Seasonal dynamics of soil microbial growth, respiration, biomass, and carbon use efficiency in temperate soils

Soil microbial growth, respiration, and carbon (C) use efficiency (CUE) are essential parameters to understand, describe and model the soil carbon cycle. While seasonal dynamics of microbial respiration are well studied, little is known about how microbial growth and CUE change over the course of a...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 440; p. 116693
Main Authors Schnecker, Jörg, Baldaszti, Ludwig, Gündler, Philipp, Pleitner, Michaela, Sandén, Taru, Simon, Eva, Spiegel, Felix, Spiegel, Heide, Urbina Malo, Carolina, Zechmeister-Boltenstern, Sophie, Richter, Andreas
Format Journal Article
LanguageEnglish
Published Elsevier 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soil microbial growth, respiration, and carbon (C) use efficiency (CUE) are essential parameters to understand, describe and model the soil carbon cycle. While seasonal dynamics of microbial respiration are well studied, little is known about how microbial growth and CUE change over the course of a year, especially outside the plant growing season. In this study, we measured soil microbial respiration, gross growth via ¹⁸O incorporation into DNA, and biomass in an agricultural field and a deciduous forest 16 times over the course of two years. We sampled soils to a depth of 5 cm from plots at which harvest residues or leaf litter remained on the plot or was removed. We observed strong seasonal variations of microbial respiration, growth, and biomass. All these microbial parameters were significantly higher at the forest site, which contained 4.3 % organic C compared to the agricultural site with 0.9 % organic C. CUE also varied strongly (0.1 to 0.7) but was overall significantly higher at the agricultural site compared to the forest site. We found that microbial respiration and to a lesser extent microbial growth followed the seasonal dynamics of soil temperature. Microbial growth was further affected by the presence of plants in the agricultural system or foliage in the forest. At low temperatures in winter, both microbial respiration and gross growth showed the lowest rates, whereas CUE (calculated from both respiration and growth) showed amongst the highest values determined during the two years, due to the higher temperature sensitivity of microbial respiration. Microbial biomass C strongly increased in winter. Surprisingly, this winter peak was not connected to high microbial growth or an increase in DNA content. This suggests that microorganisms accumulated C and N, potentially in the form of osmo- or cryoprotectants or increased in cell size but did not divide. This microbial winter bloom and following decline, where C is released from microbial biomass and freely available, might constitute a highly dynamic time in the annual C cycle in temperate soil systems. Highly variable CUE, which was observed in our study, and the fact that CUE is calculated from independently controlled microbial respiration and microbial growth, ask for great caution when CUE is used to describe soil microbial physiology, soil C dynamics or C sequestration. Instead, microbial respiration, microbial growth, and microbial biomass C should be investigated individually in combination to better understand the soil C cycle.
AbstractList Soil microbial growth, respiration, and carbon (C) use efficiency (CUE) are essential parameters to understand, describe and model the soil carbon cycle. While seasonal dynamics of microbial respiration are well studied, little is known about how microbial growth and CUE change over the course of a year, especially outside the plant growing season. In this study, we measured soil microbial respiration, gross growth via 18O incorporation into DNA, and biomass in an agricultural field and a deciduous forest 16 times over the course of two years. We sampled soils to a depth of 5 cm from plots at which harvest residues or leaf litter remained on the plot or was removed. We observed strong seasonal variations of microbial respiration, growth, and biomass. All these microbial parameters were significantly higher at the forest site, which contained 4.3 % organic C compared to the agricultural site with 0.9 % organic C. CUE also varied strongly (0.1 to 0.7) but was overall significantly higher at the agricultural site compared to the forest site. We found that microbial respiration and to a lesser extent microbial growth followed the seasonal dynamics of soil temperature. Microbial growth was further affected by the presence of plants in the agricultural system or foliage in the forest. At low temperatures in winter, both microbial respiration and gross growth showed the lowest rates, whereas CUE (calculated from both respiration and growth) showed amongst the highest values determined during the two years, due to the higher temperature sensitivity of microbial respiration. Microbial biomass C strongly increased in winter. Surprisingly, this winter peak was not connected to high microbial growth or an increase in DNA content. This suggests that microorganisms accumulated C and N, potentially in the form of osmo- or cryoprotectants or increased in cell size but did not divide. This microbial winter bloom and following decline, where C is released from microbial biomass and freely available, might constitute a highly dynamic time in the annual C cycle in temperate soil systems. Highly variable CUE, which was observed in our study, and the fact that CUE is calculated from independently controlled microbial respiration and microbial growth, ask for great caution when CUE is used to describe soil microbial physiology, soil C dynamics or C sequestration. Instead, microbial respiration, microbial growth, and microbial biomass C should be investigated individually in combination to better understand the soil C cycle.
Soil microbial growth, respiration, and carbon (C) use efficiency (CUE) are essential parameters to understand, describe and model the soil carbon cycle. While seasonal dynamics of microbial respiration are well studied, little is known about how microbial growth and CUE change over the course of a year, especially outside the plant growing season. In this study, we measured soil microbial respiration, gross growth via ¹⁸O incorporation into DNA, and biomass in an agricultural field and a deciduous forest 16 times over the course of two years. We sampled soils to a depth of 5 cm from plots at which harvest residues or leaf litter remained on the plot or was removed. We observed strong seasonal variations of microbial respiration, growth, and biomass. All these microbial parameters were significantly higher at the forest site, which contained 4.3 % organic C compared to the agricultural site with 0.9 % organic C. CUE also varied strongly (0.1 to 0.7) but was overall significantly higher at the agricultural site compared to the forest site. We found that microbial respiration and to a lesser extent microbial growth followed the seasonal dynamics of soil temperature. Microbial growth was further affected by the presence of plants in the agricultural system or foliage in the forest. At low temperatures in winter, both microbial respiration and gross growth showed the lowest rates, whereas CUE (calculated from both respiration and growth) showed amongst the highest values determined during the two years, due to the higher temperature sensitivity of microbial respiration. Microbial biomass C strongly increased in winter. Surprisingly, this winter peak was not connected to high microbial growth or an increase in DNA content. This suggests that microorganisms accumulated C and N, potentially in the form of osmo- or cryoprotectants or increased in cell size but did not divide. This microbial winter bloom and following decline, where C is released from microbial biomass and freely available, might constitute a highly dynamic time in the annual C cycle in temperate soil systems. Highly variable CUE, which was observed in our study, and the fact that CUE is calculated from independently controlled microbial respiration and microbial growth, ask for great caution when CUE is used to describe soil microbial physiology, soil C dynamics or C sequestration. Instead, microbial respiration, microbial growth, and microbial biomass C should be investigated individually in combination to better understand the soil C cycle.
ArticleNumber 116693
Author Simon, Eva
Sandén, Taru
Spiegel, Heide
Gündler, Philipp
Spiegel, Felix
Schnecker, Jörg
Pleitner, Michaela
Baldaszti, Ludwig
Zechmeister-Boltenstern, Sophie
Richter, Andreas
Urbina Malo, Carolina
Author_xml – sequence: 1
  givenname: Jörg
  orcidid: 0000-0002-5160-2701
  surname: Schnecker
  fullname: Schnecker, Jörg
– sequence: 2
  givenname: Ludwig
  orcidid: 0000-0003-0548-8503
  surname: Baldaszti
  fullname: Baldaszti, Ludwig
– sequence: 3
  givenname: Philipp
  surname: Gündler
  fullname: Gündler, Philipp
– sequence: 4
  givenname: Michaela
  surname: Pleitner
  fullname: Pleitner, Michaela
– sequence: 5
  givenname: Taru
  orcidid: 0000-0002-9542-0117
  surname: Sandén
  fullname: Sandén, Taru
– sequence: 6
  givenname: Eva
  orcidid: 0000-0002-8909-8264
  surname: Simon
  fullname: Simon, Eva
– sequence: 7
  givenname: Felix
  orcidid: 0000-0003-0691-7656
  surname: Spiegel
  fullname: Spiegel, Felix
– sequence: 8
  givenname: Heide
  orcidid: 0000-0003-1285-8509
  surname: Spiegel
  fullname: Spiegel, Heide
– sequence: 9
  givenname: Carolina
  surname: Urbina Malo
  fullname: Urbina Malo, Carolina
– sequence: 10
  givenname: Sophie
  orcidid: 0000-0001-5839-5904
  surname: Zechmeister-Boltenstern
  fullname: Zechmeister-Boltenstern, Sophie
– sequence: 11
  givenname: Andreas
  orcidid: 0000-0003-3282-4808
  surname: Richter
  fullname: Richter, Andreas
BookMark eNqFUU1rGzEQFSWFOGn_QtCxB68jrbTSGnIJIWkDgR7ansVImnVldiVHWhP876vYbQ-55DTMzPuA9y7IWUwRCbnibMUZV9fb1QaTxzzBqmWtWHGu1Fp8IAve67ZRbbc-IwtWkY1mip-Ti1K2ddWsZQsSfyCUFGGk_hBhCq7QNNCSwkjrkpMN9bXJ6WX-vaQZyy5kmEOKS2pDmqCUJYXoqYNsU6T7ghSHIbiA0R1oiHTGaYeVgkfN8ol8HGAs-PnvvCS_Hu5_3n1rnr5_fby7fWqcZO3c8I71TCopOXAlHeNO9Th4sFZ1Slq_HhzzDkTnteBOKxzqsWJ97zV00otL8njS9Qm2ZpfDBPlgEgRzPKS8MZDn4EY0vUIvrbPa6lYqrB6aSVHTkXrNRQ9V68tJa5fT8x7LbKZQHI4jREz7YgTvRM-llqJC1Qlakysl4_DfmjPzWpbZmn9lmdeyzKmsSrx5Q3RhPgY9Zwjje_Q_-0iiSg
CitedBy_id crossref_primary_10_1139_cjm_2024_0064
crossref_primary_10_3390_su16166849
crossref_primary_10_1016_j_jenvman_2024_123755
crossref_primary_10_1002_jpln_202300107
crossref_primary_10_1002_sae2_70046
crossref_primary_10_3390_agriculture14101774
crossref_primary_10_1016_j_apsoil_2025_105888
crossref_primary_10_1016_j_jhazmat_2024_134404
crossref_primary_10_1016_j_eja_2024_127351
crossref_primary_10_1016_j_soilbio_2025_109742
crossref_primary_10_1007_s42729_024_01983_8
crossref_primary_10_5194_soil_10_521_2024
crossref_primary_10_1016_j_catena_2024_107955
crossref_primary_10_1038_s41559_024_02520_7
crossref_primary_10_1016_j_apsoil_2025_106049
crossref_primary_10_1016_j_ufug_2024_128628
crossref_primary_10_1111_ejss_70078
crossref_primary_10_3389_fmicb_2024_1406661
crossref_primary_10_1016_j_soilbio_2025_109717
crossref_primary_10_1016_j_jwpe_2025_107211
crossref_primary_10_1016_j_soilbio_2024_109439
crossref_primary_10_1016_j_geoderma_2024_117078
crossref_primary_10_3390_plants14070981
crossref_primary_10_1016_j_soilbio_2024_109458
crossref_primary_10_1016_j_soilbio_2025_109732
crossref_primary_10_1038_s41467_024_52160_5
crossref_primary_10_1111_gcb_17465
crossref_primary_10_3390_agriculture14060898
Cites_doi 10.1002/1522-2624(200210)165:5<589::AID-JPLN589>3.0.CO;2-4
10.1111/gcb.15168
10.1007/s10533-023-01050-x
10.1111/gcb.14482
10.3354/ame043243
10.1038/s41586-023-06042-3
10.1016/j.soilbio.2018.09.036
10.1016/S0016-7061(03)00046-6
10.1038/ncomms13630
10.1016/j.soilbio.2018.10.006
10.3389/fmicb.2013.00146
10.1016/j.still.2007.10.003
10.1016/S0038-0717(02)00274-2
10.1007/s10021-006-9010-y
10.3389/fmicb.2015.01330
10.1023/A:1006112000616
10.1016/0038-0717(94)90086-8
10.1007/s10533-016-0191-y
10.1201/9781420005271.ch69
10.1111/j.1469-8137.2012.04225.x
10.1016/0038-0717(85)90144-0
10.1128/AEM.02874-09
10.1016/j.femsec.2004.10.002
10.1023/B:PLSO.0000020933.32473.7e
10.1098/rstb.2002.1078
10.1007/s10533-018-0489-z
10.2307/2389824
10.1146/annurev-ecolsys-110617-062614
10.1016/S0038-0717(99)00016-4
10.1007/s10533-011-9658-z
10.1111/sum.12421
10.1111/j.1365-2486.2007.01415.x
10.1046/j.1365-2486.1998.00128.x
10.1016/j.soilbio.2013.01.003
10.1038/nclimate2361
10.1111/gcb.14781
10.1038/s42003-020-01317-1
10.1016/j.soilbio.2014.03.006
10.1016/j.soilbio.2018.12.019
10.1111/ele.12113
10.1016/j.agee.2011.02.029
10.1016/j.soilbio.2016.03.008
10.1111/gcb.12113
10.1029/2005GB002644
10.1038/nclimate1796
10.1016/B978-0-12-812128-3.00017-3
10.1016/j.soilbio.2018.05.028
10.1111/gcbb.12428
10.1016/j.soilbio.2018.02.022
10.1016/j.soilbio.2021.108223
10.1038/s41396-021-00959-1
10.1007/s00374-019-01374-7
10.1016/j.soilbio.2016.01.016
10.1038/s41396-021-01110-w
10.1111/gcb.12996
10.1016/j.soilbio.2016.03.011
10.2134/agronj2018.03.0177
10.1007/s003740050502
10.1111/gcb.14962
10.1038/s41467-020-17502-z
10.1007/s11104-015-2771-3
10.1016/j.still.2006.12.006
10.3390/life8010008
10.1007/s10533-014-9970-5
10.1111/j.1469-8137.2010.03321.x
10.1007/BF01343734
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.geoderma.2023.116693
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID oai_doaj_org_article_86ed4bcb7b7246eabb7043702479138a
10_1016_j_geoderma_2023_116693
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABEFU
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACRPL
ACSBN
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADQTV
ADVLN
AEBSH
AEFWE
AEGFY
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CITATION
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SEP
SES
SEW
SPC
SPCBC
SSA
SSE
SSH
SSZ
T5K
VH1
WUQ
XPP
Y6R
ZMT
~02
~G-
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c402t-1508046441a164c01c68efdabb6564bd9fc0dca35d731c76ef4bd1a1d8d7a54d3
IEDL.DBID DOA
ISSN 0016-7061
IngestDate Wed Aug 27 00:56:25 EDT 2025
Fri Aug 22 20:24:59 EDT 2025
Thu Apr 24 22:57:58 EDT 2025
Tue Jul 01 04:05:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-1508046441a164c01c68efdabb6564bd9fc0dca35d731c76ef4bd1a1d8d7a54d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5160-2701
0000-0003-3282-4808
0000-0001-5839-5904
0000-0003-0548-8503
0000-0002-8909-8264
0000-0002-9542-0117
0000-0003-0691-7656
0000-0003-1285-8509
OpenAccessLink https://doaj.org/article/86ed4bcb7b7246eabb7043702479138a
PQID 3153814743
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_86ed4bcb7b7246eabb7043702479138a
proquest_miscellaneous_3153814743
crossref_primary_10_1016_j_geoderma_2023_116693
crossref_citationtrail_10_1016_j_geoderma_2023_116693
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-00
20231201
2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-00
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2023
Publisher Elsevier
Publisher_xml – name: Elsevier
References Simon (10.1016/j.geoderma.2023.116693_b0270) 2020; 3
Grandy (10.1016/j.geoderma.2023.116693_b0115) 2007; 10
10.1016/j.geoderma.2023.116693_b0180
Steinweg (10.1016/j.geoderma.2023.116693_b0305) 2013; 4
Schindlbacher (10.1016/j.geoderma.2023.116693_b0255) 2015; 21
Curiel Yuste (10.1016/j.geoderma.2023.116693_b0060) 2007; 13
Fierer (10.1016/j.geoderma.2023.116693_b0085) 2006; 20
Canarini (10.1016/j.geoderma.2023.116693_b0030) 2020; 26
Schnecker (10.1016/j.geoderma.2023.116693_b0265) 2023
10.1016/j.geoderma.2023.116693_b0225
Schimel (10.1016/j.geoderma.2023.116693_b0250) 2018; 49
Fekete (10.1016/j.geoderma.2023.116693_b0080) 2014; 74
Brookes (10.1016/j.geoderma.2023.116693_b0025) 1985; 17
Takriti (10.1016/j.geoderma.2023.116693_b0310) 2018; 121
Castro (10.1016/j.geoderma.2023.116693_b0035) 2010; 76
Leitner (10.1016/j.geoderma.2023.116693_b0170) 2016; 403
Jackson (10.1016/j.geoderma.2023.116693_b0135) 2003; 114
Lajtha (10.1016/j.geoderma.2023.116693_b0160) 2014; 119
Friedel (10.1016/j.geoderma.2023.116693_b0100) 2002; 165
Raich (10.1016/j.geoderma.2023.116693_b0230) 2000; 48
Wang (10.1016/j.geoderma.2023.116693_b0335) 2021; 15
Sokol (10.1016/j.geoderma.2023.116693_b0280) 2019; 25
Austin (10.1016/j.geoderma.2023.116693_b0010) 2017; 9
Wang (10.1016/j.geoderma.2023.116693_b0330) 2003; 35
Spohn (10.1016/j.geoderma.2023.116693_b0295) 2016; 96
Elder (10.1016/j.geoderma.2023.116693_b0075) 2008; 98
Kandeler (10.1016/j.geoderma.2023.116693_b0150) 1999; 28
Zheng (10.1016/j.geoderma.2023.116693_b0350) 2019; 128
Tao (10.1016/j.geoderma.2023.116693_b0315) 2023; 618
Manzoni (10.1016/j.geoderma.2023.116693_b0185) 2012; 196
10.1016/j.geoderma.2023.116693_b0235
Birch (10.1016/j.geoderma.2023.116693_b0020) 1958; 10
Conant (10.1016/j.geoderma.2023.116693_b0045) 2007; 95
Mason-Jones (10.1016/j.geoderma.2023.116693_b0190) 2022; 16
Schmidt (10.1016/j.geoderma.2023.116693_b0260) 2004; 259
Cotrufo (10.1016/j.geoderma.2023.116693_b0050) 2013; 19
Rosner (10.1016/j.geoderma.2023.116693_b0240) 2018; 110
Isobe (10.1016/j.geoderma.2023.116693_b0130) 2018; 124
Kätterer (10.1016/j.geoderma.2023.116693_b0155) 2011; 141
Lazzaro (10.1016/j.geoderma.2023.116693_b0165) 2015; 6
Liang (10.1016/j.geoderma.2023.116693_b0175) 2019; 25
Sinsabaugh (10.1016/j.geoderma.2023.116693_b0275) 2013; 16
Zhang (10.1016/j.geoderma.2023.116693_b0345) 2014; 9
Zuber (10.1016/j.geoderma.2023.116693_b0355) 2016; 97
Tribelli (10.1016/j.geoderma.2023.116693_b0320) 2018; 8
Davidson (10.1016/j.geoderma.2023.116693_b0065) 1998; 4
Franzluebbers (10.1016/j.geoderma.2023.116693_b0090) 1994; 26
Geyer (10.1016/j.geoderma.2023.116693_b0105) 2016; 127
Pold (10.1016/j.geoderma.2023.116693_b0220) 2019; 1–25
Walker (10.1016/j.geoderma.2023.116693_b0325) 2018; 8
Meyer (10.1016/j.geoderma.2023.116693_b0195) 2019; 55
Pietikäinen (10.1016/j.geoderma.2023.116693_b0205) 2005; 52
Hagerty (10.1016/j.geoderma.2023.116693_b0120) 2014; 4
Kaiser (10.1016/j.geoderma.2023.116693_b0140) 2010; 187
Spohn (10.1016/j.geoderma.2023.116693_b0300) 2016; 97
Bardgett (10.1016/j.geoderma.2023.116693_b0015) 1999; 31
Cruz-Paredes (10.1016/j.geoderma.2023.116693_b0055) 2021; 156
Sandén (10.1016/j.geoderma.2023.116693_b0245) 2018; 34
Miltner (10.1016/j.geoderma.2023.116693_b0200) 2011; 111
10.1016/j.geoderma.2023.116693_b0290
Colman (10.1016/j.geoderma.2023.116693_b0040) 2013; 60
Weber (10.1016/j.geoderma.2023.116693_b0340) 2002; 357
Domeignoz-Horta (10.1016/j.geoderma.2023.116693_b0070) 2020; 11
Poeplau (10.1016/j.geoderma.2023.116693_b0215) 2019; 130
Soong (10.1016/j.geoderma.2023.116693_b0285) 2020; 26
Hagerty (10.1016/j.geoderma.2023.116693_b0125) 2018; 140
Geyer (10.1016/j.geoderma.2023.116693_b0110) 2019; 128
Apple (10.1016/j.geoderma.2023.116693_b0005) 2006; 43
Kallenbach (10.1016/j.geoderma.2023.116693_b0145) 2016; 7
10.1016/j.geoderma.2023.116693_b0210
Frey (10.1016/j.geoderma.2023.116693_b0095) 2013; 3
References_xml – volume: 165
  start-page: 589
  year: 2002
  ident: 10.1016/j.geoderma.2023.116693_b0100
  article-title: Limitations when quantifying microbial carbon and nitrogen by fumigation-extraction in rooted soils
  publication-title: Journal of Plant Nutrition and Soil Science
  doi: 10.1002/1522-2624(200210)165:5<589::AID-JPLN589>3.0.CO;2-4
– ident: 10.1016/j.geoderma.2023.116693_b0210
– volume: 26
  start-page: 5333
  year: 2020
  ident: 10.1016/j.geoderma.2023.116693_b0030
  article-title: Quantifying microbial growth and carbon use efficiency in dry soil environments via 18O water vapor equilibration
  publication-title: Global Change Biology
  doi: 10.1111/gcb.15168
– year: 2023
  ident: 10.1016/j.geoderma.2023.116693_b0265
  article-title: Microbial responses to soil cooling might explain increases in microbial biomass in winter
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-023-01050-x
– volume: 25
  start-page: 12
  year: 2019
  ident: 10.1016/j.geoderma.2023.116693_b0280
  article-title: Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry
  publication-title: Global Change Biology
  doi: 10.1111/gcb.14482
– volume: 43
  start-page: 243
  year: 2006
  ident: 10.1016/j.geoderma.2023.116693_b0005
  article-title: Temperature regulation of bacterial production, respiration, and growth efficiency in a temperate salt-marsh estuary
  publication-title: Aquatic Microbial Ecology
  doi: 10.3354/ame043243
– volume: 618
  year: 2023
  ident: 10.1016/j.geoderma.2023.116693_b0315
  article-title: Microbial carbon use efficiency promotes global soil carbon storage
  publication-title: Nature
  doi: 10.1038/s41586-023-06042-3
– volume: 128
  start-page: 79
  year: 2019
  ident: 10.1016/j.geoderma.2023.116693_b0110
  article-title: Clarifying the interpretation of carbon use efficiency in soil through methods comparison
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2018.09.036
– volume: 114
  start-page: 305
  year: 2003
  ident: 10.1016/j.geoderma.2023.116693_b0135
  article-title: Responses of soil microbial processes and community structure to tillage events and implications for soil quality
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00046-6
– volume: 9
  start-page: 1
  year: 2014
  ident: 10.1016/j.geoderma.2023.116693_b0345
  article-title: Comparison of seasonal soil microbial process in snow-covered temperate ecosystems of northern China
  publication-title: PLoS One1
– volume: 7
  start-page: 1
  year: 2016
  ident: 10.1016/j.geoderma.2023.116693_b0145
  article-title: Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls
  publication-title: Nature Communications
  doi: 10.1038/ncomms13630
– volume: 128
  start-page: 45
  year: 2019
  ident: 10.1016/j.geoderma.2023.116693_b0350
  article-title: Growth explains microbial carbon use efficiency across soils differing in land use and geology
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2018.10.006
– volume: 4
  start-page: 146
  year: 2013
  ident: 10.1016/j.geoderma.2023.116693_b0305
  article-title: Microbial responses to multi-factor climate change: effects on soil enzymes
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2013.00146
– volume: 98
  start-page: 45
  year: 2008
  ident: 10.1016/j.geoderma.2023.116693_b0075
  article-title: Tillage effects on gaseous emissions from an intensively farmed organic soil in North Central Ohio
  publication-title: Soil and Tillage Research
  doi: 10.1016/j.still.2007.10.003
– volume: 35
  start-page: 273
  year: 2003
  ident: 10.1016/j.geoderma.2023.116693_b0330
  article-title: Relationships of soil respiration to microbial biomass, substrate availability and clay content
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/S0038-0717(02)00274-2
– volume: 10
  start-page: 58
  year: 2007
  ident: 10.1016/j.geoderma.2023.116693_b0115
  article-title: Land-use intensity effects on soil organic carbon accumulation rates and mechanisms
  publication-title: Ecosystems
  doi: 10.1007/s10021-006-9010-y
– volume: 1–25
  year: 2019
  ident: 10.1016/j.geoderma.2023.116693_b0220
  article-title: Metabolic tradeoffs and heterogeneity in microbial responses to temperature determine the fate of litter carbon in a warmer world
  publication-title: Biogeosciences Discussions
– volume: 6
  start-page: 1
  year: 2015
  ident: 10.1016/j.geoderma.2023.116693_b0165
  article-title: structures of microbial communities in alpine soils: Seasonal and elevational effects
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2015.01330
– volume: 48
  start-page: 71
  year: 2000
  ident: 10.1016/j.geoderma.2023.116693_b0230
  article-title: Vegetation and soil respiration: Correlations and controls
  publication-title: Biogeochemistry
  doi: 10.1023/A:1006112000616
– volume: 26
  start-page: 1469
  year: 1994
  ident: 10.1016/j.geoderma.2023.116693_b0090
  article-title: Seasonal changes in soil microbial biomass and mineralizable c and n in wheat management systems
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/0038-0717(94)90086-8
– volume: 127
  start-page: 173
  year: 2016
  ident: 10.1016/j.geoderma.2023.116693_b0105
  article-title: Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-016-0191-y
– ident: 10.1016/j.geoderma.2023.116693_b0235
  doi: 10.1201/9781420005271.ch69
– volume: 196
  start-page: 79
  year: 2012
  ident: 10.1016/j.geoderma.2023.116693_b0185
  article-title: Environmental and stoichiometric controls on microbial carbon-use efficiency in soils
  publication-title: The New Phytologist
  doi: 10.1111/j.1469-8137.2012.04225.x
– volume: 17
  start-page: 837
  year: 1985
  ident: 10.1016/j.geoderma.2023.116693_b0025
  article-title: Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/0038-0717(85)90144-0
– volume: 76
  start-page: 999
  year: 2010
  ident: 10.1016/j.geoderma.2023.116693_b0035
  article-title: Soil microbial community responses to multiple experimental climate change drivers
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.02874-09
– volume: 52
  start-page: 49
  year: 2005
  ident: 10.1016/j.geoderma.2023.116693_b0205
  article-title: Comparison of temperature effects on soil respiration and bacterial and fungal growth rates
  publication-title: FEMS Microbiology Ecology
  doi: 10.1016/j.femsec.2004.10.002
– volume: 259
  start-page: 1
  year: 2004
  ident: 10.1016/j.geoderma.2023.116693_b0260
  article-title: Microbial growth under the snow: Implications for nutrient and allelochemical availability in temperate soils
  publication-title: Plant and Soil
  doi: 10.1023/B:PLSO.0000020933.32473.7e
– volume: 357
  start-page: 895
  year: 2002
  ident: 10.1016/j.geoderma.2023.116693_b0340
  article-title: Coping with the cold: The cold shock response in the Gram-positive soil bacterium Bacillus subtilis
  publication-title: Philosophical Transactions of the Royal Society b: Biological Sciences
  doi: 10.1098/rstb.2002.1078
– volume: 140
  start-page: 269
  year: 2018
  ident: 10.1016/j.geoderma.2023.116693_b0125
  article-title: Evaluating soil microbial carbon use efficiency explicitly as a function of cellular processes: implications for measurements and models
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-018-0489-z
– ident: 10.1016/j.geoderma.2023.116693_b0180
  doi: 10.2307/2389824
– volume: 49
  start-page: 409
  year: 2018
  ident: 10.1016/j.geoderma.2023.116693_b0250
  article-title: Life in Dry Soils: Effects of Drought on Soil Microbial Communities and Processes
  publication-title: Annual Review of Ecology, Evolution, and Systematics
  doi: 10.1146/annurev-ecolsys-110617-062614
– volume: 31
  start-page: 1021
  year: 1999
  ident: 10.1016/j.geoderma.2023.116693_b0015
  article-title: Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/S0038-0717(99)00016-4
– volume: 111
  start-page: 41
  year: 2011
  ident: 10.1016/j.geoderma.2023.116693_b0200
  article-title: SOM genesis: microbial biomass as a significant source
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-011-9658-z
– volume: 34
  start-page: 167
  year: 2018
  ident: 10.1016/j.geoderma.2023.116693_b0245
  article-title: European long-term field experiments: knowledge gained about alternative management practices
  publication-title: Soil Use and Management
  doi: 10.1111/sum.12421
– volume: 13
  start-page: 2018
  year: 2007
  ident: 10.1016/j.geoderma.2023.116693_b0060
  article-title: Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2007.01415.x
– volume: 4
  start-page: 217
  year: 1998
  ident: 10.1016/j.geoderma.2023.116693_b0065
  article-title: Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest
  publication-title: Global Change Biology
  doi: 10.1046/j.1365-2486.1998.00128.x
– volume: 60
  start-page: 65
  year: 2013
  ident: 10.1016/j.geoderma.2023.116693_b0040
  article-title: Drivers of microbial respiration and net N mineralization at the continental scale
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2013.01.003
– volume: 4
  start-page: 903
  year: 2014
  ident: 10.1016/j.geoderma.2023.116693_b0120
  article-title: Accelerated microbial turnover but constant growth efficiency with warming in soil
  publication-title: Nature Climate Change
  doi: 10.1038/nclimate2361
– volume: 25
  start-page: 3578
  year: 2019
  ident: 10.1016/j.geoderma.2023.116693_b0175
  article-title: Quantitative assessment of microbial necromass contribution to soil organic matter
  publication-title: Global Change Biology
  doi: 10.1111/gcb.14781
– volume: 3
  year: 2020
  ident: 10.1016/j.geoderma.2023.116693_b0270
  article-title: Microbial growth and carbon use efficiency show seasonal responses in a multifactorial climate change experiment
  publication-title: Communications Biology
  doi: 10.1038/s42003-020-01317-1
– volume: 74
  start-page: 106
  year: 2014
  ident: 10.1016/j.geoderma.2023.116693_b0080
  article-title: Alterations in forest detritus inputs influence soil carbon concentration and soil respiration in a central-european deciduous forest
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2014.03.006
– volume: 130
  start-page: 167
  year: 2019
  ident: 10.1016/j.geoderma.2023.116693_b0215
  article-title: Increased microbial anabolism contributes to soil carbon sequestration by mineral fertilization in temperate grasslands
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2018.12.019
– volume: 16
  start-page: 930
  year: 2013
  ident: 10.1016/j.geoderma.2023.116693_b0275
  article-title: Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling
  publication-title: Ecology Letters
  doi: 10.1111/ele.12113
– volume: 141
  start-page: 184
  year: 2011
  ident: 10.1016/j.geoderma.2023.116693_b0155
  article-title: Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment
  publication-title: Agriculture, Ecosystems and Environment
  doi: 10.1016/j.agee.2011.02.029
– volume: 97
  start-page: 168
  year: 2016
  ident: 10.1016/j.geoderma.2023.116693_b0300
  article-title: Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2016.03.008
– volume: 19
  start-page: 988
  year: 2013
  ident: 10.1016/j.geoderma.2023.116693_b0050
  article-title: The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter?
  publication-title: Global Change Biology
  doi: 10.1111/gcb.12113
– volume: 20
  year: 2006
  ident: 10.1016/j.geoderma.2023.116693_b0085
  article-title: Predicting the temperature dependence of microbial respiration in soil: A continental-scale analysis
  publication-title: Global Biogeochemical Cycles
  doi: 10.1029/2005GB002644
– volume: 3
  start-page: 395
  year: 2013
  ident: 10.1016/j.geoderma.2023.116693_b0095
  article-title: The temperature response of soil microbial efficiency and its feedback to climate
  publication-title: Nature Climate Change
  doi: 10.1038/nclimate1796
– ident: 10.1016/j.geoderma.2023.116693_b0290
  doi: 10.1016/B978-0-12-812128-3.00017-3
– volume: 124
  start-page: 90
  year: 2018
  ident: 10.1016/j.geoderma.2023.116693_b0130
  article-title: High soil microbial activity in the winter season enhances nitrogen cycling in a cool-temperate deciduous forest
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2018.05.028
– volume: 9
  start-page: 1252
  year: 2017
  ident: 10.1016/j.geoderma.2023.116693_b0010
  article-title: Cover crop root contributions to soil carbon in a no-till corn bioenergy cropping system
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12428
– volume: 121
  start-page: 212
  year: 2018
  ident: 10.1016/j.geoderma.2023.116693_b0310
  article-title: Soil organic matter quality exerts a stronger control than stoichiometry on microbial substrate use efficiency along a latitudinal transect
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2018.02.022
– volume: 156
  year: 2021
  ident: 10.1016/j.geoderma.2023.116693_b0055
  article-title: Can moisture affect temperature dependences of microbial growth and respiration?
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2021.108223
– volume: 15
  start-page: 2738
  year: 2021
  ident: 10.1016/j.geoderma.2023.116693_b0335
  article-title: The temperature sensitivity of soil: microbial biodiversity, growth, and carbon mineralization
  publication-title: ISME Journal
  doi: 10.1038/s41396-021-00959-1
– volume: 55
  start-page: 825
  year: 2019
  ident: 10.1016/j.geoderma.2023.116693_b0195
  article-title: Effect of sieving and sample storage on soil respiration and its temperature sensitivity (Q10) in mineral soils from Germany
  publication-title: Biology and Fertility of Soils
  doi: 10.1007/s00374-019-01374-7
– volume: 96
  start-page: 74
  year: 2016
  ident: 10.1016/j.geoderma.2023.116693_b0295
  article-title: Microbial carbon use efficiency and biomass turnover times depending on soil depth - Implications for carbon cycling
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2016.01.016
– ident: 10.1016/j.geoderma.2023.116693_b0225
– volume: 16
  start-page: 617
  year: 2022
  ident: 10.1016/j.geoderma.2023.116693_b0190
  article-title: Microbial storage and its implications for soil ecology
  publication-title: ISME Journal
  doi: 10.1038/s41396-021-01110-w
– volume: 8
  year: 2018
  ident: 10.1016/j.geoderma.2023.116693_b0325
  article-title: Microbial temperature sensitivity and biomass change explain soil carbon loss with warming
  publication-title: Nature Climate Change
– volume: 21
  year: 2015
  ident: 10.1016/j.geoderma.2023.116693_b0255
  article-title: Microbial physiology and soil CO2efflux after 9 years of soil warming in a temperate forest - no indications for thermal adaptations
  publication-title: Global Change Biology
  doi: 10.1111/gcb.12996
– volume: 97
  start-page: 176
  year: 2016
  ident: 10.1016/j.geoderma.2023.116693_b0355
  article-title: Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2016.03.011
– volume: 110
  start-page: 2664
  year: 2018
  ident: 10.1016/j.geoderma.2023.116693_b0240
  article-title: Long-term soil tillage and cover cropping affected arbuscular mycorrhizal fungi, nutrient concentrations, and yield in sunflower
  publication-title: Agronomy Journal
  doi: 10.2134/agronj2018.03.0177
– volume: 28
  start-page: 343
  year: 1999
  ident: 10.1016/j.geoderma.2023.116693_b0150
  article-title: Long-term monitoring of microbial biomass, N mineralisation and enzyme activities of a Chernozem under different tillage management
  publication-title: Biology and Fertility of Soils
  doi: 10.1007/s003740050502
– volume: 26
  start-page: 1953
  year: 2020
  ident: 10.1016/j.geoderma.2023.116693_b0285
  article-title: Microbial carbon limitation: The need for integrating microorganisms into our understanding of ecosystem carbon cycling
  publication-title: Global Change Biology
  doi: 10.1111/gcb.14962
– volume: 11
  start-page: 1
  year: 2020
  ident: 10.1016/j.geoderma.2023.116693_b0070
  article-title: Microbial diversity drives carbon use efficiency in a model soil
  publication-title: Nature Communications
  doi: 10.1038/s41467-020-17502-z
– volume: 403
  start-page: 455
  year: 2016
  ident: 10.1016/j.geoderma.2023.116693_b0170
  article-title: Contribution of litter layer to soil greenhouse gas emissions in a temperate beech forest
  publication-title: Plant and Soil
  doi: 10.1007/s11104-015-2771-3
– volume: 95
  start-page: 1
  year: 2007
  ident: 10.1016/j.geoderma.2023.116693_b0045
  article-title: Impacts of periodic tillage on soil C stocks: A synthesis
  publication-title: Soil and Tillage Research
  doi: 10.1016/j.still.2006.12.006
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.geoderma.2023.116693_b0320
  article-title: Reporting key features in cold-adapted bacteria
  publication-title: Life
  doi: 10.3390/life8010008
– volume: 119
  start-page: 341
  year: 2014
  ident: 10.1016/j.geoderma.2023.116693_b0160
  article-title: Changes to particulate versus mineral-associated soil carbon after 50 years of litter manipulation in forest and prairie experimental ecosystems
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-014-9970-5
– volume: 187
  start-page: 843
  year: 2010
  ident: 10.1016/j.geoderma.2023.116693_b0140
  article-title: Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2010.03321.x
– volume: 10
  start-page: 9
  year: 1958
  ident: 10.1016/j.geoderma.2023.116693_b0020
  article-title: The effect of soil drying on humus decomposition and nitrogen availability
  publication-title: Plant and Soil
  doi: 10.1007/BF01343734
SSID ssj0017020
Score 2.5873573
Snippet Soil microbial growth, respiration, and carbon (C) use efficiency (CUE) are essential parameters to understand, describe and model the soil carbon cycle. While...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 116693
SubjectTerms agricultural land
carbon
carbon cycle
Carbon use efficiency
cryoprotectants
deciduous forests
decline
DNA
leaves
microbial biomass
Microbial growth
microbial physiology
Microbial processes
plant litter
Seasonal dynamics
soil temperature
temperate soils
Winter
Title Seasonal dynamics of soil microbial growth, respiration, biomass, and carbon use efficiency in temperate soils
URI https://www.proquest.com/docview/3153814743
https://doaj.org/article/86ed4bcb7b7246eabb7043702479138a
Volume 440
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXETxusd2kSXtcxWUR9KKCt5BXdUVbabv_35m0XRQPXrzm0YbJJPMNk_mGkIuUa7CKIsPiLkXEWcEijYQA2UQW0gIA0CFJ7O5ezJ_47XP6_K3UF74J6-iBO8FdZsI7bqyRRk648NoYiXQ8YFpknrAsQCOweYMz1ccPoD_-lg_8BruBpcUC09CEwT0hRM5-mKLA2P_rQg5WZrZNtnp4SKfdsnbImi93yeb0pe4pMvweKR-8DviZuq6afEOrgjbV4p1-LAKtEnS9gHfdvo5p3UfSQfpjiqn2gJXHVJeOWl2bqqTLxlMfaCQwB5MuSopkVci07MM3m33yNLt5vJ5HfdWEyIIv2EZI8I7xSp5ocIVsnFiR-cKB4AC6cePywsbOapY6yRIrhS-gEca6zEmdcscOyHpZlf6QUDihWufOuhyMuM5Sw9gkdkY4AIWS8XRE0kGAyvaU4ljZ4l0Nb8fe1CB4hYJXneBH5HI177Mj1fhzxhXuz2o0kmKHBlAV1auK-ktVRuR82F0FhwgjI7r01bJRDO_9hAOaOvqPHx2TDVx79-rlhKy39dKfAnZpzVlQ0y9IAe1j
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seasonal+dynamics+of+soil+microbial+growth%2C+respiration%2C+biomass%2C+and+carbon+use+efficiency+in+temperate+soils&rft.jtitle=Geoderma&rft.au=Schnecker%2C+J%C3%B6rg&rft.au=Baldaszti%2C+Ludwig&rft.au=G%C3%BCndler%2C+Philipp&rft.au=Pleitner%2C+Michaela&rft.date=2023-12-01&rft.issn=0016-7061&rft.volume=440&rft.spage=116693&rft_id=info:doi/10.1016%2Fj.geoderma.2023.116693&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2023_116693
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon