Intertwined orders and electronic structure in superconducting vortex halos

We present a comprehensive study of vortex structures in d-wave superconductors from large-scale renormalized mean-field theory of the square-lattice t-t^{′}-J model, which has been shown to provide a quantitative modeling for high-T_{c} cuprate superconductors. With an efficient implementation of t...

Full description

Saved in:
Bibliographic Details
Published inPhysical review research Vol. 5; no. 3; p. 033028
Main Authors Liu, Yi-Hsuan, Tu, Wei-Lin, Chern, Gia-Wei, Lee, Ting-Kuo
Format Journal Article
LanguageEnglish
Published United States American Physical Society 01.07.2023
Online AccessGet full text

Cover

Loading…
Abstract We present a comprehensive study of vortex structures in d-wave superconductors from large-scale renormalized mean-field theory of the square-lattice t-t^{′}-J model, which has been shown to provide a quantitative modeling for high-T_{c} cuprate superconductors. With an efficient implementation of the kernel polynomial method for solving electronic structures, self-consistent calculations involving up to 10^{5} variational parameters are performed to investigate the vortex solutions on lattices of up to 10^{4} sites. By taking into account the strong correlation of the model, our calculations shed new light on two puzzling results that have emerged from recent scanning tunneling microscopy experiments. The first concerns the issue of the zero-biased-conductance peak (ZBCP) at the vortex core for a uniform d-wave superconducting state. Despite its theoretical prediction, the ZBCP was not observed in most doping range of cuprates except in heavily over-doped samples at low magnetic field. The second issue is the nature of the checkerboard charge-density waves (CDWs) with a period of about eight unit cells in the vortex halo at optimal doping. Although it has been suggested that such bipartite structure arises from low-energy quasiparticle interference, another intriguing scenario posits that the checkerboard CDWs originate from an underlying bidirectional pair-density wave (PDW) ordering with the same period. We present a coherent interpretation of these experimental results based on systematic studies of the doping and magnetic-field effects on vortex solutions with and without a checkerboard structure. Due to the small size of Cooper pairs, the vortex core has a radius of about three unit cells, which results in a strong spatial dependence on pairing fields. This may be an important mechanism for the formation of PDW states inside the vortex core.
AbstractList We present a comprehensive study of vortex structures in d-wave superconductors from large-scale renormalized mean-field theory of the square-lattice t-t^{′}-J model, which has been shown to provide a quantitative modeling for high-T_{c} cuprate superconductors. With an efficient implementation of the kernel polynomial method for solving electronic structures, self-consistent calculations involving up to 10^{5} variational parameters are performed to investigate the vortex solutions on lattices of up to 10^{4} sites. By taking into account the strong correlation of the model, our calculations shed new light on two puzzling results that have emerged from recent scanning tunneling microscopy experiments. The first concerns the issue of the zero-biased-conductance peak (ZBCP) at the vortex core for a uniform d-wave superconducting state. Despite its theoretical prediction, the ZBCP was not observed in most doping range of cuprates except in heavily over-doped samples at low magnetic field. The second issue is the nature of the checkerboard charge-density waves (CDWs) with a period of about eight unit cells in the vortex halo at optimal doping. Although it has been suggested that such bipartite structure arises from low-energy quasiparticle interference, another intriguing scenario posits that the checkerboard CDWs originate from an underlying bidirectional pair-density wave (PDW) ordering with the same period. We present a coherent interpretation of these experimental results based on systematic studies of the doping and magnetic-field effects on vortex solutions with and without a checkerboard structure. Due to the small size of Cooper pairs, the vortex core has a radius of about three unit cells, which results in a strong spatial dependence on pairing fields. This may be an important mechanism for the formation of PDW states inside the vortex core.
ArticleNumber 033028
Author Tu, Wei-Lin
Chern, Gia-Wei
Liu, Yi-Hsuan
Lee, Ting-Kuo
Author_xml – sequence: 1
  givenname: Yi-Hsuan
  surname: Liu
  fullname: Liu, Yi-Hsuan
– sequence: 2
  givenname: Wei-Lin
  orcidid: 0000-0002-3340-4963
  surname: Tu
  fullname: Tu, Wei-Lin
– sequence: 3
  givenname: Gia-Wei
  surname: Chern
  fullname: Chern, Gia-Wei
– sequence: 4
  givenname: Ting-Kuo
  orcidid: 0000-0001-6947-4253
  surname: Lee
  fullname: Lee, Ting-Kuo
BackLink https://www.osti.gov/biblio/1989745$$D View this record in Osti.gov
BookMark eNqFkV9LXDEQxYNYqFq_Q_B91_y9yX0pFNG6KFikfQ65ycSNXBNJstr99o2ugvjSpxkOZ37M4Ryi_ZQTIIQpWVJK-Omv9bbewtMtVLDFrZdySTgnTO-hAzYIvqByEPsf9q_ouNZ7QgiTlAotD9DVKjUo7Tkm8DgXD6VimzyGGVwrOUWHaysb1zYFcEy4bh6huJx8l2K6w0-5NPiL13bO9Rv6Euxc4fhtHqE_F-e_zy4X1zc_V2c_rhdOENYWTEnhSVCj8lxPSohRhjCNgUMg4Ow0eatslydNvWaOcOWmiXmqBjkyKRU_Qqsd12d7bx5LfLBla7KN5lXI5c7Y0qKbwdhBM6td4JIo0cGjFoxJcE4yK-gQOutkx8q1RVNdbODWPV_q8Q0d9aiE7KbvO5MrudYCwXSfbTGnVmycDSXmpQ7zqQ4jza6ODtCfAO9f__f0H2oSmTI
CitedBy_id crossref_primary_10_1103_PhysRevResearch_6_043112
crossref_primary_10_1103_PhysRevB_110_235120
crossref_primary_10_1088_1361_648X_ad3709
Cites_doi 10.1038/ncomms3113
10.1126/science.1066974
10.1002/nla.779
10.1038/nature17411
10.1073/pnas.2207449119
10.1103/PhysRevB.90.054513
10.1103/PhysRevLett.105.167006
10.1103/PhysRevB.96.134510
10.1103/PhysRevB.84.184511
10.1126/science.aan3438
10.1103/PhysRevLett.114.217002
10.1103/PhysRevLett.87.147002
10.1038/nphys1389
10.1103/PhysRevB.76.140505
10.1142/S0129183194000842
10.1143/JPSJ.72.374
10.1103/PhysRevB.90.134520
10.1146/annurev-conmatphys-031119-050711
10.1038/s41586-020-2143-x
10.1063/1.5017741
10.1073/pnas.1803009115
10.1143/JPSJ.72.2153
10.1126/science.1056986
10.1103/PhysRev.133.A1038
10.1103/PhysRevB.41.846
10.1038/nphys1109
10.1103/PhysRevB.67.220503
10.1103/PhysRevB.97.174510
10.1103/PhysRevLett.113.046402
10.1073/pnas.2002429117
10.1103/PhysRevX.11.041038
10.1038/s41598-018-38288-7
10.1038/srep18675
10.1038/ncomms11747
10.1103/PhysRevB.85.092505
10.1126/science.1223532
10.1103/PhysRevLett.88.117001
10.1103/PhysRevLett.80.4763
10.1103/PhysRevLett.10.159
10.1038/nphys917
10.1126/science.1198415
10.1073/pnas.1711445114
10.1038/nphys2456
10.1103/RevModPhys.78.275
10.1103/RevModPhys.75.1201
10.1103/PhysRevB.94.184510
10.1103/PhysRevB.98.140505
10.1103/PhysRevB.52.R3876
10.1103/PhysRevB.97.174511
10.1143/JPSJ.76.063704
10.1038/415299a
10.1103/PhysRev.135.A550
10.1103/PhysRevB.98.104206
10.1088/1367-2630/19/1/013028
10.1103/PhysRevB.95.155116
10.1038/s41467-021-26028-x
10.1088/1367-2630/12/5/053043
10.1038/nphys3009
10.1103/PhysRevLett.89.067003
10.1103/PhysRevLett.99.206401
10.1103/PhysRevB.88.235101
10.1103/PhysRevB.79.064515
10.1103/PhysRevB.106.054522
10.1103/PhysRevLett.93.187002
10.1103/PhysRevLett.105.146403
10.1088/1367-2630/11/5/055053
10.1103/PhysRev.115.1460
10.1103/PhysRevX.4.031017
10.1126/science.aat1773
10.1103/PhysRevLett.88.257005
10.1103/PhysRevLett.110.137004
10.1038/nature10345
10.1038/nphys1026
10.1038/375561a0
10.1126/science.aam7127
10.1103/PhysRevB.96.174523
10.1103/PhysRevB.78.174529
10.1016/j.parco.2009.12.005
10.1103/PhysRevLett.99.067001
10.1126/science.1166138
10.1103/PhysRevX.11.031040
10.1103/PhysRevLett.107.187001
10.1103/RevModPhys.87.457
10.1103/PhysRevLett.99.127003
10.1146/annurev-conmatphys-031115-011401
10.1103/PhysRevB.68.012509
10.1038/nature14165
10.1103/PhysRevB.73.224513
10.1103/PhysRevB.91.104512
10.1103/PhysRevB.60.R9935
10.1103/RevModPhys.92.031001
ContentType Journal Article
DBID AAYXX
CITATION
OTOTI
DOA
DOI 10.1103/PhysRevResearch.5.033028
DatabaseName CrossRef
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2643-1564
ExternalDocumentID oai_doaj_org_article_a682a8cf35074bda984225ecc52a416f
1989745
10_1103_PhysRevResearch_5_033028
GroupedDBID 3MX
AAYXX
AFGMR
AGDNE
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ROL
ABCKA
OTOTI
ID FETCH-LOGICAL-c402t-2754d0f797d38b74495ffb9f3ef0ecabbda7a744b81d82c037cbb2d1765925573
IEDL.DBID DOA
ISSN 2643-1564
IngestDate Wed Aug 27 01:16:43 EDT 2025
Mon Jul 24 03:56:57 EDT 2023
Tue Jul 01 02:05:59 EDT 2025
Thu Apr 24 23:05:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-2754d0f797d38b74495ffb9f3ef0ecabbda7a744b81d82c037cbb2d1765925573
Notes USDOE Office of Science (SC), Basic Energy Sciences (BES)
ORCID 0000-0001-6947-4253
0000-0002-3340-4963
0000000169474253
0000000233404963
OpenAccessLink https://doaj.org/article/a682a8cf35074bda984225ecc52a416f
ParticipantIDs doaj_primary_oai_doaj_org_article_a682a8cf35074bda984225ecc52a416f
osti_scitechconnect_1989745
crossref_citationtrail_10_1103_PhysRevResearch_5_033028
crossref_primary_10_1103_PhysRevResearch_5_033028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review research
PublicationYear 2023
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevResearch.5.033028Cc11R1
PhysRevResearch.5.033028Cc36R1
PhysRevResearch.5.033028Cc57R1
PhysRevResearch.5.033028Cc13R1
PhysRevResearch.5.033028Cc34R1
PhysRevResearch.5.033028Cc55R1
PhysRevResearch.5.033028Cc15R1
PhysRevResearch.5.033028Cc17R1
PhysRevResearch.5.033028Cc38R1
PhysRevResearch.5.033028Cc59R1
PhysRevResearch.5.033028Cc1R1
PhysRevResearch.5.033028Cc3R1
PhysRevResearch.5.033028Cc5R1
PhysRevResearch.5.033028Cc7R1
PhysRevResearch.5.033028Cc9R1
PhysRevResearch.5.033028Cc60R1
PhysRevResearch.5.033028Cc85R1
PhysRevResearch.5.033028Cc87R1
PhysRevResearch.5.033028Cc43R1
PhysRevResearch.5.033028Cc64R1
PhysRevResearch.5.033028Cc81R1
PhysRevResearch.5.033028Cc20R1
PhysRevResearch.5.033028Cc41R1
PhysRevResearch.5.033028Cc62R1
PhysRevResearch.5.033028Cc83R1
PhysRevResearch.5.033028Cc23R1
PhysRevResearch.5.033028Cc46R1
PhysRevResearch.5.033028Cc69R1
PhysRevResearch.5.033028Cc25R1
PhysRevResearch.5.033028Cc44R1
PhysRevResearch.5.033028Cc67R1
PhysRevResearch.5.033028Cc27R1
PhysRevResearch.5.033028Cc88R1
PhysRevResearch.5.033028Cc29R1
PhysRevResearch.5.033028Cc48R1
PhysRevResearch.5.033028Cc72R1
PhysRevResearch.5.033028Cc95R1
PhysRevResearch.5.033028Cc70R1
Y. Larkin (PhysRevResearch.5.033028Cc19R1) 1965; 20
PhysRevResearch.5.033028Cc53R1
PhysRevResearch.5.033028Cc76R1
PhysRevResearch.5.033028Cc91R1
PhysRevResearch.5.033028Cc32R1
PhysRevResearch.5.033028Cc51R1
PhysRevResearch.5.033028Cc74R1
PhysRevResearch.5.033028Cc93R1
PhysRevResearch.5.033028Cc30R1
PhysRevResearch.5.033028Cc12R1
PhysRevResearch.5.033028Cc35R1
PhysRevResearch.5.033028Cc58R1
PhysRevResearch.5.033028Cc79R1
PhysRevResearch.5.033028Cc14R1
PhysRevResearch.5.033028Cc33R1
PhysRevResearch.5.033028Cc56R1
PhysRevResearch.5.033028Cc77R1
PhysRevResearch.5.033028Cc16R1
PhysRevResearch.5.033028Cc39R1
PhysRevResearch.5.033028Cc18R1
PhysRevResearch.5.033028Cc2R1
PhysRevResearch.5.033028Cc4R1
PhysRevResearch.5.033028Cc6R1
PhysRevResearch.5.033028Cc8R1
PhysRevResearch.5.033028Cc61R1
PhysRevResearch.5.033028Cc84R1
PhysRevResearch.5.033028Cc86R1
PhysRevResearch.5.033028Cc42R1
PhysRevResearch.5.033028Cc65R1
PhysRevResearch.5.033028Cc21R1
PhysRevResearch.5.033028Cc40R1
PhysRevResearch.5.033028Cc63R1
PhysRevResearch.5.033028Cc82R1
PhysRevResearch.5.033028Cc22R1
PhysRevResearch.5.033028Cc47R1
PhysRevResearch.5.033028Cc68R1
PhysRevResearch.5.033028Cc24R1
PhysRevResearch.5.033028Cc45R1
PhysRevResearch.5.033028Cc66R1
W.-L. Tu (PhysRevResearch.5.033028Cc94R1) 2019
PhysRevResearch.5.033028Cc26R1
PhysRevResearch.5.033028Cc89R1
PhysRevResearch.5.033028Cc28R1
PhysRevResearch.5.033028Cc49R1
PhysRevResearch.5.033028Cc90R1
PhysRevResearch.5.033028Cc50R1
PhysRevResearch.5.033028Cc71R1
PhysRevResearch.5.033028Cc96R1
PhysRevResearch.5.033028Cc31R1
PhysRevResearch.5.033028Cc54R1
PhysRevResearch.5.033028Cc75R1
PhysRevResearch.5.033028Cc92R1
PhysRevResearch.5.033028Cc10R1
PhysRevResearch.5.033028Cc52R1
PhysRevResearch.5.033028Cc73R1
References_xml – ident: PhysRevResearch.5.033028Cc14R1
  doi: 10.1038/ncomms3113
– ident: PhysRevResearch.5.033028Cc29R1
  doi: 10.1126/science.1066974
– ident: PhysRevResearch.5.033028Cc71R1
  doi: 10.1002/nla.779
– ident: PhysRevResearch.5.033028Cc88R1
  doi: 10.1038/nature17411
– ident: PhysRevResearch.5.033028Cc65R1
  doi: 10.1073/pnas.2207449119
– ident: PhysRevResearch.5.033028Cc11R1
  doi: 10.1103/PhysRevB.90.054513
– ident: PhysRevResearch.5.033028Cc67R1
  doi: 10.1103/PhysRevLett.105.167006
– ident: PhysRevResearch.5.033028Cc12R1
  doi: 10.1103/PhysRevB.96.134510
– ident: PhysRevResearch.5.033028Cc52R1
  doi: 10.1103/PhysRevB.84.184511
– ident: PhysRevResearch.5.033028Cc90R1
  doi: 10.1126/science.aan3438
– ident: PhysRevResearch.5.033028Cc76R1
  doi: 10.1103/PhysRevLett.114.217002
– ident: PhysRevResearch.5.033028Cc38R1
  doi: 10.1103/PhysRevLett.87.147002
– ident: PhysRevResearch.5.033028Cc23R1
  doi: 10.1038/nphys1389
– ident: PhysRevResearch.5.033028Cc91R1
  doi: 10.1103/PhysRevB.76.140505
– ident: PhysRevResearch.5.033028Cc70R1
  doi: 10.1142/S0129183194000842
– ident: PhysRevResearch.5.033028Cc57R1
  doi: 10.1143/JPSJ.72.374
– ident: PhysRevResearch.5.033028Cc75R1
  doi: 10.1103/PhysRevB.90.134520
– ident: PhysRevResearch.5.033028Cc17R1
  doi: 10.1146/annurev-conmatphys-031119-050711
– ident: PhysRevResearch.5.033028Cc27R1
  doi: 10.1038/s41586-020-2143-x
– ident: PhysRevResearch.5.033028Cc63R1
  doi: 10.1063/1.5017741
– ident: PhysRevResearch.5.033028Cc89R1
  doi: 10.1073/pnas.1803009115
– ident: PhysRevResearch.5.033028Cc30R1
  doi: 10.1143/JPSJ.72.2153
– ident: PhysRevResearch.5.033028Cc82R1
  doi: 10.1126/science.1056986
– ident: PhysRevResearch.5.033028Cc96R1
  doi: 10.1103/PhysRev.133.A1038
– ident: PhysRevResearch.5.033028Cc3R1
  doi: 10.1103/PhysRevB.41.846
– ident: PhysRevResearch.5.033028Cc4R1
  doi: 10.1038/nphys1109
– ident: PhysRevResearch.5.033028Cc85R1
  doi: 10.1103/PhysRevB.67.220503
– ident: PhysRevResearch.5.033028Cc42R1
  doi: 10.1103/PhysRevB.97.174510
– ident: PhysRevResearch.5.033028Cc49R1
  doi: 10.1103/PhysRevLett.113.046402
– ident: PhysRevResearch.5.033028Cc59R1
  doi: 10.1073/pnas.2002429117
– ident: PhysRevResearch.5.033028Cc93R1
  doi: 10.1103/PhysRevX.11.041038
– ident: PhysRevResearch.5.033028Cc61R1
  doi: 10.1038/s41598-018-38288-7
– ident: PhysRevResearch.5.033028Cc53R1
  doi: 10.1038/srep18675
– ident: PhysRevResearch.5.033028Cc33R1
  doi: 10.1038/ncomms11747
– ident: PhysRevResearch.5.033028Cc68R1
  doi: 10.1103/PhysRevB.85.092505
– ident: PhysRevResearch.5.033028Cc10R1
  doi: 10.1126/science.1223532
– ident: PhysRevResearch.5.033028Cc44R1
  doi: 10.1103/PhysRevLett.88.117001
– volume-title: Utilization of Renormalized Mean-Field Theory upon Novel Quantum Materials
  year: 2019
  ident: PhysRevResearch.5.033028Cc94R1
– ident: PhysRevResearch.5.033028Cc36R1
  doi: 10.1103/PhysRevLett.80.4763
– ident: PhysRevResearch.5.033028Cc55R1
  doi: 10.1103/PhysRevLett.10.159
– ident: PhysRevResearch.5.033028Cc77R1
  doi: 10.1038/nphys917
– ident: PhysRevResearch.5.033028Cc86R1
  doi: 10.1126/science.1198415
– ident: PhysRevResearch.5.033028Cc15R1
  doi: 10.1073/pnas.1711445114
– ident: PhysRevResearch.5.033028Cc16R1
  doi: 10.1038/nphys2456
– ident: PhysRevResearch.5.033028Cc64R1
  doi: 10.1103/RevModPhys.78.275
– ident: PhysRevResearch.5.033028Cc7R1
  doi: 10.1103/RevModPhys.75.1201
– ident: PhysRevResearch.5.033028Cc69R1
  doi: 10.1103/PhysRevB.94.184510
– ident: PhysRevResearch.5.033028Cc47R1
  doi: 10.1103/PhysRevB.98.140505
– ident: PhysRevResearch.5.033028Cc35R1
  doi: 10.1103/PhysRevB.52.R3876
– ident: PhysRevResearch.5.033028Cc41R1
  doi: 10.1103/PhysRevB.97.174511
– ident: PhysRevResearch.5.033028Cc31R1
  doi: 10.1143/JPSJ.76.063704
– ident: PhysRevResearch.5.033028Cc83R1
  doi: 10.1038/415299a
– ident: PhysRevResearch.5.033028Cc18R1
  doi: 10.1103/PhysRev.135.A550
– ident: PhysRevResearch.5.033028Cc54R1
  doi: 10.1103/PhysRevB.98.104206
– ident: PhysRevResearch.5.033028Cc58R1
  doi: 10.1088/1367-2630/19/1/013028
– ident: PhysRevResearch.5.033028Cc46R1
  doi: 10.1103/PhysRevB.95.155116
– ident: PhysRevResearch.5.033028Cc60R1
  doi: 10.1038/s41467-021-26028-x
– ident: PhysRevResearch.5.033028Cc74R1
  doi: 10.1088/1367-2630/12/5/053043
– ident: PhysRevResearch.5.033028Cc87R1
  doi: 10.1038/nphys3009
– ident: PhysRevResearch.5.033028Cc73R1
  doi: 10.1103/PhysRevLett.89.067003
– ident: PhysRevResearch.5.033028Cc92R1
  doi: 10.1103/PhysRevLett.99.206401
– ident: PhysRevResearch.5.033028Cc66R1
  doi: 10.1103/PhysRevB.88.235101
– ident: PhysRevResearch.5.033028Cc21R1
  doi: 10.1103/PhysRevB.79.064515
– ident: PhysRevResearch.5.033028Cc84R1
  doi: 10.1103/PhysRevB.106.054522
– ident: PhysRevResearch.5.033028Cc20R1
  doi: 10.1103/PhysRevLett.93.187002
– ident: PhysRevResearch.5.033028Cc45R1
  doi: 10.1103/PhysRevLett.105.146403
– ident: PhysRevResearch.5.033028Cc51R1
  doi: 10.1088/1367-2630/11/5/055053
– ident: PhysRevResearch.5.033028Cc95R1
  doi: 10.1103/PhysRev.115.1460
– ident: PhysRevResearch.5.033028Cc22R1
  doi: 10.1103/PhysRevX.4.031017
– ident: PhysRevResearch.5.033028Cc34R1
  doi: 10.1126/science.aat1773
– ident: PhysRevResearch.5.033028Cc39R1
  doi: 10.1103/PhysRevLett.88.257005
– ident: PhysRevResearch.5.033028Cc9R1
  doi: 10.1103/PhysRevLett.110.137004
– ident: PhysRevResearch.5.033028Cc13R1
  doi: 10.1038/nature10345
– ident: PhysRevResearch.5.033028Cc50R1
  doi: 10.1038/nphys1026
– ident: PhysRevResearch.5.033028Cc6R1
  doi: 10.1038/375561a0
– ident: PhysRevResearch.5.033028Cc48R1
  doi: 10.1126/science.aam7127
– ident: PhysRevResearch.5.033028Cc81R1
  doi: 10.1103/PhysRevB.96.174523
– ident: PhysRevResearch.5.033028Cc25R1
  doi: 10.1103/PhysRevB.78.174529
– ident: PhysRevResearch.5.033028Cc72R1
  doi: 10.1016/j.parco.2009.12.005
– ident: PhysRevResearch.5.033028Cc24R1
  doi: 10.1103/PhysRevLett.99.067001
– ident: PhysRevResearch.5.033028Cc32R1
  doi: 10.1126/science.1166138
– ident: PhysRevResearch.5.033028Cc40R1
  doi: 10.1103/PhysRevX.11.031040
– ident: PhysRevResearch.5.033028Cc43R1
  doi: 10.1103/PhysRevLett.107.187001
– ident: PhysRevResearch.5.033028Cc2R1
  doi: 10.1103/RevModPhys.87.457
– ident: PhysRevResearch.5.033028Cc26R1
  doi: 10.1103/PhysRevLett.99.127003
– ident: PhysRevResearch.5.033028Cc8R1
  doi: 10.1146/annurev-conmatphys-031115-011401
– ident: PhysRevResearch.5.033028Cc62R1
  doi: 10.1103/PhysRevB.68.012509
– ident: PhysRevResearch.5.033028Cc1R1
  doi: 10.1038/nature14165
– ident: PhysRevResearch.5.033028Cc79R1
  doi: 10.1103/PhysRevB.73.224513
– volume: 20
  start-page: 762
  year: 1965
  ident: PhysRevResearch.5.033028Cc19R1
  publication-title: Sov. Phys. JETP.
– ident: PhysRevResearch.5.033028Cc28R1
  doi: 10.1103/PhysRevB.91.104512
– ident: PhysRevResearch.5.033028Cc56R1
  doi: 10.1103/PhysRevB.60.R9935
– ident: PhysRevResearch.5.033028Cc5R1
  doi: 10.1103/RevModPhys.92.031001
SSID ssj0002511485
Score 2.2840855
Snippet We present a comprehensive study of vortex structures in d-wave superconductors from large-scale renormalized mean-field theory of the square-lattice t-t^{′}-J...
SourceID doaj
osti
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage 033028
Title Intertwined orders and electronic structure in superconducting vortex halos
URI https://www.osti.gov/biblio/1989745
https://doaj.org/article/a682a8cf35074bda984225ecc52a416f
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4iCF7EnzinkoPXbm2TLO1RZWMo8yAOdgtJmqAwurF205N_u--12yxe9OClhdLQ8vKa933t1-8RcoPedmkibADFQwSc-Sww3roAwDFPtYucSfDf4dFTbzjmDxMxabT6Qk1YbQ9cB66re0msE-sZABduMp0mHFIQLixiDWDC4-oLNa9BpnANRuDME7GR7oSsi4LKZ7fa6Nk6ohMClccm7I16VNn2w24Gj1ejzAwOycEaH9Lb-r6OyI7Lj8lepdO0xQl5rN7gle-ADTNa2WYWVOcZ_e5mQ2tH2OXC0becFsu5WwDlRVdXKFJ0hdraD_qqp7PilIwH_Zf7YbDuhxBYYHllEEvBs9DLVGYsMZIDt_HepJ45HzqrDURHajhsAIMmsQ2ZtMbEWSTx06kQkp2R3XyWu3NCWeiYBuoF4MDzHvc61ZHpWYt9i4AyihaRm6gouzYLx54VU1WRhpCpH_FUQtXxbJFoO3JeG2b8YcwdBn57PlpeVwcgEdQ6EdRvidAibZw2BcgB7W8t6oRsqVATJrm4-I9LtMk-dpuv1bqXZBfm010BJinNdZV-sB199r8AcPDjEw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intertwined+orders+and+electronic+structure+in+superconducting+vortex+halos&rft.jtitle=Physical+review+research&rft.au=Liu%2C+Yi-Hsuan&rft.au=Tu%2C+Wei-Lin&rft.au=Chern%2C+Gia-Wei&rft.au=Lee%2C+Ting-Kuo&rft.date=2023-07-01&rft.pub=American+Physical+Society&rft.issn=2643-1564&rft.eissn=2643-1564&rft.volume=5&rft.issue=3&rft_id=info:doi/10.1103%2FPhysRevResearch.5.033028&rft.externalDocID=1989745
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2643-1564&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2643-1564&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2643-1564&client=summon