An Online Robot Collision Detection and Identification Scheme by Supervised Learning and Bayesian Decision Theory
This article is dedicated to developing an online collision detection and identification (CDI) scheme for human-collaborative robots. The scheme is composed of a signal classifier and an online diagnosor, which monitors the sensory signals of the robot system, detects the occurrence of a physical hu...
Saved in:
Published in | IEEE transactions on automation science and engineering Vol. 18; no. 3; pp. 1144 - 1156 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article is dedicated to developing an online collision detection and identification (CDI) scheme for human-collaborative robots. The scheme is composed of a signal classifier and an online diagnosor, which monitors the sensory signals of the robot system, detects the occurrence of a physical human-robot interaction, and identifies its type within a short period. In the beginning, we conduct an experiment to construct a data set that contains the segmented physical interaction signals with ground truth. Then, we develop the signal classifier on the data set with the paradigm of supervised learning. To adapt the classifier to the online application with requirements on response time, an auxiliary online diagnosor is designed using the Bayesian decision theory. The diagnosor provides not only a collision identification result but also a confidence index which represents the reliability of the result. Compared to the previous works, the proposed scheme ensures rapid and accurate CDI even in the early stage of a physical interaction. As a result, safety mechanisms can be triggered before further injuries are caused, which is quite valuable and important toward a safe human-robot collaboration. In the end, the proposed scheme is validated on a robot manipulator and applied to a demonstration task with collision reaction strategies. The experimental results reveal that the collisions are detected and classified within 20 ms with an overall accuracy of 99.6%, which confirms the applicability of the scheme to collaborative robots in practice. Note to Practitioners -This article is intended to provide a novel online collision event handling scheme for robots in industrial environments. This scheme is designed to quickly and accurately detect an accidental collision and distinguish it from the intentional human-robot interaction. The method takes the raw signals from external torque sensors and provides a collision diagnosis result with a reliability index. The simple structure makes it easy to be implemented as a regular fault monitoring routine for collaborative robots. Different from the conventional methods, the proposed collision identification scheme in this article especially focuses on overcoming the following two challenges in practice: first, to timely and accurately report a collision within its early stage, and second, to ensure a high identification accuracy in a complicated environment, where ubiquitous disturbance and noise are unneglectable. The experimental validation at the end of this article confirms its promising application value in human-robot collaboration. |
---|---|
AbstractList | This article is dedicated to developing an online collision detection and identification (CDI) scheme for human-collaborative robots. The scheme is composed of a signal classifier and an online diagnosor, which monitors the sensory signals of the robot system, detects the occurrence of a physical human-robot interaction, and identifies its type within a short period. In the beginning, we conduct an experiment to construct a data set that contains the segmented physical interaction signals with ground truth. Then, we develop the signal classifier on the data set with the paradigm of supervised learning. To adapt the classifier to the online application with requirements on response time, an auxiliary online diagnosor is designed using the Bayesian decision theory. The diagnosor provides not only a collision identification result but also a confidence index which represents the reliability of the result. Compared to the previous works, the proposed scheme ensures rapid and accurate CDI even in the early stage of a physical interaction. As a result, safety mechanisms can be triggered before further injuries are caused, which is quite valuable and important toward a safe human-robot collaboration. In the end, the proposed scheme is validated on a robot manipulator and applied to a demonstration task with collision reaction strategies. The experimental results reveal that the collisions are detected and classified within 20 ms with an overall accuracy of 99.6%, which confirms the applicability of the scheme to collaborative robots in practice. Note to Practitioners -This article is intended to provide a novel online collision event handling scheme for robots in industrial environments. This scheme is designed to quickly and accurately detect an accidental collision and distinguish it from the intentional human-robot interaction. The method takes the raw signals from external torque sensors and provides a collision diagnosis result with a reliability index. The simple structure makes it easy to be implemented as a regular fault monitoring routine for collaborative robots. Different from the conventional methods, the proposed collision identification scheme in this article especially focuses on overcoming the following two challenges in practice: first, to timely and accurately report a collision within its early stage, and second, to ensure a high identification accuracy in a complicated environment, where ubiquitous disturbance and noise are unneglectable. The experimental validation at the end of this article confirms its promising application value in human-robot collaboration. |
Author | Wollherr, Dirk Zhang, Zengjie Qian, Kun Schuller, Bjorn W. |
Author_xml | – sequence: 1 givenname: Zengjie orcidid: 0000-0003-1875-1032 surname: Zhang fullname: Zhang, Zengjie email: zengjie.zhang@tum.de organization: Chair of Automatic Control Engineering, Technical University of Munich, Munich, Germany – sequence: 2 givenname: Kun orcidid: 0000-0002-1918-6453 surname: Qian fullname: Qian, Kun email: qian@p.u-tokyo.ac.jp organization: Educational Physiology Laboratory, Graduate School of Education, The University of Tokyo, Tokyo, Japan – sequence: 3 givenname: Bjorn W. orcidid: 0000-0002-6478-8699 surname: Schuller fullname: Schuller, Bjorn W. email: schuller@ieee.org organization: Group on Language, Audio and Music (GLAM), Imperial College London, London, U.K – sequence: 4 givenname: Dirk orcidid: 0000-0003-2810-6790 surname: Wollherr fullname: Wollherr, Dirk email: dw@tum.de organization: Chair of Automatic Control Engineering, Technical University of Munich, Munich, Germany |
