Intertwined orders and electronic structure in superconducting vortex halos
We present a comprehensive study of vortex structures in d-wave superconductors from large-scale renormalized mean-field theory of the square-lattice t-t^{′}-J model, which has been shown to provide a quantitative modeling for high-T_{c} cuprate superconductors. With an efficient implementation of t...
Saved in:
Published in | Physical review research Vol. 5; no. 3; p. 033028 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physical Society
01.07.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | We present a comprehensive study of vortex structures in d-wave superconductors from large-scale renormalized mean-field theory of the square-lattice t-t^{′}-J model, which has been shown to provide a quantitative modeling for high-T_{c} cuprate superconductors. With an efficient implementation of the kernel polynomial method for solving electronic structures, self-consistent calculations involving up to 10^{5} variational parameters are performed to investigate the vortex solutions on lattices of up to 10^{4} sites. By taking into account the strong correlation of the model, our calculations shed new light on two puzzling results that have emerged from recent scanning tunneling microscopy experiments. The first concerns the issue of the zero-biased-conductance peak (ZBCP) at the vortex core for a uniform d-wave superconducting state. Despite its theoretical prediction, the ZBCP was not observed in most doping range of cuprates except in heavily over-doped samples at low magnetic field. The second issue is the nature of the checkerboard charge-density waves (CDWs) with a period of about eight unit cells in the vortex halo at optimal doping. Although it has been suggested that such bipartite structure arises from low-energy quasiparticle interference, another intriguing scenario posits that the checkerboard CDWs originate from an underlying bidirectional pair-density wave (PDW) ordering with the same period. We present a coherent interpretation of these experimental results based on systematic studies of the doping and magnetic-field effects on vortex solutions with and without a checkerboard structure. Due to the small size of Cooper pairs, the vortex core has a radius of about three unit cells, which results in a strong spatial dependence on pairing fields. This may be an important mechanism for the formation of PDW states inside the vortex core. |
---|---|
AbstractList | We present a comprehensive study of vortex structures in d-wave superconductors from large-scale renormalized mean-field theory of the square-lattice t-t^{′}-J model, which has been shown to provide a quantitative modeling for high-T_{c} cuprate superconductors. With an efficient implementation of the kernel polynomial method for solving electronic structures, self-consistent calculations involving up to 10^{5} variational parameters are performed to investigate the vortex solutions on lattices of up to 10^{4} sites. By taking into account the strong correlation of the model, our calculations shed new light on two puzzling results that have emerged from recent scanning tunneling microscopy experiments. The first concerns the issue of the zero-biased-conductance peak (ZBCP) at the vortex core for a uniform d-wave superconducting state. Despite its theoretical prediction, the ZBCP was not observed in most doping range of cuprates except in heavily over-doped samples at low magnetic field. The second issue is the nature of the checkerboard charge-density waves (CDWs) with a period of about eight unit cells in the vortex halo at optimal doping. Although it has been suggested that such bipartite structure arises from low-energy quasiparticle interference, another intriguing scenario posits that the checkerboard CDWs originate from an underlying bidirectional pair-density wave (PDW) ordering with the same period. We present a coherent interpretation of these experimental results based on systematic studies of the doping and magnetic-field effects on vortex solutions with and without a checkerboard structure. Due to the small size of Cooper pairs, the vortex core has a radius of about three unit cells, which results in a strong spatial dependence on pairing fields. This may be an important mechanism for the formation of PDW states inside the vortex core. |
ArticleNumber | 033028 |
Author | Tu, Wei-Lin Chern, Gia-Wei Liu, Yi-Hsuan Lee, Ting-Kuo |
Author_xml | – sequence: 1 givenname: Yi-Hsuan surname: Liu fullname: Liu, Yi-Hsuan – sequence: 2 givenname: Wei-Lin orcidid: 0000-0002-3340-4963 surname: Tu fullname: Tu, Wei-Lin – sequence: 3 givenname: Gia-Wei surname: Chern fullname: Chern, Gia-Wei – sequence: 4 givenname: Ting-Kuo orcidid: 0000-0001-6947-4253 surname: Lee fullname: Lee, Ting-Kuo |
BackLink | https://www.osti.gov/biblio/1989745$$D View this record in Osti.gov |
BookMark | eNqFkV9LXDEQxYNYqFq_Q_B91_y9yX0pFNG6KFikfQ65ycSNXBNJstr99o2ugvjSpxkOZ37M4Ryi_ZQTIIQpWVJK-Omv9bbewtMtVLDFrZdySTgnTO-hAzYIvqByEPsf9q_ouNZ7QgiTlAotD9DVKjUo7Tkm8DgXD6VimzyGGVwrOUWHaysb1zYFcEy4bh6huJx8l2K6w0-5NPiL13bO9Rv6Euxc4fhtHqE_F-e_zy4X1zc_V2c_rhdOENYWTEnhSVCj8lxPSohRhjCNgUMg4Ow0eatslydNvWaOcOWmiXmqBjkyKRU_Qqsd12d7bx5LfLBla7KN5lXI5c7Y0qKbwdhBM6td4JIo0cGjFoxJcE4yK-gQOutkx8q1RVNdbODWPV_q8Q0d9aiE7KbvO5MrudYCwXSfbTGnVmycDSXmpQ7zqQ4jza6ODtCfAO9f__f0H2oSmTI |
CitedBy_id | crossref_primary_10_1103_PhysRevResearch_6_043112 crossref_primary_10_1103_PhysRevB_110_235120 crossref_primary_10_1088_1361_648X_ad3709 |
Cites_doi | 10.1038/ncomms3113 10.1126/science.1066974 10.1002/nla.779 10.1038/nature17411 10.1073/pnas.2207449119 10.1103/PhysRevB.90.054513 10.1103/PhysRevLett.105.167006 10.1103/PhysRevB.96.134510 10.1103/PhysRevB.84.184511 10.1126/science.aan3438 10.1103/PhysRevLett.114.217002 10.1103/PhysRevLett.87.147002 10.1038/nphys1389 10.1103/PhysRevB.76.140505 10.1142/S0129183194000842 10.1143/JPSJ.72.374 10.1103/PhysRevB.90.134520 10.1146/annurev-conmatphys-031119-050711 10.1038/s41586-020-2143-x 10.1063/1.5017741 10.1073/pnas.1803009115 10.1143/JPSJ.72.2153 10.1126/science.1056986 10.1103/PhysRev.133.A1038 10.1103/PhysRevB.41.846 10.1038/nphys1109 10.1103/PhysRevB.67.220503 10.1103/PhysRevB.97.174510 10.1103/PhysRevLett.113.046402 10.1073/pnas.2002429117 10.1103/PhysRevX.11.041038 10.1038/s41598-018-38288-7 10.1038/srep18675 10.1038/ncomms11747 10.1103/PhysRevB.85.092505 10.1126/science.1223532 10.1103/PhysRevLett.88.117001 10.1103/PhysRevLett.80.4763 10.1103/PhysRevLett.10.159 10.1038/nphys917 10.1126/science.1198415 10.1073/pnas.1711445114 10.1038/nphys2456 10.1103/RevModPhys.78.275 10.1103/RevModPhys.75.1201 10.1103/PhysRevB.94.184510 10.1103/PhysRevB.98.140505 10.1103/PhysRevB.52.R3876 10.1103/PhysRevB.97.174511 10.1143/JPSJ.76.063704 10.1038/415299a 10.1103/PhysRev.135.A550 10.1103/PhysRevB.98.104206 10.1088/1367-2630/19/1/013028 10.1103/PhysRevB.95.155116 10.1038/s41467-021-26028-x 10.1088/1367-2630/12/5/053043 10.1038/nphys3009 10.1103/PhysRevLett.89.067003 10.1103/PhysRevLett.99.206401 10.1103/PhysRevB.88.235101 10.1103/PhysRevB.79.064515 10.1103/PhysRevB.106.054522 10.1103/PhysRevLett.93.187002 10.1103/PhysRevLett.105.146403 10.1088/1367-2630/11/5/055053 10.1103/PhysRev.115.1460 10.1103/PhysRevX.4.031017 10.1126/science.aat1773 10.1103/PhysRevLett.88.257005 10.1103/PhysRevLett.110.137004 10.1038/nature10345 10.1038/nphys1026 10.1038/375561a0 10.1126/science.aam7127 10.1103/PhysRevB.96.174523 10.1103/PhysRevB.78.174529 10.1016/j.parco.2009.12.005 10.1103/PhysRevLett.99.067001 10.1126/science.1166138 10.1103/PhysRevX.11.031040 10.1103/PhysRevLett.107.187001 10.1103/RevModPhys.87.457 10.1103/PhysRevLett.99.127003 10.1146/annurev-conmatphys-031115-011401 10.1103/PhysRevB.68.012509 10.1038/nature14165 10.1103/PhysRevB.73.224513 10.1103/PhysRevB.91.104512 10.1103/PhysRevB.60.R9935 10.1103/RevModPhys.92.031001 |
ContentType | Journal Article |
DBID | AAYXX CITATION OTOTI DOA |
DOI | 10.1103/PhysRevResearch.5.033028 |
DatabaseName | CrossRef OSTI.GOV DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2643-1564 |
ExternalDocumentID | oai_doaj_org_article_a682a8cf35074bda984225ecc52a416f 1989745 10_1103_PhysRevResearch_5_033028 |
GroupedDBID | 3MX AAYXX AFGMR AGDNE ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E ROL ABCKA OTOTI |
ID | FETCH-LOGICAL-c402t-2754d0f797d38b74495ffb9f3ef0ecabbda7a744b81d82c037cbb2d1765925573 |
IEDL.DBID | DOA |
ISSN | 2643-1564 |
IngestDate | Wed Aug 27 01:16:43 EDT 2025 Mon Jul 24 03:56:57 EDT 2023 Tue Jul 01 02:05:59 EDT 2025 Thu Apr 24 23:05:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-2754d0f797d38b74495ffb9f3ef0ecabbda7a744b81d82c037cbb2d1765925573 |
Notes | USDOE Office of Science (SC), Basic Energy Sciences (BES) |
ORCID | 0000-0001-6947-4253 0000-0002-3340-4963 0000000169474253 0000000233404963 |
OpenAccessLink | https://doaj.org/article/a682a8cf35074bda984225ecc52a416f |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a682a8cf35074bda984225ecc52a416f osti_scitechconnect_1989745 crossref_citationtrail_10_1103_PhysRevResearch_5_033028 crossref_primary_10_1103_PhysRevResearch_5_033028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Physical review research |
PublicationYear | 2023 |
Publisher | American Physical Society |
Publisher_xml | – name: American Physical Society |
References | PhysRevResearch.5.033028Cc11R1 PhysRevResearch.5.033028Cc36R1 PhysRevResearch.5.033028Cc57R1 PhysRevResearch.5.033028Cc13R1 PhysRevResearch.5.033028Cc34R1 PhysRevResearch.5.033028Cc55R1 PhysRevResearch.5.033028Cc15R1 PhysRevResearch.5.033028Cc17R1 PhysRevResearch.5.033028Cc38R1 PhysRevResearch.5.033028Cc59R1 PhysRevResearch.5.033028Cc1R1 PhysRevResearch.5.033028Cc3R1 PhysRevResearch.5.033028Cc5R1 PhysRevResearch.5.033028Cc7R1 PhysRevResearch.5.033028Cc9R1 PhysRevResearch.5.033028Cc60R1 PhysRevResearch.5.033028Cc85R1 PhysRevResearch.5.033028Cc87R1 PhysRevResearch.5.033028Cc43R1 PhysRevResearch.5.033028Cc64R1 PhysRevResearch.5.033028Cc81R1 PhysRevResearch.5.033028Cc20R1 PhysRevResearch.5.033028Cc41R1 PhysRevResearch.5.033028Cc62R1 PhysRevResearch.5.033028Cc83R1 PhysRevResearch.5.033028Cc23R1 PhysRevResearch.5.033028Cc46R1 PhysRevResearch.5.033028Cc69R1 PhysRevResearch.5.033028Cc25R1 PhysRevResearch.5.033028Cc44R1 PhysRevResearch.5.033028Cc67R1 PhysRevResearch.5.033028Cc27R1 PhysRevResearch.5.033028Cc88R1 PhysRevResearch.5.033028Cc29R1 PhysRevResearch.5.033028Cc48R1 PhysRevResearch.5.033028Cc72R1 PhysRevResearch.5.033028Cc95R1 PhysRevResearch.5.033028Cc70R1 Y. Larkin (PhysRevResearch.5.033028Cc19R1) 1965; 20 PhysRevResearch.5.033028Cc53R1 PhysRevResearch.5.033028Cc76R1 PhysRevResearch.5.033028Cc91R1 PhysRevResearch.5.033028Cc32R1 PhysRevResearch.5.033028Cc51R1 PhysRevResearch.5.033028Cc74R1 PhysRevResearch.5.033028Cc93R1 PhysRevResearch.5.033028Cc30R1 PhysRevResearch.5.033028Cc12R1 PhysRevResearch.5.033028Cc35R1 PhysRevResearch.5.033028Cc58R1 PhysRevResearch.5.033028Cc79R1 PhysRevResearch.5.033028Cc14R1 PhysRevResearch.5.033028Cc33R1 PhysRevResearch.5.033028Cc56R1 PhysRevResearch.5.033028Cc77R1 PhysRevResearch.5.033028Cc16R1 PhysRevResearch.5.033028Cc39R1 PhysRevResearch.5.033028Cc18R1 PhysRevResearch.5.033028Cc2R1 PhysRevResearch.5.033028Cc4R1 PhysRevResearch.5.033028Cc6R1 PhysRevResearch.5.033028Cc8R1 PhysRevResearch.5.033028Cc61R1 PhysRevResearch.5.033028Cc84R1 PhysRevResearch.5.033028Cc86R1 PhysRevResearch.5.033028Cc42R1 PhysRevResearch.5.033028Cc65R1 PhysRevResearch.5.033028Cc21R1 PhysRevResearch.5.033028Cc40R1 PhysRevResearch.5.033028Cc63R1 PhysRevResearch.5.033028Cc82R1 PhysRevResearch.5.033028Cc22R1 PhysRevResearch.5.033028Cc47R1 PhysRevResearch.5.033028Cc68R1 PhysRevResearch.5.033028Cc24R1 PhysRevResearch.5.033028Cc45R1 PhysRevResearch.5.033028Cc66R1 W.-L. Tu (PhysRevResearch.5.033028Cc94R1) 2019 PhysRevResearch.5.033028Cc26R1 PhysRevResearch.5.033028Cc89R1 PhysRevResearch.5.033028Cc28R1 PhysRevResearch.5.033028Cc49R1 PhysRevResearch.5.033028Cc90R1 PhysRevResearch.5.033028Cc50R1 PhysRevResearch.5.033028Cc71R1 PhysRevResearch.5.033028Cc96R1 PhysRevResearch.5.033028Cc31R1 PhysRevResearch.5.033028Cc54R1 PhysRevResearch.5.033028Cc75R1 PhysRevResearch.5.033028Cc92R1 PhysRevResearch.5.033028Cc10R1 PhysRevResearch.5.033028Cc52R1 PhysRevResearch.5.033028Cc73R1 |
References_xml | – ident: PhysRevResearch.5.033028Cc14R1 doi: 10.1038/ncomms3113 – ident: PhysRevResearch.5.033028Cc29R1 doi: 10.1126/science.1066974 – ident: PhysRevResearch.5.033028Cc71R1 doi: 10.1002/nla.779 – ident: PhysRevResearch.5.033028Cc88R1 doi: 10.1038/nature17411 – ident: PhysRevResearch.5.033028Cc65R1 doi: 10.1073/pnas.2207449119 – ident: PhysRevResearch.5.033028Cc11R1 doi: 10.1103/PhysRevB.90.054513 – ident: PhysRevResearch.5.033028Cc67R1 doi: 10.1103/PhysRevLett.105.167006 – ident: PhysRevResearch.5.033028Cc12R1 doi: 10.1103/PhysRevB.96.134510 – ident: PhysRevResearch.5.033028Cc52R1 doi: 10.1103/PhysRevB.84.184511 – ident: PhysRevResearch.5.033028Cc90R1 doi: 10.1126/science.aan3438 – ident: PhysRevResearch.5.033028Cc76R1 doi: 10.1103/PhysRevLett.114.217002 – ident: PhysRevResearch.5.033028Cc38R1 doi: 10.1103/PhysRevLett.87.147002 – ident: PhysRevResearch.5.033028Cc23R1 doi: 10.1038/nphys1389 – ident: PhysRevResearch.5.033028Cc91R1 doi: 10.1103/PhysRevB.76.140505 – ident: PhysRevResearch.5.033028Cc70R1 doi: 10.1142/S0129183194000842 – ident: PhysRevResearch.5.033028Cc57R1 doi: 10.1143/JPSJ.72.374 – ident: PhysRevResearch.5.033028Cc75R1 doi: 10.1103/PhysRevB.90.134520 – ident: PhysRevResearch.5.033028Cc17R1 doi: 10.1146/annurev-conmatphys-031119-050711 – ident: PhysRevResearch.5.033028Cc27R1 doi: 10.1038/s41586-020-2143-x – ident: PhysRevResearch.5.033028Cc63R1 doi: 10.1063/1.5017741 – ident: PhysRevResearch.5.033028Cc89R1 doi: 10.1073/pnas.1803009115 – ident: PhysRevResearch.5.033028Cc30R1 doi: 10.1143/JPSJ.72.2153 – ident: PhysRevResearch.5.033028Cc82R1 doi: 10.1126/science.1056986 – ident: PhysRevResearch.5.033028Cc96R1 doi: 10.1103/PhysRev.133.A1038 – ident: PhysRevResearch.5.033028Cc3R1 doi: 10.1103/PhysRevB.41.846 – ident: PhysRevResearch.5.033028Cc4R1 doi: 10.1038/nphys1109 – ident: PhysRevResearch.5.033028Cc85R1 doi: 10.1103/PhysRevB.67.220503 – ident: PhysRevResearch.5.033028Cc42R1 doi: 10.1103/PhysRevB.97.174510 – ident: PhysRevResearch.5.033028Cc49R1 doi: 10.1103/PhysRevLett.113.046402 – ident: PhysRevResearch.5.033028Cc59R1 doi: 10.1073/pnas.2002429117 – ident: PhysRevResearch.5.033028Cc93R1 doi: 10.1103/PhysRevX.11.041038 – ident: PhysRevResearch.5.033028Cc61R1 doi: 10.1038/s41598-018-38288-7 – ident: PhysRevResearch.5.033028Cc53R1 doi: 10.1038/srep18675 – ident: PhysRevResearch.5.033028Cc33R1 doi: 10.1038/ncomms11747 – ident: PhysRevResearch.5.033028Cc68R1 doi: 10.1103/PhysRevB.85.092505 – ident: PhysRevResearch.5.033028Cc10R1 doi: 10.1126/science.1223532 – ident: PhysRevResearch.5.033028Cc44R1 doi: 10.1103/PhysRevLett.88.117001 – volume-title: Utilization of Renormalized Mean-Field Theory upon Novel Quantum Materials year: 2019 ident: PhysRevResearch.5.033028Cc94R1 – ident: PhysRevResearch.5.033028Cc36R1 doi: 10.1103/PhysRevLett.80.4763 – ident: PhysRevResearch.5.033028Cc55R1 doi: 10.1103/PhysRevLett.10.159 – ident: PhysRevResearch.5.033028Cc77R1 doi: 10.1038/nphys917 – ident: PhysRevResearch.5.033028Cc86R1 doi: 10.1126/science.1198415 – ident: PhysRevResearch.5.033028Cc15R1 doi: 10.1073/pnas.1711445114 – ident: PhysRevResearch.5.033028Cc16R1 doi: 10.1038/nphys2456 – ident: PhysRevResearch.5.033028Cc64R1 doi: 10.1103/RevModPhys.78.275 – ident: PhysRevResearch.5.033028Cc7R1 doi: 10.1103/RevModPhys.75.1201 – ident: PhysRevResearch.5.033028Cc69R1 doi: 10.1103/PhysRevB.94.184510 – ident: PhysRevResearch.5.033028Cc47R1 doi: 10.1103/PhysRevB.98.140505 – ident: PhysRevResearch.5.033028Cc35R1 doi: 10.1103/PhysRevB.52.R3876 – ident: PhysRevResearch.5.033028Cc41R1 doi: 10.1103/PhysRevB.97.174511 – ident: PhysRevResearch.5.033028Cc31R1 doi: 10.1143/JPSJ.76.063704 – ident: PhysRevResearch.5.033028Cc83R1 doi: 10.1038/415299a – ident: PhysRevResearch.5.033028Cc18R1 doi: 10.1103/PhysRev.135.A550 – ident: PhysRevResearch.5.033028Cc54R1 doi: 10.1103/PhysRevB.98.104206 – ident: PhysRevResearch.5.033028Cc58R1 doi: 10.1088/1367-2630/19/1/013028 – ident: PhysRevResearch.5.033028Cc46R1 doi: 10.1103/PhysRevB.95.155116 – ident: PhysRevResearch.5.033028Cc60R1 doi: 10.1038/s41467-021-26028-x – ident: PhysRevResearch.5.033028Cc74R1 doi: 10.1088/1367-2630/12/5/053043 – ident: PhysRevResearch.5.033028Cc87R1 doi: 10.1038/nphys3009 – ident: PhysRevResearch.5.033028Cc73R1 doi: 10.1103/PhysRevLett.89.067003 – ident: PhysRevResearch.5.033028Cc92R1 doi: 10.1103/PhysRevLett.99.206401 – ident: PhysRevResearch.5.033028Cc66R1 doi: 10.1103/PhysRevB.88.235101 – ident: PhysRevResearch.5.033028Cc21R1 doi: 10.1103/PhysRevB.79.064515 – ident: PhysRevResearch.5.033028Cc84R1 doi: 10.1103/PhysRevB.106.054522 – ident: PhysRevResearch.5.033028Cc20R1 doi: 10.1103/PhysRevLett.93.187002 – ident: PhysRevResearch.5.033028Cc45R1 doi: 10.1103/PhysRevLett.105.146403 – ident: PhysRevResearch.5.033028Cc51R1 doi: 10.1088/1367-2630/11/5/055053 – ident: PhysRevResearch.5.033028Cc95R1 doi: 10.1103/PhysRev.115.1460 – ident: PhysRevResearch.5.033028Cc22R1 doi: 10.1103/PhysRevX.4.031017 – ident: PhysRevResearch.5.033028Cc34R1 doi: 10.1126/science.aat1773 – ident: PhysRevResearch.5.033028Cc39R1 doi: 10.1103/PhysRevLett.88.257005 – ident: PhysRevResearch.5.033028Cc9R1 doi: 10.1103/PhysRevLett.110.137004 – ident: PhysRevResearch.5.033028Cc13R1 doi: 10.1038/nature10345 – ident: PhysRevResearch.5.033028Cc50R1 doi: 10.1038/nphys1026 – ident: PhysRevResearch.5.033028Cc6R1 doi: 10.1038/375561a0 – ident: PhysRevResearch.5.033028Cc48R1 doi: 10.1126/science.aam7127 – ident: PhysRevResearch.5.033028Cc81R1 doi: 10.1103/PhysRevB.96.174523 – ident: PhysRevResearch.5.033028Cc25R1 doi: 10.1103/PhysRevB.78.174529 – ident: PhysRevResearch.5.033028Cc72R1 doi: 10.1016/j.parco.2009.12.005 – ident: PhysRevResearch.5.033028Cc24R1 doi: 10.1103/PhysRevLett.99.067001 – ident: PhysRevResearch.5.033028Cc32R1 doi: 10.1126/science.1166138 – ident: PhysRevResearch.5.033028Cc40R1 doi: 10.1103/PhysRevX.11.031040 – ident: PhysRevResearch.5.033028Cc43R1 doi: 10.1103/PhysRevLett.107.187001 – ident: PhysRevResearch.5.033028Cc2R1 doi: 10.1103/RevModPhys.87.457 – ident: PhysRevResearch.5.033028Cc26R1 doi: 10.1103/PhysRevLett.99.127003 – ident: PhysRevResearch.5.033028Cc8R1 doi: 10.1146/annurev-conmatphys-031115-011401 – ident: PhysRevResearch.5.033028Cc62R1 doi: 10.1103/PhysRevB.68.012509 – ident: PhysRevResearch.5.033028Cc1R1 doi: 10.1038/nature14165 – ident: PhysRevResearch.5.033028Cc79R1 doi: 10.1103/PhysRevB.73.224513 – volume: 20 start-page: 762 year: 1965 ident: PhysRevResearch.5.033028Cc19R1 publication-title: Sov. Phys. JETP. – ident: PhysRevResearch.5.033028Cc28R1 doi: 10.1103/PhysRevB.91.104512 – ident: PhysRevResearch.5.033028Cc56R1 doi: 10.1103/PhysRevB.60.R9935 – ident: PhysRevResearch.5.033028Cc5R1 doi: 10.1103/RevModPhys.92.031001 |
SSID | ssj0002511485 |
Score | 2.2840855 |
Snippet | We present a comprehensive study of vortex structures in d-wave superconductors from large-scale renormalized mean-field theory of the square-lattice t-t^{′}-J... |
SourceID | doaj osti crossref |
SourceType | Open Website Open Access Repository Enrichment Source Index Database |
StartPage | 033028 |
Title | Intertwined orders and electronic structure in superconducting vortex halos |
URI | https://www.osti.gov/biblio/1989745 https://doaj.org/article/a682a8cf35074bda984225ecc52a416f |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4iCF7EnzinkoPXbm2TLO1RZWMo8yAOdgtJmqAwurF205N_u--12yxe9OClhdLQ8vKa933t1-8RcoPedmkibADFQwSc-Sww3roAwDFPtYucSfDf4dFTbzjmDxMxabT6Qk1YbQ9cB66re0msE-sZABduMp0mHFIQLixiDWDC4-oLNa9BpnANRuDME7GR7oSsi4LKZ7fa6Nk6ohMClccm7I16VNn2w24Gj1ejzAwOycEaH9Lb-r6OyI7Lj8lepdO0xQl5rN7gle-ADTNa2WYWVOcZ_e5mQ2tH2OXC0becFsu5WwDlRVdXKFJ0hdraD_qqp7PilIwH_Zf7YbDuhxBYYHllEEvBs9DLVGYsMZIDt_HepJ45HzqrDURHajhsAIMmsQ2ZtMbEWSTx06kQkp2R3XyWu3NCWeiYBuoF4MDzHvc61ZHpWYt9i4AyihaRm6gouzYLx54VU1WRhpCpH_FUQtXxbJFoO3JeG2b8YcwdBn57PlpeVwcgEdQ6EdRvidAibZw2BcgB7W8t6oRsqVATJrm4-I9LtMk-dpuv1bqXZBfm010BJinNdZV-sB199r8AcPDjEw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intertwined+orders+and+electronic+structure+in+superconducting+vortex+halos&rft.jtitle=Physical+review+research&rft.au=Liu%2C+Yi-Hsuan&rft.au=Tu%2C+Wei-Lin&rft.au=Chern%2C+Gia-Wei&rft.au=Lee%2C+Ting-Kuo&rft.date=2023-07-01&rft.pub=American+Physical+Society&rft.issn=2643-1564&rft.eissn=2643-1564&rft.volume=5&rft.issue=3&rft_id=info:doi/10.1103%2FPhysRevResearch.5.033028&rft.externalDocID=1989745 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2643-1564&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2643-1564&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2643-1564&client=summon |