Genomic Cytometry and New Modalities for Deep Single‐Cell Interrogation

In the past few years, the rapid development of single‐cell analysis techniques has allowed for increasingly in‐depth analysis of DNA, RNA, protein, and epigenetic states, at the level of the individual cell. This unprecedented characterization ability has been enabled through the combination of cyt...

Full description

Saved in:
Bibliographic Details
Published inCytometry. Part A Vol. 97; no. 10; pp. 1007 - 1016
Main Authors Salomon, Robert, Martelotto, Luciano, Valdes‐Mora, Fatima, Gallego‐Ortega, David
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.10.2020
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the past few years, the rapid development of single‐cell analysis techniques has allowed for increasingly in‐depth analysis of DNA, RNA, protein, and epigenetic states, at the level of the individual cell. This unprecedented characterization ability has been enabled through the combination of cytometry, microfluidics, genomics, and informatics. Although traditionally discrete, when properly integrated, these fields create the synergistic field of Genomic Cytometry. In this review, we look at the individual methods that together gave rise to the broad field of Genomic Cytometry. We further outline the basic concepts that drive the field and provide a framework to understand this increasingly complex, technology‐intensive space. Thus, we introduce Genomic Cytometry as an emerging field and propose that synergistic rationalization of disparate modalities of cytometry, microfluidics, genomics, and informatics under one banner will enable massive leaps forward in the understanding of complex biology. © 2020 International Society for Advancement of Cytometry Genomic Cytometry is a new field formed to synergistically leverage the power of cytometry, microfluidics, genomics, and informatics. With cytometry at its core, it is focused on deep cellular characterization using a variety of methods. It provides a powerful multimodal analysis platform to deeply interrogate DNA, RNA, protein, and epigenetic characteristics of individual cells.
AbstractList In the past few years, the rapid development of single‐cell analysis techniques has allowed for increasingly in‐depth analysis of DNA, RNA, protein, and epigenetic states, at the level of the individual cell. This unprecedented characterization ability has been enabled through the combination of cytometry, microfluidics, genomics, and informatics. Although traditionally discrete, when properly integrated, these fields create the synergistic field of Genomic Cytometry. In this review, we look at the individual methods that together gave rise to the broad field of Genomic Cytometry. We further outline the basic concepts that drive the field and provide a framework to understand this increasingly complex, technology‐intensive space. Thus, we introduce Genomic Cytometry as an emerging field and propose that synergistic rationalization of disparate modalities of cytometry, microfluidics, genomics, and informatics under one banner will enable massive leaps forward in the understanding of complex biology. © 2020 International Society for Advancement of Cytometry Genomic Cytometry is a new field formed to synergistically leverage the power of cytometry, microfluidics, genomics, and informatics. With cytometry at its core, it is focused on deep cellular characterization using a variety of methods. It provides a powerful multimodal analysis platform to deeply interrogate DNA, RNA, protein, and epigenetic characteristics of individual cells.
In the past few years, the rapid development of single-cell analysis techniques has allowed for increasingly in-depth analysis of DNA, RNA, protein, and epigenetic states, at the level of the individual cell. This unprecedented characterization ability has been enabled through the combination of cytometry, microfluidics, genomics, and informatics. Although traditionally discrete, when properly integrated, these fields create the synergistic field of Genomic Cytometry. In this review, we look at the individual methods that together gave rise to the broad field of Genomic Cytometry. We further outline the basic concepts that drive the field and provide a framework to understand this increasingly complex, technology-intensive space. Thus, we introduce Genomic Cytometry as an emerging field and propose that synergistic rationalization of disparate modalities of cytometry, microfluidics, genomics, and informatics under one banner will enable massive leaps forward in the understanding of complex biology. © 2020 International Society for Advancement of Cytometry.
Abstract In the past few years, the rapid development of single‐cell analysis techniques has allowed for increasingly in‐depth analysis of DNA, RNA, protein, and epigenetic states, at the level of the individual cell. This unprecedented characterization ability has been enabled through the combination of cytometry, microfluidics, genomics, and informatics. Although traditionally discrete, when properly integrated, these fields create the synergistic field of Genomic Cytometry. In this review, we look at the individual methods that together gave rise to the broad field of Genomic Cytometry. We further outline the basic concepts that drive the field and provide a framework to understand this increasingly complex, technology‐intensive space. Thus, we introduce Genomic Cytometry as an emerging field and propose that synergistic rationalization of disparate modalities of cytometry, microfluidics, genomics, and informatics under one banner will enable massive leaps forward in the understanding of complex biology. © 2020 International Society for Advancement of Cytometry
In the past few years, the rapid development of single‐cell analysis techniques has allowed for increasingly in‐depth analysis of DNA, RNA, protein, and epigenetic states, at the level of the individual cell. This unprecedented characterization ability has been enabled through the combination of cytometry, microfluidics, genomics, and informatics. Although traditionally discrete, when properly integrated, these fields create the synergistic field of Genomic Cytometry. In this review, we look at the individual methods that together gave rise to the broad field of Genomic Cytometry. We further outline the basic concepts that drive the field and provide a framework to understand this increasingly complex, technology‐intensive space. Thus, we introduce Genomic Cytometry as an emerging field and propose that synergistic rationalization of disparate modalities of cytometry, microfluidics, genomics, and informatics under one banner will enable massive leaps forward in the understanding of complex biology. © 2020 International Society for Advancement of Cytometry
Author Martelotto, Luciano
Valdes‐Mora, Fatima
Gallego‐Ortega, David
Salomon, Robert
Author_xml – sequence: 1
  givenname: Robert
  orcidid: 0000-0003-4504-2901
  surname: Salomon
  fullname: Salomon, Robert
  email: rob@rob-salomon.com, rsalomon@ccia.org.au
  organization: University of New South Wales (UNSW) Sydney
– sequence: 2
  givenname: Luciano
  surname: Martelotto
  fullname: Martelotto, Luciano
  organization: University of Melbourne
– sequence: 3
  givenname: Fatima
  surname: Valdes‐Mora
  fullname: Valdes‐Mora, Fatima
  organization: University of New South Wales (UNSW) Sydney
– sequence: 4
  givenname: David
  surname: Gallego‐Ortega
  fullname: Gallego‐Ortega, David
  organization: Garvan Institute of Medical Research
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32794624$$D View this record in MEDLINE/PubMed
BookMark eNp9kL1OwzAURi0EglLYmFEkFgZa_BucsQp_lYAOwMBkuc41CkrsYqeqsvEIPCNPQkpLBwame4ejo09nH2077wChI4KHBGN6btrGD_WQcoqzLdQjQtABzxje3vyU7qH9GN8wZgIzuov2GL3IeEp5D41vwPm6NEneaWpoQptoVyQPsEjufaGrsikhJtaH5BJgljyW7rWCr4_PHKoqGbsGQvCvuim9O0A7VlcRDte3j56vr57y28Hd5Gacj-4GhmOaDbg1VGeFsdOCYi5lZlOZEcKsFpyAFKmVJpMUWz6FwprCUMFSURCeYi74VLI-Ol15Z8G_zyE2qi6j6eZoB34eFeWM8wvChOjQkz_om58H163rKEGlZEQshWcrygQfYwCrZqGsdWgVwWqZWC0TK61-Enf48Vo6n9ZQbODfph3AV8CirKD9V6byl6fJaOX9BmU6iYQ
CitedBy_id crossref_primary_10_1093_bioadv_vbad071
crossref_primary_10_1002_cpz1_963
Cites_doi 10.1186/gb-2013-14-4-r31
10.1038/s41592-019-0433-8
10.1101/gr.232272.117
10.1038/nmeth.4380
10.1038/550451a
10.1038/nrg.2016.59
10.1038/d41586-018-05462-w
10.1021/ac901049w
10.1155/2016/7436849
10.1038/s41598-017-05436-4
10.1038/nature03001
10.1016/j.molcel.2019.01.009
10.1073/pnas.0709013104
10.1038/nmeth.3035
10.1101/742304
10.1016/j.ymeth.2019.09.012
10.1038/s41587-019-0147-6
10.1101/2020.03.12.989806
10.1101/692608
10.1126/science.aam8999
10.1038/s41598-017-16546-4
10.1007/978-981-13-0502-3_4
10.1038/s41592-019-0548-y
10.1038/nm.3488
10.3389/fgene.2019.00317
10.1126/science.aab1601
10.1126/science.1247651
10.1038/s41592-019-0392-0
10.1038/s41467-018-05347-6
10.1126/science.163.3872.1213
10.1038/nmeth.3370
10.1186/s13059-016-0957-5
10.1039/C5LC00614G
10.1101/757211
10.1101/gr.110882.110
10.15252/msb.20188746
10.1002/cyto.a.22043
10.1016/j.cell.2018.07.010
10.1016/j.cell.2015.04.044
10.1371/journal.pone.0135007
10.1038/nmeth.4179
10.1039/C8LC01239C
10.1126/science.aau0730
10.1186/s13059-018-1407-3
10.1016/j.coi.2018.03.023
10.1038/nbt.4038
10.1126/science.aam8940
10.1101/817924
10.1073/pnas.1602306113
10.1002/cyto.a.23853
10.1186/s13059-018-1603-1
10.1101/632216
10.1039/c2lc21147e
10.1038/nbt.3383
10.1126/science.1058040
10.1038/nbt.4112
10.1038/s41586-019-1049-y
10.1038/s12276-018-0071-8
10.1101/700534
10.1126/science.1198704
10.1002/cyto.a.23689
10.1038/nmeth.4154
10.1038/nature21429
10.1038/nbt.2282
10.1038/ng.3818
10.1002/cyto.a.23331
10.1002/cyto.a.23850
10.1002/cyto.a.22725
10.1186/s13059-016-0938-8
10.1038/nbt.3973
10.1126/science.aaw1219
10.1038/35057062
10.1021/ac301337h
10.1038/srep44447
10.1101/630087
10.1038/ncomms14049
10.1126/sciadv.aax5851
10.1016/j.it.2012.02.010
10.1038/nmeth.4407
10.1038/s41586-019-0949-1
10.1016/j.nantod.2009.12.001
10.1101/689273
10.1093/hmg/ddu309
10.1038/nmeth1094
10.1186/s12915-018-0564-x
10.1126/science.aaa6090
10.1038/nature13118
10.1126/science.aaf2403
10.1002/cpmb.92
10.1038/nprot.2014.006
10.1016/j.cell.2015.05.002
10.1038/s41587-019-0206-z
10.1038/s41588-019-0424-9
10.1126/science.150.3698.910
10.1126/science.aat5691
10.1002/cyto.a.23608
10.1126/science.1258367
10.4049/jimmunol.1502033
10.1038/nature14590
ContentType Journal Article
Copyright 2020 International Society for Advancement of Cytometry
2020 International Society for Advancement of Cytometry.
Copyright_xml – notice: 2020 International Society for Advancement of Cytometry
– notice: 2020 International Society for Advancement of Cytometry.
