Hydrogen Gas Treatment Improves the Neurological Outcome After Traumatic Brain Injury Via Increasing miR-21 Expression

Hydrogen gas (H2) exerts a beneficial effect against traumatic brain injury (TBI). microRNA-21 (miR-21) is one of the most highly expressed members of small non-coding microRNA family in mammalian cells. miR-21 can improve the neurological outcome after TBI. In the present study, we investigated whe...

Full description

Saved in:
Bibliographic Details
Published inShock (Augusta, Ga.) Vol. 50; no. 3; p. 308
Main Authors Wang, Lu, Zhao, Chongfa, Wu, Shuang, Xiao, Guanghui, Zhuge, Xin, Lei, Ping, Xie, Keliang
Format Journal Article
LanguageEnglish
Published United States 01.09.2018
Online AccessGet more information

Cover

Loading…
More Information
Summary:Hydrogen gas (H2) exerts a beneficial effect against traumatic brain injury (TBI). microRNA-21 (miR-21) is one of the most highly expressed members of small non-coding microRNA family in mammalian cells. miR-21 can improve the neurological outcome after TBI. In the present study, we investigated whether H2 treatment could improve the neurological outcome after TBI via increasing miR-21 expression. TBI was induced by controlled cortical impact in rats. H2 treatment was given by exposure to 2% H2 from 30 min to 5 h after TBI operation. Here, we found that H2 treatment significantly increased the expression of miR-21 in brain from 6 h to 3 d after TBI. The level of miR-21 expression in brain was significantly decreased after intracerebroventricular infusion of miR-21 antagomir in TBI-challenged rats with or without H2 treatment. Moreover, we found that H2 treatment conferred a better neurological outcome after TBI by improving neurological dysfunction, alleviating brain edema as well as decreasing lesion volume and blood-brain barrier permeability, which were significantly prevented by miR-21 antagomir. Furthermore, intracerebroventricular infusion of miR-21 agomir increased the level of miR-21 expression and decreased the lesion volume after TBI. In addition, H2 treatment decreased the levels of oxidative products (malondialdehyde and 8-iso-prostaglandin F2α) and increased the activities of endogenous antioxidant enzymes (superoxide dismutase and catalase) in brain after TBI, which were prevented by miR-21 antagomir. Taken together, these data indicate that H2 treatment improves the neurological outcome after TBI via increasing miR-21 expression.
ISSN:1540-0514
DOI:10.1097/SHK.0000000000001018