BookMark | eNp9kF1LwzAYhYMoOD9-gHhT8LozSZO2uZzzEwYDN69LmrxxkZrMpBP6723X4YUXXuUQznNeeM7QsfMOELoieEoIFrfr2ephSjHFUypEgQU7QhPCeZlmRZkdD5nxlAvOT9FZjB8YU1YKPEFfM5csXWMdJK--9m0y901jo_UuuYcWVDsk6XTyosG11lgl918rtYFPSOouWe22EL5tBJ0sQAZn3fseuJMdRCuHHTUOrjfgQ3eBToxsIlwe3nP09viwnj-ni-XTy3y2SBXDtE1pzVmeG10XlPE-al7WmsiMgSm1IBSMNDmmuVRcaKgNKFMTonhfV70HnZ2jm3F3G_zXDmJbffhdcP3JinJW5KykedG3yNhSwccYwFTbYD9l6CqCq8FsNZitBrPVwWzPFH8YZdu9ljZI2_xLXo-kBYDfS6IvFyTLfgBHoImM |
CODEN | ITASC7 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3228825 crossref_primary_10_1007_s10845_023_02159_4 crossref_primary_10_2478_cait_2022_0036 crossref_primary_10_1108_IR_01_2023_0005 crossref_primary_10_1109_TRO_2021_3129630 crossref_primary_10_1016_j_ssci_2023_106313 crossref_primary_10_1109_TASE_2021_3137182 crossref_primary_10_3389_fnbot_2022_971205 crossref_primary_10_1088_1361_6501_ad9caf crossref_primary_10_1109_TASE_2024_3378383 crossref_primary_10_1541_ieejjia_24004534 crossref_primary_10_3390_app13074079 crossref_primary_10_1016_j_rcim_2023_102708 crossref_primary_10_1109_TMECH_2021_3119057 crossref_primary_10_3390_automation5010002 crossref_primary_10_1109_TCSI_2023_3274558 crossref_primary_10_3390_app14041605 crossref_primary_10_1177_09544062241299672 crossref_primary_10_1109_TASE_2024_3402099 crossref_primary_10_1016_j_rcim_2023_102692 crossref_primary_10_3390_machines12020121 crossref_primary_10_3390_sym14030591 crossref_primary_10_1007_s00170_024_13948_3 crossref_primary_10_1109_TASE_2021_3131011 crossref_primary_10_3390_s21196674 crossref_primary_10_1007_s11431_021_1947_5 crossref_primary_10_1108_IR_09_2024_0428 crossref_primary_10_3390_s22093439 crossref_primary_10_1016_j_displa_2025_102969 |
Cites_doi | 10.1007/s10033-017-0189-y 10.1109/IROS.2013.6697200 10.1109/TRO.2017.2723903 10.1109/TCST.2019.2945904 10.1109/IROS.2015.7354044 10.1121/1.5004570 10.1016/j.ymssp.2019.106419 10.1109/HUMANOIDS.2017.8246962 10.1109/IROS.2017.8206437 10.1109/LRA.2018.2793346 10.1561/2300000052 10.1023/A:1008280620621 10.1109/ICRA.2015.7139726 10.1109/EMBC.2017.8037669 10.1109/TASE.2015.2412256 10.1109/IROS.2017.8206438 10.1109/IROS.2008.4650764 10.1155/2017/5067651 10.1109/ICASSP.2016.7471669 10.4108/icst.pervasivehealth.2012.248680 10.1109/LRA.2020.2967706 10.23919/ECC.2019.8795698 10.1016/j.sigpro.2013.04.015 10.1109/LRA.2017.2789249 10.1007/978-3-642-14743-2_33 10.1109/TCST.2019.2903451 10.1109/TAC.2007.904319 10.31256/UKRAS19.35 10.1109/ACCESS.2017.2779939 10.1016/S0967-0661(97)00053-1 10.1109/TBME.2016.2619675 10.1109/ROMAN.2018.8705268 10.2307/2531822 10.1007/s10514-006-9009-4 10.1109/ICRA.2013.6631141 10.1109/TIE.2012.2219838 10.1109/ROBIO.2018.8665206 10.1007/s10514-011-9257-9 10.21437/Interspeech.2017-43 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TASE.2020.2997094 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-3783 |
EndPage | 1156 |
ExternalDocumentID | 10_1109_TASE_2020_2997094 9109713 |
Genre | orig-research |
GrantInformation_xml | – fundername: Horizon 2020 Program of the project “HR-Recycler” grantid: 820742 funderid: 10.13039/501100000780 – fundername: Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan grantid: 19F19081; 17H00878 – fundername: China Scholarship Council grantid: 201506120029 funderid: 10.13039/501100004543 – fundername: Zhejiang Lab’s International Talent Fund for Young Professionals (Project HANAMI), China – fundername: Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellowship for Research in Japan grantid: P19081 funderid: 10.13039/501100001691 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c402t-2b5466fdb7245546d58bd1a34ef8d912efaf6026ac59debfecfb11c5724c202d3 |
IEDL.DBID | RIE |
ISSN | 1545-5955 |
IngestDate | Mon Jun 30 01:54:13 EDT 2025 Thu Apr 24 23:12:37 EDT 2025 Tue Jul 01 02:56:31 EDT 2025 Wed Aug 27 02:26:47 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-2b5466fdb7245546d58bd1a34ef8d912efaf6026ac59debfecfb11c5724c202d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1875-1032 0000-0002-1918-6453 0000-0003-2810-6790 0000-0002-6478-8699 |
OpenAccessLink | https://mediatum.ub.tum.de/doc/1547678/document.pdf |
PQID | 2547648267 |
PQPubID | 27623 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1109_TASE_2020_2997094 proquest_journals_2547648267 crossref_citationtrail_10_1109_TASE_2020_2997094 ieee_primary_9109713 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on automation science and engineering |
PublicationTitleAbbrev | TASE |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 puranik (ref14) 2019; 17 ref34 ref12 ref15 ref36 ref31 ref30 ref33 ref11 ref32 ref10 qian (ref20) 2018; 43 sharkawy (ref29) 2018 ref2 ref1 ref39 ref17 ref38 ref16 bischoff (ref37) 2010 ref19 ref18 sun (ref8) 2017 ref24 ref45 ref23 ref26 ref25 ref42 ref41 ref22 ref21 ref43 ref28 ref27 kira (ref44) 1992; 2 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref26 doi: 10.1007/s10033-017-0189-y – ident: ref34 doi: 10.1109/IROS.2013.6697200 – ident: ref5 doi: 10.1109/TRO.2017.2723903 – ident: ref9 doi: 10.1109/TCST.2019.2945904 – ident: ref6 doi: 10.1109/IROS.2015.7354044 – ident: ref21 doi: 10.1121/1.5004570 – ident: ref24 doi: 10.1016/j.ymssp.2019.106419 – ident: ref30 doi: 10.1109/HUMANOIDS.2017.8246962 – ident: ref35 doi: 10.1109/IROS.2017.8206437 – ident: ref28 doi: 10.1109/LRA.2018.2793346 – ident: ref4 doi: 10.1561/2300000052 – ident: ref45 doi: 10.1023/A:1008280620621 – ident: ref31 doi: 10.1109/ICRA.2015.7139726 – ident: ref42 doi: 10.1109/EMBC.2017.8037669 – ident: ref2 doi: 10.1109/TASE.2015.2412256 – ident: ref36 doi: 10.1109/IROS.2017.8206438 – volume: 43 start-page: 465 year: 2018 ident: ref20 article-title: Teaching machines on snoring: A benchmark on computer audition for snore sound excitation localisation publication-title: Arch Acoust – ident: ref13 doi: 10.1109/IROS.2008.4650764 – ident: ref23 doi: 10.1155/2017/5067651 – volume: 17 start-page: 1 year: 2019 ident: ref14 article-title: Identification of instantaneous anomalies in general aviation operations using energy metrics publication-title: J Aerosp Inf Syst – ident: ref38 doi: 10.1109/ICASSP.2016.7471669 – start-page: 3 year: 2018 ident: ref29 article-title: Manipulator collision detection and collided link identification based on neural networks publication-title: Proc Int Conf Robot Alpe-Adria Danube Region – ident: ref41 doi: 10.4108/icst.pervasivehealth.2012.248680 – ident: ref15 doi: 10.1109/LRA.2020.2967706 – ident: ref33 doi: 10.23919/ECC.2019.8795698 – start-page: 1015 year: 2017 ident: ref8 article-title: Protective control for robot manipulator by sliding mode based disturbance reconstruction approach publication-title: Proc IEEE Int Conf Adv Intell Mechatronics (AIM) – ident: ref22 doi: 10.1016/j.sigpro.2013.04.015 – ident: ref11 doi: 10.1109/LRA.2017.2789249 – ident: ref3 doi: 10.1007/978-3-642-14743-2_33 – ident: ref7 doi: 10.1109/TCST.2019.2903451 – ident: ref12 doi: 10.1109/TAC.2007.904319 – start-page: 1 year: 2010 ident: ref37 article-title: The KUKA-DLR lightweight robot arm-A new reference platform for robotics research and manufacturing publication-title: Proc ISR (41st Int Symp robotics) ROBOTIK (6th German Conf Robot ) – ident: ref16 doi: 10.31256/UKRAS19.35 – ident: ref25 doi: 10.1109/ACCESS.2017.2779939 – ident: ref17 doi: 10.1016/S0967-0661(97)00053-1 – ident: ref39 doi: 10.1109/TBME.2016.2619675 – ident: ref32 doi: 10.1109/ROMAN.2018.8705268 – ident: ref43 doi: 10.2307/2531822 – ident: ref10 doi: 10.1007/s10514-006-9009-4 – ident: ref18 doi: 10.1109/ICRA.2013.6631141 – ident: ref40 doi: 10.1109/TIE.2012.2219838 – ident: ref27 doi: 10.1109/ROBIO.2018.8665206 – volume: 2 start-page: 129 year: 1992 ident: ref44 article-title: The feature selection problem: Traditional methods and a new algorithm publication-title: Proc AAAI – ident: ref1 doi: 10.1007/s10514-011-9257-9 – ident: ref19 doi: 10.21437/Interspeech.2017-43 |
SSID | ssj0024890 |
Score | 2.4480317 |
Snippet | This article is dedicated to developing an online collision detection and identification (CDI) scheme for human-collaborative robots. The scheme is composed of... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1144 |
SubjectTerms | Accidental collisions Anomaly monitoring Bayesian analysis Classifiers Collaboration Collision avoidance collision detection and identification (CDI) collision event pipeline Datasets Decision theory Event handling Fault detection fault detection and isolation human-robot interaction Machine learning Reliability engineering Response time Robot arms robot safety Robot sensing systems Robots Signal classification Structural reliability Supervised learning Time series analysis Torque sensors (robotics) |
Title | An Online Robot Collision Detection and Identification Scheme by Supervised Learning and Bayesian Decision Theory |
URI | https://ieeexplore.ieee.org/document/9109713 https://www.proquest.com/docview/2547648267 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJxh4FUShIA9MiLRJ6jw8FmhVIZWBtlK3yI8zA5AWmg7l12M7bnkKsWW4i6x8zp3vfPcdQudM0pDFMvAkI8QjMlYegzTwVKB8QZX2-NLkIQd3cX9MbifRpIIu170wAGCLz6BpHu1dvpyKhUmVtai5LjUjajd04Fb2an3w6qU2n2JOBF5Eo8jdYGqN1qgz7OpIMPSb2vYmPiVffJAdqvLDElv30ttBg9XCyqqSx-ai4E3x9o2z8b8r30Xb7pyJO-XG2EMVyPfR1if2wRp66eS4ZBrF91M-LbBJIthWc3wDhS3RyjHLJS6beZXL7uGhxvkZMF_i4WJmTM0cJHY8rQ9W4YotwTRn6veUE3xwSQFwgMa97ui677kJDJ7QcWXhhTwicawkT0JiytlklHIZsDYBlUoahKCYMjOsmIioBK5AKB4EItLiQn9w2T5E1XyawxHCXJKQ8ERLqJgImmqvSFLC20kaC8EJ1JG_wiQTjp7cTMl4ymyY4tPMwJgZGDMHYx1drFVmJTfHX8I1A8ta0CFSR40V8Jn7e-eZDpqTmOjAKzn-XesEbYamtsWW7TZQtXhdwKk-nBT8zO7Kd16A4h8 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NU9swEN1h6KFwoLTAEEipDj11cLAdybaOoYRJgXAgYYabRx8rDrROAOcAvx5JVlKgDNObD7sejZ-8q13tvgX4LjRPRaaTSAtKI6ozEwksksgkJlbcWI-vXR5yeJ4NLunJFbtagv1FLwwi-uIz7LhHf5evJ2rmUmUH3F2XuhG1H6zfZ2nTrfWXWa_wGRV3JogYZyzcYVqdg3Fv1LexYBp3rPXNY05feCE_VuUfW-wdzPEnGM6X1tSV3HRmteyox1esjf-79nVYCydN0mu2xmdYwuoLrD7jH9yA215FGq5RcjGRk5q4NIJvNidHWPsirYqISpOmndeE_B4ZWaT_IJEPZDSbOmNzj5oEptZrr3AoHtC1Z9r3NDN8SEMCsAmXx_3xz0EUZjBEykaWdZRKRrPMaJmn1BW0aVZInYguRVNonqRohHFTrIRiXKM0qIxMEsWsuLIfXHe3YLmaVLgNRGqaUplbCZNRxQvrF2lBZTcvMqUkxRbEc0xKFQjK3ZyM36UPVGJeOhhLB2MZYGzBj4XKtGHneE94w8GyEAyItKA9B74M_-99acPmPKM29Mp33tb6Bh8H4-FZefbr_HQXVlJX6eKLeNuwXN_N8Ks9qtRyz-_QJ1Nz5Wk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Online+Robot+Collision+Detection+and+Identification+Scheme+by+Supervised+Learning+and+Bayesian+Decision+Theory&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Zhang%2C+Zengjie&rft.au=Qian%2C+Kun&rft.au=Schuller%2C+Bjorn+W&rft.au=Wollherr%2C+Dirk&rft.date=2021-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=18&rft.issue=3&rft.spage=1144&rft_id=info:doi/10.1109%2FTASE.2020.2997094&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |