A review of biomedical datasets relating to drug discovery: a knowledge graph perspective
Drug discovery and development is a complex and costly process. Machine learning approaches are being investigated to help improve the effectiveness and speed of multiple stages of the drug discovery pipeline. Of these, those that use Knowledge Graphs (KG) have promise in many tasks, including drug...
Saved in:
Published in | Briefings in bioinformatics Vol. 23; no. 6 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
19.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Drug discovery and development is a complex and costly process. Machine learning approaches are being investigated to help improve the effectiveness and speed of multiple stages of the drug discovery pipeline. Of these, those that use Knowledge Graphs (KG) have promise in many tasks, including drug repurposing, drug toxicity prediction and target gene–disease prioritization. In a drug discovery KG, crucial elements including genes, diseases and drugs are represented as entities, while relationships between them indicate an interaction. However, to construct high-quality KGs, suitable data are required. In this review, we detail publicly available sources suitable for use in constructing drug discovery focused KGs. We aim to help guide machine learning and KG practitioners who are interested in applying new techniques to the drug discovery field, but who may be unfamiliar with the relevant data sources. The datasets are selected via strict criteria, categorized according to the primary type of information contained within and are considered based upon what information could be extracted to build a KG. We then present a comparative analysis of existing public drug discovery KGs and an evaluation of selected motivating case studies from the literature. Additionally, we raise numerous and unique challenges and issues associated with the domain and its datasets, while also highlighting key future research directions. We hope this review will motivate KGs use in solving key and emerging questions in the drug discovery domain. |
---|---|
AbstractList | Drug discovery and development is a complex and costly process. Machine learning approaches are being investigated to help improve the effectiveness and speed of multiple stages of the drug discovery pipeline. Of these, those that use Knowledge Graphs (KG) have promise in many tasks, including drug repurposing, drug toxicity prediction and target gene-disease prioritization. In a drug discovery KG, crucial elements including genes, diseases and drugs are represented as entities, while relationships between them indicate an interaction. However, to construct high-quality KGs, suitable data are required. In this review, we detail publicly available sources suitable for use in constructing drug discovery focused KGs. We aim to help guide machine learning and KG practitioners who are interested in applying new techniques to the drug discovery field, but who may be unfamiliar with the relevant data sources. The datasets are selected via strict criteria, categorized according to the primary type of information contained within and are considered based upon what information could be extracted to build a KG. We then present a comparative analysis of existing public drug discovery KGs and an evaluation of selected motivating case studies from the literature. Additionally, we raise numerous and unique challenges and issues associated with the domain and its datasets, while also highlighting key future research directions. We hope this review will motivate KGs use in solving key and emerging questions in the drug discovery domain.Drug discovery and development is a complex and costly process. Machine learning approaches are being investigated to help improve the effectiveness and speed of multiple stages of the drug discovery pipeline. Of these, those that use Knowledge Graphs (KG) have promise in many tasks, including drug repurposing, drug toxicity prediction and target gene-disease prioritization. In a drug discovery KG, crucial elements including genes, diseases and drugs are represented as entities, while relationships between them indicate an interaction. However, to construct high-quality KGs, suitable data are required. In this review, we detail publicly available sources suitable for use in constructing drug discovery focused KGs. We aim to help guide machine learning and KG practitioners who are interested in applying new techniques to the drug discovery field, but who may be unfamiliar with the relevant data sources. The datasets are selected via strict criteria, categorized according to the primary type of information contained within and are considered based upon what information could be extracted to build a KG. We then present a comparative analysis of existing public drug discovery KGs and an evaluation of selected motivating case studies from the literature. Additionally, we raise numerous and unique challenges and issues associated with the domain and its datasets, while also highlighting key future research directions. We hope this review will motivate KGs use in solving key and emerging questions in the drug discovery domain. Drug discovery and development is a complex and costly process. Machine learning approaches are being investigated to help improve the effectiveness and speed of multiple stages of the drug discovery pipeline. Of these, those that use Knowledge Graphs (KG) have promise in many tasks, including drug repurposing, drug toxicity prediction and target gene–disease prioritization. In a drug discovery