Automated Data Cleanup for Mass Cytometry
Mass cytometry is an emerging technology capable of 40 or more correlated measurements on a single cell. The complexity and volume of data generated by this platform have accelerated the creation of novel methods for high‐dimensional data analysis and visualization. A key step in any high‐level data...
Saved in:
Published in | Cytometry. Part A Vol. 97; no. 2; pp. 184 - 198 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.02.2020
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1552-4922 1552-4930 1552-4930 |
DOI | 10.1002/cyto.a.23926 |
Cover
Loading…
Abstract | Mass cytometry is an emerging technology capable of 40 or more correlated measurements on a single cell. The complexity and volume of data generated by this platform have accelerated the creation of novel methods for high‐dimensional data analysis and visualization. A key step in any high‐level data analysis is the removal of unwanted events, a process often referred to as data cleanup. Data cleanup as applied to mass cytometry typically focuses on elimination of dead cells, debris, normalization beads, true aggregates, and coincident ion clouds from raw data. We describe a probability state modeling (PSM) method that automatically identifies and removes these elements, resulting in FCS files that contain mostly live and intact events. This approach not only leverages QC measurements such as DNA, live/dead, and event length but also four additional pulse‐processing parameters that are available on Fluidigm Helios™ and CyTOF® (Fluidigm, Markham, Canada) 2 instruments with software versions of 6.3 or higher. These extra Gaussian‐derived parameters are valuable for detecting well‐formed pulses and eliminating coincident positive ion clouds. The automated nature of this new routine avoids the subjectivity of other gating methods and results in unbiased elimination of unwanted events. © 2019 International Society for Advancement of Cytometry |
---|---|
AbstractList | Mass cytometry is an emerging technology capable of 40 or more correlated measurements on a single cell. The complexity and volume of data generated by this platform have accelerated the creation of novel methods for high‐dimensional data analysis and visualization. A key step in any high‐level data analysis is the removal of unwanted events, a process often referred to as data cleanup. Data cleanup as applied to mass cytometry typically focuses on elimination of dead cells, debris, normalization beads, true aggregates, and coincident ion clouds from raw data. We describe a probability state modeling (PSM) method that automatically identifies and removes these elements, resulting in FCS files that contain mostly live and intact events. This approach not only leverages QC measurements such as DNA, live/dead, and event length but also four additional pulse‐processing parameters that are available on Fluidigm Helios™ and CyTOF® (Fluidigm, Markham, Canada) 2 instruments with software versions of 6.3 or higher. These extra Gaussian‐derived parameters are valuable for detecting well‐formed pulses and eliminating coincident positive ion clouds. The automated nature of this new routine avoids the subjectivity of other gating methods and results in unbiased elimination of unwanted events. © 2019 International Society for Advancement of Cytometry Mass cytometry is an emerging technology capable of 40 or more correlated measurements on a single cell. The complexity and volume of data generated by this platform have accelerated the creation of novel methods for high-dimensional data analysis and visualization. A key step in any high-level data analysis is the removal of unwanted events, a process often referred to as data cleanup. Data cleanup as applied to mass cytometry typically focuses on elimination of dead cells, debris, normalization beads, true aggregates, and coincident ion clouds from raw data. We describe a probability state modeling (PSM) method that automatically identifies and removes these elements, resulting in FCS files that contain mostly live and intact events. This approach not only leverages QC measurements such as DNA, live/dead, and event length but also four additional pulse-processing parameters that are available on Fluidigm Helios™ and CyTOF® (Fluidigm, Markham, Canada) 2 instruments with software versions of 6.3 or higher. These extra Gaussian-derived parameters are valuable for detecting well-formed pulses and eliminating coincident positive ion clouds. The automated nature of this new routine avoids the subjectivity of other gating methods and results in unbiased elimination of unwanted events. © 2019 International Society for Advancement of Cytometry. Mass cytometry is an emerging technology capable of 40 or more correlated measurements on a single cell. The complexity and volume of data generated by this platform have accelerated the creation of novel methods for high-dimensional data analysis and visualization. A key step in any high-level data analysis is the removal of unwanted events, a process often referred to as data cleanup. Data cleanup as applied to mass cytometry typically focuses on elimination of dead cells, debris, normalization beads, true aggregates, and coincident ion clouds from raw data. We describe a probability state modeling (PSM) method that automatically identifies and removes these elements, resulting in FCS files that contain mostly live and intact events. This approach not only leverages QC measurements such as DNA, live/dead, and event length but also four additional pulse-processing parameters that are available on Fluidigm Helios™ and CyTOF® (Fluidigm, Markham, Canada) 2 instruments with software versions of 6.3 or higher. These extra Gaussian-derived parameters are valuable for detecting well-formed pulses and eliminating coincident positive ion clouds. The automated nature of this new routine avoids the subjectivity of other gating methods and results in unbiased elimination of unwanted events. © 2019 International Society for Advancement of Cytometry.Mass cytometry is an emerging technology capable of 40 or more correlated measurements on a single cell. The complexity and volume of data generated by this platform have accelerated the creation of novel methods for high-dimensional data analysis and visualization. A key step in any high-level data analysis is the removal of unwanted events, a process often referred to as data cleanup. Data cleanup as applied to mass cytometry typically focuses on elimination of dead cells, debris, normalization beads, true aggregates, and coincident ion clouds from raw data. We describe a probability state modeling (PSM) method that automatically identifies and removes these elements, resulting in FCS files that contain mostly live and intact events. This approach not only leverages QC measurements such as DNA, live/dead, and event length but also four additional pulse-processing parameters that are available on Fluidigm Helios™ and CyTOF® (Fluidigm, Markham, Canada) 2 instruments with software versions of 6.3 or higher. These extra Gaussian-derived parameters are valuable for detecting well-formed pulses and eliminating coincident positive ion clouds. The automated nature of this new routine avoids the subjectivity of other gating methods and results in unbiased elimination of unwanted events. © 2019 International Society for Advancement of Cytometry. |
Author | Hunsberger, Benjamin Inokuma, Margaret Herbert, Donald Bagwell, Charles Bruce Stelzer, Gregory Ornatsky, Olga Baranov, Vladimir Kollipara, Avinash Hill, Beth Li, Stephen Bray, Christopher |
Author_xml | – sequence: 1 givenname: Charles Bruce surname: Bagwell fullname: Bagwell, Charles Bruce email: cbb@vsh.com organization: Verity Software House – sequence: 2 givenname: Margaret surname: Inokuma fullname: Inokuma, Margaret organization: Verity Software House – sequence: 3 givenname: Benjamin surname: Hunsberger fullname: Hunsberger, Benjamin organization: Verity Software House – sequence: 4 givenname: Donald surname: Herbert fullname: Herbert, Donald organization: Verity Software House – sequence: 5 givenname: Christopher surname: Bray fullname: Bray, Christopher organization: Verity Software House – sequence: 6 givenname: Beth surname: Hill fullname: Hill, Beth organization: Verity Software House – sequence: 7 givenname: Gregory surname: Stelzer fullname: Stelzer, Gregory organization: Fluidigm Canada Inc – sequence: 8 givenname: Stephen surname: Li fullname: Li, Stephen organization: Fluidigm Canada Inc – sequence: 9 givenname: Avinash surname: Kollipara fullname: Kollipara, Avinash organization: University of North Carolina – sequence: 10 givenname: Olga surname: Ornatsky fullname: Ornatsky, Olga organization: Fluidigm Canada Inc – sequence: 11 givenname: Vladimir surname: Baranov fullname: Baranov, Vladimir organization: Fluidigm Canada Inc |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31737997$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kD1PwzAQhi1URGlhY0aRWECixT7nc6zCp1TUpQuTdXFtKVUSF9sRyr8npaVDJZh8w_O-53tGZNCYRhFyxeiUUQoPsvNmilPgGcQn5JxFEUzCjNPBYQYYkpFza0p5RDmckSFnCU-yLDknd7PWmxq9WgWP6DHIK4VNuwm0scE7OhfkfX2tvO0uyKnGyqnL_Tsmy-enZf46mS9e3vLZfCJDCvEkS7NIaow4oMRCc4pMSdAgQ0njJIm5pivFilRrWcQFIEiWsjjlaVTIFBI-Jre72o01n61yXtSlk6qqsFGmdQL49qqUQdSjN0fo2rS26T_XU2EMEQuTbeH1nmqLWq3ExpY12k78OuiB-x0grXHOKn1AGBVbxWKrWKD4UdzjcITL0qMvTeMtltVfoXAX-ior1f27QOQfy8VsF_sGnCKOXA |
CitedBy_id | crossref_primary_10_1021_acs_chemrev_2c00350 crossref_primary_10_1016_j_stem_2023_05_004 crossref_primary_10_3389_fimmu_2022_815828 crossref_primary_10_1038_s41467_022_33226_8 crossref_primary_10_1002_cyto_a_24015 crossref_primary_10_1038_s41598_020_69327_x crossref_primary_10_1016_j_clim_2024_110423 crossref_primary_10_1016_j_xpro_2022_101174 crossref_primary_10_1038_s41467_024_50313_0 crossref_primary_10_3389_fimmu_2022_1004583 crossref_primary_10_1002_adhm_202201846 crossref_primary_10_1016_j_csbj_2021_05_032 crossref_primary_10_3389_fimmu_2023_1131893 crossref_primary_10_1038_s41375_021_01441_9 crossref_primary_10_1038_s41408_024_01172_x crossref_primary_10_1016_j_xcrm_2023_101214 crossref_primary_10_1002_cyto_a_23929 crossref_primary_10_1016_j_medj_2021_08_002 crossref_primary_10_1186_s12974_023_02900_z crossref_primary_10_1002_cyto_b_22197 crossref_primary_10_3390_cancers13040755 crossref_primary_10_1038_s41467_022_34863_9 crossref_primary_10_3389_fimmu_2022_840935 crossref_primary_10_1084_jem_20221111 crossref_primary_10_1016_j_xpro_2025_103684 crossref_primary_10_1016_j_nbt_2024_03_002 crossref_primary_10_1038_s41416_023_02428_2 crossref_primary_10_1016_j_xpro_2022_101163 crossref_primary_10_1080_2162402X_2022_2040772 crossref_primary_10_1093_jleuko_qiad091 crossref_primary_10_1186_s13058_024_01848_z crossref_primary_10_1016_j_xpro_2022_101643 crossref_primary_10_1016_j_xpro_2020_100055 crossref_primary_10_1002_adhm_202202422 crossref_primary_10_3389_fimmu_2021_745132 crossref_primary_10_1097_TP_0000000000004925 crossref_primary_10_1002_cyto_a_24907 crossref_primary_10_1016_j_jhep_2024_12_015 crossref_primary_10_1021_acs_langmuir_1c00954 crossref_primary_10_3389_fimmu_2024_1415457 crossref_primary_10_1016_j_xcrm_2024_101443 |
Cites_doi | 10.1002/cyto.a.22687 10.1002/anie.200700796 10.1002/cyto.990140813 10.1002/cyto.a.22067 10.1007/s00262-013-1416-8 10.1021/ac901049w 10.1002/cyto.a.23621 10.1021/ac702128m 10.1016/j.jim.2010.07.002 |
ContentType | Journal Article |
Copyright | 2019 International Society for Advancement of Cytometry 2019 International Society for Advancement of Cytometry. 2020 International Society for Advancement of Cytometry |
Copyright_xml | – notice: 2019 International Society for Advancement of Cytometry – notice: 2019 International Society for Advancement of Cytometry. – notice: 2020 International Society for Advancement of Cytometry |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 P64 7X8 |
DOI | 10.1002/cyto.a.23926 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1552-4930 |
EndPage | 198 |
ExternalDocumentID | 31737997 10_1002_cyto_a_23926 CYTOA23926 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Canada |
GeographicLocations_xml | – name: Canada |
GrantInformation_xml | – fundername: NIH funderid: AI119164; RO1 – fundername: NCI NIH HHS grantid: P30 CA016086 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 2WC 31~ 33P 3SF 4.4 4ZD 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CO8 CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N QB0 QRW R.K RNS ROL RWI SUPJJ SV3 UB1 V2E W8V W99 WBKPD WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 P64 7X8 |
ID | FETCH-LOGICAL-c4026-9895cfa532acabf30a1ec2f2c4c067763f0de1b8ffcb6b2a2c18168385bc8273 |
IEDL.DBID | DR2 |
ISSN | 1552-4922 1552-4930 |
IngestDate | Fri Jul 11 09:26:29 EDT 2025 Fri Jul 25 21:09:48 EDT 2025 Mon Jul 21 05:54:57 EDT 2025 Thu Apr 24 23:11:23 EDT 2025 Tue Jul 01 00:49:19 EDT 2025 Wed Jan 22 16:37:29 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | unattended analysis probability state Modeling quality control Gaussian parameters |
Language | English |
License | 2019 International Society for Advancement of Cytometry. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4026-9895cfa532acabf30a1ec2f2c4c067763f0de1b8ffcb6b2a2c18168385bc8273 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cyto.a.23926 |
PMID | 31737997 |
PQID | 2346251477 |
PQPubID | 2045167 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2315528125 proquest_journals_2346251477 pubmed_primary_31737997 crossref_primary_10_1002_cyto_a_23926 crossref_citationtrail_10_1002_cyto_a_23926 wiley_primary_10_1002_cyto_a_23926_CYTOA23926 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2020 2020-02-00 20200201 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Hoboken |
PublicationTitle | Cytometry. Part A |
PublicationTitleAlternate | Cytometry A |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 1993; 14 2010; 361 2009; 81 2019; 10 2007; 46 2013; 62 2012; 81A 1969 2015; 87A 2008; 80 2018; 95A e_1_2_7_6_1 e_1_2_7_11_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 Olsen LR (e_1_2_7_7_1) 2018; 95 Bevington PR (e_1_2_7_10_1) 1969 e_1_2_7_2_1 Bagwell CB (e_1_2_7_12_1) 2019; 10 |
References_xml | – volume: 81A start-page: 467 year: 2012 end-page: 475 article-title: A platinum‐based covalent viability reagent for single‐cell mass cytometry publication-title: Cytometry – volume: 361 start-page: 1 year: 2010 end-page: 20 article-title: Highly multiparametric analysis by mass cytometry publication-title: J Immunol Methods – volume: 10 start-page: 1 year: 2019 end-page: 13 article-title: Improving the t‐SNE algorithms for cytometry and other technologies: Cen‐se' mapping publication-title: J Biom Biostat – volume: 46 start-page: 6111 year: 2007 end-page: 6114 article-title: Polymer‐based elemental tags for sensitive bioassays publication-title: Angew Chem Int Ed. (in English) – volume: 87A start-page: 646 year: 2015 end-page: 660 article-title: Probability state modeling theory publication-title: Cytometry – volume: 62 start-page: 955 year: 2013 end-page: 965 article-title: An introduction to mass cytometry: Fundamentals and applications publication-title: Cancer Immunol Immunother – volume: 14 start-page: 936 year: 1993 end-page: 942 article-title: Differences in relative DNA content between human peripheral blood and bone marrow subpopulations–consequences for DNA index calculations publication-title: Cytometry – year: 1969 – volume: 80 start-page: 2539 year: 2008 end-page: 2547 article-title: Study of cell antigens and intracellular DNA by identification of element‐containing labels and metallointercalators using inductively coupled plasma mass spectrometry publication-title: Anal Chem – volume: 95A start-page: 156 issue: 2 year: 2018 end-page: 172 article-title: The anatomy of single cell mass cytometry data publication-title: Cytometry – volume: 81 start-page: 6813 year: 2009 end-page: 6822 article-title: Mass cytometry: Technique for real time single cell multitarget immunoassay based on inductively coupled plasma time‐of‐flight mass spectrometry publication-title: Anal Chem – ident: e_1_2_7_11_1 doi: 10.1002/cyto.a.22687 – ident: e_1_2_7_4_1 doi: 10.1002/anie.200700796 – ident: e_1_2_7_8_1 doi: 10.1002/cyto.990140813 – ident: e_1_2_7_9_1 doi: 10.1002/cyto.a.22067 – volume: 10 start-page: 1 year: 2019 ident: e_1_2_7_12_1 article-title: Improving the t‐SNE algorithms for cytometry and other technologies: Cen‐se' mapping publication-title: J Biom Biostat – ident: e_1_2_7_6_1 doi: 10.1007/s00262-013-1416-8 – volume-title: Data reduction and error analysis for the physical sciences year: 1969 ident: e_1_2_7_10_1 – ident: e_1_2_7_5_1 doi: 10.1021/ac901049w – volume: 95 start-page: 156 issue: 2 year: 2018 ident: e_1_2_7_7_1 article-title: The anatomy of single cell mass cytometry data publication-title: Cytometry doi: 10.1002/cyto.a.23621 – ident: e_1_2_7_2_1 doi: 10.1021/ac702128m – ident: e_1_2_7_3_1 doi: 10.1016/j.jim.2010.07.002 |
SSID | ssj0035032 |
Score | 2.4652374 |
Snippet | Mass cytometry is an emerging technology capable of 40 or more correlated measurements on a single cell. The complexity and volume of data generated by this... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 184 |
SubjectTerms | Automation Beads Canada Clouds Correlation analysis Cytometry Data Analysis Dimensional analysis Flow Cytometry Gating Gaussian parameters New technology Positive ions Probability probability state Modeling Process parameters quality control unattended analysis |
Title | Automated Data Cleanup for Mass Cytometry |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcyto.a.23926 https://www.ncbi.nlm.nih.gov/pubmed/31737997 https://www.proquest.com/docview/2346251477 https://www.proquest.com/docview/2315528125 |
Volume | 97 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yIHjx_VhfVNCDSHa3aZI2x6UqIqggK-ipJGlyUVvZbQ_rr3fSdusLBb0VMmkznUzzTTL9BqFDFqYsHEgfc84Mpr5kWBCeYmVDwgULja_die7VNb-4o5f37L7ZcHP_wtT8EO2Gm_OM6nvtHFyqSf-dNFRPi7wnewQWeMe47dK1HCa6bdmjAjao6pM5kjFMBSFN3jt073_s_HlF-gYzP6PWatk5X0LJbMB1tsljryxUT79-4XL8v0bLaLFBpN6wnkIraM5kq2i-rlE5XUPHw7LIAdaa1DuVhfTiJyOz8sUDsOtdAfL2YrjfsynG03U0Oj8bxRe4qa-ANUSNHItIMG0lC4jUUtkATGY0sURT7XjleGAHqfFVZK1WXBFJtO-qdAQRUzoC2LOBOlmemS3kQdRDiB2EwoiIUqoF4AhfWp0aanzLWRedzF5xohvucVcC4ympWZNJ4nRPZFLp3kVHrfRLzbnxg9zuzFpJ43kTaKEQ0vk0DLvooG0Gn3EHITIzeelk3JwAaAMD26yt3D4I8FQQCgG9cWWrX0eQxA-jm2F1uf1H-R20QFzoXiWA76JOMS7NHuCbQu1Xs_gNBE_zxg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xEIIL78fyaINUDlXlZePYTnxcLaAtsFRCW4meguPYFyCLIDksv55xkg0vtRLqLZLHiZ3xxN_YzvcBfONhysOO8okQ3BDmK04kFSlJbEiF5KHxtdvRHVyI_m92esWvap1T9y9MxQ_RLLi5yCi_1y7A3YL04QtrqB7no7ZqU5zhxTTMOlFvJ2FwdNnwRwW8UyqUOZoxwiSl9cl3rH_4uvbbOekD0HyLW8uJ52QJridNrs6b3LSLPGnrp3dsjv_Rp2VYrEGp161G0QpMmWwV5iqZyvEafO8W-QiRrUm9I5Urr3drVFbce4h3vQGCb6-H97sz-cN4HYYnx8Nen9QSC0Rj4iiIjCTXVvGAKq0SG6DXjKaWaqYdtZwIbCc1fhJZqxORUEW174Q6gognOkLkswEz2SgzW-Bh4kOp7YTSyIgxpiVCCV9ZnRpmfCt4C35M3nGsa_pxp4JxG1fEyTR2fY9VXPa9BQeN9X1Fu_EXu92Ju-I6-B6xhGFW57MwbMF-U4xh4_ZCVGZGhbNxgwLRDTZss3Jz8yCEVEEoJdYmpbP-2YK492f4q1tebn_S_ivM94eD8_j858XZDixQl8mX58F3YSZ_KMwewp08-VIO6Wc_aPfg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RUKteeLXQ5dEGiR5Q5WXj2E58XC2sKK-iapHgZDmOfYFmVzQ5LL-ecZINUESl9hbJ48TOzGS-sZ1vAHZ5nPG4p0MiBLeEhZoTSUVGUhdTIXlsQ-N3dM_OxdElO77iV82Cm_8XpuaHaBfcvGdU32vv4JPM7T-ShpppMe7qLsUAL97AAhPoLx4U_WzpoyLeqwqUeZYxwiSlzcF37L__tPfzkPQCZz6HrVXcGS6Bmo24Pm5y0y2LtGvu_yBz_P8pLcNiA0mDfm1DKzBn81V4WxepnH6AvX5ZjBHX2iw40IUOBrdW5-UkQLQbnCH0DgZ4v1-2uJt-hNHwcDQ4Ik2BBWIwbRREJpIbp3lEtdGpi1Bn1lBHDTOeWE5ErpfZME2cM6lIqaYm9GU6ooSnJkHcswbz-Ti3nyDAtIdS14ullQljzEgEEqF2JrPMhk7wDnybvWJlGvJxXwPjVtW0yVT5uSutqrl34GsrPalJN16R25ppSzWu9xtbGOZ0IYvjDuy0zeg0fidE53ZcehlvE4htcGDrtZbbByGgimIpsTepdPXXEajB9ehHv7rc-Ef5L_Du4mCoTr-fn2zCe-rT-Oow-BbMF3el3UasU6SfK4N-AHkF9pg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Data+Cleanup+for+Mass+Cytometry&rft.jtitle=Cytometry.+Part+A&rft.au=Bagwell%2C+Charles+Bruce&rft.au=Inokuma%2C+Margaret&rft.au=Hunsberger%2C+Benjamin&rft.au=Herbert%2C+Donald&rft.date=2020-02-01&rft.issn=1552-4930&rft.eissn=1552-4930&rft.volume=97&rft.issue=2&rft.spage=184&rft_id=info:doi/10.1002%2Fcyto.a.23926&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4922&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4922&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4922&client=summon |