjorn W.
Author_xml – sequence: 1
  givenname: Zengjie
  orcidid: 0000-0003-1875-1032
  surname: Zhang
  fullname: Zhang, Zengjie
  email: zengjie.zhang@tum.de
  organization: Chair of Automatic Control Engineering, Technical University of Munich, Munich, Germany
– sequence: 2
  givenname: Kun
  orcidid: 0000-0002-1918-6453
  surname: Qian
  fullname: Qian, Kun
  email: qian@p.u-tokyo.ac.jp
  organization: Educational Physiology Laboratory, Graduate School of Education, The University of Tokyo, Tokyo, Japan
– sequence: 3
  givenname: Bjorn W.
  orcidid: 0000-0002-6478-8699
  surname: Schuller
  fullname: Schuller, Bjorn W.
  email: schuller@ieee.org
  organization: Group on Language, Audio and Music (GLAM), Imperial College London, London, U.K
– sequence: 4
  givenname: Dirk
  orcidid: 0000-0003-2810-6790
  surname: Wollherr
  fullname: Wollherr, Dirk
  email: dw@tum.de
  organization: Chair of Automatic Control Engineering, Technical University of Munich, Munich, Germany
BookMark eNp9kF1LwzAYhYMoOD9-gHhT8LozSZO2uZzzEwYDN69LmrxxkZrMpBP6723X4YUXXuUQznNeeM7QsfMOELoieEoIFrfr2ephSjHFUypEgQU7QhPCeZlmRZkdD5nxlAvOT9FZjB8YU1YKPEFfM5csXWMdJK--9m0y901jo_UuuYcWVDsk6XTyosG11lgl918rtYFPSOouWe22EL5tBJ0sQAZn3fseuJMdRCuHHTUOrjfgQ3eBToxsIlwe3nP09viwnj-ni-XTy3y2SBXDtE1pzVmeG10XlPE-al7WmsiMgSm1IBSMNDmmuVRcaKgNKFMTonhfV70HnZ2jm3F3G_zXDmJbffhdcP3JinJW5KykedG3yNhSwccYwFTbYD9l6CqCq8FsNZitBrPVwWzPFH8YZdu9ljZI2_xLXo-kBYDfS6IvFyTLfgBHoImM
CODEN ITASC7
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3228825
crossref_primary_10_1007_s10845_023_02159_4
crossref_primary_10_2478_cait_2022_0036
crossref_primary_10_1108_IR_01_2023_0005
crossref_primary_10_1109_TRO_2021_3129630
crossref_primary_10_1016_j_ssci_2023_106313
crossref_primary_10_1109_TASE_2021_3137182
crossref_primary_10_3389_fnbot_2022_971205
crossref_primary_10_1088_1361_6501_ad9caf
crossref_primary_10_1109_TASE_2024_3378383
crossref_primary_10_1541_ieejjia_24004534
crossref_primary_10_3390_app13074079
crossref_primary_10_1016_j_rcim_2023_102708
crossref_primary_10_1109_TMECH_2021_3119057
crossref_primary_10_3390_automation5010002
crossref_primary_10_1109_TCSI_2023_3274558
crossref_primary_10_3390_app14041605
crossref_primary_10_1177_09544062241299672
crossref_primary_10_1109_TASE_2024_3402099
crossref_primary_10_1016_j_rcim_2023_102692
crossref_primary_10_3390_machines12020121
crossref_primary_10_3390_sym14030591
crossref_primary_10_1007_s00170_024_13948_3
crossref_primary_10_1109_TASE_2021_3131011
crossref_primary_10_3390_s21196674
crossref_primary_10_1007_s11431_021_1947_5
crossref_primary_10_1108_IR_09_2024_0428
crossref_primary_10_3390_s22093439
crossref_primary_10_1016_j_displa_2025_102969
Cites_doi 10.1007/s10033-017-0189-y
10.1109/IROS.2013.6697200
10.1109/TRO.2017.2723903
10.1109/TCST.2019.2945904
10.1109/IROS.2015.7354044
10.1121/1.5004570
10.1016/j.ymssp.2019.106419
10.1109/HUMANOIDS.2017.8246962
10.1109/IROS.2017.8206437
10.1109/LRA.2018.2793346
10.1561/2300000052
10.1023/A:1008280620621
10.1109/ICRA.2015.7139726
10.1109/EMBC.2017.8037669
10.1109/TASE.2015.2412256
10.1109/IROS.2017.8206438
10.1109/IROS.2008.4650764
10.1155/2017/5067651
10.1109/ICASSP.2016.7471669
10.4108/icst.pervasivehealth.2012.248680
10.1109/LRA.2020.2967706
10.23919/ECC.2019.8795698
10.1016/j.sigpro.2013.04.015
10.1109/LRA.2017.2789249
10.1007/978-3-642-14743-2_33
10.1109/TCST.2019.2903451
10.1109/TAC.2007.904319
10.31256/UKRAS19.35
10.1109/ACCESS.2017.2779939
10.1016/S0967-0661(97)00053-1
10.1109/TBME.2016.2619675
10.1109/ROMAN.2018.8705268
10.2307/2531822
10.1007/s10514-006-9009-4
10.1109/ICRA.2013.6631141
10.1109/TIE.2012.2219838
10.1109/ROBIO.2018.8665206
10.1007/s10514-011-9257-9
10.21437/Interspeech.2017-43
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TASE.2020.2997094
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 1156
ExternalDocumentID 10_1109_TASE_2020_2997094
9109713
Genre orig-research
GrantInformation_xml – fundername: Horizon 2020 Program of the project “HR-Recycler”
  grantid: 820742
  funderid: 10.13039/501100000780
– fundername: Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan
  grantid: 19F19081; 17H00878
– fundername: China Scholarship Council
  grantid: 201506120029
  funderid: 10.13039/501100004543
– fundername: Zhejiang Lab’s International Talent Fund for Young Professionals (Project HANAMI), China
– fundername: Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellowship for Research in Japan
  grantid: P19081
  funderid: 10.13039/501100001691
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c402t-2b5466fdb7245546d58bd1a34ef8d912efaf6026ac59debfecfb11c5724c202d3
IEDL.DBID RIE
ISSN 1545-5955
IngestDate Mon Jun 30 01:54:13 EDT 2025
Thu Apr 24 23:12:37 EDT 2025
Tue Jul 01 02:56:31 EDT 2025
Wed Aug 27 02:26:47 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-2b5466fdb7245546d58bd1a34ef8d912efaf6026ac59debfecfb11c5724c202d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1875-1032
0000-0002-1918-6453
0000-0003-2810-6790
0000-0002-6478-8699
OpenAccessLink https://mediatum.ub.tum.de/doc/1547678/document.pdf
PQID 2547648267
PQPubID 27623
PageCount 13
ParticipantIDs crossref_primary_10_1109_TASE_2020_2997094
proquest_journals_2547648267
crossref_citationtrail_10_1109_TASE_2020_2997094
ieee_primary_9109713
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
puranik (ref14) 2019; 17
ref34
ref12
ref15
ref36
ref31
ref30
ref33
ref11
ref32
ref10
qian (ref20) 2018; 43
sharkawy (ref29) 2018
ref2
ref1
ref39
ref17
ref38
ref16
bischoff (ref37) 2010
ref19
ref18
sun (ref8) 2017
ref24
ref45
ref23
ref26
ref25
ref42
ref41
ref22
ref21
ref43
ref28
ref27
kira (ref44) 1992; 2
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref26
  doi: 10.1007/s10033-017-0189-y
– ident: ref34
  doi: 10.1109/IROS.2013.6697200
– ident: ref5
  doi: 10.1109/TRO.2017.2723903
– ident: ref9
  doi: 10.1109/TCST.2019.2945904
– ident: ref6
  doi: 10.1109/IROS.2015.7354044
– ident: ref21
  doi: 10.1121/1.5004570
– ident: ref24
  doi: 10.1016/j.ymssp.2019.106419
– ident: ref30
  doi: 10.1109/HUMANOIDS.2017.8246962
– ident: ref35
  doi: 10.1109/IROS.2017.8206437
– ident: ref28
  doi: 10.1109/LRA.2018.2793346
– ident: ref4
  doi: 10.1561/2300000052
– ident: ref45
  doi: 10.1023/A:1008280620621
– ident: ref31
  doi: 10.1109/ICRA.2015.7139726
– ident: ref42
  doi: 10.1109/EMBC.2017.8037669
– ident: ref2
  doi: 10.1109/TASE.2015.2412256
– ident: ref36
  doi: 10.1109/IROS.2017.8206438
– volume: 43
  start-page: 465
  year: 2018
  ident: ref20
  article-title: Teaching machines on snoring: A benchmark on computer audition for snore sound excitation localisation
  publication-title: Arch Acoust
– ident: ref13
  doi: 10.1109/IROS.2008.4650764
– ident: ref23
  doi: 10.1155/2017/5067651
– volume: 17
  start-page: 1
  year: 2019
  ident: ref14
  article-title: Identification of instantaneous anomalies in general aviation operations using energy metrics
  publication-title: J Aerosp Inf Syst
– ident: ref38
  doi: 10.1109/ICASSP.2016.7471669
– start-page: 3
  year: 2018
  ident: ref29
  article-title: Manipulator collision detection and collided link identification based on neural networks
  publication-title: Proc Int Conf Robot Alpe-Adria Danube Region
– ident: ref41
  doi: 10.4108/icst.pervasivehealth.2012.248680
– ident: ref15
  doi: 10.1109/LRA.2020.2967706
– ident: ref33
  doi: 10.23919/ECC.2019.8795698
– start-page: 1015
  year: 2017
  ident: ref8
  article-title: Protective control for robot manipulator by sliding mode based disturbance reconstruction approach
  publication-title: Proc IEEE Int Conf Adv Intell Mechatronics (AIM)
– ident: ref22
  doi: 10.1016/j.sigpro.2013.04.015
– ident: ref11
  doi: 10.1109/LRA.2017.2789249
– ident: ref3
  doi: 10.1007/978-3-642-14743-2_33
– ident: ref7
  doi: 10.1109/TCST.2019.2903451
– ident: ref12
  doi: 10.1109/TAC.2007.904319
– start-page: 1
  year: 2010
  ident: ref37
  article-title: The KUKA-DLR lightweight robot arm-A new reference platform for robotics research and manufacturing
  publication-title: Proc ISR (41st Int Symp robotics) ROBOTIK (6th German Conf Robot )
– ident: ref16
  doi: 10.31256/UKRAS19.35
– ident: ref25
  doi: 10.1109/ACCESS.2017.2779939
– ident: ref17
  doi: 10.1016/S0967-0661(97)00053-1
– ident: ref39
  doi: 10.1109/TBME.2016.2619675
– ident: ref32
  doi: 10.1109/ROMAN.2018.8705268
– ident: ref43
  doi: 10.2307/2531822
– ident: ref10
  doi: 10.1007/s10514-006-9009-4
– ident: ref18
  doi: 10.1109/ICRA.2013.6631141
– ident: ref40
  doi: 10.1109/TIE.2012.2219838
– ident: ref27
  doi: 10.1109/ROBIO.2018.8665206
– volume: 2
  start-page: 129
  year: 1992
  ident: ref44
  article-title: The feature selection problem: Traditional methods and a new algorithm
  publication-title: Proc AAAI
– ident: ref1
  doi: 10.1007/s10514-011-9257-9
– ident: ref19
  doi: 10.21437/Interspeech.2017-43
SSID ssj0024890
Score 2.4480317
Snippet This article is dedicated to developing an online collision detection and identification (CDI) scheme for human-collaborative robots. The scheme is composed of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1144
SubjectTerms Accidental collisions
Anomaly monitoring
Bayesian analysis
Classifiers
Collaboration
Collision avoidance
collision detection and identification (CDI)
collision event pipeline
Datasets
Decision theory
Event handling
Fault detection
fault detection and isolation
human-robot interaction
Machine learning
Reliability engineering
Response time
Robot arms
robot safety
Robot sensing systems
Robots
Signal classification
Structural reliability
Supervised learning
Time series analysis
Torque sensors (robotics)
Title An Online Robot Collision Detection and Identification Scheme by Supervised Learning and Bayesian Decision Theory
URI https://ieeexplore.ieee.org/document/9109713
https://www.proquest.com/docview/2547648267
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJxh4FUShIA9MiLRJ6jw8FmhVIZWBtlK3yI8zA5AWmg7l12M7bnkKsWW4i6x8zp3vfPcdQudM0pDFMvAkI8QjMlYegzTwVKB8QZX2-NLkIQd3cX9MbifRpIIu170wAGCLz6BpHu1dvpyKhUmVtai5LjUjajd04Fb2an3w6qU2n2JOBF5Eo8jdYGqN1qgz7OpIMPSb2vYmPiVffJAdqvLDElv30ttBg9XCyqqSx-ai4E3x9o2z8b8r30Xb7pyJO-XG2EMVyPfR1if2wRp66eS4ZBrF91M-LbBJIthWc3wDhS3RyjHLJS6beZXL7uGhxvkZMF_i4WJmTM0cJHY8rQ9W4YotwTRn6veUE3xwSQFwgMa97ui677kJDJ7QcWXhhTwicawkT0JiytlklHIZsDYBlUoahKCYMjOsmIioBK5AKB4EItLiQn9w2T5E1XyawxHCXJKQ8ERLqJgImmqvSFLC20kaC8EJ1JG_wiQTjp7cTMl4ymyY4tPMwJgZGDMHYx1drFVmJTfHX8I1A8ta0CFSR40V8Jn7e-eZDpqTmOjAKzn-XesEbYamtsWW7TZQtXhdwKk-nBT8zO7Kd16A4h8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NU9swEN1h6KFwoLTAEEipDj11cLAdybaOoYRJgXAgYYabRx8rDrROAOcAvx5JVlKgDNObD7sejZ-8q13tvgX4LjRPRaaTSAtKI6ozEwksksgkJlbcWI-vXR5yeJ4NLunJFbtagv1FLwwi-uIz7LhHf5evJ2rmUmUH3F2XuhG1H6zfZ2nTrfWXWa_wGRV3JogYZyzcYVqdg3Fv1LexYBp3rPXNY05feCE_VuUfW-wdzPEnGM6X1tSV3HRmteyox1esjf-79nVYCydN0mu2xmdYwuoLrD7jH9yA215FGq5RcjGRk5q4NIJvNidHWPsirYqISpOmndeE_B4ZWaT_IJEPZDSbOmNzj5oEptZrr3AoHtC1Z9r3NDN8SEMCsAmXx_3xz0EUZjBEykaWdZRKRrPMaJmn1BW0aVZInYguRVNonqRohHFTrIRiXKM0qIxMEsWsuLIfXHe3YLmaVLgNRGqaUplbCZNRxQvrF2lBZTcvMqUkxRbEc0xKFQjK3ZyM36UPVGJeOhhLB2MZYGzBj4XKtGHneE94w8GyEAyItKA9B74M_-99acPmPKM29Mp33tb6Bh8H4-FZefbr_HQXVlJX6eKLeNuwXN_N8Ks9qtRyz-_QJ1Nz5Wk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Online+Robot+Collision+Detection+and+Identification+Scheme+by+Supervised+Learning+and+Bayesian+Decision+Theory&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Zhang%2C+Zengjie&rft.au=Qian%2C+Kun&rft.au=Schuller%2C+Bjorn+W&rft.au=Wollherr%2C+Dirk&rft.date=2021-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=18&rft.issue=3&rft.spage=1144&rft_id=info:doi/10.1109%2FTASE.2020.2997094&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon