Automated Data Cleanup for Mass Cytometry

Mass cytometry is an emerging technology capable of 40 or more correlated measurements on a single cell. The complexity and volume of data generated by this platform have accelerated the creation of novel methods for high‐dimensional data analysis and visualization. A key step in any high‐level data...

Full description

Saved in:
Bibliographic Details
Published inCytometry. Part A Vol. 97; no. 2; pp. 184 - 198
Main Authors Bagwell, Charles Bruce, Inokuma, Margaret, Hunsberger, Benjamin, Herbert, Donald, Bray, Christopher, Hill, Beth, Stelzer, Gregory, Li, Stephen, Kollipara, Avinash, Ornatsky, Olga, Baranov, Vladimir
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.02.2020
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1552-4922
1552-4930
1552-4930
DOI10.1002/cyto.a.23926

Cover

Loading…
Abstract Mass cytometry is an emerging technology capable of 40 or more correlated measurements on a single cell. The complexity and volume of data generated by this platform have accelerated the creation of novel methods for high‐dimensional data analysis and visualization. A key step in any high‐level data analysis is the removal of unwanted events, a process often referred to as data cleanup. Data cleanup as applied to mass cytometry typically focuses on elimination of dead cells, debris, normalization beads, true aggregates, and coincident ion clouds from raw data. We describe a probability state modeling (PSM) method that automatically identifies and removes these elements, resulting in FCS files that contain mostly live and intact events. This approach not only leverages QC measurements such as DNA, live/dead, and event length but also four additional pulse‐processing parameters that are available on Fluidigm Helios™ and CyTOF® (Fluidigm, Markham, Canada) 2 instruments with software versions of 6.3 or higher. These extra Gaussian‐derived parameters are valuable for detecting well‐formed pulses and eliminating coincident positive ion clouds. The automated nature of this new routine avoids the subjectivity of other gating methods and results in unbiased elimination of unwanted events. © 2019 International Society for Advancement of Cytometry
AbstractList Mass cytometry is an emerging technology capable of 40 or more correlated measurements on a single cell. The complexity and volume of data generated by this platform have accelerated the creation of novel methods for high‐dimensional data analysis and visualization. A key step in any high‐level data analysis is the removal of unwanted events, a process often referred to as data cleanup. Data cleanup as applied to mass cytometry typically focuses on elimination of dead cells, debris, normalization beads, true aggregates, and coincident ion clouds from raw data. We describe a probability state modeling (PSM) method that automatically identifies and removes these elements, resulting in FCS files that contain mostly live and intact events. This approach not only leverages QC measurements such as DNA, live/dead, and event length but also four additional pulse‐processing parameters that are available on Fluidigm Helios™ and CyTOF® (Fluidigm, Markham, Canada) 2 instruments with software versions of 6.3 or higher. These extra Gaussian‐derived parameters are valuable for detecting well‐formed pulses and eliminating coincident positive ion clouds. The automated nature of this new routine avoids the subjectivity of other gating methods and results in unbiased elimination of unwanted events. © 2019 International Society for Advancement of Cytometry
Mass cytometry is an emerging technology capable of 40 or more correlated measurements on a single cell. The complexity and volume of data generated by this platform have accelerated the creation of novel methods for high-dimensional data analysis and visualization. A key step in any high-level data analysis is the removal of unwanted events, a process often referred to as data cleanup. Data cleanup as applied to mass cytometry typically focuses on elimination of dead cells, debris, normalization beads, true aggregates, and coincident ion clouds from raw data. We describe a probability state modeling (PSM) method that automatically identifies and removes these elements, resulting in FCS files that contain mostly live and intact events. This approach not only leverages QC measurements such as DNA, live/dead, and event length but also four additional pulse-processing parameters that are available on Fluidigm Helios™ and CyTOF® (Fluidigm, Markham, Canada) 2 instruments with software versions of 6.3 or higher. These extra Gaussian-derived parameters are valuable for detecting well-formed pulses and eliminating coincident positive ion clouds. The automated nature of this new routine avoids the subjectivity of other gating methods and results in unbiased elimination of unwanted events. © 2019 International Society for Advancement of Cytometry.
Mass cytometry is an emerging technology capable of 40 or more correlated measurements on a single cell. The complexity and volume of data generated by this platform have accelerated the creation of novel methods for high-dimensional data analysis and visualization. A key step in any high-level data analysis is the removal of unwanted events, a process often referred to as data cleanup. Data cleanup as applied to mass cytometry typically focuses on elimination of dead cells, debris, normalization beads, true aggregates, and coincident ion clouds from raw data. We describe a probability state modeling (PSM) method that automatically identifies and removes these elements, resulting in FCS files that contain mostly live and intact events. This approach not only leverages QC measurements such as DNA, live/dead, and event length but also four additional pulse-processing parameters that are available on Fluidigm Helios™ and CyTOF® (Fluidigm, Markham, Canada) 2 instruments with software versions of 6.3 or higher. These extra Gaussian-derived parameters are valuable for detecting well-formed pulses and eliminating coincident positive ion clouds. The automated nature of this new routine avoids the subjectivity of other gating methods and results in unbiased elimination of unwanted events. © 2019 International Society for Advancement of Cytometry.Mass cytometry is an emerging technology capable of 40 or more correlated measurements on a single cell. The complexity and volume of data generated by this platform have accelerated the creation of novel methods for high-dimensional data analysis and visualization. A key step in any high-level data analysis is the removal of unwanted events, a process often referred to as data cleanup. Data cleanup as applied to mass cytometry typically focuses on elimination of dead cells, debris, normalization beads, true aggregates, and coincident ion clouds from raw data. We describe a probability state modeling (PSM) method that automatically identifies and removes these elements, resulting in FCS files that contain mostly live and intact events. This approach not only leverages QC measurements such as DNA, live/dead, and event length but also four additional pulse-processing parameters that are available on Fluidigm Helios™ and CyTOF® (Fluidigm, Markham, Canada) 2 instruments with software versions of 6.3 or higher. These extra Gaussian-derived parameters are valuable for detecting well-formed pulses and eliminating coincident positive ion clouds. The automated nature of this new routine avoids the subjectivity of other gating methods and results in unbiased elimination of unwanted events. © 2019 International Society for Advancement of Cytometry.
Author Hunsberger, Benjamin
Inokuma, Margaret
Herbert, Donald
Bagwell, Charles Bruce
Stelzer, Gregory
Ornatsky, Olga
Baranov, Vladimir
Kollipara, Avinash
Hill, Beth
Li, Stephen
Bray, Christopher
Author_xml – sequence: 1
  givenname: Charles Bruce
  surname: Bagwell
  fullname: Bagwell, Charles Bruce
  email: cbb@vsh.com
  organization: Verity Software House
– sequence: 2
  givenname: Margaret
  surname: Inokuma
  fullname: Inokuma, Margaret
  organization: Verity Software House
– sequence: 3
  givenname: Benjamin
  surname: Hunsberger
  fullname: Hunsberger, Benjamin
  organization: Verity Software House
– sequence: 4
  givenname: Donald
  surname: Herbert
  fullname: Herbert, Donald
  organization: Verity Software House
– sequence: 5
  givenname: Christopher
  surname: Bray
  fullname: Bray, Christopher
  organization: Verity Software House
– sequence: 6
  givenname: Beth
  surname: Hill
  fullname: Hill, Beth
  organization: Verity Software House
– sequence: 7
  givenname: Gregory
  surname: Stelzer
  fullname: Stelzer, Gregory
  organization: Fluidigm Canada Inc
– sequence: 8
  givenname: Stephen
  surname: Li
  fullname: Li, Stephen
  organization: Fluidigm Canada Inc
– sequence: 9
  givenname: Avinash
  surname: Kollipara
  fullname: Kollipara, Avinash
  organization: University of North Carolina
– sequence: 10
  givenname: Olga
  surname: Ornatsky
  fullname: Ornatsky, Olga
  organization: Fluidigm Canada Inc
– sequence: 11
  givenname: Vladimir
  surname: Baranov
  fullname: Baranov, Vladimir
  organization: Fluidigm Canada Inc
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31737997$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1PwzAQhi1URGlhY0aRWECixT7nc6zCp1TUpQuTdXFtKVUSF9sRyr8npaVDJZh8w_O-53tGZNCYRhFyxeiUUQoPsvNmilPgGcQn5JxFEUzCjNPBYQYYkpFza0p5RDmckSFnCU-yLDknd7PWmxq9WgWP6DHIK4VNuwm0scE7OhfkfX2tvO0uyKnGyqnL_Tsmy-enZf46mS9e3vLZfCJDCvEkS7NIaow4oMRCc4pMSdAgQ0njJIm5pivFilRrWcQFIEiWsjjlaVTIFBI-Jre72o01n61yXtSlk6qqsFGmdQL49qqUQdSjN0fo2rS26T_XU2EMEQuTbeH1nmqLWq3ExpY12k78OuiB-x0grXHOKn1AGBVbxWKrWKD4UdzjcITL0qMvTeMtltVfoXAX-ior1f27QOQfy8VsF_sGnCKOXA
CitedBy_id crossref_primary_10_1021_acs_chemrev_2c00350
crossref_primary_10_1016_j_stem_2023_05_004
crossref_primary_10_3389_fimmu_2022_815828
crossref_primary_10_1038_s41467_022_33226_8
crossref_primary_10_1002_cyto_a_24015
crossref_primary_10_1038_s41598_020_69327_x
crossref_primary_10_1016_j_clim_2024_110423
crossref_primary_10_1016_j_xpro_2022_101174
crossref_primary_10_1038_s41467_024_50313_0
crossref_primary_10_3389_fimmu_2022_1004583
crossref_primary_10_1002_adhm_202201846
crossref_primary_10_1016_j_csbj_2021_05_032
crossref_primary_10_3389_fimmu_2023_1131893
crossref_primary_10_1038_s41375_021_01441_9
crossref_primary_10_1038_s41408_024_01172_x
crossref_primary_10_1016_j_xcrm_2023_101214
crossref_primary_10_1002_cyto_a_23929
crossref_primary_10_1016_j_medj_2021_08_002
crossref_primary_10_1186_s12974_023_02900_z
crossref_primary_10_1002_cyto_b_22197
crossref_primary_10_3390_cancers13040755
crossref_primary_10_1038_s41467_022_34863_9
crossref_primary_10_3389_fimmu_2022_840935
crossref_primary_10_1084_jem_20221111
crossref_primary_10_1016_j_xpro_2025_103684
crossref_primary_10_1016_j_nbt_2024_03_002
crossref_primary_10_1038_s41416_023_02428_2
crossref_primary_10_1016_j_xpro_2022_101163
crossref_primary_10_1080_2162402X_2022_2040772
crossref_primary_10_1093_jleuko_qiad091
crossref_primary_10_1186_s13058_024_01848_z
crossref_primary_10_1016_j_xpro_2022_101643
crossref_primary_10_1016_j_xpro_2020_100055
crossref_primary_10_1002_adhm_202202422
crossref_primary_10_3389_fimmu_2021_745132
crossref_primary_10_1097_TP_0000000000004925
crossref_primary_10_1002_cyto_a_24907
crossref_primary_10_1016_j_jhep_2024_12_015
crossref_primary_10_1021_acs_langmuir_1c00954
crossref_primary_10_3389_fimmu_2024_1415457
crossref_primary_10_1016_j_xcrm_2024_101443
Cites_doi 10.1002/cyto.a.22687
10.1002/anie.200700796
10.1002/cyto.990140813
10.1002/cyto.a.22067
10.1007/s00262-013-1416-8
10.1021/ac901049w
10.1002/cyto.a.23621
10.1021/ac702128m
10.1016/j.jim.2010.07.002
ContentType Journal Article
Copyright 2019 International Society for Advancement of Cytometry
2019 International Society for Advancement of Cytometry.
2020 International Society for Advancement of Cytometry
Copyright_xml – notice: 2019 International Society for Advancement of Cytometry
– notice: 2019 International Society for Advancement of Cytometry.
– notice: 2020 International Society for Advancement of Cytometry
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
P64
7X8
DOI 10.1002/cyto.a.23926
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Engineering Research Database
MEDLINE
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1552-4930
EndPage 198
ExternalDocumentID 31737997
10_1002_cyto_a_23926
CYTOA23926
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Canada
GeographicLocations_xml – name: Canada
GrantInformation_xml – fundername: NIH
  funderid: AI119164; RO1
– fundername: NCI NIH HHS
  grantid: P30 CA016086
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
2WC
31~
33P
3SF
4.4
4ZD
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
RNS
ROL
RWI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c4026-9895cfa532acabf30a1ec2f2c4c067763f0de1b8ffcb6b2a2c18168385bc8273
IEDL.DBID DR2
ISSN 1552-4922
1552-4930
IngestDate Fri Jul 11 09:26:29 EDT 2025
Fri Jul 25 21:09:48 EDT 2025
Mon Jul 21 05:54:57 EDT 2025
Thu Apr 24 23:11:23 EDT 2025
Tue Jul 01 00:49:19 EDT 2025
Wed Jan 22 16:37:29 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords unattended analysis
probability state Modeling
quality control
Gaussian parameters
Language English
License 2019 International Society for Advancement of Cytometry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4026-9895cfa532acabf30a1ec2f2c4c067763f0de1b8ffcb6b2a2c18168385bc8273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cyto.a.23926
PMID 31737997
PQID 2346251477
PQPubID 2045167
PageCount 15
ParticipantIDs proquest_miscellaneous_2315528125
proquest_journals_2346251477
pubmed_primary_31737997
crossref_primary_10_1002_cyto_a_23926
crossref_citationtrail_10_1002_cyto_a_23926
wiley_primary_10_1002_cyto_a_23926_CYTOA23926
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hoboken
PublicationTitle Cytometry. Part A
PublicationTitleAlternate Cytometry A
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 1993; 14
2010; 361
2009; 81
2019; 10
2007; 46
2013; 62
2012; 81A
1969
2015; 87A
2008; 80
2018; 95A
e_1_2_7_6_1
e_1_2_7_11_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
Olsen LR (e_1_2_7_7_1) 2018; 95
Bevington PR (e_1_2_7_10_1) 1969
e_1_2_7_2_1
Bagwell CB (e_1_2_7_12_1) 2019; 10
References_xml – volume: 81A
  start-page: 467
  year: 2012
  end-page: 475
  article-title: A platinum‐based covalent viability reagent for single‐cell mass cytometry
  publication-title: Cytometry
– volume: 361
  start-page: 1
  year: 2010
  end-page: 20
  article-title: Highly multiparametric analysis by mass cytometry
  publication-title: J Immunol Methods
– volume: 10
  start-page: 1
  year: 2019
  end-page: 13
  article-title: Improving the t‐SNE algorithms for cytometry and other technologies: Cen‐se' mapping
  publication-title: J Biom Biostat
– volume: 46
  start-page: 6111
  year: 2007
  end-page: 6114
  article-title: Polymer‐based elemental tags for sensitive bioassays
  publication-title: Angew Chem Int Ed. (in English)
– volume: 87A
  start-page: 646
  year: 2015
  end-page: 660
  article-title: Probability state modeling theory
  publication-title: Cytometry
– volume: 62
  start-page: 955
  year: 2013
  end-page: 965
  article-title: An introduction to mass cytometry: Fundamentals and applications
  publication-title: Cancer Immunol Immunother
– volume: 14
  start-page: 936
  year: 1993
  end-page: 942
  article-title: Differences in relative DNA content between human peripheral blood and bone marrow subpopulations–consequences for DNA index calculations
  publication-title: Cytometry
– year: 1969
– volume: 80
  start-page: 2539
  year: 2008
  end-page: 2547
  article-title: Study of cell antigens and intracellular DNA by identification of element‐containing labels and metallointercalators using inductively coupled plasma mass spectrometry
  publication-title: Anal Chem
– volume: 95A
  start-page: 156
  issue: 2
  year: 2018
  end-page: 172
  article-title: The anatomy of single cell mass cytometry data
  publication-title: Cytometry
– volume: 81
  start-page: 6813
  year: 2009
  end-page: 6822
  article-title: Mass cytometry: Technique for real time single cell multitarget immunoassay based on inductively coupled plasma time‐of‐flight mass spectrometry
  publication-title: Anal Chem
– ident: e_1_2_7_11_1
  doi: 10.1002/cyto.a.22687
– ident: e_1_2_7_4_1
  doi: 10.1002/anie.200700796
– ident: e_1_2_7_8_1
  doi: 10.1002/cyto.990140813
– ident: e_1_2_7_9_1
  doi: 10.1002/cyto.a.22067
– volume: 10
  start-page: 1
  year: 2019
  ident: e_1_2_7_12_1
  article-title: Improving the t‐SNE algorithms for cytometry and other technologies: Cen‐se' mapping
  publication-title: J Biom Biostat
– ident: e_1_2_7_6_1
  doi: 10.1007/s00262-013-1416-8
– volume-title: Data reduction and error analysis for the physical sciences
  year: 1969
  ident: e_1_2_7_10_1
– ident: e_1_2_7_5_1
  doi: 10.1021/ac901049w
– volume: 95
  start-page: 156
  issue: 2
  year: 2018
  ident: e_1_2_7_7_1
  article-title: The anatomy of single cell mass cytometry data
  publication-title: Cytometry
  doi: 10.1002/cyto.a.23621
– ident: e_1_2_7_2_1
  doi: 10.1021/ac702128m
– ident: e_1_2_7_3_1
  doi: 10.1016/j.jim.2010.07.002
SSID ssj0035032
Score 2.4652374
Snippet Mass cytometry is an emerging technology capable of 40 or more correlated measurements on a single cell. The complexity and volume of data generated by this...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 184
SubjectTerms Automation
Beads
Canada
Clouds
Correlation analysis
Cytometry
Data Analysis
Dimensional analysis
Flow Cytometry
Gating
Gaussian parameters
New technology
Positive ions
Probability
probability state Modeling
Process parameters
quality control
unattended analysis
Title Automated Data Cleanup for Mass Cytometry
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcyto.a.23926
https://www.ncbi.nlm.nih.gov/pubmed/31737997
https://www.proquest.com/docview/2346251477
https://www.proquest.com/docview/2315528125
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yIHjx_VhfVNCDSHa3aZI2x6UqIqggK-ipJGlyUVvZbQ_rr3fSdusLBb0VMmkznUzzTTL9BqFDFqYsHEgfc84Mpr5kWBCeYmVDwgULja_die7VNb-4o5f37L7ZcHP_wtT8EO2Gm_OM6nvtHFyqSf-dNFRPi7wnewQWeMe47dK1HCa6bdmjAjao6pM5kjFMBSFN3jt073_s_HlF-gYzP6PWatk5X0LJbMB1tsljryxUT79-4XL8v0bLaLFBpN6wnkIraM5kq2i-rlE5XUPHw7LIAdaa1DuVhfTiJyOz8sUDsOtdAfL2YrjfsynG03U0Oj8bxRe4qa-ANUSNHItIMG0lC4jUUtkATGY0sURT7XjleGAHqfFVZK1WXBFJtO-qdAQRUzoC2LOBOlmemS3kQdRDiB2EwoiIUqoF4AhfWp0aanzLWRedzF5xohvucVcC4ympWZNJ4nRPZFLp3kVHrfRLzbnxg9zuzFpJ43kTaKEQ0vk0DLvooG0Gn3EHITIzeelk3JwAaAMD26yt3D4I8FQQCgG9cWWrX0eQxA-jm2F1uf1H-R20QFzoXiWA76JOMS7NHuCbQu1Xs_gNBE_zxg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xEIIL78fyaINUDlXlZePYTnxcLaAtsFRCW4meguPYFyCLIDksv55xkg0vtRLqLZLHiZ3xxN_YzvcBfONhysOO8okQ3BDmK04kFSlJbEiF5KHxtdvRHVyI_m92esWvap1T9y9MxQ_RLLi5yCi_1y7A3YL04QtrqB7no7ZqU5zhxTTMOlFvJ2FwdNnwRwW8UyqUOZoxwiSl9cl3rH_4uvbbOekD0HyLW8uJ52QJridNrs6b3LSLPGnrp3dsjv_Rp2VYrEGp161G0QpMmWwV5iqZyvEafO8W-QiRrUm9I5Urr3drVFbce4h3vQGCb6-H97sz-cN4HYYnx8Nen9QSC0Rj4iiIjCTXVvGAKq0SG6DXjKaWaqYdtZwIbCc1fhJZqxORUEW174Q6gognOkLkswEz2SgzW-Bh4kOp7YTSyIgxpiVCCV9ZnRpmfCt4C35M3nGsa_pxp4JxG1fEyTR2fY9VXPa9BQeN9X1Fu_EXu92Ju-I6-B6xhGFW57MwbMF-U4xh4_ZCVGZGhbNxgwLRDTZss3Jz8yCEVEEoJdYmpbP-2YK492f4q1tebn_S_ivM94eD8_j858XZDixQl8mX58F3YSZ_KMwewp08-VIO6Wc_aPfg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RUKteeLXQ5dEGiR5Q5WXj2E58XC2sKK-iapHgZDmOfYFmVzQ5LL-ecZINUESl9hbJ48TOzGS-sZ1vAHZ5nPG4p0MiBLeEhZoTSUVGUhdTIXlsQ-N3dM_OxdElO77iV82Cm_8XpuaHaBfcvGdU32vv4JPM7T-ShpppMe7qLsUAL97AAhPoLx4U_WzpoyLeqwqUeZYxwiSlzcF37L__tPfzkPQCZz6HrVXcGS6Bmo24Pm5y0y2LtGvu_yBz_P8pLcNiA0mDfm1DKzBn81V4WxepnH6AvX5ZjBHX2iw40IUOBrdW5-UkQLQbnCH0DgZ4v1-2uJt-hNHwcDQ4Ik2BBWIwbRREJpIbp3lEtdGpi1Bn1lBHDTOeWE5ErpfZME2cM6lIqaYm9GU6ooSnJkHcswbz-Ti3nyDAtIdS14ullQljzEgEEqF2JrPMhk7wDnybvWJlGvJxXwPjVtW0yVT5uSutqrl34GsrPalJN16R25ppSzWu9xtbGOZ0IYvjDuy0zeg0fidE53ZcehlvE4htcGDrtZbbByGgimIpsTepdPXXEajB9ehHv7rc-Ef5L_Du4mCoTr-fn2zCe-rT-Oow-BbMF3el3UasU6SfK4N-AHkF9pg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Data+Cleanup+for+Mass+Cytometry&rft.jtitle=Cytometry.+Part+A&rft.au=Bagwell%2C+Charles+Bruce&rft.au=Inokuma%2C+Margaret&rft.au=Hunsberger%2C+Benjamin&rft.au=Herbert%2C+Donald&rft.date=2020-02-01&rft.issn=1552-4930&rft.eissn=1552-4930&rft.volume=97&rft.issue=2&rft.spage=184&rft_id=info:doi/10.1002%2Fcyto.a.23926&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4922&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4922&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4922&client=summon