Diffusion-weighted imaging of the abdomen at 3.0 Tesla: Image quality and apparent diffusion coefficient reproducibility compared with 1.5 Tesla

Purpose To compare single‐shot echo‐planar imaging (SS EPI) diffusion‐weighted MRI (DWI) of abdominal organs between 1.5 Tesla (T) and 3.0T in healthy volunteers in terms of image quality, apparent diffusion coefficient (ADC) values, and ADC reproducibility. Materials and Methods Eight healthy volun...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 33; no. 1; pp. 128 - 135
Main Authors Rosenkrantz, Andrew B., Oei, Marcel, Babb, James S., Niver, Benjamin E., Taouli, Bachir
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.01.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose To compare single‐shot echo‐planar imaging (SS EPI) diffusion‐weighted MRI (DWI) of abdominal organs between 1.5 Tesla (T) and 3.0T in healthy volunteers in terms of image quality, apparent diffusion coefficient (ADC) values, and ADC reproducibility. Materials and Methods Eight healthy volunteers were prospectively imaged in this HIPAA‐compliant IRB‐approved study. Each subject underwent two consecutive scans at both 1.5 and 3.0T, which included breathhold and free‐breathing DWI using a wide range of b‐values (0 to 800 s/mm2). A blinded observer rated subjective image quality (maximum score= 8), and a separate observer placed regions of interest within the liver, renal cortices, pancreas, and spleen to measure ADC at each field strength. Paired Wilcoxon tests were used to compare abdominal DWI between 1.5T and 3.0T for specific combinations of organs, b‐values, and acquisition techniques. Results Subjective image quality was significantly lower at 3.0T for all comparisons (P = 0.0078– 0.0156). ADC values were similar at 1.5T and 3.0T for all assessed organs, except for lower liver ADC at 3.0T using b0‐500‐600 and breathhold technique. ADC reproducibility was moderate at both 1.5T and 3.0T, with no significant difference in coefficient of variation of ADC between field strengths. Conclusion Compared with 1.5T, SS EPI at 3.0T provided generally similar ADC values, however, with worse image quality. Further optimization of abdominal DWI at 3.0T is needed. J. Magn. Reson. Imaging 2011;33:128–135. © 2010 Wiley‐Liss, Inc.
AbstractList To compare single-shot echo-planar imaging (SS EPI) diffusion-weighted MRI (DWI) of abdominal organs between 1.5 Tesla (T) and 3.0T in healthy volunteers in terms of image quality, apparent diffusion coefficient (ADC) values, and ADC reproducibility.PURPOSETo compare single-shot echo-planar imaging (SS EPI) diffusion-weighted MRI (DWI) of abdominal organs between 1.5 Tesla (T) and 3.0T in healthy volunteers in terms of image quality, apparent diffusion coefficient (ADC) values, and ADC reproducibility.Eight healthy volunteers were prospectively imaged in this HIPAA-compliant IRB-approved study. Each subject underwent two consecutive scans at both 1.5 and 3.0T, which included breathhold and free-breathing DWI using a wide range of b-values (0 to 800 s/mm²). A blinded observer rated subjective image quality (maximum score= 8), and a separate observer placed regions of interest within the liver, renal cortices, pancreas, and spleen to measure ADC at each field strength. Paired Wilcoxon tests were used to compare abdominal DWI between 1.5T and 3.0T for specific combinations of organs, b-values, and acquisition techniques.MATERIALS AND METHODSEight healthy volunteers were prospectively imaged in this HIPAA-compliant IRB-approved study. Each subject underwent two consecutive scans at both 1.5 and 3.0T, which included breathhold and free-breathing DWI using a wide range of b-values (0 to 800 s/mm²). A blinded observer rated subjective image quality (maximum score= 8), and a separate observer placed regions of interest within the liver, renal cortices, pancreas, and spleen to measure ADC at each field strength. Paired Wilcoxon tests were used to compare abdominal DWI between 1.5T and 3.0T for specific combinations of organs, b-values, and acquisition techniques.Subjective image quality was significantly lower at 3.0T for all comparisons (P = 0.0078- 0.0156). ADC values were similar at 1.5T and 3.0T for all assessed organs, except for lower liver ADC at 3.0T using b0-500-600 and breathhold technique. ADC reproducibility was moderate at both 1.5T and 3.0T, with no significant difference in coefficient of variation of ADC between field strengths.RESULTSSubjective image quality was significantly lower at 3.0T for all comparisons (P = 0.0078- 0.0156). ADC values were similar at 1.5T and 3.0T for all assessed organs, except for lower liver ADC at 3.0T using b0-500-600 and breathhold technique. ADC reproducibility was moderate at both 1.5T and 3.0T, with no significant difference in coefficient of variation of ADC between field strengths.Compared with 1.5T, SS EPI at 3.0T provided generally similar ADC values, however, with worse image quality. Further optimization of abdominal DWI at 3.0T is needed.CONCLUSIONCompared with 1.5T, SS EPI at 3.0T provided generally similar ADC values, however, with worse image quality. Further optimization of abdominal DWI at 3.0T is needed.
Purpose To compare single‐shot echo‐planar imaging (SS EPI) diffusion‐weighted MRI (DWI) of abdominal organs between 1.5 Tesla (T) and 3.0T in healthy volunteers in terms of image quality, apparent diffusion coefficient (ADC) values, and ADC reproducibility. Materials and Methods Eight healthy volunteers were prospectively imaged in this HIPAA‐compliant IRB‐approved study. Each subject underwent two consecutive scans at both 1.5 and 3.0T, which included breathhold and free‐breathing DWI using a wide range of b‐values (0 to 800 s/mm2). A blinded observer rated subjective image quality (maximum score= 8), and a separate observer placed regions of interest within the liver, renal cortices, pancreas, and spleen to measure ADC at each field strength. Paired Wilcoxon tests were used to compare abdominal DWI between 1.5T and 3.0T for specific combinations of organs, b‐values, and acquisition techniques. Results Subjective image quality was significantly lower at 3.0T for all comparisons (P = 0.0078– 0.0156). ADC values were similar at 1.5T and 3.0T for all assessed organs, except for lower liver ADC at 3.0T using b0‐500‐600 and breathhold technique. ADC reproducibility was moderate at both 1.5T and 3.0T, with no significant difference in coefficient of variation of ADC between field strengths. Conclusion Compared with 1.5T, SS EPI at 3.0T provided generally similar ADC values, however, with worse image quality. Further optimization of abdominal DWI at 3.0T is needed. J. Magn. Reson. Imaging 2011;33:128–135. © 2010 Wiley‐Liss, Inc.
To compare single-shot echo-planar imaging (SS EPI) diffusion-weighted MRI (DWI) of abdominal organs between 1.5 Tesla (T) and 3.0T in healthy volunteers in terms of image quality, apparent diffusion coefficient (ADC) values, and ADC reproducibility. Eight healthy volunteers were prospectively imaged in this HIPAA-compliant IRB-approved study. Each subject underwent two consecutive scans at both 1.5 and 3.0T, which included breathhold and free-breathing DWI using a wide range of b-values (0 to 800 s/mm²). A blinded observer rated subjective image quality (maximum score= 8), and a separate observer placed regions of interest within the liver, renal cortices, pancreas, and spleen to measure ADC at each field strength. Paired Wilcoxon tests were used to compare abdominal DWI between 1.5T and 3.0T for specific combinations of organs, b-values, and acquisition techniques. Subjective image quality was significantly lower at 3.0T for all comparisons (P = 0.0078- 0.0156). ADC values were similar at 1.5T and 3.0T for all assessed organs, except for lower liver ADC at 3.0T using b0-500-600 and breathhold technique. ADC reproducibility was moderate at both 1.5T and 3.0T, with no significant difference in coefficient of variation of ADC between field strengths. Compared with 1.5T, SS EPI at 3.0T provided generally similar ADC values, however, with worse image quality. Further optimization of abdominal DWI at 3.0T is needed.
Author Rosenkrantz, Andrew B.
Oei, Marcel
Niver, Benjamin E.
Taouli, Bachir
Babb, James S.
Author_xml – sequence: 1
  givenname: Andrew B.
  surname: Rosenkrantz
  fullname: Rosenkrantz, Andrew B.
  organization: NYU Langone Medical Center, Department of Radiology, New York, NY, USA
– sequence: 2
  givenname: Marcel
  surname: Oei
  fullname: Oei, Marcel
  organization: NYU Langone Medical Center, Department of Radiology, New York, NY, USA
– sequence: 3
  givenname: James S.
  surname: Babb
  fullname: Babb, James S.
  organization: NYU Langone Medical Center, Department of Radiology, New York, NY, USA
– sequence: 4
  givenname: Benjamin E.
  surname: Niver
  fullname: Niver, Benjamin E.
  organization: NYU Langone Medical Center, Department of Radiology, New York, NY, USA
– sequence: 5
  givenname: Bachir
  surname: Taouli
  fullname: Taouli, Bachir
  email: bachir.taouli@mountsinai.org
  organization: NYU Langone Medical Center, Department of Radiology, New York, NY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21182130$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1DAYhS1URC-w4QGQd0hIGXyJc2GHSi9TTamgRSwtx_4z45LEU9vRdN6ij0zSdLpAqCtb1vcdWeccor3OdYDQe0pmlBD2-bb1dsYYL8UrdEAFYwkTRbY33IngCS1Ivo8OQ7glhJRlKt6gfUZpwSgnB-jhm63rPljXJRuwy1UEg22rlrZbYlfjuAKsKuNa6LCKmM8IvoHQqC94PkCA73rV2LjFqjNYrdfKQxex2UVi7aCurbbjq4e1d6bXtrKPinbtyBu8sXGF6UxMyW_R61o1Ad49nUfo1-nJzfF5srg6mx9_XSQ6JUwkipdpVdYFFKkuOaWEmoIalioAXmdKM5rRvILMVCrTvCpZygSrtM65UaJkgh-hj1Pu8Ku7HkKUrQ0amkZ14Pogh37o0FY6kh-eyL5qwci1HwryW7krcQA-TYD2LgQP9TNCiRwXkuNC8nGhASb_wNpGFYe2ole2-b9CJ2VjG9i-EC4vLn_Od04yOTZEuH92lP8js5znQv7-fiZLcX1xubg-lz_4XysXs6c
CitedBy_id crossref_primary_10_1038_s41598_017_14625_0
crossref_primary_10_4254_wjh_v9_i26_1081
crossref_primary_10_1002_jmri_25456
crossref_primary_10_1016_j_jhep_2017_07_030
crossref_primary_10_1016_j_diii_2012_12_007
crossref_primary_10_1016_j_crad_2013_11_017
crossref_primary_10_1038_srep30353
crossref_primary_10_1007_s00261_021_03055_2
crossref_primary_10_1111_liv_13058
crossref_primary_10_1177_02841851241313021
crossref_primary_10_3390_diagnostics9030107
crossref_primary_10_1016_j_clineuro_2012_10_021
crossref_primary_10_1016_j_ejrad_2019_06_021
crossref_primary_10_1007_s00261_014_0196_8
crossref_primary_10_1016_j_crad_2014_01_004
crossref_primary_10_1186_s40644_018_0173_5
crossref_primary_10_2214_AJR_12_9563
crossref_primary_10_1007_s00247_021_05076_x
crossref_primary_10_1097_RLI_0000000000000639
crossref_primary_10_1002_jmri_27590
crossref_primary_10_1371_journal_pone_0032613
crossref_primary_10_1002_jmri_23784
crossref_primary_10_1002_jmri_27589
crossref_primary_10_1097_RCT_0000000000000572
crossref_primary_10_1259_bjr_20150294
crossref_primary_10_1002_mp_15970
crossref_primary_10_1016_j_crad_2012_11_006
crossref_primary_10_1016_j_clinimag_2014_10_018
crossref_primary_10_1002_jmri_23947
crossref_primary_10_18632_oncotarget_25279
crossref_primary_10_18632_oncotarget_24981
crossref_primary_10_1016_j_jradio_2012_09_013
crossref_primary_10_1097_RCT_0b013e3182720e07
crossref_primary_10_1016_j_ejro_2021_100386
crossref_primary_10_1007_s00261_023_03942_w
crossref_primary_10_1007_s40134_013_0014_z
crossref_primary_10_1016_j_acra_2011_09_009
crossref_primary_10_1016_j_radonc_2022_06_011
crossref_primary_10_2214_AJR_14_14089
crossref_primary_10_4254_wjh_v7_i15_1894
crossref_primary_10_1097_RLI_0000000000000801
crossref_primary_10_3748_wjg_v30_i9_1164
crossref_primary_10_1016_j_ejro_2016_07_001
crossref_primary_10_1016_j_clinimag_2020_01_007
crossref_primary_10_1007_s00261_019_02189_8
crossref_primary_10_1148_radiol_14130778
crossref_primary_10_1007_s00330_023_10381_0
crossref_primary_10_1016_j_diii_2013_02_011
crossref_primary_10_1016_j_ejro_2015_08_001
crossref_primary_10_1097_RCT_0000000000000403
crossref_primary_10_1158_1078_0432_CCR_14_2454
crossref_primary_10_1177_0284185113513760
crossref_primary_10_1002_jmri_27090
crossref_primary_10_1097_RMR_0000000000000144
crossref_primary_10_1016_j_mric_2014_04_009
crossref_primary_10_1016_j_clinre_2011_05_001
crossref_primary_10_1371_journal_pone_0189897
crossref_primary_10_1186_s41747_017_0031_4
crossref_primary_10_1097_RLI_0000000000000218
crossref_primary_10_1259_dmfr_20230140
crossref_primary_10_1007_s00259_013_2351_9
crossref_primary_10_1097_IGC_0000000000000124
crossref_primary_10_1097_RLI_0000000000000596
crossref_primary_10_1016_j_rcl_2012_09_012
crossref_primary_10_1148_radiol_13130819
crossref_primary_10_1002_jmri_24538
crossref_primary_10_1007_s00234_021_02863_z
crossref_primary_10_1016_j_pan_2012_03_057
crossref_primary_10_1038_nrurol_2011_222
crossref_primary_10_3892_ol_2018_9037
crossref_primary_10_1016_j_nicl_2017_06_013
crossref_primary_10_1016_j_crad_2019_07_003
crossref_primary_10_3390_diagnostics13243654
crossref_primary_10_1007_s00261_020_02538_y
crossref_primary_10_1148_rg_2019180123
crossref_primary_10_1007_s00330_013_3008_6
crossref_primary_10_1186_s40644_020_00346_7
crossref_primary_10_1016_j_ejrad_2018_11_014
crossref_primary_10_1002_jmri_24492
crossref_primary_10_1007_s00330_015_4174_5
crossref_primary_10_1016_j_diii_2018_03_004
crossref_primary_10_1007_s00330_015_3716_1
crossref_primary_10_1158_1078_0432_CCR_13_3355
crossref_primary_10_3390_bioengineering10010083
crossref_primary_10_1007_s10334_013_0375_6
crossref_primary_10_1186_s40644_021_00423_5
crossref_primary_10_1007_s00414_017_1685_4
crossref_primary_10_1016_j_radonc_2023_109677
crossref_primary_10_1007_s00330_013_2869_z
crossref_primary_10_4236_ojmi_2013_31005
crossref_primary_10_1002_jmri_25539
crossref_primary_10_1002_mrm_26128
crossref_primary_10_1007_s00261_011_9737_6
crossref_primary_10_1148_radiol_2015151244
crossref_primary_10_1097_RCT_0000000000000702
crossref_primary_10_1038_s41598_019_41344_5
crossref_primary_10_1002_jmri_24285
crossref_primary_10_1007_s00330_020_07234_5
crossref_primary_10_1016_j_crad_2014_10_006
crossref_primary_10_1007_s00330_012_2469_3
crossref_primary_10_1002_jmri_26730
crossref_primary_10_1016_j_jacr_2013_05_016
crossref_primary_10_1155_2017_3805073
crossref_primary_10_1002_jmri_24397
crossref_primary_10_1177_0284185115610934
crossref_primary_10_1053_j_sult_2016_08_009
crossref_primary_10_1002_jmri_28876
crossref_primary_10_1016_j_ejrad_2020_109230
crossref_primary_10_1155_2013_219297
crossref_primary_10_1002_mrm_26072
crossref_primary_10_1016_j_ejrad_2019_108775
crossref_primary_10_3348_kjr_2018_19_3_389
crossref_primary_10_1002_jmri_24833
crossref_primary_10_1007_s11604_012_0105_4
crossref_primary_10_1007_s00261_022_03549_7
crossref_primary_10_1016_j_ejrad_2013_11_016
crossref_primary_10_1148_rg_343135047
crossref_primary_10_1186_s40644_019_0216_6
crossref_primary_10_1016_j_crad_2014_06_017
crossref_primary_10_1016_j_crad_2014_12_007
crossref_primary_10_1007_s00261_020_02916_6
crossref_primary_10_1371_journal_pone_0086280
crossref_primary_10_1002_pros_22764
crossref_primary_10_1007_s00261_023_04179_3
crossref_primary_10_1016_j_rcl_2015_01_002
crossref_primary_10_1097_MD_0000000000005910
crossref_primary_10_1007_s00247_013_2626_0
crossref_primary_10_1016_S1470_2045_15_00164_3
crossref_primary_10_2478_raon_2019_0021
crossref_primary_10_1016_j_crad_2014_04_004
crossref_primary_10_1007_s00330_019_06113_y
crossref_primary_10_1002_jmri_25277
crossref_primary_10_1007_s10334_021_00932_1
crossref_primary_10_1016_j_acra_2014_01_005
crossref_primary_10_1177_0284185118786063
crossref_primary_10_5114_pjr_2018_79651
crossref_primary_10_4329_wjr_v8_i9_785
crossref_primary_10_1016_j_rcl_2014_02_018
crossref_primary_10_1002_lt_23502
crossref_primary_10_1007_s00261_014_0215_9
crossref_primary_10_1097_MD_0000000000015104
crossref_primary_10_1371_journal_pone_0253025
crossref_primary_10_1148_radiol_12112765
crossref_primary_10_1016_j_jradio_2012_10_008
crossref_primary_10_7759_cureus_15734
crossref_primary_10_3390_diagnostics14202268
crossref_primary_10_1097_RLI_0000000000000812
crossref_primary_10_1002_jmri_23765
crossref_primary_10_1002_jmri_24337
crossref_primary_10_1186_s13244_019_0690_1
crossref_primary_10_2463_mrms_mp_2015_0161
crossref_primary_10_1002_pros_24833
crossref_primary_10_1007_s00330_014_3201_2
crossref_primary_10_1097_IGC_0000000000000445
crossref_primary_10_1002_jmri_22671
crossref_primary_10_1007_s11547_014_0479_8
crossref_primary_10_1186_s13244_022_01350_0
crossref_primary_10_4236_ojrad_2014_44037
crossref_primary_10_1007_s00261_020_02718_w
crossref_primary_10_1186_s13244_022_01290_9
crossref_primary_10_3348_kjr_2016_17_2_209
crossref_primary_10_1016_j_ejrad_2012_01_032
crossref_primary_10_1038_s41598_023_38360_x
crossref_primary_10_1186_s40792_017_0414_z
crossref_primary_10_1002_jmri_28097
crossref_primary_10_1007_s00261_018_1467_6
crossref_primary_10_38175_phnx_806582
crossref_primary_10_1016_j_clinimag_2021_11_033
crossref_primary_10_2214_AJR_14_13930
crossref_primary_10_1097_RMR_0b013e31822a3294
crossref_primary_10_2463_mrms_2013_0038
Cites_doi 10.1148/radiol.2493080080
10.1148/rg.275075023
10.1002/mrm.21525
10.1148/radiol.09090021
10.1007/s00330-006-0175-8
10.1148/radiol.2513080724
10.1016/S0221-0363(04)97582-8
10.1097/RCT.0b013e3181591cf2
10.2214/AJR.05.0778
10.1002/hep.21747
10.1097/01.RVI.0000200052.02183.92
10.2214/AJR.05.1918
10.1097/RLI.0b013e3181c8ceac
10.1002/jmri.21461
10.1148/radiology.210.3.r99fe17617
10.1148/radiol.2342031323
10.1148/radiol.2512080880
10.1148/radiol.2212001823
10.1002/mrm.21989
10.1002/jmri.10142
10.1148/radiol.2353040554
10.2214/AJR.08.1461
10.1002/jmri.21569
10.1148/radiol.2492071681
10.1148/radiol.2342031626
10.1593/neo.81328
10.1016/j.crad.2006.06.014
10.1016/j.ejrad.2007.09.013
10.1148/radiol.2463070432
10.1002/jmri.21508
10.2214/ajr.183.3.1830677
10.1002/jmri.22156
10.1148/radiol.2493080160
10.1007/s10334-009-0183-1
10.2214/AJR.07.2086
10.1148/radiol.2483071407
10.1002/nbm.1028
10.1002/jmri.20969
10.1148/radiol.2261011904
10.1148/radiol.2303021331
10.1002/jmri.22081
10.1148/radiol.2413060103
10.1002/jmri.21227
10.2214/AJR.06.0601
10.2214/ajr.181.3.1810708
10.1148/radiol.2502080849
ContentType Journal Article
Copyright Copyright © 2010 Wiley‐Liss, Inc.
Copyright © 2010 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2010 Wiley‐Liss, Inc.
– notice: Copyright © 2010 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/jmri.22395
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 135
ExternalDocumentID 21182130
10_1002_jmri_22395
JMRI22395
ark_67375_WNG_95SJMLSH_Q
Genre article
Evaluation Studies
Journal Article
Comparative Study
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4025-a394b9f8e84c931101d81d24aee3f6ac21617be6dba6c3b924252bcc73da59253
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Fri Jul 11 01:45:52 EDT 2025
Mon Jul 21 05:38:00 EDT 2025
Tue Jul 01 01:41:24 EDT 2025
Thu Apr 24 23:07:44 EDT 2025
Wed Jan 22 16:20:46 EST 2025
Wed Oct 30 10:00:03 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2010 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4025-a394b9f8e84c931101d81d24aee3f6ac21617be6dba6c3b924252bcc73da59253
Notes istex:EBA6268CFAEC27E7BEA7A869BA1CFCBB4113B0AD
ark:/67375/WNG-95SJMLSH-Q
ArticleID:JMRI22395
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.22395
PMID 21182130
PQID 821199445
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_821199445
pubmed_primary_21182130
crossref_primary_10_1002_jmri_22395
crossref_citationtrail_10_1002_jmri_22395
wiley_primary_10_1002_jmri_22395_JMRI22395
istex_primary_ark_67375_WNG_95SJMLSH_Q
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-01
January 2011
2011-01-00
2011-Jan
20110101
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – month: 01
  year: 2011
  text: 2011-01
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J. Magn. Reson. Imaging
PublicationYear 2011
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Dale BM, Braithwaite AC, Boll DT, Merkle EM. Field strength and diffusion encoding technique affect the apparent diffusion coefficient measurements in diffusion-weighted imaging of the abdomen. Invest Radiol 2010; 45: 104-108.
Luciani A, Vignaud A, Cavet M, et al. Liver cirrhosis: intravoxel incoherent motion MR imaging--pilot study. Radiology 2008; 249: 891-899.
de Bazelaire CM, Duhamel GD, Rofsky NM, Alsop DC. MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 2004; 230: 652-659.
Oner AY, Celik H, Oktar SO, Tali T. Single breath-hold diffusion-weighted MRI of the liver with parallel imaging: initial experience. Clin Radiol 2006; 61: 959-965.
Thoeny HC, Zumstein D, Simon-Zoula S, et al. Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. Radiology 2006; 241: 812-821.
Kuhl CK, Gieseke J, von Falkenhausen M, et al. Sensitivity encoding for diffusion-weighted MR imaging at 3.0 T: intraindividual comparative study. Radiology 2005; 234: 517-526.
Koh DM, Scurr E, Collins D, et al. Predicting response of colorectal hepatic metastasis: value of pretreatment apparent diffusion coefficients. AJR Am J Roentgenol 2007; 188: 1001-1008.
Mannelli L, Kim S, Hajdu CH, Babb JS, Clark TW, Taouli B. Assessment of tumor necrosis of hepatocellular carcinoma after chemoembolization: diffusion-weighted and contrast-enhanced MRI with histopathologic correlation of the explanted liver. AJR Am J Roentgenol 2009; 193: 1044-1052.
Sasaki M, Yamada K, Watanabe Y, et al. Variability in absolute apparent diffusion coefficient values across different platforms may be substantial: a multivendor, multi-institutional comparison study. Radiology 2008; 249: 624-630.
Binser T, Thoeny HC, Eisenberger U, Stemmer A, Boesch C, Vermathen P. Comparison of physiological triggering schemes for diffusion-weighted magnetic resonance imaging in kidneys. J Magn Reson Imaging 2010; 31: 1144-1150.
Padhani AR, Liu G, Koh DM, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 2009; 11: 102-125.
Braithwaite AC, Dale BM, Boll DT, Merkle EM. Short- and midterm reproducibility of apparent diffusion coefficient measurements at 3.0-T diffusion-weighted imaging of the abdomen. Radiology 2009; 250: 459-465.
Akisik MF, Aisen AM, Sandrasegaran K, et al. Assessment of chronic pancreatitis: utility of diffusion-weighted MR imaging with secretin enhancement. Radiology 2009; 250: 103-109.
Cui Y, Zhang XP, Sun YS, Tang L, Shen L. Apparent diffusion coefficient: potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastases. Radiology 2008; 248: 894-900.
Ichikawa T, Erturk SM, Motosugi U, et al. High-b value diffusion-weighted MRI for detecting pancreatic adenocarcinoma: preliminary results. AJR Am J Roentgenol 2007; 188: 409-414.
Yamada I, Aung W, Himeno Y, Nakagawa T, Shibuya H. Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology 1999; 210: 617-623.
Coenegrachts K, Delanote J, Ter Beek L, et al. Evaluation of true diffusion, perfusion factor, and apparent diffusion coefficient in non-necrotic liver metastases and uncomplicated liver hemangiomas using black-blood echo planar imaging. Eur J Radiol 2009; 69: 131-138.
Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO. Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 2007; 26: 375-385.
Kwee TC, Takahara T, Koh DM, Nievelstein RA, Luijten PR. Comparison and reproducibility of ADC measurements in breathhold, respiratory triggered, and free-breathing diffusion-weighted MR imaging of the liver. J Magn Reson Imaging 2008; 28: 1141-1148.
Altbach MI, Outwater EK, Trouard TP, et al. Radial fast spin-echo method for T2-weighted imaging and T2 mapping of the liver. J Magn Reson Imaging 2002; 16: 179-189.
Deng J, Omary RA, Larson AC. Multishot diffusion-weighted SPLICE PROPELLER MRI of the abdomen. Magn Reson Med 2008; 59: 947-953.
Kwee TC, Takahara T, Niwa T, et al. Influence of cardiac motion on diffusion-weighted magnetic resonance imaging of the liver. Magma 2009; 22: 319-325.
Hollingsworth KG, Lomas DJ. Influence of perfusion on hepatic MR diffusion measurement. NMR Biomed 2006; 19: 231-235.
Kim S, Jain M, Harris AB, et al. T1 hyperintense renal lesions: characterization with diffusion-weighted MR imaging versus contrast-enhanced MR imaging. Radiology 2009; 251: 796-807.
Yoshikawa T, Kawamitsu H, Mitchell DG, et al. ADC measurement of abdominal organs and lesions using parallel imaging technique. AJR Am J Roentgenol 2006; 187: 1521-1530.
Parikh T, Drew SJ, Lee VS, et al. Focal liver lesion detection and characterization with diffusion-weighted MR imaging: comparison with standard breath-hold T2-weighted imaging. Radiology 2008; 246: 812-822.
Lee SS, Byun JH, Park BJ, et al. Quantitative analysis of diffusion-weighted magnetic resonance imaging of the pancreas: usefulness in characterizing solid pancreatic masses. J Magn Reson Imaging 2008; 28: 928-936.
Akisik FM, Sandrasegaran K, Aisen AM, Lin C, Lall C. Abdominal MR imaging at 3.0 T. Radiographics 2007; 27: 1433-1444; discussion 1462-1464.
Girometti R, Furlan A, Esposito G, et al. Relevance of b-values in evaluating liver fibrosis: a study in healthy and cirrhotic subjects using two single-shot spin-echo echo-planar diffusion-weighted sequences. J Magn Reson Imaging 2008; 28: 411-419.
Taouli B, Vilgrain V, Dumont E, Daire JL, Fan B, Menu Y. Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology 2003; 226: 71-78.
Deng J, Larson AC. Modified PROPELLER approach for T2-mapping of the abdomen. Magn Reson Med 2009; 61: 1269-1278.
Taouli B, Tolia AJ, Losada M, et al. Diffusion-weighted MRI for quantification of liver fibrosis: preliminary experience. AJR Am J Roentgenol 2007; 189: 799-806.
Lewin M, Poujol-Robert A, Boelle PY, et al. Diffusion-weighted magnetic resonance imaging for the assessment of fibrosis in chronic hepatitis C. HEPATOLOGY 2007; 46: 658-665.
Aube C, Racineux PX, Lebigot J, et al. [Diagnosis and quantification of hepatic fibrosis with diffusion weighted MR imaging: preliminary results]. J Radiol 2004; 85: 301-306.
Taouli B, Martin AJ, Qayyum A, et al. Parallel imaging and diffusion tensor imaging for diffusion-weighted MRI of the liver: preliminary experience in healthy volunteers. AJR Am J Roentgenol 2004; 183: 677-680.
Erturk SM, Ichikawa T, Sano K, Motosugi U, Sou H, Araki T. Diffusion-weighted magnetic resonance imaging for characterization of focal liver masses: impact of parallel imaging (SENSE) and b value. J Comput Assist Tomogr 2008; 32: 865-871.
Taouli B, Chouli M, Martin AJ, Qayyum A, Coakley FV, Vilgrain V. Chronic hepatitis: role of diffusion-weighted imaging and diffusion tensor imaging for the diagnosis of liver fibrosis and inflammation. J Magn Reson Imaging 2008; 28: 89-95.
Hunsche S, Moseley ME, Stoeter P, Hedehus M. Diffusion-tensor MR imaging at 1.5 and 3.0 T: initial observations. Radiology 2001; 221: 550-556.
Kamel IR, Bluemke DA, Ramsey D, et al. Role of diffusion-weighted imaging in estimating tumor necrosis after chemoembolization of hepatocellular carcinoma. AJR Am J Roentgenol 2003; 181: 708-710.
Patel J, Sigmund EE, Rusinek H, Oei M, Babb JS, Taouli B. Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience. J Magn Reson Imaging 2010; 31: 589-600.
Kamel IR, Bluemke DA, Eng J, et al. The role of functional MR imaging in the assessment of tumor response after chemoembolization in patients with hepatocellular carcinoma. J Vasc Interv Radiol 2006; 17: 505-512.
Thoeny HC, De Keyzer F, Oyen RH, Peeters RR. Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology 2005; 235: 911-917.
Kuhl CK, Textor J, Gieseke J, et al. Acute and subacute ischemic stroke at high-field-strength (3.0-T) diffusion-weighted MR imaging: intraindividual comparative study. Radiology 2005; 234: 509-516.
Taouli B, Thakur RK, Mannelli L, et al. Renal lesions: characterization with diffusion-weighted imaging versus contrast-enhanced MR imaging. Radiology 2009; 251: 398-407.
Taouli B, Koh DM. Diffusion-weighted MR imaging of the liver. Radiology 2010; 254: 47-66.
Huisman TA, Loenneker T, Barta G, et al. Quantitative diffusion tensor MR imaging of the brain: field strength related variance of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) scalars. Eur Radiol 2006; 16: 1651-1658.
2001; 221
2002; 16
2009; 22
2007; 189
2009; 69
2004; 85
2010; 31
2009; 61
2010
2005; 234
2005; 235
2006; 16
2007; 188
2006; 17
2004; 183
2008; 59
2008; 249
2006; 19
2008; 248
2008; 32
2009; 250
2008; 246
2009; 251
2010; 45
2009; 11
2004; 230
2006; 61
2003; 226
2009; 193
2008; 28
2010; 254
2006; 187
2006; 241
2003; 181
1999; 210
2007; 46
2007; 26
2007; 27
e_1_2_5_26_2
e_1_2_5_27_2
e_1_2_5_48_2
e_1_2_5_24_2
e_1_2_5_47_2
e_1_2_5_25_2
e_1_2_5_46_2
e_1_2_5_22_2
e_1_2_5_45_2
e_1_2_5_23_2
e_1_2_5_44_2
e_1_2_5_20_2
e_1_2_5_43_2
e_1_2_5_21_2
e_1_2_5_42_2
e_1_2_5_28_2
e_1_2_5_29_2
e_1_2_5_41_2
e_1_2_5_40_2
e_1_2_5_14_2
e_1_2_5_37_2
e_1_2_5_13_2
e_1_2_5_38_2
e_1_2_5_9_2
e_1_2_5_16_2
e_1_2_5_35_2
e_1_2_5_8_2
e_1_2_5_15_2
e_1_2_5_36_2
e_1_2_5_7_2
e_1_2_5_10_2
e_1_2_5_33_2
e_1_2_5_6_2
e_1_2_5_34_2
e_1_2_5_5_2
e_1_2_5_12_2
e_1_2_5_31_2
e_1_2_5_4_2
e_1_2_5_11_2
e_1_2_5_32_2
e_1_2_5_3_2
e_1_2_5_2_2
e_1_2_5_18_2
e_1_2_5_17_2
e_1_2_5_39_2
e_1_2_5_19_2
e_1_2_5_30_2
References_xml – reference: Taouli B, Tolia AJ, Losada M, et al. Diffusion-weighted MRI for quantification of liver fibrosis: preliminary experience. AJR Am J Roentgenol 2007; 189: 799-806.
– reference: Akisik MF, Aisen AM, Sandrasegaran K, et al. Assessment of chronic pancreatitis: utility of diffusion-weighted MR imaging with secretin enhancement. Radiology 2009; 250: 103-109.
– reference: Kamel IR, Bluemke DA, Ramsey D, et al. Role of diffusion-weighted imaging in estimating tumor necrosis after chemoembolization of hepatocellular carcinoma. AJR Am J Roentgenol 2003; 181: 708-710.
– reference: Taouli B, Thakur RK, Mannelli L, et al. Renal lesions: characterization with diffusion-weighted imaging versus contrast-enhanced MR imaging. Radiology 2009; 251: 398-407.
– reference: Taouli B, Martin AJ, Qayyum A, et al. Parallel imaging and diffusion tensor imaging for diffusion-weighted MRI of the liver: preliminary experience in healthy volunteers. AJR Am J Roentgenol 2004; 183: 677-680.
– reference: Hollingsworth KG, Lomas DJ. Influence of perfusion on hepatic MR diffusion measurement. NMR Biomed 2006; 19: 231-235.
– reference: Thoeny HC, De Keyzer F, Oyen RH, Peeters RR. Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology 2005; 235: 911-917.
– reference: Yoshikawa T, Kawamitsu H, Mitchell DG, et al. ADC measurement of abdominal organs and lesions using parallel imaging technique. AJR Am J Roentgenol 2006; 187: 1521-1530.
– reference: Sasaki M, Yamada K, Watanabe Y, et al. Variability in absolute apparent diffusion coefficient values across different platforms may be substantial: a multivendor, multi-institutional comparison study. Radiology 2008; 249: 624-630.
– reference: Mannelli L, Kim S, Hajdu CH, Babb JS, Clark TW, Taouli B. Assessment of tumor necrosis of hepatocellular carcinoma after chemoembolization: diffusion-weighted and contrast-enhanced MRI with histopathologic correlation of the explanted liver. AJR Am J Roentgenol 2009; 193: 1044-1052.
– reference: Kuhl CK, Textor J, Gieseke J, et al. Acute and subacute ischemic stroke at high-field-strength (3.0-T) diffusion-weighted MR imaging: intraindividual comparative study. Radiology 2005; 234: 509-516.
– reference: Deng J, Omary RA, Larson AC. Multishot diffusion-weighted SPLICE PROPELLER MRI of the abdomen. Magn Reson Med 2008; 59: 947-953.
– reference: Kamel IR, Bluemke DA, Eng J, et al. The role of functional MR imaging in the assessment of tumor response after chemoembolization in patients with hepatocellular carcinoma. J Vasc Interv Radiol 2006; 17: 505-512.
– reference: Girometti R, Furlan A, Esposito G, et al. Relevance of b-values in evaluating liver fibrosis: a study in healthy and cirrhotic subjects using two single-shot spin-echo echo-planar diffusion-weighted sequences. J Magn Reson Imaging 2008; 28: 411-419.
– reference: Hunsche S, Moseley ME, Stoeter P, Hedehus M. Diffusion-tensor MR imaging at 1.5 and 3.0 T: initial observations. Radiology 2001; 221: 550-556.
– reference: Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO. Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 2007; 26: 375-385.
– reference: Deng J, Larson AC. Modified PROPELLER approach for T2-mapping of the abdomen. Magn Reson Med 2009; 61: 1269-1278.
– reference: Binser T, Thoeny HC, Eisenberger U, Stemmer A, Boesch C, Vermathen P. Comparison of physiological triggering schemes for diffusion-weighted magnetic resonance imaging in kidneys. J Magn Reson Imaging 2010; 31: 1144-1150.
– reference: Kwee TC, Takahara T, Niwa T, et al. Influence of cardiac motion on diffusion-weighted magnetic resonance imaging of the liver. Magma 2009; 22: 319-325.
– reference: Erturk SM, Ichikawa T, Sano K, Motosugi U, Sou H, Araki T. Diffusion-weighted magnetic resonance imaging for characterization of focal liver masses: impact of parallel imaging (SENSE) and b value. J Comput Assist Tomogr 2008; 32: 865-871.
– reference: Lewin M, Poujol-Robert A, Boelle PY, et al. Diffusion-weighted magnetic resonance imaging for the assessment of fibrosis in chronic hepatitis C. HEPATOLOGY 2007; 46: 658-665.
– reference: Huisman TA, Loenneker T, Barta G, et al. Quantitative diffusion tensor MR imaging of the brain: field strength related variance of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) scalars. Eur Radiol 2006; 16: 1651-1658.
– reference: Parikh T, Drew SJ, Lee VS, et al. Focal liver lesion detection and characterization with diffusion-weighted MR imaging: comparison with standard breath-hold T2-weighted imaging. Radiology 2008; 246: 812-822.
– reference: Thoeny HC, Zumstein D, Simon-Zoula S, et al. Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. Radiology 2006; 241: 812-821.
– reference: Patel J, Sigmund EE, Rusinek H, Oei M, Babb JS, Taouli B. Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience. J Magn Reson Imaging 2010; 31: 589-600.
– reference: Akisik FM, Sandrasegaran K, Aisen AM, Lin C, Lall C. Abdominal MR imaging at 3.0 T. Radiographics 2007; 27: 1433-1444; discussion 1462-1464.
– reference: Braithwaite AC, Dale BM, Boll DT, Merkle EM. Short- and midterm reproducibility of apparent diffusion coefficient measurements at 3.0-T diffusion-weighted imaging of the abdomen. Radiology 2009; 250: 459-465.
– reference: Kuhl CK, Gieseke J, von Falkenhausen M, et al. Sensitivity encoding for diffusion-weighted MR imaging at 3.0 T: intraindividual comparative study. Radiology 2005; 234: 517-526.
– reference: Yamada I, Aung W, Himeno Y, Nakagawa T, Shibuya H. Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology 1999; 210: 617-623.
– reference: Altbach MI, Outwater EK, Trouard TP, et al. Radial fast spin-echo method for T2-weighted imaging and T2 mapping of the liver. J Magn Reson Imaging 2002; 16: 179-189.
– reference: Oner AY, Celik H, Oktar SO, Tali T. Single breath-hold diffusion-weighted MRI of the liver with parallel imaging: initial experience. Clin Radiol 2006; 61: 959-965.
– reference: Taouli B, Koh DM. Diffusion-weighted MR imaging of the liver. Radiology 2010; 254: 47-66.
– reference: Aube C, Racineux PX, Lebigot J, et al. [Diagnosis and quantification of hepatic fibrosis with diffusion weighted MR imaging: preliminary results]. J Radiol 2004; 85: 301-306.
– reference: Dale BM, Braithwaite AC, Boll DT, Merkle EM. Field strength and diffusion encoding technique affect the apparent diffusion coefficient measurements in diffusion-weighted imaging of the abdomen. Invest Radiol 2010; 45: 104-108.
– reference: Lee SS, Byun JH, Park BJ, et al. Quantitative analysis of diffusion-weighted magnetic resonance imaging of the pancreas: usefulness in characterizing solid pancreatic masses. J Magn Reson Imaging 2008; 28: 928-936.
– reference: Padhani AR, Liu G, Koh DM, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 2009; 11: 102-125.
– reference: Ichikawa T, Erturk SM, Motosugi U, et al. High-b value diffusion-weighted MRI for detecting pancreatic adenocarcinoma: preliminary results. AJR Am J Roentgenol 2007; 188: 409-414.
– reference: Cui Y, Zhang XP, Sun YS, Tang L, Shen L. Apparent diffusion coefficient: potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastases. Radiology 2008; 248: 894-900.
– reference: Taouli B, Vilgrain V, Dumont E, Daire JL, Fan B, Menu Y. Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology 2003; 226: 71-78.
– reference: Kwee TC, Takahara T, Koh DM, Nievelstein RA, Luijten PR. Comparison and reproducibility of ADC measurements in breathhold, respiratory triggered, and free-breathing diffusion-weighted MR imaging of the liver. J Magn Reson Imaging 2008; 28: 1141-1148.
– reference: de Bazelaire CM, Duhamel GD, Rofsky NM, Alsop DC. MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 2004; 230: 652-659.
– reference: Taouli B, Chouli M, Martin AJ, Qayyum A, Coakley FV, Vilgrain V. Chronic hepatitis: role of diffusion-weighted imaging and diffusion tensor imaging for the diagnosis of liver fibrosis and inflammation. J Magn Reson Imaging 2008; 28: 89-95.
– reference: Kim S, Jain M, Harris AB, et al. T1 hyperintense renal lesions: characterization with diffusion-weighted MR imaging versus contrast-enhanced MR imaging. Radiology 2009; 251: 796-807.
– reference: Luciani A, Vignaud A, Cavet M, et al. Liver cirrhosis: intravoxel incoherent motion MR imaging--pilot study. Radiology 2008; 249: 891-899.
– reference: Koh DM, Scurr E, Collins D, et al. Predicting response of colorectal hepatic metastasis: value of pretreatment apparent diffusion coefficients. AJR Am J Roentgenol 2007; 188: 1001-1008.
– reference: Coenegrachts K, Delanote J, Ter Beek L, et al. Evaluation of true diffusion, perfusion factor, and apparent diffusion coefficient in non-necrotic liver metastases and uncomplicated liver hemangiomas using black-blood echo planar imaging. Eur J Radiol 2009; 69: 131-138.
– volume: 28
  start-page: 89
  year: 2008
  end-page: 95
  article-title: Chronic hepatitis: role of diffusion‐weighted imaging and diffusion tensor imaging for the diagnosis of liver fibrosis and inflammation
  publication-title: J Magn Reson Imaging
– volume: 234
  start-page: 517
  year: 2005
  end-page: 526
  article-title: Sensitivity encoding for diffusion‐weighted MR imaging at 3.0 T: intraindividual comparative study
  publication-title: Radiology
– volume: 250
  start-page: 459
  year: 2009
  end-page: 465
  article-title: Short‐ and midterm reproducibility of apparent diffusion coefficient measurements at 3.0‐T diffusion‐weighted imaging of the abdomen
  publication-title: Radiology
– volume: 235
  start-page: 911
  year: 2005
  end-page: 917
  article-title: Diffusion‐weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience
  publication-title: Radiology
– volume: 248
  start-page: 894
  year: 2008
  end-page: 900
  article-title: Apparent diffusion coefficient: potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastases
  publication-title: Radiology
– volume: 61
  start-page: 959
  year: 2006
  end-page: 965
  article-title: Single breath‐hold diffusion‐weighted MRI of the liver with parallel imaging: initial experience
  publication-title: Clin Radiol
– volume: 183
  start-page: 677
  year: 2004
  end-page: 680
  article-title: Parallel imaging and diffusion tensor imaging for diffusion‐weighted MRI of the liver: preliminary experience in healthy volunteers
  publication-title: AJR Am J Roentgenol
– volume: 28
  start-page: 1141
  year: 2008
  end-page: 1148
  article-title: Comparison and reproducibility of ADC measurements in breathhold, respiratory triggered, and free‐breathing diffusion‐weighted MR imaging of the liver
  publication-title: J Magn Reson Imaging
– volume: 31
  start-page: 1144
  year: 2010
  end-page: 1150
  article-title: Comparison of physiological triggering schemes for diffusion‐weighted magnetic resonance imaging in kidneys
  publication-title: J Magn Reson Imaging
– volume: 187
  start-page: 1521
  year: 2006
  end-page: 1530
  article-title: ADC measurement of abdominal organs and lesions using parallel imaging technique
  publication-title: AJR Am J Roentgenol
– volume: 230
  start-page: 652
  year: 2004
  end-page: 659
  article-title: MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results
  publication-title: Radiology
– volume: 246
  start-page: 812
  year: 2008
  end-page: 822
  article-title: Focal liver lesion detection and characterization with diffusion‐weighted MR imaging: comparison with standard breath‐hold T2‐weighted imaging
  publication-title: Radiology
– volume: 17
  start-page: 505
  year: 2006
  end-page: 512
  article-title: The role of functional MR imaging in the assessment of tumor response after chemoembolization in patients with hepatocellular carcinoma
  publication-title: J Vasc Interv Radiol
– year: 2010
– volume: 226
  start-page: 71
  year: 2003
  end-page: 78
  article-title: Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single‐shot echo‐planar MR imaging sequences: prospective study in 66 patients
  publication-title: Radiology
– volume: 188
  start-page: 409
  year: 2007
  end-page: 414
  article-title: High‐b value diffusion‐weighted MRI for detecting pancreatic adenocarcinoma: preliminary results
  publication-title: AJR Am J Roentgenol
– volume: 59
  start-page: 947
  year: 2008
  end-page: 953
  article-title: Multishot diffusion‐weighted SPLICE PROPELLER MRI of the abdomen
  publication-title: Magn Reson Med
– volume: 46
  start-page: 658
  year: 2007
  end-page: 665
  article-title: Diffusion‐weighted magnetic resonance imaging for the assessment of fibrosis in chronic hepatitis C
  publication-title: HEPATOLOGY
– volume: 28
  start-page: 928
  year: 2008
  end-page: 936
  article-title: Quantitative analysis of diffusion‐weighted magnetic resonance imaging of the pancreas: usefulness in characterizing solid pancreatic masses
  publication-title: J Magn Reson Imaging
– volume: 251
  start-page: 398
  year: 2009
  end-page: 407
  article-title: Renal lesions: characterization with diffusion‐weighted imaging versus contrast‐enhanced MR imaging
  publication-title: Radiology
– volume: 26
  start-page: 375
  year: 2007
  end-page: 385
  article-title: Measurement of signal‐to‐noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters
  publication-title: J Magn Reson Imaging
– volume: 32
  start-page: 865
  year: 2008
  end-page: 871
  article-title: Diffusion‐weighted magnetic resonance imaging for characterization of focal liver masses: impact of parallel imaging (SENSE) and b value
  publication-title: J Comput Assist Tomogr
– volume: 31
  start-page: 589
  year: 2010
  end-page: 600
  article-title: Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast‐enhanced MRI alone and in combination: preliminary experience
  publication-title: J Magn Reson Imaging
– volume: 28
  start-page: 411
  year: 2008
  end-page: 419
  article-title: Relevance of b‐values in evaluating liver fibrosis: a study in healthy and cirrhotic subjects using two single‐shot spin‐echo echo‐planar diffusion‐weighted sequences
  publication-title: J Magn Reson Imaging
– volume: 189
  start-page: 799
  year: 2007
  end-page: 806
  article-title: Diffusion‐weighted MRI for quantification of liver fibrosis: preliminary experience
  publication-title: AJR Am J Roentgenol
– volume: 249
  start-page: 624
  year: 2008
  end-page: 630
  article-title: Variability in absolute apparent diffusion coefficient values across different platforms may be substantial: a multivendor, multi‐institutional comparison study
  publication-title: Radiology
– volume: 16
  start-page: 1651
  year: 2006
  end-page: 1658
  article-title: Quantitative diffusion tensor MR imaging of the brain: field strength related variance of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) scalars
  publication-title: Eur Radiol
– volume: 69
  start-page: 131
  year: 2009
  end-page: 138
  article-title: Evaluation of true diffusion, perfusion factor, and apparent diffusion coefficient in non‐necrotic liver metastases and uncomplicated liver hemangiomas using black‐blood echo planar imaging
  publication-title: Eur J Radiol
– volume: 45
  start-page: 104
  year: 2010
  end-page: 108
  article-title: Field strength and diffusion encoding technique affect the apparent diffusion coefficient measurements in diffusion‐weighted imaging of the abdomen
  publication-title: Invest Radiol
– volume: 22
  start-page: 319
  year: 2009
  end-page: 325
  article-title: Influence of cardiac motion on diffusion‐weighted magnetic resonance imaging of the liver
  publication-title: Magma
– volume: 241
  start-page: 812
  year: 2006
  end-page: 821
  article-title: Functional evaluation of transplanted kidneys with diffusion‐weighted and BOLD MR imaging: initial experience
  publication-title: Radiology
– volume: 181
  start-page: 708
  year: 2003
  end-page: 710
  article-title: Role of diffusion‐weighted imaging in estimating tumor necrosis after chemoembolization of hepatocellular carcinoma
  publication-title: AJR Am J Roentgenol
– volume: 19
  start-page: 231
  year: 2006
  end-page: 235
  article-title: Influence of perfusion on hepatic MR diffusion measurement
  publication-title: NMR Biomed
– volume: 16
  start-page: 179
  year: 2002
  end-page: 189
  article-title: Radial fast spin‐echo method for T2‐weighted imaging and T2 mapping of the liver
  publication-title: J Magn Reson Imaging
– volume: 249
  start-page: 891
  year: 2008
  end-page: 899
  article-title: Liver cirrhosis: intravoxel incoherent motion MR imaging‐‐pilot study
  publication-title: Radiology
– volume: 188
  start-page: 1001
  year: 2007
  end-page: 1008
  article-title: Predicting response of colorectal hepatic metastasis: value of pretreatment apparent diffusion coefficients
  publication-title: AJR Am J Roentgenol
– volume: 234
  start-page: 509
  year: 2005
  end-page: 516
  article-title: Acute and subacute ischemic stroke at high‐field‐strength (3.0‐T) diffusion‐weighted MR imaging: intraindividual comparative study
  publication-title: Radiology
– volume: 250
  start-page: 103
  year: 2009
  end-page: 109
  article-title: Assessment of chronic pancreatitis: utility of diffusion‐weighted MR imaging with secretin enhancement
  publication-title: Radiology
– volume: 193
  start-page: 1044
  year: 2009
  end-page: 1052
  article-title: Assessment of tumor necrosis of hepatocellular carcinoma after chemoembolization: diffusion‐weighted and contrast‐enhanced MRI with histopathologic correlation of the explanted liver
  publication-title: AJR Am J Roentgenol
– volume: 221
  start-page: 550
  year: 2001
  end-page: 556
  article-title: Diffusion‐tensor MR imaging at 1.5 and 3.0 T: initial observations
  publication-title: Radiology
– volume: 85
  start-page: 301
  year: 2004
  end-page: 306
  article-title: [Diagnosis and quantification of hepatic fibrosis with diffusion weighted MR imaging: preliminary results]
  publication-title: J Radiol
– volume: 210
  start-page: 617
  year: 1999
  end-page: 623
  article-title: Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo‐planar MR imaging
  publication-title: Radiology
– volume: 11
  start-page: 102
  year: 2009
  end-page: 125
  article-title: Diffusion‐weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations
  publication-title: Neoplasia
– volume: 27
  start-page: 1433
  year: 2007
  end-page: 1444; discussion 1462–1464
  article-title: Abdominal MR imaging at 3.0 T
  publication-title: Radiographics
– volume: 61
  start-page: 1269
  year: 2009
  end-page: 1278
  article-title: Modified PROPELLER approach for T2‐mapping of the abdomen
  publication-title: Magn Reson Med
– volume: 251
  start-page: 796
  year: 2009
  end-page: 807
  article-title: T1 hyperintense renal lesions: characterization with diffusion‐weighted MR imaging versus contrast‐enhanced MR imaging
  publication-title: Radiology
– volume: 254
  start-page: 47
  year: 2010
  end-page: 66
  article-title: Diffusion‐weighted MR imaging of the liver
  publication-title: Radiology
– ident: e_1_2_5_35_2
  doi: 10.1148/radiol.2493080080
– ident: e_1_2_5_23_2
  doi: 10.1148/rg.275075023
– ident: e_1_2_5_41_2
  doi: 10.1002/mrm.21525
– ident: e_1_2_5_39_2
– ident: e_1_2_5_21_2
  doi: 10.1148/radiol.09090021
– ident: e_1_2_5_33_2
  doi: 10.1007/s00330-006-0175-8
– ident: e_1_2_5_15_2
  doi: 10.1148/radiol.2513080724
– ident: e_1_2_5_31_2
  doi: 10.1016/S0221-0363(04)97582-8
– ident: e_1_2_5_45_2
  doi: 10.1097/RCT.0b013e3181591cf2
– ident: e_1_2_5_46_2
  doi: 10.2214/AJR.05.0778
– ident: e_1_2_5_3_2
  doi: 10.1002/hep.21747
– ident: e_1_2_5_19_2
  doi: 10.1097/01.RVI.0000200052.02183.92
– ident: e_1_2_5_16_2
  doi: 10.2214/AJR.05.1918
– ident: e_1_2_5_34_2
  doi: 10.1097/RLI.0b013e3181c8ceac
– ident: e_1_2_5_26_2
  doi: 10.1002/jmri.21461
– ident: e_1_2_5_28_2
  doi: 10.1148/radiology.210.3.r99fe17617
– ident: e_1_2_5_22_2
  doi: 10.1148/radiol.2342031323
– ident: e_1_2_5_20_2
  doi: 10.1148/radiol.2512080880
– ident: e_1_2_5_24_2
  doi: 10.1148/radiol.2212001823
– ident: e_1_2_5_37_2
  doi: 10.1002/mrm.21989
– ident: e_1_2_5_38_2
  doi: 10.1002/jmri.10142
– ident: e_1_2_5_7_2
  doi: 10.1148/radiol.2353040554
– ident: e_1_2_5_14_2
  doi: 10.2214/AJR.08.1461
– ident: e_1_2_5_29_2
  doi: 10.1002/jmri.21569
– ident: e_1_2_5_25_2
  doi: 10.1148/radiol.2492071681
– ident: e_1_2_5_40_2
  doi: 10.1148/radiol.2342031626
– ident: e_1_2_5_13_2
  doi: 10.1593/neo.81328
– ident: e_1_2_5_44_2
  doi: 10.1016/j.crad.2006.06.014
– ident: e_1_2_5_27_2
  doi: 10.1016/j.ejrad.2007.09.013
– ident: e_1_2_5_12_2
  doi: 10.1148/radiol.2463070432
– ident: e_1_2_5_17_2
  doi: 10.1002/jmri.21508
– ident: e_1_2_5_47_2
  doi: 10.2214/ajr.183.3.1830677
– ident: e_1_2_5_43_2
  doi: 10.1002/jmri.22156
– ident: e_1_2_5_8_2
  doi: 10.1148/radiol.2493080160
– ident: e_1_2_5_42_2
  doi: 10.1007/s10334-009-0183-1
– ident: e_1_2_5_2_2
  doi: 10.2214/AJR.07.2086
– ident: e_1_2_5_10_2
  doi: 10.1148/radiol.2483071407
– ident: e_1_2_5_30_2
  doi: 10.1002/nbm.1028
– ident: e_1_2_5_48_2
  doi: 10.1002/jmri.20969
– ident: e_1_2_5_9_2
  doi: 10.1148/radiol.2261011904
– ident: e_1_2_5_36_2
  doi: 10.1148/radiol.2303021331
– ident: e_1_2_5_5_2
  doi: 10.1002/jmri.22081
– ident: e_1_2_5_6_2
  doi: 10.1148/radiol.2413060103
– ident: e_1_2_5_4_2
  doi: 10.1002/jmri.21227
– ident: e_1_2_5_11_2
  doi: 10.2214/AJR.06.0601
– ident: e_1_2_5_18_2
  doi: 10.2214/ajr.181.3.1810708
– ident: e_1_2_5_32_2
  doi: 10.1148/radiol.2502080849
SSID ssj0009945
Score 2.4203932
Snippet Purpose To compare single‐shot echo‐planar imaging (SS EPI) diffusion‐weighted MRI (DWI) of abdominal organs between 1.5 Tesla (T) and 3.0T in healthy...
To compare single-shot echo-planar imaging (SS EPI) diffusion-weighted MRI (DWI) of abdominal organs between 1.5 Tesla (T) and 3.0T in healthy volunteers in...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 128
SubjectTerms abdomen
Abdomen - pathology
ADC reproducibility
Adenoma - pathology
Adult
Aged
Aged, 80 and over
apparent diffusion coefficient
Diffusion Magnetic Resonance Imaging - methods
diffusion-weighted imaging
Female
Humans
Image Enhancement - methods
liver
Male
Middle Aged
Pancreatic Neoplasms - pathology
Reproducibility of Results
Sensitivity and Specificity
Title Diffusion-weighted imaging of the abdomen at 3.0 Tesla: Image quality and apparent diffusion coefficient reproducibility compared with 1.5 Tesla
URI https://api.istex.fr/ark:/67375/WNG-95SJMLSH-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.22395
https://www.ncbi.nlm.nih.gov/pubmed/21182130
https://www.proquest.com/docview/821199445
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA6lgvji_bJq5YAiKMx0N5eZifSlqHW7uAV7wb5ISCYZWGtny3YWrU_-BOlP9JeYk-zMUimCwjwMw5lDJnNO8uXk5DuEPEPMUDBnEiOMSLjQMjGZX6VIV-VUVH5GzPC883gnGx7w0aE4XCEb7VmYyA_RBdzQM8J4jQ6uzen6kjT08_FskvrJTeIJc0zWQkS0u-SOkjJUKPb4gSWDop933KR0ffnqhdnoCnbst8ug5kXkGqaerRvkU9vomHFylM4bk5bf_-Bz_N-vukmuLzApbEYjukVWXH2bXB0vdt3vkPM3k6qaY1jt14-fX0Ms1VmYHIcCRzCtwINI0MYimQPoBljah33nbe0VbHshB_Hk5hno2oI-wZz3ugHbKoVy6gKRBT5Fkk3koI1Ju2fQ5sgDBoxhkIqo-S452Hq7_3qYLGo5JCXHirmaSW5kVbiCl5J5zDGwHilTrp1jVaZLiuss4zJrdFYyI3ElRE1Z5sxqIalg98hqPa3dAwJF5QdFKjUrCsEtz2XfZIXNs5zS3A501SMv2n-qygXROdbb-KIiRTNV2MkqdHKPPO1kTyK9x6VSz4NpdCJ6doQJcblQH3feKSn2RuP3e0P1oUegtR3l3RT3XnTtpvNTVSCTnuTc67ofbapTRnGN56FEj7wMlvGXhqjReHc73D38F-FH5FoMheP1mKw2s7lb81iqMU-Cz_wG4tobBw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELZgk4Av43Wj480SCAmkZK1fkphvCBhtaSqxddq-WXbsSGUsnbpUMD7xExA_kV-Cz05TDU1IIOVDFF1OiXMXP3c-P4fQM8AMGbU60lzziHElIp24KEXYMiW8dDNiAvud83HSP2DDI37U1ObAXpjAD9Em3MAz_P8aHBwS0jsr1tBPJ_Np7GY3wa-idWjp7SOqvRV7lBC-R7FDEDTqZd20ZSclO6t7L8xH6zC0Xy8Dmxexq598dm-GDqtnnrMQak6O40Wt4-LbH4yO__1et9BGA0vx62BHt9EVW91B1_Jm4f0u-vl2WpYLyKz9-v7ji0-nWoOnJ77HEZ6V2OFIrLQBPgesakzjLp5YZ26v8MAJWRw2b55jVRmsTqHsvaqxWSrFxcx6Lgu4CjybQEMb6nbP8bJMHkPOGPdiHjTfQwe77yZv-lHTziEqGDTNVVQwLcrMZqwQ1MGOnnFgmTBlLS0TVRAItbRNjFZJQbWAYIjookipUVwQTjfRWjWr7H2Es9L9F4lQNMs4MywVXZ1kJk1SQlLTU2UHvVh-VFk0XOfQcuOzDCzNRMIgSz_IHfS0lT0NDB-XSj33ttGKqPkx1MSlXB6O30vB94f5aL8vP3YQXhqPdJ4Kyy-qsrPFmcyATE8w5nRtBaNqlREI8xya6KCX3jT-8iBymO8N_Nn2vwg_Qdf7k3wkR4PxhwfoRsiMw_EQrdXzhX3koFWtH3sH-g13dx8i
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7rLiy-eL-M14AiKLQ7k0ubiC_iOM6MO4Puhd0XCUmTwuylM4wddH3yJ4g_0V9iTjrtsLIICn0o5TSk6TnJd05OvoPQU8AMgjoTGW54xLiWkUm8lyJdnhKe-xUxgfPOo3HS32fDQ364hl7VZ2Eqfogm4AaWEeZrMPCZzbdWpKFHp_NJ7Bc3yS-hDZa0Beh0d2dFHiVlKFHsAQSNOqKdNuSkZGv17rnlaANG9utFWPM8dA1rT-8q-lT3uko5OY4XpYmzb38QOv7vZ11DV5agFL-utOg6WnPFDbQ5Wm6730Q_u5M8X0Bc7df3H19CMNVZPDkNFY7wNMceRWJtLLA5YF1iGrfxnvPK9hIPvJDD1dHNM6wLi_UMkt6LEtu6UZxNXWCygKfAsgkktFXW7hmuk-QxRIxxJ-ZVy7fQfu_t3pt-tCzmEGUMSuZqKpmRuXCCZZJ60NGxHioTpp2jeaIzAo6WcYk1OsmokeAKEZNlKbWaS8LpbbReTAt3F2GR-1mRSE2F4MyyVLZNImyapISktqPzFnpe_1OVLZnOoeDGiao4momCQVZhkFvoSSM7q_g9LpR6FlSjEdHzY8iIS7k6GL9Tku8OR9u7ffWxhXCtO8rbKWy-6MJNF5-VACo9yZhv606lU01jBJw8jyVa6EXQjL90RA1HO4Nwd-9fhB-jzQ_dntoejN_fR5ersDhcD9B6OV-4hx5XleZRMJ_fJt8d2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diffusion-weighted+imaging+of+the+abdomen+at+3.0+Tesla%3A+Image+quality+and+apparent+diffusion+coefficient+reproducibility+compared+with+1.5+Tesla&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Rosenkrantz%2C+Andrew+B.&rft.au=Oei%2C+Marcel&rft.au=Babb%2C+James+S.&rft.au=Niver%2C+Benjamin+E.&rft.date=2011-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=33&rft.issue=1&rft.spage=128&rft.epage=135&rft_id=info:doi/10.1002%2Fjmri.22395&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_95SJMLSH_Q
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon