Comprehensive data analysis of white blood cells with classification and segmentation by using deep learning approaches

Deep learning approaches have frequently been used in the classification and segmentation of human peripheral blood cells. The common feature of previous studies was that they used more than one dataset, but used them separately. No study has been found that combines more than two datasets to use to...

Full description

Saved in:
Bibliographic Details
Published inCytometry. Part A Vol. 105; no. 7; pp. 501 - 520
Main Authors Özcan, Şeyma Nur, Uyar, Tansel, Karayeğen, Gökay
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.07.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1552-4922
1552-4930
1552-4930
DOI10.1002/cyto.a.24839

Cover

Loading…
Abstract Deep learning approaches have frequently been used in the classification and segmentation of human peripheral blood cells. The common feature of previous studies was that they used more than one dataset, but used them separately. No study has been found that combines more than two datasets to use together. In classification, five types of white blood cells were identified by using a mixture of four different datasets. In segmentation, four types of white blood cells were determined, and three different neural networks, including CNN (Convolutional Neural Network), UNet and SegNet, were applied. The classification results of the presented study were compared with those of related studies. The balanced accuracy was 98.03%, and the test accuracy of the train‐independent dataset was determined to be 97.27%. For segmentation, accuracy rates of 98.9% for train‐dependent dataset and 92.82% for train‐independent dataset for the proposed CNN were obtained in both nucleus and cytoplasm detection. In the presented study, the proposed method showed that it could detect white blood cells from a train‐independent dataset with high accuracy. Additionally, it is promising as a diagnostic tool that can be used in the clinical field, with successful results in classification and segmentation.
AbstractList Deep learning approaches have frequently been used in the classification and segmentation of human peripheral blood cells. The common feature of previous studies was that they used more than one dataset, but used them separately. No study has been found that combines more than two datasets to use together. In classification, five types of white blood cells were identified by using a mixture of four different datasets. In segmentation, four types of white blood cells were determined, and three different neural networks, including CNN (Convolutional Neural Network), UNet and SegNet, were applied. The classification results of the presented study were compared with those of related studies. The balanced accuracy was 98.03%, and the test accuracy of the train‐independent dataset was determined to be 97.27%. For segmentation, accuracy rates of 98.9% for train‐dependent dataset and 92.82% for train‐independent dataset for the proposed CNN were obtained in both nucleus and cytoplasm detection. In the presented study, the proposed method showed that it could detect white blood cells from a train‐independent dataset with high accuracy. Additionally, it is promising as a diagnostic tool that can be used in the clinical field, with successful results in classification and segmentation.
Deep learning approaches have frequently been used in the classification and segmentation of human peripheral blood cells. The common feature of previous studies was that they used more than one dataset, but used them separately. No study has been found that combines more than two datasets to use together. In classification, five types of white blood cells were identified by using a mixture of four different datasets. In segmentation, four types of white blood cells were determined, and three different neural networks, including CNN (Convolutional Neural Network), UNet and SegNet, were applied. The classification results of the presented study were compared with those of related studies. The balanced accuracy was 98.03%, and the test accuracy of the train-independent dataset was determined to be 97.27%. For segmentation, accuracy rates of 98.9% for train-dependent dataset and 92.82% for train-independent dataset for the proposed CNN were obtained in both nucleus and cytoplasm detection. In the presented study, the proposed method showed that it could detect white blood cells from a train-independent dataset with high accuracy. Additionally, it is promising as a diagnostic tool that can be used in the clinical field, with successful results in classification and segmentation.Deep learning approaches have frequently been used in the classification and segmentation of human peripheral blood cells. The common feature of previous studies was that they used more than one dataset, but used them separately. No study has been found that combines more than two datasets to use together. In classification, five types of white blood cells were identified by using a mixture of four different datasets. In segmentation, four types of white blood cells were determined, and three different neural networks, including CNN (Convolutional Neural Network), UNet and SegNet, were applied. The classification results of the presented study were compared with those of related studies. The balanced accuracy was 98.03%, and the test accuracy of the train-independent dataset was determined to be 97.27%. For segmentation, accuracy rates of 98.9% for train-dependent dataset and 92.82% for train-independent dataset for the proposed CNN were obtained in both nucleus and cytoplasm detection. In the presented study, the proposed method showed that it could detect white blood cells from a train-independent dataset with high accuracy. Additionally, it is promising as a diagnostic tool that can be used in the clinical field, with successful results in classification and segmentation.
Author Uyar, Tansel
Karayeğen, Gökay
Özcan, Şeyma Nur
Author_xml – sequence: 1
  givenname: Şeyma Nur
  surname: Özcan
  fullname: Özcan, Şeyma Nur
  organization: Başkent University
– sequence: 2
  givenname: Tansel
  surname: Uyar
  fullname: Uyar, Tansel
  organization: Başkent University
– sequence: 3
  givenname: Gökay
  surname: Karayeğen
  fullname: Karayeğen, Gökay
  email: karayegengokay@gmail.com
  organization: Başkent University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38563259$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS1URB-wY40ssWHBDNd2nIyX1QgKUqVuyoKV5dg3HVeOHeKko_x7kqZlUQlWfug75-qec05OYopIyHsGWwbAv9hpSFuz5cVOqFfkjEnJN4UScPL3zvkpOc_5HkBIEPwNORU7WQou1Rk57lPb9XjAmP0DUmcGQ000Yco-09TQ48EPSOuQkqMWQ8j06IcDtcHk7BtvzeBTnBWOZrxrMQ7rRz3RMft4Rx1iRwOaPi4v03V9MvaA-S153ZiQ8d3TeUF-fvt6u_--ub65-rG_vN7YArja1MoJKHdK8BItKISqUsZKh9xxUEKVBQNmG7C2aqyrhLNMVbKxQpYFlHUhLsin1Xce_HvEPOjW52UREzGNWQsQjIlCKT6jH1-g92ns5ywWasc5Y5LDTH14osa6Rae73remn_RzpDPAV8D2KeceG239msrQGx80A730ppfetNGPvc2izy9Ez77_wIsVP_qA039Zvf91e3O5yv4ASkqr-g
CitedBy_id crossref_primary_10_1016_j_imu_2024_101542
crossref_primary_10_1016_j_compbiomed_2024_109616
Cites_doi 10.1109/ICCIT51783.2020.9392649
10.1007/s42452-021-04485-9
10.1109/IVS.2018.8500497
10.1016/j.bbe.2019.01.005
10.1016/j.eswa.2020.113211
10.1136/jclinpath-2020-207087
10.1016/j.asoc.2020.107006
10.1088/1757-899X/1077/1/012033
10.1016/j.bspc.2021.103156
10.1109/ICECE51571.2020.9393156
10.1109/ICCRE.2018.8376476
10.1109/RBME.2020.3004639
10.1007/s13534-020-00168-3
10.1016/j.mehy.2019.109472
10.5755/j01.eie.25.5.24358
10.1016/j.cmpb.2021.105972
10.1016/j.compmedimag.2011.01.003
10.1080/21691401.2021.1879823
10.1155/2022/5913905
10.22937/IJCSNS.2021.21.9.30
10.1016/j.bspc.2021.102932
10.1016/j.irbm.2020.08.005
10.1016/j.cmpb.2017.11.015
10.1016/j.bspc.2020.102385
10.23919/EECSI53397.2021.9624268
10.1007/978-981-16-8062-5_27
10.1016/j.dib.2020.105474
10.1007/s11227-021-04125-4
10.1016/B978-0-7020-6696-2.00023-0
10.24138/jcomss.v16i1.818
10.18280/ria.330502
10.1109/ICECCE49384.2020.9179246
10.1155/2020/6490479
10.1007/s11517-020-02163-3
10.1093/ajcp/aqaa231
10.1155/2021/6658192
10.1038/s41598-021-04426-x
10.1109/ICBME.2018.8703561
10.1007/s12530-023-09491-3
10.1016/j.asoc.2020.106810
10.1016/j.compbiomed.2020.104034
ContentType Journal Article
Copyright 2024 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.
2024 The Authors. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.
2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.
– notice: 2024 The Authors. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7QO
7TK
8FD
FR3
P64
7X8
DOI 10.1002/cyto.a.24839
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Engineering Research Database
CrossRef

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: 24P
  name: Open Access: Wiley-Blackwell Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1552-4930
EndPage 520
ExternalDocumentID 38563259
10_1002_cyto_a_24839
CYTOA24839
Genre researchArticle
Journal Article
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
2WC
31~
33P
3SF
4.4
4ZD
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
RNS
ROL
RWI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7QO
7TK
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
P64
7X8
ID FETCH-LOGICAL-c4029-b9d30689326ec09e0779ac5de2d2093964101cf0cc7fcd73dc1975fc356406b43
IEDL.DBID 24P
ISSN 1552-4922
1552-4930
IngestDate Fri Jul 11 08:18:01 EDT 2025
Fri Jul 25 21:04:53 EDT 2025
Wed Feb 19 02:06:54 EST 2025
Thu Apr 24 22:57:31 EDT 2025
Tue Jul 01 00:49:23 EDT 2025
Wed Jan 22 17:17:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords CNN
image classification
white blood cells
nucleus and cytoplasm segmentation
independent dataset
Language English
License Attribution-NonCommercial-NoDerivs
2024 The Authors. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4029-b9d30689326ec09e0779ac5de2d2093964101cf0cc7fcd73dc1975fc356406b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcyto.a.24839
PMID 38563259
PQID 3082211520
PQPubID 2045167
PageCount 20
ParticipantIDs proquest_miscellaneous_3031134992
proquest_journals_3082211520
pubmed_primary_38563259
crossref_citationtrail_10_1002_cyto_a_24839
crossref_primary_10_1002_cyto_a_24839
wiley_primary_10_1002_cyto_a_24839_CYTOA24839
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2024
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hoboken
PublicationTitle Cytometry. Part A
PublicationTitleAlternate Cytometry A
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2021; 69
2021; 1077
2021; 49
2021; 21
2021; 65
2021; 42
2021; 3
2012
2022; 71
2021; 101
2019; 33
2023; 15
2021; 202
2020; 126
2019; 39
2020; 16
2020; 149
2019; 168
2020; 58
2011; 35
2020; 10
2021; 14
2020; 2020
2022; 2022
2020; 97
2020; 30
2021
2020
2019; 25
2022; 12
2022; 78
2018
2017
2022; 75
2021; 155
2020; 135
2021; 2021
e_1_2_9_30_1
e_1_2_9_31_1
Turgeon ML (e_1_2_9_2_1) 2012
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 101
  year: 2021
  article-title: WBC‐net: a white blood cell segmentation network based on UNet++ and ResNet
  publication-title: Appl Soft Comput
– volume: 16
  start-page: 37
  year: 2020
  end-page: 45
  article-title: Improved white blood cells classification based on pre‐trained deep learning models
  publication-title: J Commun Softw Syst
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 8
  article-title: Segmentation and classification of white blood cells using the UNet
  publication-title: Contrast Media Mol Imaging
– volume: 1077
  year: 2021
  article-title: DCGAN‐generated synthetic images effect on white blood cell classification
  publication-title: IOP Conf Ser Mater Sci Eng
– volume: 21
  start-page: 223
  year: 2021
  article-title: White blood cell types classification using deep learning models
  publication-title: IJCSNS Int J Comp Sci Netw Secur
– year: 2021
– volume: 149
  year: 2020
  article-title: An automatic nucleus segmentation and CNN model based classification method of white blood cell
  publication-title: Expert Syst Appl
– volume: 39
  start-page: 382
  year: 2019
  end-page: 392
  article-title: Comparison of traditional image processing and deep learning approaches for classification of white blood cells in peripheral blood smear images
  publication-title: Biocybern Biomed Eng
– volume: 135
  year: 2020
  article-title: White blood cells detection and classification based on regional convolutional neural networks
  publication-title: Med Hypotheses
– volume: 15
  start-page: 203
  year: 2023
  end-page: 248
  article-title: A survey on recent trends in deep learning for nucleus segmentation from histopathology images
  publication-title: Evol Syst
– volume: 78
  start-page: 6974
  year: 2022
  end-page: 6994
  article-title: Automated segmentation of leukocyte from hematological images—a study using various CNN schemes
  publication-title: J Supercomput
– volume: 58
  start-page: 1251
  year: 2020
  end-page: 1264
  article-title: Combining DC‐GAN with ResNet for blood cell image classification
  publication-title: Med Biol Eng Comput
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 8
  article-title: Acute myeloid leukemia (AML) detection using AlexNet model
  publication-title: Complexity
– volume: 25
  start-page: 63
  year: 2019
  end-page: 68
  article-title: Subclass separation of white blood cell images using convolutional neural network models
  publication-title: Elektronika ir Elektrotechnika
– year: 2018
– volume: 69
  year: 2021
  article-title: White blood cell type identification using multi‐layer convolutional features with an extreme‐learning machine
  publication-title: Biomed Signal Proc Contr
– volume: 49
  start-page: 147
  year: 2021
  end-page: 155
  article-title: Classification of white blood cells using weighted optimized deformable convolutional neural networks
  publication-title: Artif Cells Nanomed Biotechnol
– year: 2012
– volume: 75
  start-page: 104
  year: 2022
  end-page: 111
  article-title: Atypical lymphoid cells circulating in blood in COVID‐19 infection: morphology, immunophenotype and prognosis value
  publication-title: J Clin Pathol
– volume: 14
  start-page: 290
  year: 2021
  end-page: 306
  article-title: Segmentation of white blood cell, nucleus and cytoplasm in digital haematology microscope images: a review–challenges, current and future potential techniques
  publication-title: IEEE Rev Biomed Eng
– volume: 97
  year: 2020
  article-title: Classification of white blood cells using deep features obtained from Convolutional Neural Network models based on the combination of feature selection methods
  publication-title: Appl Soft Comput
– volume: 65
  year: 2021
  article-title: Segmentation of leukocyte by semantic segmentation model: a deep learning approach
  publication-title: Biomed Signal Proc Contr
– volume: 42
  start-page: 378
  year: 2021
  end-page: 389
  article-title: White blood cells image classification using deep learning with canonical correlation analysis
  publication-title: IRBM
– volume: 202
  year: 2021
  article-title: BloodCaps: a capsule network based model for the multiclassification of human peripheral blood cells
  publication-title: Comput Methods Prog Biomed
– volume: 33
  start-page: 335
  year: 2019
  end-page: 340
  article-title: Classification of white blood cells by deep learning methods for diagnosing disease
  publication-title: Revue d'Intelligence Artificielle
– volume: 30
  year: 2020
  article-title: A dataset of microscopic peripheral blood cell images for development of automatic recognition systems
  publication-title: Data Brief
– year: 2020
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 12
  article-title: Improved classification of white blood cells with the generative adversarial network and deep convolutional neural network
  publication-title: Comput Intell Neurosci
– volume: 71
  year: 2022
  article-title: Classification of white blood cell using convolution neural network
  publication-title: Biomed Signal Proc Contr
– volume: 12
  start-page: 1123
  year: 2022
  article-title: A large dataset of white blood cells containing cell locations and types, along with segmented nuclei and cytoplasm
  publication-title: Sci Rep
– year: 2017
– volume: 155
  start-page: 364
  year: 2021
  end-page: 375
  article-title: Clinical significance of CBC and WBC morphology in the diagnosis and clinical course of COVID‐19 infection
  publication-title: Am J Clin Pathol
– volume: 10
  start-page: 359
  year: 2020
  end-page: 367
  article-title: Automated recognition of white blood cells using deep learning
  publication-title: Biomed Eng Lett
– volume: 168
  start-page: 69
  year: 2019
  end-page: 80
  article-title: White blood cells identification system based on convolutional deep neural learning networks
  publication-title: Comput Methods Prog Biomed
– volume: 3
  start-page: 503
  year: 2021
  article-title: Classification of lymphocytes, monocytes, eosinophils, and neutrophils on white blood cells using hybrid Alexnet‐GoogleNet‐SVM
  publication-title: SN Appl Sci
– volume: 35
  start-page: 333
  year: 2011
  end-page: 343
  article-title: Automatic recognition of five types of white blood cells in peripheral blood
  publication-title: Comput Med Imaging Graph
– volume: 126
  year: 2020
  article-title: Localization and recognition of leukocytes in peripheral blood: a deep learning approach
  publication-title: Comput Biol Med
– ident: e_1_2_9_5_1
  doi: 10.1109/ICCIT51783.2020.9392649
– ident: e_1_2_9_42_1
– ident: e_1_2_9_34_1
  doi: 10.1007/s42452-021-04485-9
– ident: e_1_2_9_49_1
  doi: 10.1109/IVS.2018.8500497
– ident: e_1_2_9_19_1
  doi: 10.1016/j.bbe.2019.01.005
– ident: e_1_2_9_33_1
  doi: 10.1016/j.eswa.2020.113211
– ident: e_1_2_9_11_1
  doi: 10.1136/jclinpath-2020-207087
– ident: e_1_2_9_32_1
  doi: 10.1016/j.asoc.2020.107006
– ident: e_1_2_9_7_1
  doi: 10.1088/1757-899X/1077/1/012033
– ident: e_1_2_9_27_1
  doi: 10.1016/j.bspc.2021.103156
– ident: e_1_2_9_10_1
  doi: 10.1109/ICECE51571.2020.9393156
– ident: e_1_2_9_13_1
  doi: 10.1109/ICCRE.2018.8376476
– ident: e_1_2_9_36_1
  doi: 10.1109/RBME.2020.3004639
– ident: e_1_2_9_15_1
  doi: 10.1007/s13534-020-00168-3
– ident: e_1_2_9_35_1
  doi: 10.1016/j.mehy.2019.109472
– ident: e_1_2_9_25_1
  doi: 10.5755/j01.eie.25.5.24358
– ident: e_1_2_9_29_1
  doi: 10.1016/j.cmpb.2021.105972
– ident: e_1_2_9_41_1
  doi: 10.1016/j.compmedimag.2011.01.003
– ident: e_1_2_9_43_1
– ident: e_1_2_9_30_1
  doi: 10.1080/21691401.2021.1879823
– ident: e_1_2_9_40_1
– ident: e_1_2_9_46_1
  doi: 10.1155/2022/5913905
– ident: e_1_2_9_14_1
  doi: 10.22937/IJCSNS.2021.21.9.30
– ident: e_1_2_9_23_1
  doi: 10.1016/j.bspc.2021.102932
– ident: e_1_2_9_22_1
  doi: 10.1016/j.irbm.2020.08.005
– ident: e_1_2_9_26_1
  doi: 10.1016/j.cmpb.2017.11.015
– ident: e_1_2_9_31_1
  doi: 10.1016/j.bspc.2020.102385
– ident: e_1_2_9_24_1
  doi: 10.23919/EECSI53397.2021.9624268
– ident: e_1_2_9_47_1
  doi: 10.1007/978-981-16-8062-5_27
– ident: e_1_2_9_38_1
  doi: 10.1016/j.dib.2020.105474
– ident: e_1_2_9_48_1
  doi: 10.1007/s11227-021-04125-4
– ident: e_1_2_9_44_1
– ident: e_1_2_9_4_1
  doi: 10.1016/B978-0-7020-6696-2.00023-0
– ident: e_1_2_9_21_1
  doi: 10.24138/jcomss.v16i1.818
– ident: e_1_2_9_20_1
  doi: 10.18280/ria.330502
– ident: e_1_2_9_6_1
  doi: 10.1109/ICECCE49384.2020.9179246
– ident: e_1_2_9_8_1
  doi: 10.1155/2020/6490479
– ident: e_1_2_9_9_1
  doi: 10.1007/s11517-020-02163-3
– ident: e_1_2_9_18_1
– ident: e_1_2_9_3_1
  doi: 10.1093/ajcp/aqaa231
– ident: e_1_2_9_12_1
  doi: 10.1155/2021/6658192
– ident: e_1_2_9_39_1
  doi: 10.1038/s41598-021-04426-x
– ident: e_1_2_9_28_1
  doi: 10.1109/ICBME.2018.8703561
– volume-title: Clinical hematology: Theory & procedures
  year: 2012
  ident: e_1_2_9_2_1
– ident: e_1_2_9_37_1
  doi: 10.1007/s12530-023-09491-3
– ident: e_1_2_9_16_1
  doi: 10.1016/j.asoc.2020.106810
– ident: e_1_2_9_17_1
  doi: 10.1016/j.compbiomed.2020.104034
– ident: e_1_2_9_45_1
SSID ssj0035032
Score 2.42005
Snippet Deep learning approaches have frequently been used in the classification and segmentation of human peripheral blood cells. The common feature of previous...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 501
SubjectTerms Accuracy
Artificial neural networks
Blood
Classification
CNN
Cytoplasm
Data analysis
Datasets
Deep learning
image classification
independent dataset
Leukocytes
Machine learning
Neural networks
nucleus and cytoplasm segmentation
Peripheral blood
Segmentation
white blood cells
Title Comprehensive data analysis of white blood cells with classification and segmentation by using deep learning approaches
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcyto.a.24839
https://www.ncbi.nlm.nih.gov/pubmed/38563259
https://www.proquest.com/docview/3082211520
https://www.proquest.com/docview/3031134992
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB-sUuhLae1XrC1baJ9KNLcfSfZRbEUKVikK-hQ2s5Pzoc2JOZH7793Z7F0r0kJfQiCzJMxkdn47O_sbgI-qIoOqZk8zRa59qfPaKcxJSY_UlUq2vKN79L08PNPfzs15SrjxWZiRH2KVcGPPiPM1O7hrh93fpKG4mM923I7UIcQ_gg0-XcsdDKQ-Wc7EyhSxQRmzjOXaSpkK38P43T9H3w9JD3Dmfdga487BM3iaAKPYGy38HNao34THYwvJxQu4ZYe-psuxDl1wwadwiWhEzDpxy9sEIpanC07SD4IzrwIZNHOVUDRMGOHFQNNf6SBSL9qF4Ir4qfBEVyK1lpiKJQM5DS_h7ODr6f5hnpop5Ki5xKW1PqwOaoZrhIWloqqsQ-NJellYZUsdnBO7ArHq0FfK48RWpkNlyhDzW61ewXo_6-kNCGd8gcpOvCGtvZGO6gAKjfd1VZHCOoPPS302mJjGueHFz2bkSJYNa79xTdR-Bp9W0lcjw8Zf5LaXpmmSnw0Nk-2EJayRRQYfVo-Dh7BGXU-zG5ZREyZhtDKD16NJVy9S4ctVWAFmkEcb__MLmv2L0-O9eLv1n_Jv4YkMaGis892G9fn1Db0LaGbevo-_bLh--SHvAMDB8gE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BEYIL4lkCLRgJTiht1o8kPlZVqwXawmErlZOVjCfLAbJVd6tq_z0ex7u0QlTiFiljJZrxeD6Px98AvFcVGVQ1e5opcu1LndeNwpyU9EhdqWTLJ7rHJ-X4VH8-M2epzynfhRn4IdYJN_aMuF6zg3NCevcPayguF7OdZkfqEOPvwj0doDlPa6m_rZZiZYrYoYxpxnJtpUyV72H87vXRN2PSX0DzJm6NgefwMTxKiFHsDSZ-Aneofwr3hx6Sy2dwxR59QT-GQnTBFZ-iSUwjYtaJKz4nELE-XXCWfi449SqQUTOXCUXLhBFezGn6K91E6kW7FFwSPxWe6Fyk3hJTsaIgp_lzOD08mOyP89RNIUfNNS6t9WF7UDNeIywsFVVlGzSepJeFVbbUwTuxKxCrDn2lPI5sZTpUpgxBv9XqBWz0s55egmiML1DZkTektTeyoTqgQuN9XVWksM7g40qfDhPVOHe8-OkGkmTpWPuucVH7GXxYS58PFBv_kNtamcYlR5s7ZtsJe1gjiwzerV8HF2GNNj3NLllGjZiF0coMNgeTrj-kwp-rsAXMII82vvUP3P73yde9-PjqP-XfwoPx5PjIHX06-fIaHsoAjYai3y3YWFxc0naANov2TZy-vwE0m_SN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BEYgL4lkCBYwEJ5Q260cSH6uWVXmVHlqpnKxkPNkeSnbV3araf4_H8W6pEEjcImWsWDMZz3j8-RuAd6oig6pmTzNFrn2p87pRmJOSHqkrlWz5RPfbYXlwoj-fmtNUcOO7MAM_xLrgxp4R12t28Jnvdq5JQ3G5mG4321KHEH8b7vB5H0P6pD5arcTKFLFBGbOM5dpKmYDvYfzO76NvhqQ_8sybaWuMO-OH8CAljGJ3sPAjuEX9Y7g7tJBcPoErdugLOhtw6IIBn6JJRCNi2okrPiYQEZ4uuEg_F1x5FchJM6OEomHCCC_mNPmZLiL1ol0KRsRPhCeaidRaYiJWDOQ0fwon44_Hewd5aqaQo2aIS2t92B3UnK4RFpaKqrINGk_Sy8IqW-rgnNgViFWHvlIeR7YyHSpThpjfavUMNvppT89BNMYXqOzIG9LaG9lQHZJC431dVaSwzuDDSp8OE9M4N7w4dwNHsnSsfde4qP0M3q-lZwPDxl_ktlamccnP5o7JdsIW1sgig7fr18FDWKNNT9NLllEjJmG0MoPNwaTrD6kwcxV2gBnk0cb_nIHb-3H8fTc-vvhP-Tdw72h_7L5-OvzyEu7LkBgNkN8t2FhcXNKrkNgs2tfx7_0Fuzvztg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+data+analysis+of+white+blood+cells+with+classification+and+segmentation+by+using+deep+learning+approaches&rft.jtitle=Cytometry.+Part+A&rft.au=%C3%96zcan%2C+%C5%9Eeyma+Nur&rft.au=Uyar%2C+Tansel&rft.au=Karaye%C4%9Fen%2C+G%C3%B6kay&rft.date=2024-07-01&rft.issn=1552-4930&rft.eissn=1552-4930&rft.volume=105&rft.issue=7&rft.spage=501&rft_id=info:doi/10.1002%2Fcyto.a.24839&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4922&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4922&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4922&client=summon