DBID NPM
AAYXX
CITATION
7QO
7TK
8FD
FR3
P64
7X8
DOI 10.1002/cyto.a.24209
DatabaseName PubMed
CrossRef
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1552-4930
EndPage 1016
ExternalDocumentID 10_1002_cyto_a_24209
32794624
CYTOA24209
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
2WC
31~
33P
3SF
4.4
4ZD
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
RNS
ROL
RWI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~KM
~WT
NPM
AAYXX
CITATION
7QO
7TK
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c4029-4fc2a9dcfbd204889f689113fa541e856f8c9820f4bedfcdc25365d1460454b83
IEDL.DBID DR2
ISSN 1552-4922
IngestDate Fri Aug 16 09:36:07 EDT 2024
Thu Oct 10 15:54:34 EDT 2024
Fri Aug 23 02:59:19 EDT 2024
Sat Sep 28 08:24:32 EDT 2024
Sat Aug 24 01:04:34 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords single-cell
cytometry
technology
genomic cytometry
genomicsmicrofluidics
Language English
License 2020 International Society for Advancement of Cytometry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4029-4fc2a9dcfbd204889f689113fa541e856f8c9820f4bedfcdc25365d1460454b83
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0003-4504-2901
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cyto.a.24209
PMID 32794624
PQID 2452883158
PQPubID 2045167
PageCount 10
ParticipantIDs proquest_miscellaneous_2434471355
proquest_journals_2452883158
crossref_primary_10_1002_cyto_a_24209
pubmed_primary_32794624
wiley_primary_10_1002_cyto_a_24209_CYTOA24209
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hoboken
PublicationTitle Cytometry. Part A
PublicationTitleAlternate Cytometry A
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2007; 104
2018; 361
2017; 7
2017; 8
2019; 170
2019; 95
2019; 51
2018; 360
2009; 81
2015; 347
2019; 10
2017; 49
2019; 15
2015; 33
2019; 566
2019; 127
2019; 16
2019; 19
2016; 2016
2019; 568
2015; 348
2017; 550
2012; 12
2014; 23
2017; 357
2014; 20
2019; 363
2018; 1068
2018; 174
2018; 9
2013; 14
2001; 291
1965; 150
2017; 35
2015; 87
2016; 113
2016; 353
2011; 21
2007; 4
2014; 9
2010; 5
2014; 11
2018; 36
2015; 12
2012; 81
2015; 15
2015; 161
2018; 28
2019; 73
2019; 5
2015; 523
2019; 37
2015; 10
2001; 409
2016; 17
2012; 33
2011; 332
2012; 30
2004; 431
2015; 195
1969; 163
2018; 19
2014; 507
2017; 14
2018; 558
2019
2018; 51
2018; 50
2018; 93
2018; 16
2017; 544
2014; 343
2012; 84
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
(e_1_2_9_70_1) 2015; 10
e_1_2_9_92_1
e_1_2_9_101_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
Kulasinghe A (e_1_2_9_47_1) 2018; 9
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_28_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_100_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 12
  start-page: 2146
  issue: 12
  year: 2012
  end-page: 2155
  article-title: Droplet microfluidics for high‐throughput biological assays
  publication-title: Lab Chip
– volume: 87
  start-page: 830
  issue: 9
  year: 2015
  end-page: 842
  article-title: Novel full‐spectral flow cytometry with multiple spectrally‐adjacent fluorescent proteins and fluorochromes and visualization of in vivo cellular movement
  publication-title: Cytometry A
– volume: 33
  start-page: 323
  issue: 7
  year: 2012
  end-page: 332
  article-title: A deep profiler's guide to cytometry
  publication-title: Trends Immunol
– volume: 19
  start-page: 224
  issue: 1
  year: 2018
  article-title: Cell hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics
  publication-title: Genome Biol
– volume: 9
  start-page: 19
  issue: 8
  year: 2018
  article-title: The use of microfluidic technology for cancer applications and liquid biopsy
  publication-title: Micromachines (Basel)
– volume: 7
  start-page: 5199
  year: 2017
  article-title: Massively parallel whole genome amplification for single‐cell sequencing using droplet microfluidics
  publication-title: Sci Rep
– volume: 81
  start-page: 6813
  issue: 16
  year: 2009
  end-page: 6822
  article-title: Mass cytometry: Technique for real time single cell multitarget immunoassay based on inductively coupled plasma time‐of‐flight mass spectrometry
  publication-title: Anal Chem
– volume: 568
  start-page: 235
  issue: 7751
  year: 2019
  end-page: 239
  article-title: Transcriptome‐scale super‐resolved imaging in tissues by RNA seqFISH
  publication-title: Nature
– volume: 1068
  start-page: 33
  year: 2018
  end-page: 43
  article-title: High throughput single cell RNA sequencing, bioinformatics analysis and applications
  publication-title: Adv Exp Med Biol
– volume: 357
  start-page: 661
  issue: 6352
  year: 2017
  end-page: 667
  article-title: Comprehensive single‐cell transcriptional profiling of a multicellular organism
  publication-title: Science
– volume: 11
  start-page: 817
  year: 2014
  end-page: 820
  article-title: Single‐cell genome‐wide bisulfite sequencing for assessing epigenetic heterogeneity
  publication-title: Nat Methods
– volume: 161
  start-page: 1187
  issue: 5
  year: 2015
  end-page: 1201
  article-title: Droplet barcoding for single‐cell transcriptomics applied to embryonic stem cells
  publication-title: Cell
– volume: 507
  start-page: 181
  issue: 7491
  year: 2014
  end-page: 189
  article-title: The present and future role of microfluidics in biomedical research
  publication-title: Nature
– volume: 33
  start-page: 1165
  issue: 11
  year: 2015
  end-page: 1172
  article-title: Single‐cell ChIP‐seq reveals cell subpopulations defined by chromatin state
  publication-title: Nat Biotechnol
– volume: 17
  start-page: 487
  issue: 8
  year: 2016
  end-page: 500
  article-title: The molecular hallmarks of epigenetic control
  publication-title: Nat Rev Genet
– volume: 49
  start-page: 708
  issue: 5
  year: 2017
  end-page: 718
  article-title: Reference component analysis of single‐cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors
  publication-title: Nat Genet
– volume: 5
  start-page: 28
  issue: 1
  year: 2010
  end-page: 47
  article-title: Microfluidic tools for cell biological research
  publication-title: Nano Today
– volume: 37
  start-page: 916
  issue: 8
  year: 2019
  end-page: 924
  article-title: Droplet‐based combinatorial indexing for massive‐scale single‐cell chromatin accessibility
  publication-title: Nat Biotechnol
– volume: 17
  start-page: 103
  year: 2016
  article-title: Single‐cell analysis of CD4+ T‐cell differentiation reveals three major cell states and progressive acceleration of proliferation
  publication-title: Genome Biol
– volume: 113
  start-page: 3293
  issue: 12
  year: 2016
  end-page: 3298
  article-title: Use of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells
  publication-title: Proc Natl Acad Sci USA
– volume: 20
  start-page: 436
  issue: 4
  year: 2014
  end-page: 442
  article-title: Multiplexed ion beam imaging of human breast tumors
  publication-title: Nat Med
– volume: 15
  start-page: 3439
  issue: 17
  year: 2015
  end-page: 3459
  article-title: The Poisson distribution and beyond: Methods for microfluidic droplet production and single cell encapsulation
  publication-title: Lab Chip
– volume: 51
  start-page: 1060
  issue: 6
  year: 2019
  end-page: 1066
  article-title: High‐throughput single‐cell ChIP‐seq identifies heterogeneity of chromatin states in breast cancer
  publication-title: Nat Genet
– volume: 51
  start-page: 187
  year: 2018
  end-page: 196
  article-title: Mass cytometry: A powerful tool for dissecting the immune landscape
  publication-title: Curr Opin Immunol
– volume: 195
  start-page: 4555
  issue: 10
  year: 2015
  end-page: 4563
  article-title: CD nomenclature 2015: Human leukocyte differentiation antigen workshops as a driving force in immunology
  publication-title: J Immunol
– volume: 16
  start-page: 619
  issue: 7
  year: 2019
  end-page: 626
  article-title: MULTI‐seq: Sample multiplexing for single‐cell RNA sequencing using lipid‐tagged indices
  publication-title: Nat Methods
– volume: 343
  start-page: 776
  issue: 6172
  year: 2014
  end-page: 779
  article-title: Massively parallel single‐cell RNA‐seq for marker‐free decomposition of tissues into cell types
  publication-title: Science
– volume: 10
  start-page: 317
  year: 2019
  article-title: Single‐cell RNA‐seq technologies and related computational data analysis
  publication-title: Front Genet
– volume: 163
  start-page: 1213
  issue: 3872
  year: 1969
  end-page: 1214
  article-title: Cell microfluorometry: A method for rapid fluorescence measurement
  publication-title: Science
– volume: 37
  start-page: 925
  issue: 8
  year: 2019
  end-page: 936
  article-title: Massively parallel single‐cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion
  publication-title: Nat Biotechnol
– volume: 50
  start-page: 96
  issue: 8
  year: 2018
  article-title: Single‐cell RNA sequencing technologies and bioinformatics pipelines
  publication-title: Exp Mol Med
– volume: 14
  start-page: 3097
  issue: 4
  year: 2013
  article-title: Quartz‐Seq: A highly reproducible and sensitive single‐cell RNA sequencing method, reveals non‐genetic gene‐expression heterogeneity
  publication-title: Genome Biol
– volume: 10
  issue: 8
  year: 2015
  article-title: Single‐cell genetic analysis using automated microfluidics to resolve somatic mosaicism
  publication-title: PLoS One
– volume: 36
  start-page: 428
  issue: 5
  year: 2018
  end-page: 431
  article-title: Highly scalable generation of DNA methylation profiles in single cells
  publication-title: Nat Biotechnol
– volume: 174
  start-page: 968
  issue: 4
  year: 2018
  end-page: 981.e15
  article-title: Deep profiling of mouse splenic architecture with CODEX multiplexed imaging
  publication-title: Cell
– volume: 81
  start-page: 456
  issue: 6
  year: 2012
  end-page: 466
  article-title: Brilliant violet fluorophores: A new class of ultrabright fluorescent compounds for immunofluorescence experiments
  publication-title: Cytometry A
– volume: 360
  start-page: 176
  issue: 6385
  year: 2018
  end-page: 182
  article-title: Single‐cell profiling of the developing mouse brain and spinal cord with split‐pool barcoding
  publication-title: Science
– volume: 12
  start-page: 519
  issue: 6
  year: 2015
  end-page: 522
  article-title: G&T‐seq: Parallel sequencing of single‐cell genomes and transcriptomes
  publication-title: Nat Methods
– volume: 550
  start-page: 451
  issue: 7677
  year: 2017
  end-page: 453
  article-title: The human cell atlas: From vision to reality
  publication-title: Nature
– volume: 93
  start-page: 1094
  issue: 11
  year: 2018
  end-page: 1096
  article-title: OMIP‐050: A 28‐color/30‐parameter fluorescence flow cytometry panel to enumerate and characterize cells expressing a wide array of immune checkpoint molecules
  publication-title: Cytometry A
– volume: 291
  start-page: 1304
  issue: 5507
  year: 2001
  end-page: 1351
  article-title: The sequence of the human genome
  publication-title: Science
– volume: 35
  start-page: 936
  issue: 10
  year: 2017
  end-page: 939
  article-title: Multiplexed quantification of proteins and transcripts in single cells
  publication-title: Nat Biotechnol
– volume: 566
  start-page: 558
  issue: 7745
  year: 2019
  end-page: 562
  article-title: Multiplex chromatin interactions with single‐molecule precision
  publication-title: Nature
– volume: 16
  start-page: 409
  issue: 5
  year: 2019
  end-page: 412
  article-title: Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells
  publication-title: Nat Methods
– volume: 409
  start-page: 860
  issue: 6822
  year: 2001
  end-page: 921
  article-title: Initial sequencing and analysis of the human genome
  publication-title: Nature
– year: 2019
– volume: 558
  start-page: 354
  issue: 7710
  year: 2018
  end-page: 355
  article-title: New human gene tally reignites debate
  publication-title: Nature
– volume: 9
  start-page: 2937
  issue: 1
  year: 2018
  article-title: Sensitive and powerful single‐cell RNA sequencing using mcSCRB‐seq
  publication-title: Nat Commun
– volume: 347
  issue: 6222
  year: 2015
  article-title: Expression profiling. Combinatorial labeling of single cells for gene expression cytometry
  publication-title: Science
– volume: 19
  start-page: 29
  issue: 1
  year: 2018
  article-title: Quartz‐Seq2: A high‐throughput single‐cell RNA‐sequencing method that effectively uses limited sequence reads
  publication-title: Genome Biol
– volume: 348
  start-page: 910
  issue: 6237
  year: 2015
  end-page: 914
  article-title: Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing
  publication-title: Science
– volume: 161
  start-page: 1202
  issue: 5
  year: 2015
  end-page: 1214
  article-title: Highly parallel genome‐wide expression profiling of individual cells using Nanoliter droplets
  publication-title: Cell
– volume: 15
  issue: 6
  year: 2019
  article-title: Current best practices in single‐cell RNA‐seq analysis: A tutorial
  publication-title: Mol Syst Biol
– volume: 353
  start-page: 78
  issue: 6294
  year: 2016
  end-page: 82
  article-title: Visualization and analysis of gene expression in tissue sections by spatial transcriptomics
  publication-title: Science
– volume: 17
  start-page: 77
  year: 2016
  article-title: CEL‐Seq2: Sensitive highly‐multiplexed single‐cell RNA‐Seq
  publication-title: Genome Biol
– volume: 14
  start-page: 865
  issue: 9
  year: 2017
  article-title: Simultaneous epitope and transcriptome measurement in single cells
  publication-title: Nat Methods
– volume: 104
  start-page: 19428
  issue: 49
  year: 2007
  end-page: 19433
  article-title: Distinguishing protein‐coding and noncoding genes in the human genome
  publication-title: Proc Natl Acad Sci USA
– volume: 7
  issue: 1
  year: 2017
  article-title: STRT‐seq‐2i: Dual‐index 5′ single cell and nucleus RNA‐seq on an addressable microwell array
  publication-title: Sci Rep
– volume: 127
  issue: 1
  year: 2019
  article-title: Single‐cell RNA‐seq: Introduction to bioinformatics analysis
  publication-title: Curr Protoc Mol Biol
– volume: 95
  start-page: 150
  issue: 2
  year: 2019
  end-page: 155
  article-title: OMIP‐051 – 28‐color flow cytometry panel to characterize B cells and myeloid cells
  publication-title: Cytometry A
– volume: 73
  start-page: 1292
  issue: 6
  year: 2019
  article-title: Unravelling Intratumoral heterogeneity through high‐sensitivity single‐cell mutational analysis and parallel RNA sequencing
  publication-title: Mol Cell
– volume: 150
  start-page: 910
  issue: 3698
  year: 1965
  end-page: 911
  article-title: Electronic separation of biological cells by volume
  publication-title: Science
– volume: 28
  start-page: 1345
  issue: 9
  year: 2018
  end-page: 1352
  article-title: High‐throughput single‐cell DNA sequencing of acute myeloid leukemia tumors with droplet microfluidics
  publication-title: Genome Res
– volume: 93
  start-page: 402
  issue: 4
  year: 2018
  end-page: 405
  article-title: OMIP‐044: 28‐color immunophenotyping of the human dendritic cell compartment
  publication-title: Cytometry A
– volume: 16
  start-page: 94
  issue: 1
  year: 2018
  article-title: Open questions: How many genes do we have?
  publication-title: BMC Biol
– volume: 14
  start-page: 955
  issue: 10
  year: 2017
  end-page: 958
  article-title: Massively parallel single‐nucleus RNA‐seq with DroNc‐seq
  publication-title: Nat Methods
– volume: 4
  start-page: 828
  issue: 10
  year: 2007
  end-page: 833
  article-title: MALDI imaging mass spectrometry: Molecular snapshots of biochemical systems
  publication-title: Nat Methods
– volume: 9
  start-page: 171
  issue: 1
  year: 2014
  end-page: 181
  article-title: Full‐length RNA‐seq from single cells using Smart‐Seq2
  publication-title: Nat Protoc
– volume: 84
  start-page: 6293
  issue: 15
  year: 2012
  end-page: 6297
  article-title: Single cell matrix‐assisted laser desorption/ionization mass spectrometry imaging
  publication-title: Anal Chem
– volume: 95
  start-page: 1129
  year: 2019
  end-page: 1134
  article-title: OMIP‐060‐30‐parameter flow cytometry panel to assess T cell effector functions and regulatory T cells
  publication-title: Cytometry A
– volume: 431
  start-page: 931
  issue: 7011
  year: 2004
  end-page: 945
  article-title: Finishing the euchromatic sequence of the human genome
  publication-title: Nature
– volume: 2016
  year: 2016
  article-title: The size of the human proteome: The width and depth
  publication-title: Int J Anal Chem
– volume: 170
  start-page: 61
  year: 2019
  end-page: 68
  article-title: Sci‐Hi‐C: A single‐cell Hi‐C method for mapping 3D genome organization in large number of single cells
  publication-title: Methods
– volume: 30
  start-page: 777
  issue: 8
  year: 2012
  end-page: 782
  article-title: Full‐length mRNA‐Seq from single‐cell levels of RNA and individual circulating tumor cells
  publication-title: Nat Biotechnol
– volume: 21
  start-page: 1160
  issue: 7
  year: 2011
  end-page: 1167
  article-title: Characterization of the single‐cell transcriptional landscape by highly multiplex RNA‐seq
  publication-title: Genome Res
– volume: 332
  start-page: 687
  issue: 6030
  year: 2011
  end-page: 696
  article-title: Single‐cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum
  publication-title: Science
– volume: 544
  start-page: 59
  year: 2017
  end-page: 64
  article-title: 3D structures of individual mammalian genomes studied by single‐cell Hi‐C
  publication-title: Nature
– volume: 7
  year: 2017
  article-title: Abseq: Ultrahigh‐throughput single cell protein profiling with droplet microfluidic barcoding
  publication-title: Sci Rep
– volume: 523
  start-page: 486
  issue: 7561
  year: 2015
  end-page: 490
  article-title: Single‐cell chromatin accessibility reveals principles of regulatory variation
  publication-title: Nature
– volume: 23
  start-page: 5866
  issue: 22
  year: 2014
  end-page: 5878
  article-title: Multiple evidence strands suggest that there may be as few as 19,000 human protein‐coding genes
  publication-title: Hum Mol Genet
– volume: 95
  start-page: 946
  issue: 9
  year: 2019
  end-page: 951
  article-title: OMIP‐058: 30‐parameter flow cytometry panel to characterize iNKT, NK, unconventional and conventional T cells
  publication-title: Cytometry A
– volume: 8
  year: 2017
  article-title: Massively parallel digital transcriptional profiling of single cells
  publication-title: Nat Commun
– volume: 361
  start-page: 1380
  issue: 6409
  year: 2018
  end-page: 1385
  article-title: Joint profiling of chromatin accessibility and gene expression in thousands of single cells
  publication-title: Science
– volume: 19
  start-page: 1706
  year: 2019
  end-page: 1727
  article-title: Droplet‐based single cell RNAseq tools: A practical guide
  publication-title: Lab Chip
– volume: 348
  issue: 6233
  year: 2015
  article-title: RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells
  publication-title: Science
– volume: 363
  start-page: 1463
  issue: 6434
  year: 2019
  end-page: 1467
  article-title: Slide‐seq: A scalable technology for measuring genome‐wide expression at high spatial resolution
  publication-title: Science
– volume: 16
  start-page: 987
  issue: 10
  year: 2019
  end-page: 990
  article-title: High‐definition spatial transcriptomics for in situ tissue profiling
  publication-title: Nat Methods
– volume: 14
  start-page: 395
  issue: 4
  year: 2017
  end-page: 398
  article-title: Seq‐well: Portable, low‐cost RNA sequencing of single cells at high throughput
  publication-title: Nat Methods
– volume: 14
  start-page: 302
  issue: 3
  year: 2017
  end-page: 308
  article-title: Sequencing thousands of single‐cell genomes with combinatorial indexing
  publication-title: Nat Methods
– volume: 361
  issue: 6400
  year: 2018
  article-title: Three‐dimensional intact‐tissue sequencing of single‐cell transcriptional states
  publication-title: Science
– volume: 5
  issue: 10
  year: 2019
  article-title: MIBI‐TOF: A multiplexed imaging platform relates cellular phenotypes and tissue structure
  publication-title: Sci Adv
– volume: 36
  start-page: 70
  issue: 1
  year: 2018
  end-page: 80
  article-title: Integrative single‐cell analysis of transcriptional and epigenetic states in the human adult brain
  publication-title: Nat Biotechnol
– ident: e_1_2_9_42_1
  doi: 10.1186/gb-2013-14-4-r31
– ident: e_1_2_9_95_1
  doi: 10.1038/s41592-019-0433-8
– ident: e_1_2_9_61_1
  doi: 10.1101/gr.232272.117
– ident: e_1_2_9_64_1
  doi: 10.1038/nmeth.4380
– ident: e_1_2_9_101_1
  doi: 10.1038/550451a
– ident: e_1_2_9_33_1
  doi: 10.1038/nrg.2016.59
– ident: e_1_2_9_26_1
  doi: 10.1038/d41586-018-05462-w
– ident: e_1_2_9_5_1
  doi: 10.1021/ac901049w
– ident: e_1_2_9_31_1
  doi: 10.1155/2016/7436849
– ident: e_1_2_9_63_1
  doi: 10.1038/s41598-017-05436-4
– ident: e_1_2_9_29_1
  doi: 10.1038/nature03001
– ident: e_1_2_9_92_1
  doi: 10.1016/j.molcel.2019.01.009
– ident: e_1_2_9_30_1
  doi: 10.1073/pnas.0709013104
– ident: e_1_2_9_44_1
  doi: 10.1038/nmeth.3035
– ident: e_1_2_9_96_1
  doi: 10.1101/742304
– ident: e_1_2_9_82_1
  doi: 10.1016/j.ymeth.2019.09.012
– ident: e_1_2_9_58_1
  doi: 10.1038/s41587-019-0147-6
– ident: e_1_2_9_90_1
  doi: 10.1101/2020.03.12.989806
– ident: e_1_2_9_67_1
  doi: 10.1101/692608
– ident: e_1_2_9_77_1
  doi: 10.1126/science.aam8999
– ident: e_1_2_9_38_1
  doi: 10.1038/s41598-017-16546-4
– ident: e_1_2_9_14_1
  doi: 10.1007/978-981-13-0502-3_4
– ident: e_1_2_9_89_1
  doi: 10.1038/s41592-019-0548-y
– ident: e_1_2_9_7_1
  doi: 10.1038/nm.3488
– ident: e_1_2_9_12_1
  doi: 10.3389/fgene.2019.00317
– ident: e_1_2_9_75_1
  doi: 10.1126/science.aab1601
– ident: e_1_2_9_40_1
  doi: 10.1126/science.1247651
– ident: e_1_2_9_66_1
  doi: 10.1038/s41592-019-0392-0
– ident: e_1_2_9_41_1
  doi: 10.1038/s41467-018-05347-6
– ident: e_1_2_9_16_1
  doi: 10.1126/science.163.3872.1213
– ident: e_1_2_9_91_1
  doi: 10.1038/nmeth.3370
– ident: e_1_2_9_69_1
  doi: 10.1186/s13059-016-0957-5
– ident: e_1_2_9_50_1
  doi: 10.1039/C5LC00614G
– ident: e_1_2_9_62_1
  doi: 10.1101/757211
– ident: e_1_2_9_37_1
  doi: 10.1101/gr.110882.110
– ident: e_1_2_9_11_1
  doi: 10.15252/msb.20188746
– ident: e_1_2_9_18_1
  doi: 10.1002/cyto.a.22043
– ident: e_1_2_9_86_1
  doi: 10.1016/j.cell.2018.07.010
– ident: e_1_2_9_52_1
  doi: 10.1016/j.cell.2015.04.044
– volume: 10
  start-page: e0135007
  issue: 8
  year: 2015
  ident: e_1_2_9_70_1
  article-title: Single‐cell genetic analysis using automated microfluidics to resolve somatic mosaicism
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0135007
– ident: e_1_2_9_73_1
  doi: 10.1038/nmeth.4179
– ident: e_1_2_9_53_1
  doi: 10.1039/C8LC01239C
– ident: e_1_2_9_79_1
  doi: 10.1126/science.aau0730
– ident: e_1_2_9_43_1
  doi: 10.1186/s13059-018-1407-3
– ident: e_1_2_9_4_1
  doi: 10.1016/j.coi.2018.03.023
– ident: e_1_2_9_80_1
  doi: 10.1038/nbt.4038
– ident: e_1_2_9_76_1
  doi: 10.1126/science.aam8940
– ident: e_1_2_9_36_1
  doi: 10.1101/817924
– ident: e_1_2_9_71_1
  doi: 10.1073/pnas.1602306113
– ident: e_1_2_9_20_1
  doi: 10.1002/cyto.a.23853
– ident: e_1_2_9_94_1
  doi: 10.1186/s13059-018-1603-1
– ident: e_1_2_9_100_1
  doi: 10.1101/632216
– ident: e_1_2_9_48_1
  doi: 10.1039/c2lc21147e
– ident: e_1_2_9_56_1
  doi: 10.1038/nbt.3383
– ident: e_1_2_9_28_1
  doi: 10.1126/science.1058040
– ident: e_1_2_9_81_1
  doi: 10.1038/nbt.4112
– ident: e_1_2_9_85_1
  doi: 10.1038/s41586-019-1049-y
– ident: e_1_2_9_13_1
  doi: 10.1038/s12276-018-0071-8
– ident: e_1_2_9_74_1
  doi: 10.1101/700534
– ident: e_1_2_9_3_1
  doi: 10.1126/science.1198704
– ident: e_1_2_9_21_1
  doi: 10.1002/cyto.a.23689
– ident: e_1_2_9_78_1
  doi: 10.1038/nmeth.4154
– ident: e_1_2_9_45_1
  doi: 10.1038/nature21429
– volume: 9
  start-page: 19
  issue: 8
  year: 2018
  ident: e_1_2_9_47_1
  article-title: The use of microfluidic technology for cancer applications and liquid biopsy
  publication-title: Micromachines (Basel)
  contributor:
    fullname: Kulasinghe A
– ident: e_1_2_9_34_1
  doi: 10.1038/nbt.2282
– ident: e_1_2_9_68_1
  doi: 10.1038/ng.3818
– ident: e_1_2_9_23_1
  doi: 10.1002/cyto.a.23331
– ident: e_1_2_9_22_1
  doi: 10.1002/cyto.a.23850
– ident: e_1_2_9_2_1
  doi: 10.1002/cyto.a.22725
– ident: e_1_2_9_39_1
  doi: 10.1186/s13059-016-0938-8
– ident: e_1_2_9_65_1
  doi: 10.1038/nbt.3973
– ident: e_1_2_9_88_1
  doi: 10.1126/science.aaw1219
– ident: e_1_2_9_97_1
  doi: 10.1038/35057062
– ident: e_1_2_9_9_1
  doi: 10.1021/ac301337h
– ident: e_1_2_9_93_1
  doi: 10.1038/srep44447
– ident: e_1_2_9_98_1
  doi: 10.1101/630087
– ident: e_1_2_9_55_1
  doi: 10.1038/ncomms14049
– ident: e_1_2_9_10_1
  doi: 10.1126/sciadv.aax5851
– ident: e_1_2_9_6_1
  doi: 10.1016/j.it.2012.02.010
– ident: e_1_2_9_54_1
  doi: 10.1038/nmeth.4407
– ident: e_1_2_9_60_1
  doi: 10.1038/s41586-019-0949-1
– ident: e_1_2_9_49_1
  doi: 10.1016/j.nantod.2009.12.001
– ident: e_1_2_9_99_1
  doi: 10.1101/689273
– ident: e_1_2_9_27_1
  doi: 10.1093/hmg/ddu309
– ident: e_1_2_9_8_1
  doi: 10.1038/nmeth1094
– ident: e_1_2_9_25_1
  doi: 10.1186/s12915-018-0564-x
– ident: e_1_2_9_83_1
  doi: 10.1126/science.aaa6090
– ident: e_1_2_9_46_1
  doi: 10.1038/nature13118
– ident: e_1_2_9_87_1
  doi: 10.1126/science.aaf2403
– ident: e_1_2_9_15_1
  doi: 10.1002/cpmb.92
– ident: e_1_2_9_35_1
  doi: 10.1038/nprot.2014.006
– ident: e_1_2_9_51_1
  doi: 10.1016/j.cell.2015.05.002
– ident: e_1_2_9_59_1
  doi: 10.1038/s41587-019-0206-z
– ident: e_1_2_9_57_1
  doi: 10.1038/s41588-019-0424-9
– ident: e_1_2_9_17_1
  doi: 10.1126/science.150.3698.910
– ident: e_1_2_9_84_1
  doi: 10.1126/science.aat5691
– ident: e_1_2_9_19_1
  doi: 10.1002/cyto.a.23608
– ident: e_1_2_9_72_1
  doi: 10.1126/science.1258367
– ident: e_1_2_9_32_1
  doi: 10.4049/jimmunol.1502033
– ident: e_1_2_9_24_1
  doi: 10.1038/nature14590
SSID ssj0035032
Score 2.3255224
SecondaryResourceType review_article
Snippet In the past few years, the rapid development of single‐cell analysis techniques has allowed for increasingly in‐depth analysis of DNA, RNA, protein, and...
In the past few years, the rapid development of single-cell analysis techniques has allowed for increasingly in-depth analysis of DNA, RNA, protein, and...
Abstract In the past few years, the rapid development of single‐cell analysis techniques has allowed for increasingly in‐depth analysis of DNA, RNA, protein,...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 1007
SubjectTerms Cytometry
Deoxyribonucleic acid
DNA
Epigenetics
genomic cytometry
Genomics
genomicsmicrofluidics
Informatics
Interrogation
Microfluidics
Ribonucleic acid
RNA
single‐cell
technology
Title Genomic Cytometry and New Modalities for Deep Single‐Cell Interrogation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcyto.a.24209
https://www.ncbi.nlm.nih.gov/pubmed/32794624
https://www.proquest.com/docview/2452883158
https://search.proquest.com/docview/2434471355
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4hJCQuvB9hARkJjimN4yTOsWp5C5B4SHCynNjmQEmqkh66p_0J-xv3l6zHScvCSkhwSqTYiu3xzHy2Zz4D7CPDC-U88qnmbR8JsPxMxYEvdZJoaayHTDHf-fIqPr1n5w_RQ7PhhrkwNT_EdMMNNcPZa1Rwmb0evpGG5uOqbMmWdTEufy8IE4zo6t1M2aPCqO3uJ0OSMZ-llDZx77b64b-V33uk_2Dme9Tq3M7xIohJg-tok-fWqMpa-c8PXI7f79ESLDSIlHTqKbQMM7pYgbn6jsrxKpydaJe5TLq23ouuhmMiC0WscSSXpUIUb9faxEJf0tN6QG6tK-zrP79-d3W_T9x-47B8cuJfg_vjo7vuqd_cv-DnDKNimMmpTFVuMoX0vjw1Mbe2MTQyYoHmUWx4nloEYVimlclVTqMwjpS1vcjrl_FwHWaLstCbQCTF1PVQJTEzLFHIe0fbibQPxWKupAcHExmIQU2zIWpCZSpwWIQUblg82J4ISDTK9irw8JjzMIi4B3vTz1ZN8OxDFrocYRmkNgwsuvJgoxbs9EchRZZ9yjzwnXg-bYHoPt5dd9zr1hfL_4B5iqt1Fwq4DbPVcKR3LKSpsl07cc8udt30_QvzrPE4
link.rule.ids 315,783,787,1378,27937,27938,46307,46731
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-hIrS9jD8bI1CYkdhj-sdxEuex6hjtaIu0ddJ4Mk5s74EuqUr6UJ74CHxGPgk-Jy0rk5DQnhIptpL4fHc_23e_A3iHDC-U89Cnmnd8JMDyUxV1fanjWEtjPWSC-c7jSTS4ZGdX4VVd5xRzYSp-iM2GG2qGs9eo4Lgh3f7DGpqtyqIlW9bHYALfQ6vxAWrmyfmGPyoIO65CGdKM-SyhtI58t_3bt3tv-6Q7QHMbtzrHc_oYvqw_uYo3-dpalmkr-_4Xm-M9_ukJ7NWglPSqWfQUHuj8GTyqylSu9mH4QbvkZdK3_W50uVgRmSti7SMZFwqBvF1uE4t-yYnWc3JhveFM__rxs69nM-K2HBfFtZsBB3B5-n7aH_h1CQY_YxgYw0xGZaIykypk-OWJibg1j4GRIetqHkaGZ4kFEYalWplMZTQMolBZ84vUfikPnkMjL3L9AoikmL0eqDhihsUKqe9oJ5b2oljElfTgeC0EMa-YNkTFqUwFDouQwg2LB821hEStb98Enh9zHnRD7sHbzWOrKXj8IXNdLLENsht2LcDy4LCS7OZFAUWifco88J18_vkFov95-qnnbl_-Z_sj2BlMxyMxGk4-voJdiot3FxnYhEa5WOrXFuGU6Rs3i38DTZf0WA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB5VVEVcCuWvgaU1Ehyz7DpO4hxXC1v-QRQkOFlObHNgSVZL9rA98Qh9xj4JHie7QCtVglMixVZsj2fmsz3zGWALGV4o56FPNW_5SIDlpypq-1LHsZbGesgE851PTqP9K3Z4HV7XG26YC1PxQ0w33FAznL1GBR8os_NMGpqNy6Ipm9bFYP7eRxbZ2Yqg6GJKHxWELXdBGbKM-SyhtA58t_V3XtZ-7ZL-wZmvYavzO715EJMWV-Emd81RmTazX3-ROb6_SwvwuYakpFPNoS_wQeeL8Km6pHK8BAc_tEtdJl1b716XwzGRuSLWOpKTQiGMt4ttYrEv2dV6QH5aX9jXfx5_d3W_T9yG47C4dfJfhqve3mV3368vYPAzhmExzGRUJiozqUJ-X56YiFvjGBgZsrbmYWR4llgIYViqlclURsMgCpU1vkjsl_JgBWbyItdfgUiKueuBiiNmWKyQ-I62YmkfikVcSQ-2JzIQg4pnQ1SMylTgsAgp3LB40JgISNTa9iDw9JjzoB1yDzann62e4OGHzHUxwjLIbdi28MqD1Uqw0x8FFGn2KfPAd-L5bwtE9-byrONe195Y_jvMnu_2xPHB6dE6zFFcubuwwAbMlMOR3rDwpky_uTn8BH2h8wc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genomic+Cytometry+and+New+Modalities+for+Deep+Single%E2%80%90Cell+Interrogation&rft.jtitle=Cytometry.+Part+A&rft.au=Salomon%2C+Robert&rft.au=Martelotto%2C+Luciano&rft.au=Valdes%E2%80%90Mora%2C+Fatima&rft.au=Gallego%E2%80%90Ortega%2C+David&rft.date=2020-10-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1552-4922&rft.eissn=1552-4930&rft.volume=97&rft.issue=10&rft.spage=1007&rft.epage=1016&rft_id=info:doi/10.1002%2Fcyto.a.24209&rft.externalDBID=10.1002%252Fcyto.a.24209&rft.externalDocID=CYTOA24209
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4922&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4922&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4922&client=summon