Genomic Cytometry and New Modalities for Deep Single‐Cell Interrogation
In the past few years, the rapid development of single‐cell analysis techniques has allowed for increasingly in‐depth analysis of DNA, RNA, protein, and epigenetic states, at the level of the individual cell. This unprecedented characterization ability has been enabled through the combination of cyt...
Saved in:
Published in | Cytometry. Part A Vol. 97; no. 10; pp. 1007 - 1016 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.10.2020
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the past few years, the rapid development of single‐cell analysis techniques has allowed for increasingly in‐depth analysis of DNA, RNA, protein, and epigenetic states, at the level of the individual cell. This unprecedented characterization ability has been enabled through the combination of cytometry, microfluidics, genomics, and informatics. Although traditionally discrete, when properly integrated, these fields create the synergistic field of Genomic Cytometry. In this review, we look at the individual methods that together gave rise to the broad field of Genomic Cytometry. We further outline the basic concepts that drive the field and provide a framework to understand this increasingly complex, technology‐intensive space. Thus, we introduce Genomic Cytometry as an emerging field and propose that synergistic rationalization of disparate modalities of cytometry, microfluidics, genomics, and informatics under one banner will enable massive leaps forward in the understanding of complex biology. © 2020 International Society for Advancement of Cytometry
Genomic Cytometry is a new field formed to synergistically leverage the power of cytometry, microfluidics, genomics, and informatics. With cytometry at its core, it is focused on deep cellular characterization using a variety of methods. It provides a powerful multimodal analysis platform to deeply interrogate DNA, RNA, protein, and epigenetic characteristics of individual cells. |
---|---|
AbstractList | In the past few years, the rapid development of single‐cell analysis techniques has allowed for increasingly in‐depth analysis of DNA, RNA, protein, and epigenetic states, at the level of the individual cell. This unprecedented characterization ability has been enabled through the combination of cytometry, microfluidics, genomics, and informatics. Although traditionally discrete, when properly integrated, these fields create the synergistic field of Genomic Cytometry. In this review, we look at the individual methods that together gave rise to the broad field of Genomic Cytometry. We further outline the basic concepts that drive the field and provide a framework to understand this increasingly complex, technology‐intensive space. Thus, we introduce Genomic Cytometry as an emerging field and propose that synergistic rationalization of disparate modalities of cytometry, microfluidics, genomics, and informatics under one banner will enable massive leaps forward in the understanding of complex biology. © 2020 International Society for Advancement of Cytometry
Genomic Cytometry is a new field formed to synergistically leverage the power of cytometry, microfluidics, genomics, and informatics. With cytometry at its core, it is focused on deep cellular characterization using a variety of methods. It provides a powerful multimodal analysis platform to deeply interrogate DNA, RNA, protein, and epigenetic characteristics of individual cells. In the past few years, the rapid development of single-cell analysis techniques has allowed for increasingly in-depth analysis of DNA, RNA, protein, and epigenetic states, at the level of the individual cell. This unprecedented characterization ability has been enabled through the combination of cytometry, microfluidics, genomics, and informatics. Although traditionally discrete, when properly integrated, these fields create the synergistic field of Genomic Cytometry. In this review, we look at the individual methods that together gave rise to the broad field of Genomic Cytometry. We further outline the basic concepts that drive the field and provide a framework to understand this increasingly complex, technology-intensive space. Thus, we introduce Genomic Cytometry as an emerging field and propose that synergistic rationalization of disparate modalities of cytometry, microfluidics, genomics, and informatics under one banner will enable massive leaps forward in the understanding of complex biology. © 2020 International Society for Advancement of Cytometry. Abstract In the past few years, the rapid development of single‐cell analysis techniques has allowed for increasingly in‐depth analysis of DNA, RNA, protein, and epigenetic states, at the level of the individual cell. This unprecedented characterization ability has been enabled through the combination of cytometry, microfluidics, genomics, and informatics. Although traditionally discrete, when properly integrated, these fields create the synergistic field of Genomic Cytometry. In this review, we look at the individual methods that together gave rise to the broad field of Genomic Cytometry. We further outline the basic concepts that drive the field and provide a framework to understand this increasingly complex, technology‐intensive space. Thus, we introduce Genomic Cytometry as an emerging field and propose that synergistic rationalization of disparate modalities of cytometry, microfluidics, genomics, and informatics under one banner will enable massive leaps forward in the understanding of complex biology. © 2020 International Society for Advancement of Cytometry In the past few years, the rapid development of single‐cell analysis techniques has allowed for increasingly in‐depth analysis of DNA, RNA, protein, and epigenetic states, at the level of the individual cell. This unprecedented characterization ability has been enabled through the combination of cytometry, microfluidics, genomics, and informatics. Although traditionally discrete, when properly integrated, these fields create the synergistic field of Genomic Cytometry. In this review, we look at the individual methods that together gave rise to the broad field of Genomic Cytometry. We further outline the basic concepts that drive the field and provide a framework to understand this increasingly complex, technology‐intensive space. Thus, we introduce Genomic Cytometry as an emerging field and propose that synergistic rationalization of disparate modalities of cytometry, microfluidics, genomics, and informatics under one banner will enable massive leaps forward in the understanding of complex biology. © 2020 International Society for Advancement of Cytometry |
Author | Martelotto, Luciano Valdes‐Mora, Fatima Gallego‐Ortega, David Salomon, Robert |
Author_xml | – sequence: 1 givenname: Robert orcidid: 0000-0003-4504-2901 surname: Salomon fullname: Salomon, Robert email: rob@rob-salomon.com, rsalomon@ccia.org.au organization: University of New South Wales (UNSW) Sydney – sequence: 2 givenname: Luciano surname: Martelotto fullname: Martelotto, Luciano organization: University of Melbourne – sequence: 3 givenname: Fatima surname: Valdes‐Mora fullname: Valdes‐Mora, Fatima organization: University of New South Wales (UNSW) Sydney – sequence: 4 givenname: David surname: Gallego‐Ortega fullname: Gallego‐Ortega, David organization: Garvan Institute of Medical Research |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32794624$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kL1OwzAURi0EglLYmFEkFgZa_BucsQp_lYAOwMBkuc41CkrsYqeqsvEIPCNPQkpLBwame4ejo09nH2077wChI4KHBGN6btrGD_WQcoqzLdQjQtABzxje3vyU7qH9GN8wZgIzuov2GL3IeEp5D41vwPm6NEneaWpoQptoVyQPsEjufaGrsikhJtaH5BJgljyW7rWCr4_PHKoqGbsGQvCvuim9O0A7VlcRDte3j56vr57y28Hd5Gacj-4GhmOaDbg1VGeFsdOCYi5lZlOZEcKsFpyAFKmVJpMUWz6FwprCUMFSURCeYi74VLI-Ol15Z8G_zyE2qi6j6eZoB34eFeWM8wvChOjQkz_om58H163rKEGlZEQshWcrygQfYwCrZqGsdWgVwWqZWC0TK61-Enf48Vo6n9ZQbODfph3AV8CirKD9V6byl6fJaOX9BmU6iYQ |
CitedBy_id | crossref_primary_10_1093_bioadv_vbad071 crossref_primary_10_1002_cpz1_963 |
Cites_doi | 10.1186/gb-2013-14-4-r31 10.1038/s41592-019-0433-8 10.1101/gr.232272.117 10.1038/nmeth.4380 10.1038/550451a 10.1038/nrg.2016.59 10.1038/d41586-018-05462-w 10.1021/ac901049w 10.1155/2016/7436849 10.1038/s41598-017-05436-4 10.1038/nature03001 10.1016/j.molcel.2019.01.009 10.1073/pnas.0709013104 10.1038/nmeth.3035 10.1101/742304 10.1016/j.ymeth.2019.09.012 10.1038/s41587-019-0147-6 10.1101/2020.03.12.989806 10.1101/692608 10.1126/science.aam8999 10.1038/s41598-017-16546-4 10.1007/978-981-13-0502-3_4 10.1038/s41592-019-0548-y 10.1038/nm.3488 10.3389/fgene.2019.00317 10.1126/science.aab1601 10.1126/science.1247651 10.1038/s41592-019-0392-0 10.1038/s41467-018-05347-6 10.1126/science.163.3872.1213 10.1038/nmeth.3370 10.1186/s13059-016-0957-5 10.1039/C5LC00614G 10.1101/757211 10.1101/gr.110882.110 10.15252/msb.20188746 10.1002/cyto.a.22043 10.1016/j.cell.2018.07.010 10.1016/j.cell.2015.04.044 10.1371/journal.pone.0135007 10.1038/nmeth.4179 10.1039/C8LC01239C 10.1126/science.aau0730 10.1186/s13059-018-1407-3 10.1016/j.coi.2018.03.023 10.1038/nbt.4038 10.1126/science.aam8940 10.1101/817924 10.1073/pnas.1602306113 10.1002/cyto.a.23853 10.1186/s13059-018-1603-1 10.1101/632216 10.1039/c2lc21147e 10.1038/nbt.3383 10.1126/science.1058040 10.1038/nbt.4112 10.1038/s41586-019-1049-y 10.1038/s12276-018-0071-8 10.1101/700534 10.1126/science.1198704 10.1002/cyto.a.23689 10.1038/nmeth.4154 10.1038/nature21429 10.1038/nbt.2282 10.1038/ng.3818 10.1002/cyto.a.23331 10.1002/cyto.a.23850 10.1002/cyto.a.22725 10.1186/s13059-016-0938-8 10.1038/nbt.3973 10.1126/science.aaw1219 10.1038/35057062 10.1021/ac301337h 10.1038/srep44447 10.1101/630087 10.1038/ncomms14049 10.1126/sciadv.aax5851 10.1016/j.it.2012.02.010 10.1038/nmeth.4407 10.1038/s41586-019-0949-1 10.1016/j.nantod.2009.12.001 10.1101/689273 10.1093/hmg/ddu309 10.1038/nmeth1094 10.1186/s12915-018-0564-x 10.1126/science.aaa6090 10.1038/nature13118 10.1126/science.aaf2403 10.1002/cpmb.92 10.1038/nprot.2014.006 10.1016/j.cell.2015.05.002 10.1038/s41587-019-0206-z 10.1038/s41588-019-0424-9 10.1126/science.150.3698.910 10.1126/science.aat5691 10.1002/cyto.a.23608 10.1126/science.1258367 10.4049/jimmunol.1502033 10.1038/nature14590 |
ContentType | Journal Article |
Copyright | 2020 International Society for Advancement of Cytometry 2020 International Society for Advancement of Cytometry. |
Copyright_xml | – notice: 2020 International Society for Advancement of Cytometry – notice: 2020 International Society for Advancement of Cytometry. |
DBID | NPM AAYXX CITATION 7QO 7TK 8FD FR3 P64 7X8 |
DOI | 10.1002/cyto.a.24209 |
DatabaseName | PubMed CrossRef Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1552-4930 |
EndPage | 1016 |
ExternalDocumentID | 10_1002_cyto_a_24209 32794624 CYTOA24209 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 2WC 31~ 33P 3SF 4.4 4ZD 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CO8 CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N QB0 QRW R.K RNS ROL RWI SUPJJ SV3 UB1 V2E W8V W99 WBKPD WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~KM ~WT NPM AAYXX CITATION 7QO 7TK 8FD FR3 P64 7X8 |
ID | FETCH-LOGICAL-c4029-4fc2a9dcfbd204889f689113fa541e856f8c9820f4bedfcdc25365d1460454b83 |
IEDL.DBID | DR2 |
ISSN | 1552-4922 |
IngestDate | Fri Aug 16 09:36:07 EDT 2024 Thu Oct 10 15:54:34 EDT 2024 Fri Aug 23 02:59:19 EDT 2024 Sat Sep 28 08:24:32 EDT 2024 Sat Aug 24 01:04:34 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | single-cell cytometry technology genomic cytometry genomicsmicrofluidics |
Language | English |
License | 2020 International Society for Advancement of Cytometry. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4029-4fc2a9dcfbd204889f689113fa541e856f8c9820f4bedfcdc25365d1460454b83 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0003-4504-2901 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cyto.a.24209 |
PMID | 32794624 |
PQID | 2452883158 |
PQPubID | 2045167 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2434471355 proquest_journals_2452883158 crossref_primary_10_1002_cyto_a_24209 pubmed_primary_32794624 wiley_primary_10_1002_cyto_a_24209_CYTOA24209 |
PublicationCentury | 2000 |
PublicationDate | October 2020 2020-10-00 20201001 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Hoboken |
PublicationTitle | Cytometry. Part A |
PublicationTitleAlternate | Cytometry A |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2007; 104 2018; 361 2017; 7 2017; 8 2019; 170 2019; 95 2019; 51 2018; 360 2009; 81 2015; 347 2019; 10 2017; 49 2019; 15 2015; 33 2019; 566 2019; 127 2019; 16 2019; 19 2016; 2016 2019; 568 2015; 348 2017; 550 2012; 12 2014; 23 2017; 357 2014; 20 2019; 363 2018; 1068 2018; 174 2018; 9 2013; 14 2001; 291 1965; 150 2017; 35 2015; 87 2016; 113 2016; 353 2011; 21 2007; 4 2014; 9 2010; 5 2014; 11 2018; 36 2015; 12 2012; 81 2015; 15 2015; 161 2018; 28 2019; 73 2019; 5 2015; 523 2019; 37 2015; 10 2001; 409 2016; 17 2012; 33 2011; 332 2012; 30 2004; 431 2015; 195 1969; 163 2018; 19 2014; 507 2017; 14 2018; 558 2019 2018; 51 2018; 50 2018; 93 2018; 16 2017; 544 2014; 343 2012; 84 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 (e_1_2_9_70_1) 2015; 10 e_1_2_9_92_1 e_1_2_9_101_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 Kulasinghe A (e_1_2_9_47_1) 2018; 9 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_28_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_100_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 12 start-page: 2146 issue: 12 year: 2012 end-page: 2155 article-title: Droplet microfluidics for high‐throughput biological assays publication-title: Lab Chip – volume: 87 start-page: 830 issue: 9 year: 2015 end-page: 842 article-title: Novel full‐spectral flow cytometry with multiple spectrally‐adjacent fluorescent proteins and fluorochromes and visualization of in vivo cellular movement publication-title: Cytometry A – volume: 33 start-page: 323 issue: 7 year: 2012 end-page: 332 article-title: A deep profiler's guide to cytometry publication-title: Trends Immunol – volume: 19 start-page: 224 issue: 1 year: 2018 article-title: Cell hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics publication-title: Genome Biol – volume: 9 start-page: 19 issue: 8 year: 2018 article-title: The use of microfluidic technology for cancer applications and liquid biopsy publication-title: Micromachines (Basel) – volume: 7 start-page: 5199 year: 2017 article-title: Massively parallel whole genome amplification for single‐cell sequencing using droplet microfluidics publication-title: Sci Rep – volume: 81 start-page: 6813 issue: 16 year: 2009 end-page: 6822 article-title: Mass cytometry: Technique for real time single cell multitarget immunoassay based on inductively coupled plasma time‐of‐flight mass spectrometry publication-title: Anal Chem – volume: 568 start-page: 235 issue: 7751 year: 2019 end-page: 239 article-title: Transcriptome‐scale super‐resolved imaging in tissues by RNA seqFISH publication-title: Nature – volume: 1068 start-page: 33 year: 2018 end-page: 43 article-title: High throughput single cell RNA sequencing, bioinformatics analysis and applications publication-title: Adv Exp Med Biol – volume: 357 start-page: 661 issue: 6352 year: 2017 end-page: 667 article-title: Comprehensive single‐cell transcriptional profiling of a multicellular organism publication-title: Science – volume: 11 start-page: 817 year: 2014 end-page: 820 article-title: Single‐cell genome‐wide bisulfite sequencing for assessing epigenetic heterogeneity publication-title: Nat Methods – volume: 161 start-page: 1187 issue: 5 year: 2015 end-page: 1201 article-title: Droplet barcoding for single‐cell transcriptomics applied to embryonic stem cells publication-title: Cell – volume: 507 start-page: 181 issue: 7491 year: 2014 end-page: 189 article-title: The present and future role of microfluidics in biomedical research publication-title: Nature – volume: 33 start-page: 1165 issue: 11 year: 2015 end-page: 1172 article-title: Single‐cell ChIP‐seq reveals cell subpopulations defined by chromatin state publication-title: Nat Biotechnol – volume: 17 start-page: 487 issue: 8 year: 2016 end-page: 500 article-title: The molecular hallmarks of epigenetic control publication-title: Nat Rev Genet – volume: 49 start-page: 708 issue: 5 year: 2017 end-page: 718 article-title: Reference component analysis of single‐cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors publication-title: Nat Genet – volume: 5 start-page: 28 issue: 1 year: 2010 end-page: 47 article-title: Microfluidic tools for cell biological research publication-title: Nano Today – volume: 37 start-page: 916 issue: 8 year: 2019 end-page: 924 article-title: Droplet‐based combinatorial indexing for massive‐scale single‐cell chromatin accessibility publication-title: Nat Biotechnol – volume: 17 start-page: 103 year: 2016 article-title: Single‐cell analysis of CD4+ T‐cell differentiation reveals three major cell states and progressive acceleration of proliferation publication-title: Genome Biol – volume: 113 start-page: 3293 issue: 12 year: 2016 end-page: 3298 article-title: Use of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells publication-title: Proc Natl Acad Sci USA – volume: 20 start-page: 436 issue: 4 year: 2014 end-page: 442 article-title: Multiplexed ion beam imaging of human breast tumors publication-title: Nat Med – volume: 15 start-page: 3439 issue: 17 year: 2015 end-page: 3459 article-title: The Poisson distribution and beyond: Methods for microfluidic droplet production and single cell encapsulation publication-title: Lab Chip – volume: 51 start-page: 1060 issue: 6 year: 2019 end-page: 1066 article-title: High‐throughput single‐cell ChIP‐seq identifies heterogeneity of chromatin states in breast cancer publication-title: Nat Genet – volume: 51 start-page: 187 year: 2018 end-page: 196 article-title: Mass cytometry: A powerful tool for dissecting the immune landscape publication-title: Curr Opin Immunol – volume: 195 start-page: 4555 issue: 10 year: 2015 end-page: 4563 article-title: CD nomenclature 2015: Human leukocyte differentiation antigen workshops as a driving force in immunology publication-title: J Immunol – volume: 16 start-page: 619 issue: 7 year: 2019 end-page: 626 article-title: MULTI‐seq: Sample multiplexing for single‐cell RNA sequencing using lipid‐tagged indices publication-title: Nat Methods – volume: 343 start-page: 776 issue: 6172 year: 2014 end-page: 779 article-title: Massively parallel single‐cell RNA‐seq for marker‐free decomposition of tissues into cell types publication-title: Science – volume: 10 start-page: 317 year: 2019 article-title: Single‐cell RNA‐seq technologies and related computational data analysis publication-title: Front Genet – volume: 163 start-page: 1213 issue: 3872 year: 1969 end-page: 1214 article-title: Cell microfluorometry: A method for rapid fluorescence measurement publication-title: Science – volume: 37 start-page: 925 issue: 8 year: 2019 end-page: 936 article-title: Massively parallel single‐cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion publication-title: Nat Biotechnol – volume: 50 start-page: 96 issue: 8 year: 2018 article-title: Single‐cell RNA sequencing technologies and bioinformatics pipelines publication-title: Exp Mol Med – volume: 14 start-page: 3097 issue: 4 year: 2013 article-title: Quartz‐Seq: A highly reproducible and sensitive single‐cell RNA sequencing method, reveals non‐genetic gene‐expression heterogeneity publication-title: Genome Biol – volume: 10 issue: 8 year: 2015 article-title: Single‐cell genetic analysis using automated microfluidics to resolve somatic mosaicism publication-title: PLoS One – volume: 36 start-page: 428 issue: 5 year: 2018 end-page: 431 article-title: Highly scalable generation of DNA methylation profiles in single cells publication-title: Nat Biotechnol – volume: 174 start-page: 968 issue: 4 year: 2018 end-page: 981.e15 article-title: Deep profiling of mouse splenic architecture with CODEX multiplexed imaging publication-title: Cell – volume: 81 start-page: 456 issue: 6 year: 2012 end-page: 466 article-title: Brilliant violet fluorophores: A new class of ultrabright fluorescent compounds for immunofluorescence experiments publication-title: Cytometry A – volume: 360 start-page: 176 issue: 6385 year: 2018 end-page: 182 article-title: Single‐cell profiling of the developing mouse brain and spinal cord with split‐pool barcoding publication-title: Science – volume: 12 start-page: 519 issue: 6 year: 2015 end-page: 522 article-title: G&T‐seq: Parallel sequencing of single‐cell genomes and transcriptomes publication-title: Nat Methods – volume: 550 start-page: 451 issue: 7677 year: 2017 end-page: 453 article-title: The human cell atlas: From vision to reality publication-title: Nature – volume: 93 start-page: 1094 issue: 11 year: 2018 end-page: 1096 article-title: OMIP‐050: A 28‐color/30‐parameter fluorescence flow cytometry panel to enumerate and characterize cells expressing a wide array of immune checkpoint molecules publication-title: Cytometry A – volume: 291 start-page: 1304 issue: 5507 year: 2001 end-page: 1351 article-title: The sequence of the human genome publication-title: Science – volume: 35 start-page: 936 issue: 10 year: 2017 end-page: 939 article-title: Multiplexed quantification of proteins and transcripts in single cells publication-title: Nat Biotechnol – volume: 566 start-page: 558 issue: 7745 year: 2019 end-page: 562 article-title: Multiplex chromatin interactions with single‐molecule precision publication-title: Nature – volume: 16 start-page: 409 issue: 5 year: 2019 end-page: 412 article-title: Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells publication-title: Nat Methods – volume: 409 start-page: 860 issue: 6822 year: 2001 end-page: 921 article-title: Initial sequencing and analysis of the human genome publication-title: Nature – year: 2019 – volume: 558 start-page: 354 issue: 7710 year: 2018 end-page: 355 article-title: New human gene tally reignites debate publication-title: Nature – volume: 9 start-page: 2937 issue: 1 year: 2018 article-title: Sensitive and powerful single‐cell RNA sequencing using mcSCRB‐seq publication-title: Nat Commun – volume: 347 issue: 6222 year: 2015 article-title: Expression profiling. Combinatorial labeling of single cells for gene expression cytometry publication-title: Science – volume: 19 start-page: 29 issue: 1 year: 2018 article-title: Quartz‐Seq2: A high‐throughput single‐cell RNA‐sequencing method that effectively uses limited sequence reads publication-title: Genome Biol – volume: 348 start-page: 910 issue: 6237 year: 2015 end-page: 914 article-title: Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing publication-title: Science – volume: 161 start-page: 1202 issue: 5 year: 2015 end-page: 1214 article-title: Highly parallel genome‐wide expression profiling of individual cells using Nanoliter droplets publication-title: Cell – volume: 15 issue: 6 year: 2019 article-title: Current best practices in single‐cell RNA‐seq analysis: A tutorial publication-title: Mol Syst Biol – volume: 353 start-page: 78 issue: 6294 year: 2016 end-page: 82 article-title: Visualization and analysis of gene expression in tissue sections by spatial transcriptomics publication-title: Science – volume: 17 start-page: 77 year: 2016 article-title: CEL‐Seq2: Sensitive highly‐multiplexed single‐cell RNA‐Seq publication-title: Genome Biol – volume: 14 start-page: 865 issue: 9 year: 2017 article-title: Simultaneous epitope and transcriptome measurement in single cells publication-title: Nat Methods – volume: 104 start-page: 19428 issue: 49 year: 2007 end-page: 19433 article-title: Distinguishing protein‐coding and noncoding genes in the human genome publication-title: Proc Natl Acad Sci USA – volume: 7 issue: 1 year: 2017 article-title: STRT‐seq‐2i: Dual‐index 5′ single cell and nucleus RNA‐seq on an addressable microwell array publication-title: Sci Rep – volume: 127 issue: 1 year: 2019 article-title: Single‐cell RNA‐seq: Introduction to bioinformatics analysis publication-title: Curr Protoc Mol Biol – volume: 95 start-page: 150 issue: 2 year: 2019 end-page: 155 article-title: OMIP‐051 – 28‐color flow cytometry panel to characterize B cells and myeloid cells publication-title: Cytometry A – volume: 73 start-page: 1292 issue: 6 year: 2019 article-title: Unravelling Intratumoral heterogeneity through high‐sensitivity single‐cell mutational analysis and parallel RNA sequencing publication-title: Mol Cell – volume: 150 start-page: 910 issue: 3698 year: 1965 end-page: 911 article-title: Electronic separation of biological cells by volume publication-title: Science – volume: 28 start-page: 1345 issue: 9 year: 2018 end-page: 1352 article-title: High‐throughput single‐cell DNA sequencing of acute myeloid leukemia tumors with droplet microfluidics publication-title: Genome Res – volume: 93 start-page: 402 issue: 4 year: 2018 end-page: 405 article-title: OMIP‐044: 28‐color immunophenotyping of the human dendritic cell compartment publication-title: Cytometry A – volume: 16 start-page: 94 issue: 1 year: 2018 article-title: Open questions: How many genes do we have? publication-title: BMC Biol – volume: 14 start-page: 955 issue: 10 year: 2017 end-page: 958 article-title: Massively parallel single‐nucleus RNA‐seq with DroNc‐seq publication-title: Nat Methods – volume: 4 start-page: 828 issue: 10 year: 2007 end-page: 833 article-title: MALDI imaging mass spectrometry: Molecular snapshots of biochemical systems publication-title: Nat Methods – volume: 9 start-page: 171 issue: 1 year: 2014 end-page: 181 article-title: Full‐length RNA‐seq from single cells using Smart‐Seq2 publication-title: Nat Protoc – volume: 84 start-page: 6293 issue: 15 year: 2012 end-page: 6297 article-title: Single cell matrix‐assisted laser desorption/ionization mass spectrometry imaging publication-title: Anal Chem – volume: 95 start-page: 1129 year: 2019 end-page: 1134 article-title: OMIP‐060‐30‐parameter flow cytometry panel to assess T cell effector functions and regulatory T cells publication-title: Cytometry A – volume: 431 start-page: 931 issue: 7011 year: 2004 end-page: 945 article-title: Finishing the euchromatic sequence of the human genome publication-title: Nature – volume: 2016 year: 2016 article-title: The size of the human proteome: The width and depth publication-title: Int J Anal Chem – volume: 170 start-page: 61 year: 2019 end-page: 68 article-title: Sci‐Hi‐C: A single‐cell Hi‐C method for mapping 3D genome organization in large number of single cells publication-title: Methods – volume: 30 start-page: 777 issue: 8 year: 2012 end-page: 782 article-title: Full‐length mRNA‐Seq from single‐cell levels of RNA and individual circulating tumor cells publication-title: Nat Biotechnol – volume: 21 start-page: 1160 issue: 7 year: 2011 end-page: 1167 article-title: Characterization of the single‐cell transcriptional landscape by highly multiplex RNA‐seq publication-title: Genome Res – volume: 332 start-page: 687 issue: 6030 year: 2011 end-page: 696 article-title: Single‐cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum publication-title: Science – volume: 544 start-page: 59 year: 2017 end-page: 64 article-title: 3D structures of individual mammalian genomes studied by single‐cell Hi‐C publication-title: Nature – volume: 7 year: 2017 article-title: Abseq: Ultrahigh‐throughput single cell protein profiling with droplet microfluidic barcoding publication-title: Sci Rep – volume: 523 start-page: 486 issue: 7561 year: 2015 end-page: 490 article-title: Single‐cell chromatin accessibility reveals principles of regulatory variation publication-title: Nature – volume: 23 start-page: 5866 issue: 22 year: 2014 end-page: 5878 article-title: Multiple evidence strands suggest that there may be as few as 19,000 human protein‐coding genes publication-title: Hum Mol Genet – volume: 95 start-page: 946 issue: 9 year: 2019 end-page: 951 article-title: OMIP‐058: 30‐parameter flow cytometry panel to characterize iNKT, NK, unconventional and conventional T cells publication-title: Cytometry A – volume: 8 year: 2017 article-title: Massively parallel digital transcriptional profiling of single cells publication-title: Nat Commun – volume: 361 start-page: 1380 issue: 6409 year: 2018 end-page: 1385 article-title: Joint profiling of chromatin accessibility and gene expression in thousands of single cells publication-title: Science – volume: 19 start-page: 1706 year: 2019 end-page: 1727 article-title: Droplet‐based single cell RNAseq tools: A practical guide publication-title: Lab Chip – volume: 348 issue: 6233 year: 2015 article-title: RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells publication-title: Science – volume: 363 start-page: 1463 issue: 6434 year: 2019 end-page: 1467 article-title: Slide‐seq: A scalable technology for measuring genome‐wide expression at high spatial resolution publication-title: Science – volume: 16 start-page: 987 issue: 10 year: 2019 end-page: 990 article-title: High‐definition spatial transcriptomics for in situ tissue profiling publication-title: Nat Methods – volume: 14 start-page: 395 issue: 4 year: 2017 end-page: 398 article-title: Seq‐well: Portable, low‐cost RNA sequencing of single cells at high throughput publication-title: Nat Methods – volume: 14 start-page: 302 issue: 3 year: 2017 end-page: 308 article-title: Sequencing thousands of single‐cell genomes with combinatorial indexing publication-title: Nat Methods – volume: 361 issue: 6400 year: 2018 article-title: Three‐dimensional intact‐tissue sequencing of single‐cell transcriptional states publication-title: Science – volume: 5 issue: 10 year: 2019 article-title: MIBI‐TOF: A multiplexed imaging platform relates cellular phenotypes and tissue structure publication-title: Sci Adv – volume: 36 start-page: 70 issue: 1 year: 2018 end-page: 80 article-title: Integrative single‐cell analysis of transcriptional and epigenetic states in the human adult brain publication-title: Nat Biotechnol – ident: e_1_2_9_42_1 doi: 10.1186/gb-2013-14-4-r31 – ident: e_1_2_9_95_1 doi: 10.1038/s41592-019-0433-8 – ident: e_1_2_9_61_1 doi: 10.1101/gr.232272.117 – ident: e_1_2_9_64_1 doi: 10.1038/nmeth.4380 – ident: e_1_2_9_101_1 doi: 10.1038/550451a – ident: e_1_2_9_33_1 doi: 10.1038/nrg.2016.59 – ident: e_1_2_9_26_1 doi: 10.1038/d41586-018-05462-w – ident: e_1_2_9_5_1 doi: 10.1021/ac901049w – ident: e_1_2_9_31_1 doi: 10.1155/2016/7436849 – ident: e_1_2_9_63_1 doi: 10.1038/s41598-017-05436-4 – ident: e_1_2_9_29_1 doi: 10.1038/nature03001 – ident: e_1_2_9_92_1 doi: 10.1016/j.molcel.2019.01.009 – ident: e_1_2_9_30_1 doi: 10.1073/pnas.0709013104 – ident: e_1_2_9_44_1 doi: 10.1038/nmeth.3035 – ident: e_1_2_9_96_1 doi: 10.1101/742304 – ident: e_1_2_9_82_1 doi: 10.1016/j.ymeth.2019.09.012 – ident: e_1_2_9_58_1 doi: 10.1038/s41587-019-0147-6 – ident: e_1_2_9_90_1 doi: 10.1101/2020.03.12.989806 – ident: e_1_2_9_67_1 doi: 10.1101/692608 – ident: e_1_2_9_77_1 doi: 10.1126/science.aam8999 – ident: e_1_2_9_38_1 doi: 10.1038/s41598-017-16546-4 – ident: e_1_2_9_14_1 doi: 10.1007/978-981-13-0502-3_4 – ident: e_1_2_9_89_1 doi: 10.1038/s41592-019-0548-y – ident: e_1_2_9_7_1 doi: 10.1038/nm.3488 – ident: e_1_2_9_12_1 doi: 10.3389/fgene.2019.00317 – ident: e_1_2_9_75_1 doi: 10.1126/science.aab1601 – ident: e_1_2_9_40_1 doi: 10.1126/science.1247651 – ident: e_1_2_9_66_1 doi: 10.1038/s41592-019-0392-0 – ident: e_1_2_9_41_1 doi: 10.1038/s41467-018-05347-6 – ident: e_1_2_9_16_1 doi: 10.1126/science.163.3872.1213 – ident: e_1_2_9_91_1 doi: 10.1038/nmeth.3370 – ident: e_1_2_9_69_1 doi: 10.1186/s13059-016-0957-5 – ident: e_1_2_9_50_1 doi: 10.1039/C5LC00614G – ident: e_1_2_9_62_1 doi: 10.1101/757211 – ident: e_1_2_9_37_1 doi: 10.1101/gr.110882.110 – ident: e_1_2_9_11_1 doi: 10.15252/msb.20188746 – ident: e_1_2_9_18_1 doi: 10.1002/cyto.a.22043 – ident: e_1_2_9_86_1 doi: 10.1016/j.cell.2018.07.010 – ident: e_1_2_9_52_1 doi: 10.1016/j.cell.2015.04.044 – volume: 10 start-page: e0135007 issue: 8 year: 2015 ident: e_1_2_9_70_1 article-title: Single‐cell genetic analysis using automated microfluidics to resolve somatic mosaicism publication-title: PLoS One doi: 10.1371/journal.pone.0135007 – ident: e_1_2_9_73_1 doi: 10.1038/nmeth.4179 – ident: e_1_2_9_53_1 doi: 10.1039/C8LC01239C – ident: e_1_2_9_79_1 doi: 10.1126/science.aau0730 – ident: e_1_2_9_43_1 doi: 10.1186/s13059-018-1407-3 – ident: e_1_2_9_4_1 doi: 10.1016/j.coi.2018.03.023 – ident: e_1_2_9_80_1 doi: 10.1038/nbt.4038 – ident: e_1_2_9_76_1 doi: 10.1126/science.aam8940 – ident: e_1_2_9_36_1 doi: 10.1101/817924 – ident: e_1_2_9_71_1 doi: 10.1073/pnas.1602306113 – ident: e_1_2_9_20_1 doi: 10.1002/cyto.a.23853 – ident: e_1_2_9_94_1 doi: 10.1186/s13059-018-1603-1 – ident: e_1_2_9_100_1 doi: 10.1101/632216 – ident: e_1_2_9_48_1 doi: 10.1039/c2lc21147e – ident: e_1_2_9_56_1 doi: 10.1038/nbt.3383 – ident: e_1_2_9_28_1 doi: 10.1126/science.1058040 – ident: e_1_2_9_81_1 doi: 10.1038/nbt.4112 – ident: e_1_2_9_85_1 doi: 10.1038/s41586-019-1049-y – ident: e_1_2_9_13_1 doi: 10.1038/s12276-018-0071-8 – ident: e_1_2_9_74_1 doi: 10.1101/700534 – ident: e_1_2_9_3_1 doi: 10.1126/science.1198704 – ident: e_1_2_9_21_1 doi: 10.1002/cyto.a.23689 – ident: e_1_2_9_78_1 doi: 10.1038/nmeth.4154 – ident: e_1_2_9_45_1 doi: 10.1038/nature21429 – volume: 9 start-page: 19 issue: 8 year: 2018 ident: e_1_2_9_47_1 article-title: The use of microfluidic technology for cancer applications and liquid biopsy publication-title: Micromachines (Basel) contributor: fullname: Kulasinghe A – ident: e_1_2_9_34_1 doi: 10.1038/nbt.2282 – ident: e_1_2_9_68_1 doi: 10.1038/ng.3818 – ident: e_1_2_9_23_1 doi: 10.1002/cyto.a.23331 – ident: e_1_2_9_22_1 doi: 10.1002/cyto.a.23850 – ident: e_1_2_9_2_1 doi: 10.1002/cyto.a.22725 – ident: e_1_2_9_39_1 doi: 10.1186/s13059-016-0938-8 – ident: e_1_2_9_65_1 doi: 10.1038/nbt.3973 – ident: e_1_2_9_88_1 doi: 10.1126/science.aaw1219 – ident: e_1_2_9_97_1 doi: 10.1038/35057062 – ident: e_1_2_9_9_1 doi: 10.1021/ac301337h – ident: e_1_2_9_93_1 doi: 10.1038/srep44447 – ident: e_1_2_9_98_1 doi: 10.1101/630087 – ident: e_1_2_9_55_1 doi: 10.1038/ncomms14049 – ident: e_1_2_9_10_1 doi: 10.1126/sciadv.aax5851 – ident: e_1_2_9_6_1 doi: 10.1016/j.it.2012.02.010 – ident: e_1_2_9_54_1 doi: 10.1038/nmeth.4407 – ident: e_1_2_9_60_1 doi: 10.1038/s41586-019-0949-1 – ident: e_1_2_9_49_1 doi: 10.1016/j.nantod.2009.12.001 – ident: e_1_2_9_99_1 doi: 10.1101/689273 – ident: e_1_2_9_27_1 doi: 10.1093/hmg/ddu309 – ident: e_1_2_9_8_1 doi: 10.1038/nmeth1094 – ident: e_1_2_9_25_1 doi: 10.1186/s12915-018-0564-x – ident: e_1_2_9_83_1 doi: 10.1126/science.aaa6090 – ident: e_1_2_9_46_1 doi: 10.1038/nature13118 – ident: e_1_2_9_87_1 doi: 10.1126/science.aaf2403 – ident: e_1_2_9_15_1 doi: 10.1002/cpmb.92 – ident: e_1_2_9_35_1 doi: 10.1038/nprot.2014.006 – ident: e_1_2_9_51_1 doi: 10.1016/j.cell.2015.05.002 – ident: e_1_2_9_59_1 doi: 10.1038/s41587-019-0206-z – ident: e_1_2_9_57_1 doi: 10.1038/s41588-019-0424-9 – ident: e_1_2_9_17_1 doi: 10.1126/science.150.3698.910 – ident: e_1_2_9_84_1 doi: 10.1126/science.aat5691 – ident: e_1_2_9_19_1 doi: 10.1002/cyto.a.23608 – ident: e_1_2_9_72_1 doi: 10.1126/science.1258367 – ident: e_1_2_9_32_1 doi: 10.4049/jimmunol.1502033 – ident: e_1_2_9_24_1 doi: 10.1038/nature14590 |
SSID | ssj0035032 |
Score | 2.3255224 |
SecondaryResourceType | review_article |
Snippet | In the past few years, the rapid development of single‐cell analysis techniques has allowed for increasingly in‐depth analysis of DNA, RNA, protein, and... In the past few years, the rapid development of single-cell analysis techniques has allowed for increasingly in-depth analysis of DNA, RNA, protein, and... Abstract In the past few years, the rapid development of single‐cell analysis techniques has allowed for increasingly in‐depth analysis of DNA, RNA, protein,... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1007 |
SubjectTerms | Cytometry Deoxyribonucleic acid DNA Epigenetics genomic cytometry Genomics genomicsmicrofluidics Informatics Interrogation Microfluidics Ribonucleic acid RNA single‐cell technology |
Title | Genomic Cytometry and New Modalities for Deep Single‐Cell Interrogation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcyto.a.24209 https://www.ncbi.nlm.nih.gov/pubmed/32794624 https://www.proquest.com/docview/2452883158 https://search.proquest.com/docview/2434471355 |
Volume | 97 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4hJCQuvB9hARkJjimN4yTOsWp5C5B4SHCynNjmQEmqkh66p_0J-xv3l6zHScvCSkhwSqTYiu3xzHy2Zz4D7CPDC-U88qnmbR8JsPxMxYEvdZJoaayHTDHf-fIqPr1n5w_RQ7PhhrkwNT_EdMMNNcPZa1Rwmb0evpGG5uOqbMmWdTEufy8IE4zo6t1M2aPCqO3uJ0OSMZ-llDZx77b64b-V33uk_2Dme9Tq3M7xIohJg-tok-fWqMpa-c8PXI7f79ESLDSIlHTqKbQMM7pYgbn6jsrxKpydaJe5TLq23ouuhmMiC0WscSSXpUIUb9faxEJf0tN6QG6tK-zrP79-d3W_T9x-47B8cuJfg_vjo7vuqd_cv-DnDKNimMmpTFVuMoX0vjw1Mbe2MTQyYoHmUWx4nloEYVimlclVTqMwjpS1vcjrl_FwHWaLstCbQCTF1PVQJTEzLFHIe0fbibQPxWKupAcHExmIQU2zIWpCZSpwWIQUblg82J4ISDTK9irw8JjzMIi4B3vTz1ZN8OxDFrocYRmkNgwsuvJgoxbs9EchRZZ9yjzwnXg-bYHoPt5dd9zr1hfL_4B5iqt1Fwq4DbPVcKR3LKSpsl07cc8udt30_QvzrPE4 |
link.rule.ids | 315,783,787,1378,27937,27938,46307,46731 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-hIrS9jD8bI1CYkdhj-sdxEuex6hjtaIu0ddJ4Mk5s74EuqUr6UJ74CHxGPgk-Jy0rk5DQnhIptpL4fHc_23e_A3iHDC-U89Cnmnd8JMDyUxV1fanjWEtjPWSC-c7jSTS4ZGdX4VVd5xRzYSp-iM2GG2qGs9eo4Lgh3f7DGpqtyqIlW9bHYALfQ6vxAWrmyfmGPyoIO65CGdKM-SyhtI58t_3bt3tv-6Q7QHMbtzrHc_oYvqw_uYo3-dpalmkr-_4Xm-M9_ukJ7NWglPSqWfQUHuj8GTyqylSu9mH4QbvkZdK3_W50uVgRmSti7SMZFwqBvF1uE4t-yYnWc3JhveFM__rxs69nM-K2HBfFtZsBB3B5-n7aH_h1CQY_YxgYw0xGZaIykypk-OWJibg1j4GRIetqHkaGZ4kFEYalWplMZTQMolBZ84vUfikPnkMjL3L9AoikmL0eqDhihsUKqe9oJ5b2oljElfTgeC0EMa-YNkTFqUwFDouQwg2LB821hEStb98Enh9zHnRD7sHbzWOrKXj8IXNdLLENsht2LcDy4LCS7OZFAUWifco88J18_vkFov95-qnnbl_-Z_sj2BlMxyMxGk4-voJdiot3FxnYhEa5WOrXFuGU6Rs3i38DTZf0WA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB5VVEVcCuWvgaU1Ehyz7DpO4hxXC1v-QRQkOFlObHNgSVZL9rA98Qh9xj4JHie7QCtVglMixVZsj2fmsz3zGWALGV4o56FPNW_5SIDlpypq-1LHsZbGesgE851PTqP9K3Z4HV7XG26YC1PxQ0w33FAznL1GBR8os_NMGpqNy6Ipm9bFYP7eRxbZ2Yqg6GJKHxWELXdBGbKM-SyhtA58t_V3XtZ-7ZL-wZmvYavzO715EJMWV-Emd81RmTazX3-ROb6_SwvwuYakpFPNoS_wQeeL8Km6pHK8BAc_tEtdJl1b716XwzGRuSLWOpKTQiGMt4ttYrEv2dV6QH5aX9jXfx5_d3W_T9yG47C4dfJfhqve3mV3368vYPAzhmExzGRUJiozqUJ-X56YiFvjGBgZsrbmYWR4llgIYViqlclURsMgCpU1vkjsl_JgBWbyItdfgUiKueuBiiNmWKyQ-I62YmkfikVcSQ-2JzIQg4pnQ1SMylTgsAgp3LB40JgISNTa9iDw9JjzoB1yDzann62e4OGHzHUxwjLIbdi28MqD1Uqw0x8FFGn2KfPAd-L5bwtE9-byrONe195Y_jvMnu_2xPHB6dE6zFFcubuwwAbMlMOR3rDwpky_uTn8BH2h8wc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genomic+Cytometry+and+New+Modalities+for+Deep+Single%E2%80%90Cell+Interrogation&rft.jtitle=Cytometry.+Part+A&rft.au=Salomon%2C+Robert&rft.au=Martelotto%2C+Luciano&rft.au=Valdes%E2%80%90Mora%2C+Fatima&rft.au=Gallego%E2%80%90Ortega%2C+David&rft.date=2020-10-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1552-4922&rft.eissn=1552-4930&rft.volume=97&rft.issue=10&rft.spage=1007&rft.epage=1016&rft_id=info:doi/10.1002%2Fcyto.a.24209&rft.externalDBID=10.1002%252Fcyto.a.24209&rft.externalDocID=CYTOA24209 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4922&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4922&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4922&client=summon |