KG, crucial elements including genes, diseases and drugs are represented as entities, while relationships between them indicate an interaction. However, to construct high-quality KGs, suitable data are required. In this review, we detail publicly available sources suitable for use in constructing drug discovery focused KGs. We aim to help guide machine learning and KG practitioners who are interested in applying new techniques to the drug discovery field, but who may be unfamiliar with the relevant data sources. The datasets are selected via strict criteria, categorized according to the primary type of information contained within and are considered based upon what information could be extracted to build a KG. We then present a comparative analysis of existing public drug discovery KGs and an evaluation of selected motivating case studies from the literature. Additionally, we raise numerous and unique challenges and issues associated with the domain and its datasets, while also highlighting key future research directions. We hope this review will motivate KGs use in solving key and emerging questions in the drug discovery domain. |
Author | Engkvist, Ola Hoyt, Charles Tapley Hamilton, William L Barrett, Ian P Ye, Cheng Bonner, Stephen Swiers, Rowan Bender, Andreas |
Author_xml | – sequence: 1 givenname: Stephen surname: Bonner fullname: Bonner, Stephen – sequence: 2 givenname: Ian P surname: Barrett fullname: Barrett, Ian P – sequence: 3 givenname: Cheng surname: Ye fullname: Ye, Cheng – sequence: 4 givenname: Rowan surname: Swiers fullname: Swiers, Rowan – sequence: 5 givenname: Ola surname: Engkvist fullname: Engkvist, Ola – sequence: 6 givenname: Andreas surname: Bender fullname: Bender, Andreas – sequence: 7 givenname: Charles Tapley surname: Hoyt fullname: Hoyt, Charles Tapley – sequence: 8 givenname: William L surname: Hamilton fullname: Hamilton, William L |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36151740$$D View this record in MEDLINE/PubMed https://research.chalmers.se/publication/532491$$DView record from Swedish Publication Index |
BookMark | eNptkc2LFDEQxYOsuB968i45CtJu0kl30t6WxS9Y8KAePIVKUpmJ9nTapHuG_e_NMrMexFMF6lePl_cuydmUJiTkJWdvORvEtY322lpwkskn5IJLpRrJOnn28O5V08lenJPLUn4y1jKl-TNyLnrecSXZBflxQzPuIx5oCtTGtEMfHYzUwwIFl1K3Iyxx2tAlUZ_XDfWxuLTHfP-OAv01pcOIfoN0k2He0hlzmdEtcY_PydMAY8EXp3lFvn94_-32U3P35ePn25u7phpul4ajCJoF1D54az2C6qztkEGv-4H3IQwyMO-VcMgH3YLsddsqIfjgeKu5Elfk61G3HHBerZlz3EG-NwmiyVgQstsat4VxV72ZgoZpBypINLJl2kjXDWaw0hkOWkqUNT_pq-rro-qc0-8Vy2J29d84jjBhWotpFVe9lkKLir46oaut8f018BhyBfgRcDmVkjEYF5caapqWDHE0nJmHIk0t0pyKrDdv_rl5lP0f_QeDp6DK |
CitedBy_id | crossref_primary_10_1038_s43856_024_00486_y crossref_primary_10_1124_pharmrev_122_000715 crossref_primary_10_1038_s41597_022_01807_3 crossref_primary_10_1371_journal_pcbi_1009909 crossref_primary_10_1109_TCBB_2024_3477410 crossref_primary_10_1038_s41587_023_01848_y crossref_primary_10_1145_3672615 crossref_primary_10_1093_bib_bbad235 crossref_primary_10_36937_ben_2023_4798 crossref_primary_10_1016_j_ymeth_2024_08_009 crossref_primary_10_1016_j_isci_2024_109509 crossref_primary_10_1093_bib_bbac481 crossref_primary_10_1016_j_knosys_2024_111492 crossref_primary_10_1145_3699713 crossref_primary_10_52679_tabcj_2021_0007 crossref_primary_10_1016_j_chempr_2023_12_018 crossref_primary_10_1016_j_xgen_2024_100655 crossref_primary_10_1186_s12915_024_02049_y crossref_primary_10_1021_acs_biochem_4c00501 crossref_primary_10_3390_app15052798 crossref_primary_10_1016_j_phrs_2023_106960 crossref_primary_10_1093_bib_bbae035 crossref_primary_10_56294_gr2025107 crossref_primary_10_3390_ijms26020477 crossref_primary_10_1177_14727978251321402 crossref_primary_10_1186_s12859_024_05812_8 crossref_primary_10_30895_2312_7821_2023_11_4_372_389 crossref_primary_10_1007_s10462_023_10413_7 crossref_primary_10_1016_j_crmeth_2023_100413 crossref_primary_10_1021_acs_jcim_3c01726 crossref_primary_10_3233_SW_243685 crossref_primary_10_1002_advs_202412402 crossref_primary_10_1002_prp2_70034 crossref_primary_10_1038_s41598_024_60004_x crossref_primary_10_1093_gigascience_giad057 crossref_primary_10_1109_TKDE_2024_3421933 crossref_primary_10_1016_j_ailsci_2022_100036 crossref_primary_10_1186_s12859_022_04934_1 crossref_primary_10_1186_s44149_023_00106_7 crossref_primary_10_1007_s11030_025_11164_z crossref_primary_10_1038_s41597_023_02757_0 crossref_primary_10_1016_j_clinthera_2024_03_006 |
Cites_doi | 10.1038/nrd.2017.244 10.1093/bioinformatics/btt765 10.1016/j.ymeth.2014.11.020 10.1093/nar/gky1126 10.1093/nar/gkm958 10.1093/nar/gkh036 10.1016/S0165-6147(00)01584-4 10.1016/j.jbi.2008.03.004 10.1093/nar/gky1075 10.1145/3447772 10.1093/bioinformatics/btaa274 10.1093/nar/gky1105 10.1093/nar/gkw1092 10.1093/nar/gkh131 10.1038/nrd.2018.14 10.1093/bioinformatics/btq099 10.1093/bioinformatics/btt549 10.1007/978-3-031-01588-5 10.2174/1386207013330670 10.1145/3434185 10.1093/bib/bbab159 10.1038/clpt.2012.96 10.1145/3292500.3330961 10.1145/3317287.3328534 10.1093/nar/gky1133 10.1177/1460458220937101 10.3389/fgene.2019.01203 10.1109/ICDE.2019.00061 10.1093/nar/gkz1161 10.1038/nrg2918 10.1145/3437963.3441663 10.1093/nar/gky1079 10.1093/nar/30.1.412 10.1093/nar/gku1267 10.1016/j.ajhg.2008.09.017 10.1021/acs.jcim.8b00663 10.1007/978-3-319-93417-4_38 10.1136/bmjhci-2020-100254 10.1038/s41592-019-0509-5 10.1093/bib/bbp002 10.1093/bib/bbx169 10.1093/database/bav028 10.1093/nar/gkv1075 10.18653/v1/W15-4007 10.1038/sdata.2017.29 10.7554/eLife.26726 10.1093/nar/gkp896 10.1002/(SICI)1098-1004(200001)15:1<57::AID-HUMU12>3.0.CO;2-G 10.1093/nar/gkv1277 10.1093/nar/gkx1064 10.1093/nar/gkm882 10.1016/j.ygeno.2019.06.021 10.1093/nar/gkv951 10.1038/s41467-019-11069-0 10.3389/fgene.2019.01381 10.1093/nar/gkw1055 10.1093/nar/gkj109 10.1093/nar/gky1131 10.1093/bioinformatics/btz682 10.1093/bib/bbaa344 10.1073/pnas.2016239118 10.1093/nar/gky868 10.1145/3340531.3412776 10.1038/s41598-020-74922-z 10.1093/bioinformatics/bty114 10.1038/nmeth.4077 10.1093/bioinformatics/btz600 10.1126/scitranslmed.3003377 10.1093/nar/gky1206 10.1093/nar/gkx1037 10.1038/s41586-021-03819-2 10.1093/nar/gky1032 10.1038/sdata.2016.18 10.1093/nar/gky1120 10.1093/bib/bbz017 10.1109/CVPR.2009.5206848 10.1186/s12859-019-3284-5 10.1093/nar/gkm883 10.12688/f1000research.9656.1 10.1093/nar/gkw1072 10.3390/molecules23092208 10.1038/s41573-019-0024-5 10.1093/nar/gkh052 10.1109/TPAMI.2013.50 10.1093/bib/bbm059 10.1093/bioinformatics/bty294 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ABBSD ADTPV AOWAS D8T F1S ZZAVC |
DOI | 10.1093/bib/bbac404 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic SWEPUB Chalmers tekniska högskola full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Chalmers tekniska högskola SwePub Articles full text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
ExternalDocumentID | oai_research_chalmers_se_08ca7f4e_4208_4c59_9b4c_1a844e44774d 36151740 10_1093_bib_bbac404 |
Genre | Journal Article Review |
GroupedDBID | --- -E4 .2P .I3 0R~ 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAVAP AAVLN AAYXX ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHGBF AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KOP KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 CGR CUY CVF ECM EIF GROUPED_DOAJ M49 NPM 7X8 1TH AAGQS AAJQQ AAUQX ABBSD ADTPV AOWAS C1A CAG COF D8T EJD F1S KBUDW NU- O0~ ZZAVC |
ID | FETCH-LOGICAL-c402t-1e3f80fe8dfdbbdea75bb5e0a686916ff94f0dd73ce1982a4682273319c128173 |
ISSN | 1467-5463 1477-4054 |
IngestDate | Thu Aug 21 07:17:41 EDT 2025 Fri Jul 11 01:28:54 EDT 2025 Thu Apr 03 07:07:03 EDT 2025 Thu Apr 24 23:02:46 EDT 2025 Tue Jul 01 03:39:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | drug–target discovery knowledge graph embeddings disease–gene prediction |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c402t-1e3f80fe8dfdbbdea75bb5e0a686916ff94f0dd73ce1982a4682273319c128173 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
OpenAccessLink | https://research.chalmers.se/publication/532491 |
PMID | 36151740 |
PQID | 2717684383 |
PQPubID | 23479 |
ParticipantIDs | swepub_primary_oai_research_chalmers_se_08ca7f4e_4208_4c59_9b4c_1a844e44774d proquest_miscellaneous_2717684383 pubmed_primary_36151740 crossref_citationtrail_10_1093_bib_bbac404 crossref_primary_10_1093_bib_bbac404 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-19 |
PublicationDateYYYYMMDD | 2022-11-19 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2022 |
References | Pletscher-Frankild (2022112111112326300_ref66) 2015; 74 Chen (2022112111112326300_ref92) 2002; 30 Szklarczyk (2022112111112326300_ref57) 2019; 47 Rubin (2022112111112326300_ref41) 2008; 9 Chen (2022112111112326300_ref74) 2001; 4 Mikolov (2022112111112326300_ref78) 2013; 26 Brown (2022112111112326300_ref75) 2017; 4 Paliwal (2022112111112326300_ref102) 2020; 10 Nguyen (2022112111112326300_ref51) 2017; 45 Zheng (2022112111112326300_ref80) 2021; 22 Jupp (2022112111112326300_ref9) 2014; 30 Oprea (2022112111112326300_ref34) 2018; 17 Carvalho-Silva (2022112111112326300_ref50) 2019; 47 Tanoli (2022112111112326300_ref23) 2020; 22 Nelson (2022112111112326300_ref87) 2019; 10 Celebi (2022112111112326300_ref29) 2019; 20 Koscielny (2022112111112326300_ref49) 2017; 45 Barabási (2022112111112326300_ref37) 2011; 12 Hornbeck (2022112111112326300_ref100) 2015; 43 Zheng (2022112111112326300_ref89) 2021 Kim (2022112111112326300_ref71) 2016; 44 Himmelstein (2022112111112326300_ref18) 2017; 6 Hamilton (2022112111112326300_ref21) 2020; 14 Wishart (2022112111112326300_ref72) 2008; 36 Chen (2022112111112326300_ref5) 2009; 10 Berrendorf (2022112111112326300_ref36) 2020 Errica (2022112111112326300_ref112) 2019 Choobdar (2022112111112326300_ref38) 2019; 16 Stark (2022112111112326300_ref58) 2006; 34 Consortium GO (2022112111112326300_ref86) 2008; 36 Hirohara (2022112111112326300_ref76) 2018; 19 Schlichtkrull (2022112111112326300_ref106) 2018 Wilkinson (2022112111112326300_ref109) 2016; 3 Lee (2022112111112326300_ref22) 2020; 10 Kanehisa (2022112111112326300_ref98) 2010; 38 Buniello (2022112111112326300_ref69) 2019; 47 Oughtred (2022112111112326300_ref103) 2019; 47 Ursu (2022112111112326300_ref73) 2016; 45 Hwang (2022112111112326300_ref94) 2019; 47 Slenter (2022112111112326300_ref63) 2018; 46 en Schulze-Kremer S (2022112111112326300_ref40) 2001; 6 Davis (2022112111112326300_ref96) 2019; 47 Luo (2022112111112326300_ref24) 2020; 22 Hamosh (2022112111112326300_ref68) 2000; 15 Vamathevan (2022112111112326300_ref3) 2019; 18 Piñero (2022112111112326300_ref85) 2020; 48 Lopez-Del Rio (2022112111112326300_ref35) 2019; 59 Have (2022112111112326300_ref83) 2013; 29 Ali (2022112111112326300_ref114) 2021 Belleau (2022112111112326300_ref30) 2008; 41 Maglott (2022112111112326300_ref55) 2005; 33 Malone (2022112111112326300_ref47) 2010; 26 Köhler (2022112111112326300_ref97) 2019; 47 Hermjakob (2022112111112326300_ref59) 2004; 32 Yates (2022112111112326300_ref53) 2020; 48 Zhu (2022112111112326300_ref31) 2019; 20 Jassal (2022112111112326300_ref62) 2020; 48 Morgan (2022112111112326300_ref1) 2018; 17 Percha (2022112111112326300_ref90) 2018; 34 Durinx (2022112111112326300_ref48) 2016; 5 Wishart (2022112111112326300_ref84) 2018; 46 Dacrema (2022112111112326300_ref111) 2021; 39 Zhang (2022112111112326300_ref99) 2019 Wise (2022112111112326300_ref15) 2020 Ioannidis (2022112111112326300_ref88) 2020 Masoudi-Sobhanzadeh (2022112111112326300_ref26) 2020; 112 Rives (2022112111112326300_ref56) 2021; 118 Trouillon (2022112111112326300_ref107) 2016 Toutanova (2022112111112326300_ref110) 2015 Apweiler (2022112111112326300_ref52) 2004; 32 Mohamed (2022112111112326300_ref101) 2020; 36 Kanehisa (2022112111112326300_ref65) 2007; 36 Terstappen (2022112111112326300_ref2) 2001; 22 Sorger (2022112111112326300_ref39) 2011 Piñero (2022112111112326300_ref67) 2015; 2015 Zhang (2022112111112326300_ref20) 2019 Lee (2022112111112326300_ref95) 2020; 36 Rigden (2022112111112326300_ref17) 2020; 48 Hogan (2022112111112326300_ref8) 2021; 54 Mendez (2022112111112326300_ref70) 2019; 47 Breit (2022112111112326300_ref81) 2020; 36 Lipton (2022112111112326300_ref113) 2019; 17 Zhu (2022112111112326300_ref25) 2020; 26 Gaudelet (2022112111112326300_ref16) 2021; 22 Zitnik (2022112111112326300_ref19) 2018; 34 Kanehisa (2022112111112326300_ref64) 2017; 45 Consortium GO (2022112111112326300_ref46) 2004; 32 Li (2022112111112326300_ref6) 2020; 21 Rintala (2022112111112326300_ref7) 2022 Cernile (2022112111112326300_ref11) 2020; 28 Bagherian (2022112111112326300_ref27) 2020; 22 Robinson (2022112111112326300_ref44) 2008; 83 Kuhn (2022112111112326300_ref93) 2016; 44 Bengio (2022112111112326300_ref77) 2013; 35 Türei (2022112111112326300_ref60) 2016; 13 Reese (2022112111112326300_ref14) 2020; 2 Tatonetti (2022112111112326300_ref105) 2012; 4 Vasilevsky (2022112111112326300_ref42) 2022 Schriml (2022112111112326300_ref45) 2019; 47 Callahan (2022112111112326300_ref33) 2020; 3 Whirl-Carrillo (2022112111112326300_ref91) 2012; 92 Ioannidis (2022112111112326300_ref13) 2020 Szklarczyk (2022112111112326300_ref104) 2016; 44 Santos (2022112111112326300_ref82) 2022; 45 Bettencourt-Silva (2022112111112326300_ref10) 2020; 275 Sweeney (2022112111112326300_ref54) 2019; 47 Mubeen (2022112111112326300_ref61) 2019; 10 Chen (2022112111112326300_ref28) 2018; 23 Mohamed (2022112111112326300_ref32) 2020; 22 Lipscomb (2022112111112326300_ref43) 2000; 88 Walsh (2022112111112326300_ref79) 2020 Deng (2022112111112326300_ref108) 2009 Domingo-Fernandez (2022112111112326300_ref12) 2020; 37 Jumper (2022112111112326300_ref4) 2021; 596 |
References_xml | – year: 2020 ident: 2022112111112326300_ref36 article-title: On the Ambiguity of Rank-Based Evaluation of Entity Alignment or Link Prediction Methods – volume: 37 start-page: 09 year: 2020 ident: 2022112111112326300_ref12 article-title: COVID-19 Knowledge Graph: a computable, multi-modal, cause-and-effect knowledge model of COVID-19 pathophysiology publication-title: Bioinformatics – volume: 17 start-page: 167 issue: 3 year: 2018 ident: 2022112111112326300_ref1 article-title: Impact of a five-dimensional framework on R&D productivity at AstraZeneca publication-title: Nat Rev Drug Discov doi: 10.1038/nrd.2017.244 – volume: 30 start-page: 1338 issue: 9 year: 2014 ident: 2022112111112326300_ref9 article-title: The EBI RDF platform: linked open data for the life sciences publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt765 – volume: 74 start-page: 83 year: 2015 ident: 2022112111112326300_ref66 article-title: DISEASES: Text mining and data integration of disease–gene associations publication-title: Methods doi: 10.1016/j.ymeth.2014.11.020 – volume: 47 start-page: D573 issue: D1 year: 2019 ident: 2022112111112326300_ref94 article-title: HumanNet v2: human gene networks for disease research publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1126 – volume: 36 start-page: D901 issue: suppl_1 year: 2008 ident: 2022112111112326300_ref72 article-title: DrugBank: a knowledgebase for drugs, drug actions and drug targets publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm958 – year: 2022 ident: 2022112111112326300_ref42 article-title: Mondo: Unifying diseases for the world, by the world publication-title: medRxiv – start-page: 06 year: 2022 ident: 2022112111112326300_ref7 article-title: Network approaches for modeling the effect of drugs and diseases publication-title: Brief Bioinform – volume: 32 start-page: D258 issue: suppl_1 year: 2004 ident: 2022112111112326300_ref46 article-title: The Gene Ontology (GO) database and informatics resource publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh036 – volume: 22 start-page: 23 issue: 1 year: 2001 ident: 2022112111112326300_ref2 article-title: In silico research in drug discovery publication-title: Trends Pharmacol Sci doi: 10.1016/S0165-6147(00)01584-4 – volume: 41 start-page: 706 issue: 5 year: 2008 ident: 2022112111112326300_ref30 article-title: Bio2RDF: towards a mashup to build bioinformatics knowledge systems publication-title: J Biomed Inform doi: 10.1016/j.jbi.2008.03.004 – volume: 47 start-page: D930 issue: D1 year: 2019 ident: 2022112111112326300_ref70 article-title: ChEMBL: towards direct deposition of bioassay data publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1075 – volume: 54 start-page: 1 issue: 4 year: 2021 ident: 2022112111112326300_ref8 article-title: Knowledge graphs publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/3447772 – volume: 36 year: 2020 ident: 2022112111112326300_ref81 article-title: OpenBioLink: A benchmarking framework for large-scale biomedical link prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa274 – volume: 47 start-page: D1018 issue: D1 year: 2019 ident: 2022112111112326300_ref97 article-title: Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1105 – volume: 45 start-page: D353 issue: D1 year: 2017 ident: 2022112111112326300_ref64 article-title: KEGG: new perspectives on genomes, pathways, diseases and drugs publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1092 – volume: 22 year: 2020 ident: 2022112111112326300_ref23 article-title: Exploration of databases and methods supporting drug repurposing: a comprehensive survey publication-title: Brief Bioinform – volume: 32 start-page: D115 issue: suppl_1 year: 2004 ident: 2022112111112326300_ref52 article-title: UniProt: the universal protein knowledgebase publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh131 – volume-title: An NIH white paper by the QSP workshop group year: 2011 ident: 2022112111112326300_ref39 – volume: 17 start-page: 317 issue: 5 year: 2018 ident: 2022112111112326300_ref34 article-title: Unexplored therapeutic opportunities in the human genome publication-title: Nat Rev Drug Discov doi: 10.1038/nrd.2018.14 – volume: 26 start-page: 1112 issue: 8 year: 2010 ident: 2022112111112326300_ref47 article-title: Modeling sample variables with an Experimental Factor Ontology publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq099 – volume: 29 start-page: 3107 issue: 24 year: 2013 ident: 2022112111112326300_ref83 article-title: Are graph databases ready for bioinformatics? publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt549 – volume: 14 start-page: 1 issue: 3 year: 2020 ident: 2022112111112326300_ref21 article-title: Graph representation learning publication-title: Synthesis Lectures on Artifical Intelligence and Machine Learning doi: 10.1007/978-3-031-01588-5 – year: 2019 ident: 2022112111112326300_ref112 article-title: A fair comparison of graph neural networks for graph classification – volume: 4 start-page: 719 issue: 8 year: 2001 ident: 2022112111112326300_ref74 article-title: BindingDB: a web-accessible molecular recognition database publication-title: Comb Chem High Throughput Screen doi: 10.2174/1386207013330670 – volume: 39 start-page: 1 issue: 2 year: 2021 ident: 2022112111112326300_ref111 article-title: A troubling analysis of reproducibility and progress in recommender systems research publication-title: ACM Transactions on Information Systems (TOIS) doi: 10.1145/3434185 – volume: 22 start-page: 05 year: 2021 ident: 2022112111112326300_ref16 article-title: Utilizing graph machine learning within drug discovery and development publication-title: Brief Bioinform doi: 10.1093/bib/bbab159 – volume: 92 start-page: 414 issue: 4 year: 2012 ident: 2022112111112326300_ref91 article-title: Pharmacogenomics knowledge for personalized medicine publication-title: Clinical Pharmacology & Therapeutics doi: 10.1038/clpt.2012.96 – start-page: 793 volume-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining year: 2019 ident: 2022112111112326300_ref20 doi: 10.1145/3292500.3330961 – volume: 17 start-page: 45 issue: 1 year: 2019 ident: 2022112111112326300_ref113 article-title: Troubling Trends in Machine Learning Scholarship: Some ML papers suffer from flaws that could mislead the public and stymie future research publication-title: Queue doi: 10.1145/3317287.3328534 – volume: 47 start-page: D1056 issue: D1 year: 2019 ident: 2022112111112326300_ref50 article-title: Open Targets Platform: new developments and updates two years on publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1133 – year: 2020 ident: 2022112111112326300_ref88 article-title: Few-shot link prediction via graph neural networks for Covid-19 drug-repurposing – volume: 26 year: 2020 ident: 2022112111112326300_ref25 article-title: Knowledge-driven drug repurposing using a comprehensive drug knowledge graph publication-title: Health Informatics J doi: 10.1177/1460458220937101 – start-page: 1 volume-title: Proceedings of Knowledgeable NLP: the First Workshop on Integrating Structured Knowledge and Neural Networks for NLP year: 2020 ident: 2022112111112326300_ref15 – volume: 10 start-page: 1203 year: 2019 ident: 2022112111112326300_ref61 article-title: The impact of pathway database choice on statistical enrichment analysis and predictive modeling publication-title: Front Genet doi: 10.3389/fgene.2019.01203 – start-page: 614 volume-title: 2019 IEEE 35th International Conference on Data Engineering (ICDE) year: 2019 ident: 2022112111112326300_ref99 doi: 10.1109/ICDE.2019.00061 – volume: 33 start-page: D54 issue: suppl_1 year: 2005 ident: 2022112111112326300_ref55 article-title: Entrez Gene: gene-centered information at NCBI publication-title: Nucleic Acids Res – volume: 2 year: 2020 ident: 2022112111112326300_ref14 article-title: KG-COVID-19: a framework to produce customized knowledge graphs for COVID-19 response publication-title: Patterns – volume: 48 start-page: D1 issue: D1 year: 2020 ident: 2022112111112326300_ref17 article-title: The 27th annual Nucleic Acids Research database issue and molecular biology database collection publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz1161 – volume: 12 start-page: 56 issue: 1 year: 2011 ident: 2022112111112326300_ref37 article-title: Network medicine: a network-based approach to human disease publication-title: Nat Rev Genet doi: 10.1038/nrg2918 – start-page: 1141 volume-title: Proceedings of the 14th ACM International Conference on Web Search and Data Mining year: 2021 ident: 2022112111112326300_ref89 doi: 10.1145/3437963.3441663 – volume: 47 start-page: D529 issue: D1 year: 2019 ident: 2022112111112326300_ref103 article-title: The BioGRID interaction database: 2019 update publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1079 – volume: 30 start-page: 412 issue: 1 year: 2002 ident: 2022112111112326300_ref92 article-title: TTD: therapeutic target database publication-title: Nucleic Acids Res doi: 10.1093/nar/30.1.412 – volume: 48 start-page: D845 issue: D1 year: 2020 ident: 2022112111112326300_ref85 article-title: The DisGeNET knowledge platform for disease genomics: 2019 update publication-title: Nucleic Acids Res – volume: 43 start-page: D512 issue: D1 year: 2015 ident: 2022112111112326300_ref100 article-title: PhosphoSitePlus, 2014: Mutations, PTMs and recalibrations publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1267 – volume: 83 start-page: 610 issue: 5 year: 2008 ident: 2022112111112326300_ref44 article-title: The Human Phenotype Ontology: a tool for annotating and analyzing human hereditary disease publication-title: The American Journal of Human Genetics doi: 10.1016/j.ajhg.2008.09.017 – volume: 59 start-page: 1645 issue: 4 year: 2019 ident: 2022112111112326300_ref35 article-title: Evaluation of Cross-Validation Strategies in Sequence-Based Binding Prediction Using Deep Learning publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.8b00663 – start-page: 593 volume-title: European Semantic Web Conference year: 2018 ident: 2022112111112326300_ref106 doi: 10.1007/978-3-319-93417-4_38 – volume: 28 issue: 1 year: 2020 ident: 2022112111112326300_ref11 article-title: Network graph representation of COVID-19 scientific publications to aid knowledge discovery publication-title: BMJ Health & Care Informatics doi: 10.1136/bmjhci-2020-100254 – volume: 16 start-page: 843 issue: 9 year: 2019 ident: 2022112111112326300_ref38 article-title: Assessment of network module identification across complex diseases publication-title: Nat Methods doi: 10.1038/s41592-019-0509-5 – volume: 10 start-page: 177 issue: 2 year: 2009 ident: 2022112111112326300_ref5 article-title: Semantic web for integrated network analysis in biomedicine publication-title: Brief Bioinform doi: 10.1093/bib/bbp002 – volume: 20 start-page: 1308 issue: 4 year: 2019 ident: 2022112111112326300_ref31 article-title: Drug knowledge bases and their applications in biomedical informatics research publication-title: Brief Bioinform doi: 10.1093/bib/bbx169 – volume: 2015 year: 2015 ident: 2022112111112326300_ref67 article-title: DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes publication-title: Database doi: 10.1093/database/bav028 – volume-title: International Conference on Machine Learning (ICML) year: 2016 ident: 2022112111112326300_ref107 – volume: 44 start-page: D1075 issue: D1 year: 2016 ident: 2022112111112326300_ref93 article-title: The SIDER database of drugs and side effects publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1075 – start-page: 57 volume-title: Proceedings of the 3rd workshop on continuous vector space models and their compositionality year: 2015 ident: 2022112111112326300_ref110 doi: 10.18653/v1/W15-4007 – volume: 4 start-page: 1 issue: 1 year: 2017 ident: 2022112111112326300_ref75 article-title: A standard database for drug repositioning publication-title: Scientific data doi: 10.1038/sdata.2017.29 – year: 2020 ident: 2022112111112326300_ref13 article-title: DRKG - Drug Repurposing Knowledge Graph for Covid-19 – volume: 88 start-page: 265 issue: 3 year: 2000 ident: 2022112111112326300_ref43 article-title: Medical subject headings (MeSH) publication-title: Bull Med Libr Assoc – volume: 275 start-page: 6 year: 2020 ident: 2022112111112326300_ref10 article-title: Exploring the Social Drivers of Health During a Pandemic: Leveraging Knowledge Graphs and Population Trends in COVID-19 publication-title: Stud Health Technol Inform – volume: 6 year: 2017 ident: 2022112111112326300_ref18 article-title: Systematic integration of biomedical knowledge prioritizes drugs for repurposing publication-title: Elife doi: 10.7554/eLife.26726 – volume: 45 start-page: 1 year: 2022 ident: 2022112111112326300_ref82 article-title: A knowledge graph to interpret clinical proteomics data publication-title: Nat Biotechnol – volume: 38 start-page: D355 issue: suppl_1 year: 2010 ident: 2022112111112326300_ref98 article-title: KEGG for representation and analysis of molecular networks involving diseases and drugs publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp896 – volume: 15 start-page: 57 issue: 1 year: 2000 ident: 2022112111112326300_ref68 article-title: Online Mendelian inheritance in man (OMIM) publication-title: Hum Mutat doi: 10.1002/(SICI)1098-1004(200001)15:1<57::AID-HUMU12>3.0.CO;2-G – volume: 26 start-page: 3111 year: 2013 ident: 2022112111112326300_ref78 article-title: Distributed Representations of Words and Phrases and their Compositionality publication-title: Advances in Neural Information Processing Systems – volume: 44 start-page: D380 issue: D1 year: 2016 ident: 2022112111112326300_ref104 article-title: STITCH 5: augmenting protein–chemical interaction networks with tissue and affinity data publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1277 – volume: 3 year: 2020 ident: 2022112111112326300_ref33 article-title: Knowledge-Based Biomedical Data Science. Annual Review of Biomedical Data publication-title: Science – volume: 46 start-page: D661 issue: D1 year: 2018 ident: 2022112111112326300_ref63 article-title: WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1064 – volume: 36 start-page: D480 issue: suppl_1 year: 2007 ident: 2022112111112326300_ref65 article-title: KEGG for linking genomes to life and the environment publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm882 – volume: 112 start-page: 1087 issue: 2 year: 2020 ident: 2022112111112326300_ref26 article-title: Drug databases and their contributions to drug repurposing publication-title: Genomics doi: 10.1016/j.ygeno.2019.06.021 – volume: 44 start-page: D1202 issue: D1 year: 2016 ident: 2022112111112326300_ref71 article-title: PubChem substance and compound databases publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv951 – volume: 10 start-page: 1 issue: 1 year: 2019 ident: 2022112111112326300_ref87 article-title: Integrating biomedical research and electronic health records to create knowledge-based biologically meaningful machine-readable embeddings publication-title: Nat Commun doi: 10.1038/s41467-019-11069-0 – volume: 10 start-page: 1381 year: 2020 ident: 2022112111112326300_ref22 article-title: Heterogeneous Multi-Layered Network Model for Omics Data Integration and Analysis publication-title: Front Genet doi: 10.3389/fgene.2019.01381 – volume: 45 start-page: D985 issue: D1 year: 2017 ident: 2022112111112326300_ref49 article-title: Open Targets: a platform for therapeutic target identification and validation publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1055 – volume: 34 start-page: D535 issue: suppl_1 year: 2006 ident: 2022112111112326300_ref58 article-title: BioGRID: a general repository for interaction datasets publication-title: Nucleic Acids Res doi: 10.1093/nar/gkj109 – volume: 45 start-page: gkw993 year: 2016 ident: 2022112111112326300_ref73 article-title: DrugCentral: online drug compendium publication-title: Nucleic Acids Res – volume: 47 start-page: D607 issue: D1 year: 2019 ident: 2022112111112326300_ref57 article-title: STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1131 – volume: 36 start-page: 1234 issue: 4 year: 2020 ident: 2022112111112326300_ref95 article-title: BioBERT: a pre-trained biomedical language representation model for biomedical text mining publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz682 – year: 2021 ident: 2022112111112326300_ref114 article-title: Bringing light into the dark: A large-scale evaluation of knowledge graph embedding models under a unified framework publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 22 year: 2021 ident: 2022112111112326300_ref80 article-title: PharmKG: a dedicated knowledge graph benchmark for bomedical data mining publication-title: Brief Bioinform doi: 10.1093/bib/bbaa344 – volume: 118 issue: 15 year: 2021 ident: 2022112111112326300_ref56 article-title: Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.2016239118 – volume: 47 start-page: D948 issue: D1 year: 2019 ident: 2022112111112326300_ref96 article-title: The comparative toxicogenomics database: update 2019 publication-title: Nucleic Acids Res doi: 10.1093/nar/gky868 – start-page: 3173 volume-title: Proceedings of the 29th ACM International Conference on Information & Knowledge Management year: 2020 ident: 2022112111112326300_ref79 doi: 10.1145/3340531.3412776 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 2022112111112326300_ref102 article-title: Preclinical validation of therapeutic targets predicted by tensor factorization on heterogeneous graphs publication-title: Sci Rep doi: 10.1038/s41598-020-74922-z – volume: 34 start-page: 2614 issue: 15 year: 2018 ident: 2022112111112326300_ref90 article-title: A global network of biomedical relationships derived from text publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty114 – volume: 22 year: 2020 ident: 2022112111112326300_ref24 article-title: Biomedical data and computational models for drug repositioning: a comprehensive review publication-title: Brief Bioinform – volume: 13 start-page: 966 issue: 12 year: 2016 ident: 2022112111112326300_ref60 article-title: OmniPath: guidelines and gateway for literature-curated signaling pathway resources publication-title: Nat Methods doi: 10.1038/nmeth.4077 – volume: 36 start-page: 603 issue: 2 year: 2020 ident: 2022112111112326300_ref101 article-title: Discovering protein drug targets using knowledge graph embeddings publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz600 – volume: 4 start-page: 125ra31 issue: 125 year: 2012 ident: 2022112111112326300_ref105 article-title: Data-driven prediction of drug effects and interactions publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3003377 – volume: 47 start-page: D1250 issue: D1 year: 2019 ident: 2022112111112326300_ref54 article-title: RNAcentral: a hub of information for non-coding RNA sequences publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1206 – volume: 46 start-page: D1074 issue: D1 year: 2018 ident: 2022112111112326300_ref84 article-title: DrugBank 5.0: a major update to the DrugBank database for 2018 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1037 – volume: 48 start-page: D498 issue: D1 year: 2020 ident: 2022112111112326300_ref62 article-title: The reactome pathway knowledgebase publication-title: Nucleic Acids Res – volume: 596 start-page: 583 issue: 7873 year: 2021 ident: 2022112111112326300_ref4 article-title: Highly accurate protein structure prediction with AlphaFold publication-title: Nature doi: 10.1038/s41586-021-03819-2 – volume: 47 start-page: D955 issue: D1 year: 2019 ident: 2022112111112326300_ref45 article-title: Human Disease Ontology 2018 update: classification, content and workflow expansion publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1032 – volume: 3 start-page: 1 issue: 1 year: 2016 ident: 2022112111112326300_ref109 article-title: The FAIR Guiding Principles for scientific data management and stewardship publication-title: Scientific data doi: 10.1038/sdata.2016.18 – volume: 47 start-page: D1005 issue: D1 year: 2019 ident: 2022112111112326300_ref69 article-title: The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019 publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1120 – volume: 21 start-page: 566 issue: 2 year: 2020 ident: 2022112111112326300_ref6 article-title: Network-based methods for predicting essential genes or proteins: a survey publication-title: Brief Bioinform doi: 10.1093/bib/bbz017 – volume: 48 start-page: D682 issue: D1 year: 2020 ident: 2022112111112326300_ref53 article-title: Ensembl 2020 publication-title: Nucleic Acids Res – start-page: 248 volume-title: 2009 IEEE conference on computer vision and pattern recognition year: 2009 ident: 2022112111112326300_ref108 doi: 10.1109/CVPR.2009.5206848 – volume: 20 start-page: 1 issue: 1 year: 2019 ident: 2022112111112326300_ref29 article-title: Evaluation of knowledge graph embedding approaches for drug-drug interaction prediction in realistic settings publication-title: BMC bioinformatics doi: 10.1186/s12859-019-3284-5 – volume: 36 start-page: D440 issue: suppl_1 year: 2008 ident: 2022112111112326300_ref86 article-title: The gene ontology project in 2008 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm883 – volume: 22 year: 2020 ident: 2022112111112326300_ref32 article-title: Biological applications of knowledge graph embedding models publication-title: Brief Bioinform – volume: 5 year: 2016 ident: 2022112111112326300_ref48 article-title: Identifying ELIXIR core data resources publication-title: F1000Research doi: 10.12688/f1000research.9656.1 – volume: 19 start-page: 83 issue: 19 year: 2018 ident: 2022112111112326300_ref76 article-title: Convolutional neural network based on SMILES representation of compounds for detecting chemical motif publication-title: BMC bioinformatics – volume: 22 year: 2020 ident: 2022112111112326300_ref27 article-title: Machine learning approaches and databases for prediction of drug–target interaction: a survey paper publication-title: Brief Bioinform – volume: 45 start-page: D995 issue: D1 year: 2017 ident: 2022112111112326300_ref51 article-title: Pharos: Collating protein information to shed light on the druggable genome publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1072 – volume: 23 start-page: 2208 issue: 9 year: 2018 ident: 2022112111112326300_ref28 article-title: Machine learning for drug-target interaction prediction publication-title: Molecules doi: 10.3390/molecules23092208 – volume: 18 start-page: 463 issue: 6 year: 2019 ident: 2022112111112326300_ref3 article-title: Applications of machine learning in drug discovery and development publication-title: Nat Rev Drug Discov doi: 10.1038/s41573-019-0024-5 – volume: 32 start-page: D452 issue: suppl_1 year: 2004 ident: 2022112111112326300_ref59 article-title: IntAct: an open source molecular interaction database publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh052 – volume: 35 start-page: 1798 issue: 8 year: 2013 ident: 2022112111112326300_ref77 article-title: Representation learning: A review and new perspectives publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2013.50 – volume: 9 start-page: 75 issue: 1 year: 2008 ident: 2022112111112326300_ref41 article-title: Biomedical ontologies: a functional perspective publication-title: Brief Bioinform doi: 10.1093/bib/bbm059 – volume: 6 issue: 21 year: 2001 ident: 2022112111112326300_ref40 article-title: Ontologies for molecular biology. Computer and Information publication-title: Science – volume: 34 start-page: i457 issue: 13 year: 2018 ident: 2022112111112326300_ref19 article-title: Modeling polypharmacy side effects with graph convolutional networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty294 |
SSID | ssj0020781 |
Score | 2.5860498 |
SecondaryResourceType | review_article |
Snippet | Drug discovery and development is a complex and costly process. Machine learning approaches are being investigated to help improve the effectiveness and speed... |
SourceID | swepub proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | disease-gene prediction Drug Discovery drug-target discovery Information Storage and Retrieval Knowledge knowledge graph embeddings Machine Learning Pattern Recognition, Automated |
Title | A review of biomedical datasets relating to drug discovery: a knowledge graph perspective |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36151740 https://www.proquest.com/docview/2717684383 https://research.chalmers.se/publication/532491 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCIkXxDflS0baE1O2pHESh7eCNg1UNgm1Unmy_LlNQglaU03jr-cudj6APgxerMq13NT3y9nnu_sdIbvwgiVc5kkkizKLmFYyUiwpIxfrPLdSMs4wUfjLSX68ZJ9X2WooxtlmlzRqX__cmlfyP1KFPpArZsn-g2T7SaEDPoN8oQUJQ3sjGc9GmSc-j947XWQDe1PrEMBIN8yHqvfM5eYM3TEaYzavfY5zf6G21_JWI4fxOPNyRHxkXVve86LC3wlkq80oUP5D3Zfw8mFjww1pHwr8CfXtcEfrnf027Jx4yXPVleX-Wl8F0Ib7CDBlMSauHKlQVhRglXpq6H27pS_oXZ9nHPCVb1XnnupKXShsldQsZsO-1fnqT07F0XI-F4vD1eI2uTMFewEV3uJ01VveyGjUppmFxwiJmjD9AUx-EKb-_Wjyl73xB5lsewBZPCD3g-VAZx4GD8ktWz0id30t0evH5NuMejDQ2tEBDLQDA-3AQJuaIhhoD4b3VNIeCrSFAh1B4QlZHh0uPh5HoW5GBP9i2kSJTR2PneXGGaWMlUWmVGZjmfMcrAHnSuZiY4pU26TkU8lyOCVi7c5So1-1SJ-Snaqu7HNCleEwFqxoxhRTKdi_SaGcsZnkhhtZTMi7bsmEDqTyWNvku_DBDamA9RVhfSdktx_8w3OpbB_2tlt7AboOHViysvVmLaZFgn7jlKcT8swLpZ8oxaN5weIJmXsp9d8ggXpgzjoX-rwtS7QWaytirmXhmBUYYiKYzkpRKqZFIjljlgFYmHlxg4d5Se4NL8IrstNcbuxrOKo26k0Lw19cbpon |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+biomedical+datasets+relating+to+drug+discovery%3A+a+knowledge+graph+perspective&rft.jtitle=Briefings+in+bioinformatics&rft.au=Bonner%2C+Stephen&rft.au=Barrett%2C+Ian+P&rft.au=Ye%2C+Cheng&rft.au=Swiers%2C+Rowan&rft.date=2022-11-19&rft.issn=1477-4054&rft.eissn=1477-4054&rft.volume=23&rft.issue=6&rft_id=info:doi/10.1093%2Fbib%2Fbbac404&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |