Seasonal dynamics of soil microbial growth, respiration, biomass, and carbon use efficiency in temperate soils
Soil microbial growth, respiration, and carbon (C) use efficiency (CUE) are essential parameters to understand, describe and model the soil carbon cycle. While seasonal dynamics of microbial respiration are well studied, little is known about how microbial growth and CUE change over the course of a...
Saved in:
Published in | Geoderma Vol. 440; p. 116693 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soil microbial growth, respiration, and carbon (C) use efficiency (CUE) are essential parameters to understand, describe and model the soil carbon cycle. While seasonal dynamics of microbial respiration are well studied, little is known about how microbial growth and CUE change over the course of a year, especially outside the plant growing season. In this study, we measured soil microbial respiration, gross growth via ¹⁸O incorporation into DNA, and biomass in an agricultural field and a deciduous forest 16 times over the course of two years. We sampled soils to a depth of 5 cm from plots at which harvest residues or leaf litter remained on the plot or was removed. We observed strong seasonal variations of microbial respiration, growth, and biomass. All these microbial parameters were significantly higher at the forest site, which contained 4.3 % organic C compared to the agricultural site with 0.9 % organic C. CUE also varied strongly (0.1 to 0.7) but was overall significantly higher at the agricultural site compared to the forest site. We found that microbial respiration and to a lesser extent microbial growth followed the seasonal dynamics of soil temperature. Microbial growth was further affected by the presence of plants in the agricultural system or foliage in the forest. At low temperatures in winter, both microbial respiration and gross growth showed the lowest rates, whereas CUE (calculated from both respiration and growth) showed amongst the highest values determined during the two years, due to the higher temperature sensitivity of microbial respiration. Microbial biomass C strongly increased in winter. Surprisingly, this winter peak was not connected to high microbial growth or an increase in DNA content. This suggests that microorganisms accumulated C and N, potentially in the form of osmo- or cryoprotectants or increased in cell size but did not divide. This microbial winter bloom and following decline, where C is released from microbial biomass and freely available, might constitute a highly dynamic time in the annual C cycle in temperate soil systems. Highly variable CUE, which was observed in our study, and the fact that CUE is calculated from independently controlled microbial respiration and microbial growth, ask for great caution when CUE is used to describe soil microbial physiology, soil C dynamics or C sequestration. Instead, microbial respiration, microbial growth, and microbial biomass C should be investigated individually in combination to better understand the soil C cycle. |
---|---|
AbstractList | Soil microbial growth, respiration, and carbon (C) use efficiency (CUE) are essential parameters to understand, describe and model the soil carbon cycle. While seasonal dynamics of microbial respiration are well studied, little is known about how microbial growth and CUE change over the course of a year, especially outside the plant growing season. In this study, we measured soil microbial respiration, gross growth via 18O incorporation into DNA, and biomass in an agricultural field and a deciduous forest 16 times over the course of two years. We sampled soils to a depth of 5 cm from plots at which harvest residues or leaf litter remained on the plot or was removed. We observed strong seasonal variations of microbial respiration, growth, and biomass. All these microbial parameters were significantly higher at the forest site, which contained 4.3 % organic C compared to the agricultural site with 0.9 % organic C. CUE also varied strongly (0.1 to 0.7) but was overall significantly higher at the agricultural site compared to the forest site. We found that microbial respiration and to a lesser extent microbial growth followed the seasonal dynamics of soil temperature. Microbial growth was further affected by the presence of plants in the agricultural system or foliage in the forest. At low temperatures in winter, both microbial respiration and gross growth showed the lowest rates, whereas CUE (calculated from both respiration and growth) showed amongst the highest values determined during the two years, due to the higher temperature sensitivity of microbial respiration. Microbial biomass C strongly increased in winter. Surprisingly, this winter peak was not connected to high microbial growth or an increase in DNA content. This suggests that microorganisms accumulated C and N, potentially in the form of osmo- or cryoprotectants or increased in cell size but did not divide. This microbial winter bloom and following decline, where C is released from microbial biomass and freely available, might constitute a highly dynamic time in the annual C cycle in temperate soil systems. Highly variable CUE, which was observed in our study, and the fact that CUE is calculated from independently controlled microbial respiration and microbial growth, ask for great caution when CUE is used to describe soil microbial physiology, soil C dynamics or C sequestration. Instead, microbial respiration, microbial growth, and microbial biomass C should be investigated individually in combination to better understand the soil C cycle. Soil microbial growth, respiration, and carbon (C) use efficiency (CUE) are essential parameters to understand, describe and model the soil carbon cycle. While seasonal dynamics of microbial respiration are well studied, little is known about how microbial growth and CUE change over the course of a year, especially outside the plant growing season. In this study, we measured soil microbial respiration, gross growth via ¹⁸O incorporation into DNA, and biomass in an agricultural field and a deciduous forest 16 times over the course of two years. We sampled soils to a depth of 5 cm from plots at which harvest residues or leaf litter remained on the plot or was removed. We observed strong seasonal variations of microbial respiration, growth, and biomass. All these microbial parameters were significantly higher at the forest site, which contained 4.3 % organic C compared to the agricultural site with 0.9 % organic C. CUE also varied strongly (0.1 to 0.7) but was overall significantly higher at the agricultural site compared to the forest site. We found that microbial respiration and to a lesser extent microbial growth followed the seasonal dynamics of soil temperature. Microbial growth was further affected by the presence of plants in the agricultural system or foliage in the forest. At low temperatures in winter, both microbial respiration and gross growth showed the lowest rates, whereas CUE (calculated from both respiration and growth) showed amongst the highest values determined during the two years, due to the higher temperature sensitivity of microbial respiration. Microbial biomass C strongly increased in winter. Surprisingly, this winter peak was not connected to high microbial growth or an increase in DNA content. This suggests that microorganisms accumulated C and N, potentially in the form of osmo- or cryoprotectants or increased in cell size but did not divide. This microbial winter bloom and following decline, where C is released from microbial biomass and freely available, might constitute a highly dynamic time in the annual C cycle in temperate soil systems. Highly variable CUE, which was observed in our study, and the fact that CUE is calculated from independently controlled microbial respiration and microbial growth, ask for great caution when CUE is used to describe soil microbial physiology, soil C dynamics or C sequestration. Instead, microbial respiration, microbial growth, and microbial biomass C should be investigated individually in combination to better understand the soil C cycle. |
ArticleNumber | 116693 |
Author | Simon, Eva Sandén, Taru Spiegel, Heide Gündler, Philipp Spiegel, Felix Schnecker, Jörg Pleitner, Michaela Baldaszti, Ludwig Zechmeister-Boltenstern, Sophie Richter, Andreas Urbina Malo, Carolina |
Author_xml | – sequence: 1 givenname: Jörg orcidid: 0000-0002-5160-2701 surname: Schnecker fullname: Schnecker, Jörg – sequence: 2 givenname: Ludwig orcidid: 0000-0003-0548-8503 surname: Baldaszti fullname: Baldaszti, Ludwig – sequence: 3 givenname: Philipp surname: Gündler fullname: Gündler, Philipp – sequence: 4 givenname: Michaela surname: Pleitner fullname: Pleitner, Michaela – sequence: 5 givenname: Taru orcidid: 0000-0002-9542-0117 surname: Sandén fullname: Sandén, Taru – sequence: 6 givenname: Eva orcidid: 0000-0002-8909-8264 surname: Simon fullname: Simon, Eva – sequence: 7 givenname: Felix orcidid: 0000-0003-0691-7656 surname: Spiegel fullname: Spiegel, Felix – sequence: 8 givenname: Heide orcidid: 0000-0003-1285-8509 surname: Spiegel fullname: Spiegel, Heide – sequence: 9 givenname: Carolina surname: Urbina Malo fullname: Urbina Malo, Carolina – sequence: 10 givenname: Sophie orcidid: 0000-0001-5839-5904 surname: Zechmeister-Boltenstern fullname: Zechmeister-Boltenstern, Sophie – sequence: 11 givenname: Andreas orcidid: 0000-0003-3282-4808 surname: Richter fullname: Richter, Andreas |
BookMark | eNqFUU1rGzEQFSWFOGn_QtCxB68jrbTSGnIJIWkDgR7ansVImnVldiVHWhP876vYbQ-55DTMzPuA9y7IWUwRCbnibMUZV9fb1QaTxzzBqmWtWHGu1Fp8IAve67ZRbbc-IwtWkY1mip-Ti1K2ddWsZQsSfyCUFGGk_hBhCq7QNNCSwkjrkpMN9bXJ6WX-vaQZyy5kmEOKS2pDmqCUJYXoqYNsU6T7ghSHIbiA0R1oiHTGaYeVgkfN8ol8HGAs-PnvvCS_Hu5_3n1rnr5_fby7fWqcZO3c8I71TCopOXAlHeNO9Th4sFZ1Slq_HhzzDkTnteBOKxzqsWJ97zV00otL8njS9Qm2ZpfDBPlgEgRzPKS8MZDn4EY0vUIvrbPa6lYqrB6aSVHTkXrNRQ9V68tJa5fT8x7LbKZQHI4jREz7YgTvRM-llqJC1Qlakysl4_DfmjPzWpbZmn9lmdeyzKmsSrx5Q3RhPgY9Zwjje_Q_-0iiSg |
CitedBy_id | crossref_primary_10_1139_cjm_2024_0064 crossref_primary_10_3390_su16166849 crossref_primary_10_1016_j_jenvman_2024_123755 crossref_primary_10_1002_jpln_202300107 crossref_primary_10_1002_sae2_70046 crossref_primary_10_3390_agriculture14101774 crossref_primary_10_1016_j_apsoil_2025_105888 crossref_primary_10_1016_j_jhazmat_2024_134404 crossref_primary_10_1016_j_eja_2024_127351 crossref_primary_10_1016_j_soilbio_2025_109742 crossref_primary_10_1007_s42729_024_01983_8 crossref_primary_10_5194_soil_10_521_2024 crossref_primary_10_1016_j_catena_2024_107955 crossref_primary_10_1038_s41559_024_02520_7 crossref_primary_10_1016_j_apsoil_2025_106049 crossref_primary_10_1016_j_ufug_2024_128628 crossref_primary_10_1111_ejss_70078 crossref_primary_10_3389_fmicb_2024_1406661 crossref_primary_10_1016_j_soilbio_2025_109717 crossref_primary_10_1016_j_jwpe_2025_107211 crossref_primary_10_1016_j_soilbio_2024_109439 crossref_primary_10_1016_j_geoderma_2024_117078 crossref_primary_10_3390_plants14070981 crossref_primary_10_1016_j_soilbio_2024_109458 crossref_primary_10_1016_j_soilbio_2025_109732 crossref_primary_10_1038_s41467_024_52160_5 crossref_primary_10_1111_gcb_17465 crossref_primary_10_3390_agriculture14060898 |
Cites_doi | 10.1002/1522-2624(200210)165:5<589::AID-JPLN589>3.0.CO;2-4 10.1111/gcb.15168 10.1007/s10533-023-01050-x 10.1111/gcb.14482 10.3354/ame043243 10.1038/s41586-023-06042-3 10.1016/j.soilbio.2018.09.036 10.1016/S0016-7061(03)00046-6 10.1038/ncomms13630 10.1016/j.soilbio.2018.10.006 10.3389/fmicb.2013.00146 10.1016/j.still.2007.10.003 10.1016/S0038-0717(02)00274-2 10.1007/s10021-006-9010-y 10.3389/fmicb.2015.01330 10.1023/A:1006112000616 10.1016/0038-0717(94)90086-8 10.1007/s10533-016-0191-y 10.1201/9781420005271.ch69 10.1111/j.1469-8137.2012.04225.x 10.1016/0038-0717(85)90144-0 10.1128/AEM.02874-09 10.1016/j.femsec.2004.10.002 10.1023/B:PLSO.0000020933.32473.7e 10.1098/rstb.2002.1078 10.1007/s10533-018-0489-z 10.2307/2389824 10.1146/annurev-ecolsys-110617-062614 10.1016/S0038-0717(99)00016-4 10.1007/s10533-011-9658-z 10.1111/sum.12421 10.1111/j.1365-2486.2007.01415.x 10.1046/j.1365-2486.1998.00128.x 10.1016/j.soilbio.2013.01.003 10.1038/nclimate2361 10.1111/gcb.14781 10.1038/s42003-020-01317-1 10.1016/j.soilbio.2014.03.006 10.1016/j.soilbio.2018.12.019 10.1111/ele.12113 10.1016/j.agee.2011.02.029 10.1016/j.soilbio.2016.03.008 10.1111/gcb.12113 10.1029/2005GB002644 10.1038/nclimate1796 10.1016/B978-0-12-812128-3.00017-3 10.1016/j.soilbio.2018.05.028 10.1111/gcbb.12428 10.1016/j.soilbio.2018.02.022 10.1016/j.soilbio.2021.108223 10.1038/s41396-021-00959-1 10.1007/s00374-019-01374-7 10.1016/j.soilbio.2016.01.016 10.1038/s41396-021-01110-w 10.1111/gcb.12996 10.1016/j.soilbio.2016.03.011 10.2134/agronj2018.03.0177 10.1007/s003740050502 10.1111/gcb.14962 10.1038/s41467-020-17502-z 10.1007/s11104-015-2771-3 10.1016/j.still.2006.12.006 10.3390/life8010008 10.1007/s10533-014-9970-5 10.1111/j.1469-8137.2010.03321.x 10.1007/BF01343734 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.geoderma.2023.116693 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | oai_doaj_org_article_86ed4bcb7b7246eabb7043702479138a 10_1016_j_geoderma_2023_116693 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO AAYWO AAYXX ABEFU ABFNM ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACRPL ACSBN ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADQTV ADVLN AEBSH AEFWE AEGFY AEIPS AEKER AENEX AEQOU AEUPX AFFNX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CITATION CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SEP SES SEW SPC SPCBC SSA SSE SSH SSZ T5K VH1 WUQ XPP Y6R ZMT ~02 ~G- 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c402t-1508046441a164c01c68efdabb6564bd9fc0dca35d731c76ef4bd1a1d8d7a54d3 |
IEDL.DBID | DOA |
ISSN | 0016-7061 |
IngestDate | Wed Aug 27 00:56:25 EDT 2025 Fri Aug 22 20:24:59 EDT 2025 Thu Apr 24 22:57:58 EDT 2025 Tue Jul 01 04:05:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-1508046441a164c01c68efdabb6564bd9fc0dca35d731c76ef4bd1a1d8d7a54d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5160-2701 0000-0003-3282-4808 0000-0001-5839-5904 0000-0003-0548-8503 0000-0002-8909-8264 0000-0002-9542-0117 0000-0003-0691-7656 0000-0003-1285-8509 |
OpenAccessLink | https://doaj.org/article/86ed4bcb7b7246eabb7043702479138a |
PQID | 3153814743 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_86ed4bcb7b7246eabb7043702479138a proquest_miscellaneous_3153814743 crossref_primary_10_1016_j_geoderma_2023_116693 crossref_citationtrail_10_1016_j_geoderma_2023_116693 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-00 20231201 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-00 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2023 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Simon (10.1016/j.geoderma.2023.116693_b0270) 2020; 3 Grandy (10.1016/j.geoderma.2023.116693_b0115) 2007; 10 10.1016/j.geoderma.2023.116693_b0180 Steinweg (10.1016/j.geoderma.2023.116693_b0305) 2013; 4 Schindlbacher (10.1016/j.geoderma.2023.116693_b0255) 2015; 21 Curiel Yuste (10.1016/j.geoderma.2023.116693_b0060) 2007; 13 Fierer (10.1016/j.geoderma.2023.116693_b0085) 2006; 20 Canarini (10.1016/j.geoderma.2023.116693_b0030) 2020; 26 Schnecker (10.1016/j.geoderma.2023.116693_b0265) 2023 10.1016/j.geoderma.2023.116693_b0225 Schimel (10.1016/j.geoderma.2023.116693_b0250) 2018; 49 Fekete (10.1016/j.geoderma.2023.116693_b0080) 2014; 74 Brookes (10.1016/j.geoderma.2023.116693_b0025) 1985; 17 Takriti (10.1016/j.geoderma.2023.116693_b0310) 2018; 121 Castro (10.1016/j.geoderma.2023.116693_b0035) 2010; 76 Leitner (10.1016/j.geoderma.2023.116693_b0170) 2016; 403 Jackson (10.1016/j.geoderma.2023.116693_b0135) 2003; 114 Lajtha (10.1016/j.geoderma.2023.116693_b0160) 2014; 119 Friedel (10.1016/j.geoderma.2023.116693_b0100) 2002; 165 Raich (10.1016/j.geoderma.2023.116693_b0230) 2000; 48 Wang (10.1016/j.geoderma.2023.116693_b0335) 2021; 15 Sokol (10.1016/j.geoderma.2023.116693_b0280) 2019; 25 Austin (10.1016/j.geoderma.2023.116693_b0010) 2017; 9 Wang (10.1016/j.geoderma.2023.116693_b0330) 2003; 35 Spohn (10.1016/j.geoderma.2023.116693_b0295) 2016; 96 Elder (10.1016/j.geoderma.2023.116693_b0075) 2008; 98 Kandeler (10.1016/j.geoderma.2023.116693_b0150) 1999; 28 Zheng (10.1016/j.geoderma.2023.116693_b0350) 2019; 128 Tao (10.1016/j.geoderma.2023.116693_b0315) 2023; 618 Manzoni (10.1016/j.geoderma.2023.116693_b0185) 2012; 196 10.1016/j.geoderma.2023.116693_b0235 Birch (10.1016/j.geoderma.2023.116693_b0020) 1958; 10 Conant (10.1016/j.geoderma.2023.116693_b0045) 2007; 95 Mason-Jones (10.1016/j.geoderma.2023.116693_b0190) 2022; 16 Schmidt (10.1016/j.geoderma.2023.116693_b0260) 2004; 259 Cotrufo (10.1016/j.geoderma.2023.116693_b0050) 2013; 19 Rosner (10.1016/j.geoderma.2023.116693_b0240) 2018; 110 Isobe (10.1016/j.geoderma.2023.116693_b0130) 2018; 124 Kätterer (10.1016/j.geoderma.2023.116693_b0155) 2011; 141 Lazzaro (10.1016/j.geoderma.2023.116693_b0165) 2015; 6 Liang (10.1016/j.geoderma.2023.116693_b0175) 2019; 25 Sinsabaugh (10.1016/j.geoderma.2023.116693_b0275) 2013; 16 Zhang (10.1016/j.geoderma.2023.116693_b0345) 2014; 9 Zuber (10.1016/j.geoderma.2023.116693_b0355) 2016; 97 Tribelli (10.1016/j.geoderma.2023.116693_b0320) 2018; 8 Davidson (10.1016/j.geoderma.2023.116693_b0065) 1998; 4 Franzluebbers (10.1016/j.geoderma.2023.116693_b0090) 1994; 26 Geyer (10.1016/j.geoderma.2023.116693_b0105) 2016; 127 Pold (10.1016/j.geoderma.2023.116693_b0220) 2019; 1–25 Walker (10.1016/j.geoderma.2023.116693_b0325) 2018; 8 Meyer (10.1016/j.geoderma.2023.116693_b0195) 2019; 55 Pietikäinen (10.1016/j.geoderma.2023.116693_b0205) 2005; 52 Hagerty (10.1016/j.geoderma.2023.116693_b0120) 2014; 4 Kaiser (10.1016/j.geoderma.2023.116693_b0140) 2010; 187 Spohn (10.1016/j.geoderma.2023.116693_b0300) 2016; 97 Bardgett (10.1016/j.geoderma.2023.116693_b0015) 1999; 31 Cruz-Paredes (10.1016/j.geoderma.2023.116693_b0055) 2021; 156 Sandén (10.1016/j.geoderma.2023.116693_b0245) 2018; 34 Miltner (10.1016/j.geoderma.2023.116693_b0200) 2011; 111 10.1016/j.geoderma.2023.116693_b0290 Colman (10.1016/j.geoderma.2023.116693_b0040) 2013; 60 Weber (10.1016/j.geoderma.2023.116693_b0340) 2002; 357 Domeignoz-Horta (10.1016/j.geoderma.2023.116693_b0070) 2020; 11 Poeplau (10.1016/j.geoderma.2023.116693_b0215) 2019; 130 Soong (10.1016/j.geoderma.2023.116693_b0285) 2020; 26 Hagerty (10.1016/j.geoderma.2023.116693_b0125) 2018; 140 Geyer (10.1016/j.geoderma.2023.116693_b0110) 2019; 128 Apple (10.1016/j.geoderma.2023.116693_b0005) 2006; 43 Kallenbach (10.1016/j.geoderma.2023.116693_b0145) 2016; 7 10.1016/j.geoderma.2023.116693_b0210 Frey (10.1016/j.geoderma.2023.116693_b0095) 2013; 3 |
References_xml | – volume: 165 start-page: 589 year: 2002 ident: 10.1016/j.geoderma.2023.116693_b0100 article-title: Limitations when quantifying microbial carbon and nitrogen by fumigation-extraction in rooted soils publication-title: Journal of Plant Nutrition and Soil Science doi: 10.1002/1522-2624(200210)165:5<589::AID-JPLN589>3.0.CO;2-4 – ident: 10.1016/j.geoderma.2023.116693_b0210 – volume: 26 start-page: 5333 year: 2020 ident: 10.1016/j.geoderma.2023.116693_b0030 article-title: Quantifying microbial growth and carbon use efficiency in dry soil environments via 18O water vapor equilibration publication-title: Global Change Biology doi: 10.1111/gcb.15168 – year: 2023 ident: 10.1016/j.geoderma.2023.116693_b0265 article-title: Microbial responses to soil cooling might explain increases in microbial biomass in winter publication-title: Biogeochemistry doi: 10.1007/s10533-023-01050-x – volume: 25 start-page: 12 year: 2019 ident: 10.1016/j.geoderma.2023.116693_b0280 article-title: Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry publication-title: Global Change Biology doi: 10.1111/gcb.14482 – volume: 43 start-page: 243 year: 2006 ident: 10.1016/j.geoderma.2023.116693_b0005 article-title: Temperature regulation of bacterial production, respiration, and growth efficiency in a temperate salt-marsh estuary publication-title: Aquatic Microbial Ecology doi: 10.3354/ame043243 – volume: 618 year: 2023 ident: 10.1016/j.geoderma.2023.116693_b0315 article-title: Microbial carbon use efficiency promotes global soil carbon storage publication-title: Nature doi: 10.1038/s41586-023-06042-3 – volume: 128 start-page: 79 year: 2019 ident: 10.1016/j.geoderma.2023.116693_b0110 article-title: Clarifying the interpretation of carbon use efficiency in soil through methods comparison publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2018.09.036 – volume: 114 start-page: 305 year: 2003 ident: 10.1016/j.geoderma.2023.116693_b0135 article-title: Responses of soil microbial processes and community structure to tillage events and implications for soil quality publication-title: Geoderma doi: 10.1016/S0016-7061(03)00046-6 – volume: 9 start-page: 1 year: 2014 ident: 10.1016/j.geoderma.2023.116693_b0345 article-title: Comparison of seasonal soil microbial process in snow-covered temperate ecosystems of northern China publication-title: PLoS One1 – volume: 7 start-page: 1 year: 2016 ident: 10.1016/j.geoderma.2023.116693_b0145 article-title: Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls publication-title: Nature Communications doi: 10.1038/ncomms13630 – volume: 128 start-page: 45 year: 2019 ident: 10.1016/j.geoderma.2023.116693_b0350 article-title: Growth explains microbial carbon use efficiency across soils differing in land use and geology publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2018.10.006 – volume: 4 start-page: 146 year: 2013 ident: 10.1016/j.geoderma.2023.116693_b0305 article-title: Microbial responses to multi-factor climate change: effects on soil enzymes publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2013.00146 – volume: 98 start-page: 45 year: 2008 ident: 10.1016/j.geoderma.2023.116693_b0075 article-title: Tillage effects on gaseous emissions from an intensively farmed organic soil in North Central Ohio publication-title: Soil and Tillage Research doi: 10.1016/j.still.2007.10.003 – volume: 35 start-page: 273 year: 2003 ident: 10.1016/j.geoderma.2023.116693_b0330 article-title: Relationships of soil respiration to microbial biomass, substrate availability and clay content publication-title: Soil Biology and Biochemistry doi: 10.1016/S0038-0717(02)00274-2 – volume: 10 start-page: 58 year: 2007 ident: 10.1016/j.geoderma.2023.116693_b0115 article-title: Land-use intensity effects on soil organic carbon accumulation rates and mechanisms publication-title: Ecosystems doi: 10.1007/s10021-006-9010-y – volume: 1–25 year: 2019 ident: 10.1016/j.geoderma.2023.116693_b0220 article-title: Metabolic tradeoffs and heterogeneity in microbial responses to temperature determine the fate of litter carbon in a warmer world publication-title: Biogeosciences Discussions – volume: 6 start-page: 1 year: 2015 ident: 10.1016/j.geoderma.2023.116693_b0165 article-title: structures of microbial communities in alpine soils: Seasonal and elevational effects publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2015.01330 – volume: 48 start-page: 71 year: 2000 ident: 10.1016/j.geoderma.2023.116693_b0230 article-title: Vegetation and soil respiration: Correlations and controls publication-title: Biogeochemistry doi: 10.1023/A:1006112000616 – volume: 26 start-page: 1469 year: 1994 ident: 10.1016/j.geoderma.2023.116693_b0090 article-title: Seasonal changes in soil microbial biomass and mineralizable c and n in wheat management systems publication-title: Soil Biology and Biochemistry doi: 10.1016/0038-0717(94)90086-8 – volume: 127 start-page: 173 year: 2016 ident: 10.1016/j.geoderma.2023.116693_b0105 article-title: Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter publication-title: Biogeochemistry doi: 10.1007/s10533-016-0191-y – ident: 10.1016/j.geoderma.2023.116693_b0235 doi: 10.1201/9781420005271.ch69 – volume: 196 start-page: 79 year: 2012 ident: 10.1016/j.geoderma.2023.116693_b0185 article-title: Environmental and stoichiometric controls on microbial carbon-use efficiency in soils publication-title: The New Phytologist doi: 10.1111/j.1469-8137.2012.04225.x – volume: 17 start-page: 837 year: 1985 ident: 10.1016/j.geoderma.2023.116693_b0025 article-title: Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil publication-title: Soil Biology and Biochemistry doi: 10.1016/0038-0717(85)90144-0 – volume: 76 start-page: 999 year: 2010 ident: 10.1016/j.geoderma.2023.116693_b0035 article-title: Soil microbial community responses to multiple experimental climate change drivers publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.02874-09 – volume: 52 start-page: 49 year: 2005 ident: 10.1016/j.geoderma.2023.116693_b0205 article-title: Comparison of temperature effects on soil respiration and bacterial and fungal growth rates publication-title: FEMS Microbiology Ecology doi: 10.1016/j.femsec.2004.10.002 – volume: 259 start-page: 1 year: 2004 ident: 10.1016/j.geoderma.2023.116693_b0260 article-title: Microbial growth under the snow: Implications for nutrient and allelochemical availability in temperate soils publication-title: Plant and Soil doi: 10.1023/B:PLSO.0000020933.32473.7e – volume: 357 start-page: 895 year: 2002 ident: 10.1016/j.geoderma.2023.116693_b0340 article-title: Coping with the cold: The cold shock response in the Gram-positive soil bacterium Bacillus subtilis publication-title: Philosophical Transactions of the Royal Society b: Biological Sciences doi: 10.1098/rstb.2002.1078 – volume: 140 start-page: 269 year: 2018 ident: 10.1016/j.geoderma.2023.116693_b0125 article-title: Evaluating soil microbial carbon use efficiency explicitly as a function of cellular processes: implications for measurements and models publication-title: Biogeochemistry doi: 10.1007/s10533-018-0489-z – ident: 10.1016/j.geoderma.2023.116693_b0180 doi: 10.2307/2389824 – volume: 49 start-page: 409 year: 2018 ident: 10.1016/j.geoderma.2023.116693_b0250 article-title: Life in Dry Soils: Effects of Drought on Soil Microbial Communities and Processes publication-title: Annual Review of Ecology, Evolution, and Systematics doi: 10.1146/annurev-ecolsys-110617-062614 – volume: 31 start-page: 1021 year: 1999 ident: 10.1016/j.geoderma.2023.116693_b0015 article-title: Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands publication-title: Soil Biology and Biochemistry doi: 10.1016/S0038-0717(99)00016-4 – volume: 111 start-page: 41 year: 2011 ident: 10.1016/j.geoderma.2023.116693_b0200 article-title: SOM genesis: microbial biomass as a significant source publication-title: Biogeochemistry doi: 10.1007/s10533-011-9658-z – volume: 34 start-page: 167 year: 2018 ident: 10.1016/j.geoderma.2023.116693_b0245 article-title: European long-term field experiments: knowledge gained about alternative management practices publication-title: Soil Use and Management doi: 10.1111/sum.12421 – volume: 13 start-page: 2018 year: 2007 ident: 10.1016/j.geoderma.2023.116693_b0060 article-title: Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture publication-title: Global Change Biology doi: 10.1111/j.1365-2486.2007.01415.x – volume: 4 start-page: 217 year: 1998 ident: 10.1016/j.geoderma.2023.116693_b0065 article-title: Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest publication-title: Global Change Biology doi: 10.1046/j.1365-2486.1998.00128.x – volume: 60 start-page: 65 year: 2013 ident: 10.1016/j.geoderma.2023.116693_b0040 article-title: Drivers of microbial respiration and net N mineralization at the continental scale publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2013.01.003 – volume: 4 start-page: 903 year: 2014 ident: 10.1016/j.geoderma.2023.116693_b0120 article-title: Accelerated microbial turnover but constant growth efficiency with warming in soil publication-title: Nature Climate Change doi: 10.1038/nclimate2361 – volume: 25 start-page: 3578 year: 2019 ident: 10.1016/j.geoderma.2023.116693_b0175 article-title: Quantitative assessment of microbial necromass contribution to soil organic matter publication-title: Global Change Biology doi: 10.1111/gcb.14781 – volume: 3 year: 2020 ident: 10.1016/j.geoderma.2023.116693_b0270 article-title: Microbial growth and carbon use efficiency show seasonal responses in a multifactorial climate change experiment publication-title: Communications Biology doi: 10.1038/s42003-020-01317-1 – volume: 74 start-page: 106 year: 2014 ident: 10.1016/j.geoderma.2023.116693_b0080 article-title: Alterations in forest detritus inputs influence soil carbon concentration and soil respiration in a central-european deciduous forest publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2014.03.006 – volume: 130 start-page: 167 year: 2019 ident: 10.1016/j.geoderma.2023.116693_b0215 article-title: Increased microbial anabolism contributes to soil carbon sequestration by mineral fertilization in temperate grasslands publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2018.12.019 – volume: 16 start-page: 930 year: 2013 ident: 10.1016/j.geoderma.2023.116693_b0275 article-title: Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling publication-title: Ecology Letters doi: 10.1111/ele.12113 – volume: 141 start-page: 184 year: 2011 ident: 10.1016/j.geoderma.2023.116693_b0155 article-title: Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment publication-title: Agriculture, Ecosystems and Environment doi: 10.1016/j.agee.2011.02.029 – volume: 97 start-page: 168 year: 2016 ident: 10.1016/j.geoderma.2023.116693_b0300 article-title: Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2016.03.008 – volume: 19 start-page: 988 year: 2013 ident: 10.1016/j.geoderma.2023.116693_b0050 article-title: The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? publication-title: Global Change Biology doi: 10.1111/gcb.12113 – volume: 20 year: 2006 ident: 10.1016/j.geoderma.2023.116693_b0085 article-title: Predicting the temperature dependence of microbial respiration in soil: A continental-scale analysis publication-title: Global Biogeochemical Cycles doi: 10.1029/2005GB002644 – volume: 3 start-page: 395 year: 2013 ident: 10.1016/j.geoderma.2023.116693_b0095 article-title: The temperature response of soil microbial efficiency and its feedback to climate publication-title: Nature Climate Change doi: 10.1038/nclimate1796 – ident: 10.1016/j.geoderma.2023.116693_b0290 doi: 10.1016/B978-0-12-812128-3.00017-3 – volume: 124 start-page: 90 year: 2018 ident: 10.1016/j.geoderma.2023.116693_b0130 article-title: High soil microbial activity in the winter season enhances nitrogen cycling in a cool-temperate deciduous forest publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2018.05.028 – volume: 9 start-page: 1252 year: 2017 ident: 10.1016/j.geoderma.2023.116693_b0010 article-title: Cover crop root contributions to soil carbon in a no-till corn bioenergy cropping system publication-title: GCB Bioenergy doi: 10.1111/gcbb.12428 – volume: 121 start-page: 212 year: 2018 ident: 10.1016/j.geoderma.2023.116693_b0310 article-title: Soil organic matter quality exerts a stronger control than stoichiometry on microbial substrate use efficiency along a latitudinal transect publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2018.02.022 – volume: 156 year: 2021 ident: 10.1016/j.geoderma.2023.116693_b0055 article-title: Can moisture affect temperature dependences of microbial growth and respiration? publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2021.108223 – volume: 15 start-page: 2738 year: 2021 ident: 10.1016/j.geoderma.2023.116693_b0335 article-title: The temperature sensitivity of soil: microbial biodiversity, growth, and carbon mineralization publication-title: ISME Journal doi: 10.1038/s41396-021-00959-1 – volume: 55 start-page: 825 year: 2019 ident: 10.1016/j.geoderma.2023.116693_b0195 article-title: Effect of sieving and sample storage on soil respiration and its temperature sensitivity (Q10) in mineral soils from Germany publication-title: Biology and Fertility of Soils doi: 10.1007/s00374-019-01374-7 – volume: 96 start-page: 74 year: 2016 ident: 10.1016/j.geoderma.2023.116693_b0295 article-title: Microbial carbon use efficiency and biomass turnover times depending on soil depth - Implications for carbon cycling publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2016.01.016 – ident: 10.1016/j.geoderma.2023.116693_b0225 – volume: 16 start-page: 617 year: 2022 ident: 10.1016/j.geoderma.2023.116693_b0190 article-title: Microbial storage and its implications for soil ecology publication-title: ISME Journal doi: 10.1038/s41396-021-01110-w – volume: 8 year: 2018 ident: 10.1016/j.geoderma.2023.116693_b0325 article-title: Microbial temperature sensitivity and biomass change explain soil carbon loss with warming publication-title: Nature Climate Change – volume: 21 year: 2015 ident: 10.1016/j.geoderma.2023.116693_b0255 article-title: Microbial physiology and soil CO2efflux after 9 years of soil warming in a temperate forest - no indications for thermal adaptations publication-title: Global Change Biology doi: 10.1111/gcb.12996 – volume: 97 start-page: 176 year: 2016 ident: 10.1016/j.geoderma.2023.116693_b0355 article-title: Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2016.03.011 – volume: 110 start-page: 2664 year: 2018 ident: 10.1016/j.geoderma.2023.116693_b0240 article-title: Long-term soil tillage and cover cropping affected arbuscular mycorrhizal fungi, nutrient concentrations, and yield in sunflower publication-title: Agronomy Journal doi: 10.2134/agronj2018.03.0177 – volume: 28 start-page: 343 year: 1999 ident: 10.1016/j.geoderma.2023.116693_b0150 article-title: Long-term monitoring of microbial biomass, N mineralisation and enzyme activities of a Chernozem under different tillage management publication-title: Biology and Fertility of Soils doi: 10.1007/s003740050502 – volume: 26 start-page: 1953 year: 2020 ident: 10.1016/j.geoderma.2023.116693_b0285 article-title: Microbial carbon limitation: The need for integrating microorganisms into our understanding of ecosystem carbon cycling publication-title: Global Change Biology doi: 10.1111/gcb.14962 – volume: 11 start-page: 1 year: 2020 ident: 10.1016/j.geoderma.2023.116693_b0070 article-title: Microbial diversity drives carbon use efficiency in a model soil publication-title: Nature Communications doi: 10.1038/s41467-020-17502-z – volume: 403 start-page: 455 year: 2016 ident: 10.1016/j.geoderma.2023.116693_b0170 article-title: Contribution of litter layer to soil greenhouse gas emissions in a temperate beech forest publication-title: Plant and Soil doi: 10.1007/s11104-015-2771-3 – volume: 95 start-page: 1 year: 2007 ident: 10.1016/j.geoderma.2023.116693_b0045 article-title: Impacts of periodic tillage on soil C stocks: A synthesis publication-title: Soil and Tillage Research doi: 10.1016/j.still.2006.12.006 – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.geoderma.2023.116693_b0320 article-title: Reporting key features in cold-adapted bacteria publication-title: Life doi: 10.3390/life8010008 – volume: 119 start-page: 341 year: 2014 ident: 10.1016/j.geoderma.2023.116693_b0160 article-title: Changes to particulate versus mineral-associated soil carbon after 50 years of litter manipulation in forest and prairie experimental ecosystems publication-title: Biogeochemistry doi: 10.1007/s10533-014-9970-5 – volume: 187 start-page: 843 year: 2010 ident: 10.1016/j.geoderma.2023.116693_b0140 article-title: Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil publication-title: New Phytologist doi: 10.1111/j.1469-8137.2010.03321.x – volume: 10 start-page: 9 year: 1958 ident: 10.1016/j.geoderma.2023.116693_b0020 article-title: The effect of soil drying on humus decomposition and nitrogen availability publication-title: Plant and Soil doi: 10.1007/BF01343734 |
SSID | ssj0017020 |
Score | 2.5873573 |
Snippet | Soil microbial growth, respiration, and carbon (C) use efficiency (CUE) are essential parameters to understand, describe and model the soil carbon cycle. While... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 116693 |
SubjectTerms | agricultural land carbon carbon cycle Carbon use efficiency cryoprotectants deciduous forests decline DNA leaves microbial biomass Microbial growth microbial physiology Microbial processes plant litter Seasonal dynamics soil temperature temperate soils Winter |
Title | Seasonal dynamics of soil microbial growth, respiration, biomass, and carbon use efficiency in temperate soils |
URI | https://www.proquest.com/docview/3153814743 https://doaj.org/article/86ed4bcb7b7246eabb7043702479138a |
Volume | 440 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXETxusd2kSXtcxWUR9KKCt5BXdUVbabv_35m0XRQPXrzm0YbJJPMNk_mGkIuUa7CKIsPiLkXEWcEijYQA2UQW0gIA0CFJ7O5ezJ_47XP6_K3UF74J6-iBO8FdZsI7bqyRRk648NoYiXQ8YFpknrAsQCOweYMz1ccPoD_-lg_8BruBpcUC09CEwT0hRM5-mKLA2P_rQg5WZrZNtnp4SKfdsnbImi93yeb0pe4pMvweKR-8DviZuq6afEOrgjbV4p1-LAKtEnS9gHfdvo5p3UfSQfpjiqn2gJXHVJeOWl2bqqTLxlMfaCQwB5MuSopkVci07MM3m33yNLt5vJ5HfdWEyIIv2EZI8I7xSp5ocIVsnFiR-cKB4AC6cePywsbOapY6yRIrhS-gEca6zEmdcscOyHpZlf6QUDihWufOuhyMuM5Sw9gkdkY4AIWS8XRE0kGAyvaU4ljZ4l0Nb8fe1CB4hYJXneBH5HI177Mj1fhzxhXuz2o0kmKHBlAV1auK-ktVRuR82F0FhwgjI7r01bJRDO_9hAOaOvqPHx2TDVx79-rlhKy39dKfAnZpzVlQ0y9IAe1j |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seasonal+dynamics+of+soil+microbial+growth%2C+respiration%2C+biomass%2C+and+carbon+use+efficiency+in+temperate+soils&rft.jtitle=Geoderma&rft.au=Schnecker%2C+J%C3%B6rg&rft.au=Baldaszti%2C+Ludwig&rft.au=G%C3%BCndler%2C+Philipp&rft.au=Pleitner%2C+Michaela&rft.date=2023-12-01&rft.issn=0016-7061&rft.volume=440&rft.spage=116693&rft_id=info:doi/10.1016%2Fj.geoderma.2023.116693&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2023_116693 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |