Diffusion-weighted imaging of the abdomen at 3.0 Tesla: Image quality and apparent diffusion coefficient reproducibility compared with 1.5 Tesla
Purpose To compare single‐shot echo‐planar imaging (SS EPI) diffusion‐weighted MRI (DWI) of abdominal organs between 1.5 Tesla (T) and 3.0T in healthy volunteers in terms of image quality, apparent diffusion coefficient (ADC) values, and ADC reproducibility. Materials and Methods Eight healthy volun...
Saved in:
Published in | Journal of magnetic resonance imaging Vol. 33; no. 1; pp. 128 - 135 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.01.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
To compare single‐shot echo‐planar imaging (SS EPI) diffusion‐weighted MRI (DWI) of abdominal organs between 1.5 Tesla (T) and 3.0T in healthy volunteers in terms of image quality, apparent diffusion coefficient (ADC) values, and ADC reproducibility.
Materials and Methods
Eight healthy volunteers were prospectively imaged in this HIPAA‐compliant IRB‐approved study. Each subject underwent two consecutive scans at both 1.5 and 3.0T, which included breathhold and free‐breathing DWI using a wide range of b‐values (0 to 800 s/mm2). A blinded observer rated subjective image quality (maximum score= 8), and a separate observer placed regions of interest within the liver, renal cortices, pancreas, and spleen to measure ADC at each field strength. Paired Wilcoxon tests were used to compare abdominal DWI between 1.5T and 3.0T for specific combinations of organs, b‐values, and acquisition techniques.
Results
Subjective image quality was significantly lower at 3.0T for all comparisons (P = 0.0078– 0.0156). ADC values were similar at 1.5T and 3.0T for all assessed organs, except for lower liver ADC at 3.0T using b0‐500‐600 and breathhold technique. ADC reproducibility was moderate at both 1.5T and 3.0T, with no significant difference in coefficient of variation of ADC between field strengths.
Conclusion
Compared with 1.5T, SS EPI at 3.0T provided generally similar ADC values, however, with worse image quality. Further optimization of abdominal DWI at 3.0T is needed. J. Magn. Reson. Imaging 2011;33:128–135. © 2010 Wiley‐Liss, Inc. |
---|---|
AbstractList | To compare single-shot echo-planar imaging (SS EPI) diffusion-weighted MRI (DWI) of abdominal organs between 1.5 Tesla (T) and 3.0T in healthy volunteers in terms of image quality, apparent diffusion coefficient (ADC) values, and ADC reproducibility.PURPOSETo compare single-shot echo-planar imaging (SS EPI) diffusion-weighted MRI (DWI) of abdominal organs between 1.5 Tesla (T) and 3.0T in healthy volunteers in terms of image quality, apparent diffusion coefficient (ADC) values, and ADC reproducibility.Eight healthy volunteers were prospectively imaged in this HIPAA-compliant IRB-approved study. Each subject underwent two consecutive scans at both 1.5 and 3.0T, which included breathhold and free-breathing DWI using a wide range of b-values (0 to 800 s/mm²). A blinded observer rated subjective image quality (maximum score= 8), and a separate observer placed regions of interest within the liver, renal cortices, pancreas, and spleen to measure ADC at each field strength. Paired Wilcoxon tests were used to compare abdominal DWI between 1.5T and 3.0T for specific combinations of organs, b-values, and acquisition techniques.MATERIALS AND METHODSEight healthy volunteers were prospectively imaged in this HIPAA-compliant IRB-approved study. Each subject underwent two consecutive scans at both 1.5 and 3.0T, which included breathhold and free-breathing DWI using a wide range of b-values (0 to 800 s/mm²). A blinded observer rated subjective image quality (maximum score= 8), and a separate observer placed regions of interest within the liver, renal cortices, pancreas, and spleen to measure ADC at each field strength. Paired Wilcoxon tests were used to compare abdominal DWI between 1.5T and 3.0T for specific combinations of organs, b-values, and acquisition techniques.Subjective image quality was significantly lower at 3.0T for all comparisons (P = 0.0078- 0.0156). ADC values were similar at 1.5T and 3.0T for all assessed organs, except for lower liver ADC at 3.0T using b0-500-600 and breathhold technique. ADC reproducibility was moderate at both 1.5T and 3.0T, with no significant difference in coefficient of variation of ADC between field strengths.RESULTSSubjective image quality was significantly lower at 3.0T for all comparisons (P = 0.0078- 0.0156). ADC values were similar at 1.5T and 3.0T for all assessed organs, except for lower liver ADC at 3.0T using b0-500-600 and breathhold technique. ADC reproducibility was moderate at both 1.5T and 3.0T, with no significant difference in coefficient of variation of ADC between field strengths.Compared with 1.5T, SS EPI at 3.0T provided generally similar ADC values, however, with worse image quality. Further optimization of abdominal DWI at 3.0T is needed.CONCLUSIONCompared with 1.5T, SS EPI at 3.0T provided generally similar ADC values, however, with worse image quality. Further optimization of abdominal DWI at 3.0T is needed. Purpose To compare single‐shot echo‐planar imaging (SS EPI) diffusion‐weighted MRI (DWI) of abdominal organs between 1.5 Tesla (T) and 3.0T in healthy volunteers in terms of image quality, apparent diffusion coefficient (ADC) values, and ADC reproducibility. Materials and Methods Eight healthy volunteers were prospectively imaged in this HIPAA‐compliant IRB‐approved study. Each subject underwent two consecutive scans at both 1.5 and 3.0T, which included breathhold and free‐breathing DWI using a wide range of b‐values (0 to 800 s/mm2). A blinded observer rated subjective image quality (maximum score= 8), and a separate observer placed regions of interest within the liver, renal cortices, pancreas, and spleen to measure ADC at each field strength. Paired Wilcoxon tests were used to compare abdominal DWI between 1.5T and 3.0T for specific combinations of organs, b‐values, and acquisition techniques. Results Subjective image quality was significantly lower at 3.0T for all comparisons (P = 0.0078– 0.0156). ADC values were similar at 1.5T and 3.0T for all assessed organs, except for lower liver ADC at 3.0T using b0‐500‐600 and breathhold technique. ADC reproducibility was moderate at both 1.5T and 3.0T, with no significant difference in coefficient of variation of ADC between field strengths. Conclusion Compared with 1.5T, SS EPI at 3.0T provided generally similar ADC values, however, with worse image quality. Further optimization of abdominal DWI at 3.0T is needed. J. Magn. Reson. Imaging 2011;33:128–135. © 2010 Wiley‐Liss, Inc. To compare single-shot echo-planar imaging (SS EPI) diffusion-weighted MRI (DWI) of abdominal organs between 1.5 Tesla (T) and 3.0T in healthy volunteers in terms of image quality, apparent diffusion coefficient (ADC) values, and ADC reproducibility. Eight healthy volunteers were prospectively imaged in this HIPAA-compliant IRB-approved study. Each subject underwent two consecutive scans at both 1.5 and 3.0T, which included breathhold and free-breathing DWI using a wide range of b-values (0 to 800 s/mm²). A blinded observer rated subjective image quality (maximum score= 8), and a separate observer placed regions of interest within the liver, renal cortices, pancreas, and spleen to measure ADC at each field strength. Paired Wilcoxon tests were used to compare abdominal DWI between 1.5T and 3.0T for specific combinations of organs, b-values, and acquisition techniques. Subjective image quality was significantly lower at 3.0T for all comparisons (P = 0.0078- 0.0156). ADC values were similar at 1.5T and 3.0T for all assessed organs, except for lower liver ADC at 3.0T using b0-500-600 and breathhold technique. ADC reproducibility was moderate at both 1.5T and 3.0T, with no significant difference in coefficient of variation of ADC between field strengths. Compared with 1.5T, SS EPI at 3.0T provided generally similar ADC values, however, with worse image quality. Further optimization of abdominal DWI at 3.0T is needed. |
Author | Rosenkrantz, Andrew B. Oei, Marcel Niver, Benjamin E. Taouli, Bachir Babb, James S. |
Author_xml | – sequence: 1 givenname: Andrew B. surname: Rosenkrantz fullname: Rosenkrantz, Andrew B. organization: NYU Langone Medical Center, Department of Radiology, New York, NY, USA – sequence: 2 givenname: Marcel surname: Oei fullname: Oei, Marcel organization: NYU Langone Medical Center, Department of Radiology, New York, NY, USA – sequence: 3 givenname: James S. surname: Babb fullname: Babb, James S. organization: NYU Langone Medical Center, Department of Radiology, New York, NY, USA – sequence: 4 givenname: Benjamin E. surname: Niver fullname: Niver, Benjamin E. organization: NYU Langone Medical Center, Department of Radiology, New York, NY, USA – sequence: 5 givenname: Bachir surname: Taouli fullname: Taouli, Bachir email: bachir.taouli@mountsinai.org organization: NYU Langone Medical Center, Department of Radiology, New York, NY, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21182130$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctu1DAYhS1URC-w4QGQd0hIGXyJc2GHSi9TTamgRSwtx_4z45LEU9vRdN6ij0zSdLpAqCtb1vcdWeccor3OdYDQe0pmlBD2-bb1dsYYL8UrdEAFYwkTRbY33IngCS1Ivo8OQ7glhJRlKt6gfUZpwSgnB-jhm63rPljXJRuwy1UEg22rlrZbYlfjuAKsKuNa6LCKmM8IvoHQqC94PkCA73rV2LjFqjNYrdfKQxex2UVi7aCurbbjq4e1d6bXtrKPinbtyBu8sXGF6UxMyW_R61o1Ad49nUfo1-nJzfF5srg6mx9_XSQ6JUwkipdpVdYFFKkuOaWEmoIalioAXmdKM5rRvILMVCrTvCpZygSrtM65UaJkgh-hj1Pu8Ku7HkKUrQ0amkZ14Pogh37o0FY6kh-eyL5qwci1HwryW7krcQA-TYD2LgQP9TNCiRwXkuNC8nGhASb_wNpGFYe2ole2-b9CJ2VjG9i-EC4vLn_Od04yOTZEuH92lP8js5znQv7-fiZLcX1xubg-lz_4XysXs6c |
CitedBy_id | crossref_primary_10_1038_s41598_017_14625_0 crossref_primary_10_4254_wjh_v9_i26_1081 crossref_primary_10_1002_jmri_25456 crossref_primary_10_1016_j_jhep_2017_07_030 crossref_primary_10_1016_j_diii_2012_12_007 crossref_primary_10_1016_j_crad_2013_11_017 crossref_primary_10_1038_srep30353 crossref_primary_10_1007_s00261_021_03055_2 crossref_primary_10_1111_liv_13058 crossref_primary_10_1177_02841851241313021 crossref_primary_10_3390_diagnostics9030107 crossref_primary_10_1016_j_clineuro_2012_10_021 crossref_primary_10_1016_j_ejrad_2019_06_021 crossref_primary_10_1007_s00261_014_0196_8 crossref_primary_10_1016_j_crad_2014_01_004 crossref_primary_10_1186_s40644_018_0173_5 crossref_primary_10_2214_AJR_12_9563 crossref_primary_10_1007_s00247_021_05076_x crossref_primary_10_1097_RLI_0000000000000639 crossref_primary_10_1002_jmri_27590 crossref_primary_10_1371_journal_pone_0032613 crossref_primary_10_1002_jmri_23784 crossref_primary_10_1002_jmri_27589 crossref_primary_10_1097_RCT_0000000000000572 crossref_primary_10_1259_bjr_20150294 crossref_primary_10_1002_mp_15970 crossref_primary_10_1016_j_crad_2012_11_006 crossref_primary_10_1016_j_clinimag_2014_10_018 crossref_primary_10_1002_jmri_23947 crossref_primary_10_18632_oncotarget_25279 crossref_primary_10_18632_oncotarget_24981 crossref_primary_10_1016_j_jradio_2012_09_013 crossref_primary_10_1097_RCT_0b013e3182720e07 crossref_primary_10_1016_j_ejro_2021_100386 crossref_primary_10_1007_s00261_023_03942_w crossref_primary_10_1007_s40134_013_0014_z crossref_primary_10_1016_j_acra_2011_09_009 crossref_primary_10_1016_j_radonc_2022_06_011 crossref_primary_10_2214_AJR_14_14089 crossref_primary_10_4254_wjh_v7_i15_1894 crossref_primary_10_1097_RLI_0000000000000801 crossref_primary_10_3748_wjg_v30_i9_1164 crossref_primary_10_1016_j_ejro_2016_07_001 crossref_primary_10_1016_j_clinimag_2020_01_007 crossref_primary_10_1007_s00261_019_02189_8 crossref_primary_10_1148_radiol_14130778 crossref_primary_10_1007_s00330_023_10381_0 crossref_primary_10_1016_j_diii_2013_02_011 crossref_primary_10_1016_j_ejro_2015_08_001 crossref_primary_10_1097_RCT_0000000000000403 crossref_primary_10_1158_1078_0432_CCR_14_2454 crossref_primary_10_1177_0284185113513760 crossref_primary_10_1002_jmri_27090 crossref_primary_10_1097_RMR_0000000000000144 crossref_primary_10_1016_j_mric_2014_04_009 crossref_primary_10_1016_j_clinre_2011_05_001 crossref_primary_10_1371_journal_pone_0189897 crossref_primary_10_1186_s41747_017_0031_4 crossref_primary_10_1097_RLI_0000000000000218 crossref_primary_10_1259_dmfr_20230140 crossref_primary_10_1007_s00259_013_2351_9 crossref_primary_10_1097_IGC_0000000000000124 crossref_primary_10_1097_RLI_0000000000000596 crossref_primary_10_1016_j_rcl_2012_09_012 crossref_primary_10_1148_radiol_13130819 crossref_primary_10_1002_jmri_24538 crossref_primary_10_1007_s00234_021_02863_z crossref_primary_10_1016_j_pan_2012_03_057 crossref_primary_10_1038_nrurol_2011_222 crossref_primary_10_3892_ol_2018_9037 crossref_primary_10_1016_j_nicl_2017_06_013 crossref_primary_10_1016_j_crad_2019_07_003 crossref_primary_10_3390_diagnostics13243654 crossref_primary_10_1007_s00261_020_02538_y crossref_primary_10_1148_rg_2019180123 crossref_primary_10_1007_s00330_013_3008_6 crossref_primary_10_1186_s40644_020_00346_7 crossref_primary_10_1016_j_ejrad_2018_11_014 crossref_primary_10_1002_jmri_24492 crossref_primary_10_1007_s00330_015_4174_5 crossref_primary_10_1016_j_diii_2018_03_004 crossref_primary_10_1007_s00330_015_3716_1 crossref_primary_10_1158_1078_0432_CCR_13_3355 crossref_primary_10_3390_bioengineering10010083 crossref_primary_10_1007_s10334_013_0375_6 crossref_primary_10_1186_s40644_021_00423_5 crossref_primary_10_1007_s00414_017_1685_4 crossref_primary_10_1016_j_radonc_2023_109677 crossref_primary_10_1007_s00330_013_2869_z crossref_primary_10_4236_ojmi_2013_31005 crossref_primary_10_1002_jmri_25539 crossref_primary_10_1002_mrm_26128 crossref_primary_10_1007_s00261_011_9737_6 crossref_primary_10_1148_radiol_2015151244 crossref_primary_10_1097_RCT_0000000000000702 crossref_primary_10_1038_s41598_019_41344_5 crossref_primary_10_1002_jmri_24285 crossref_primary_10_1007_s00330_020_07234_5 crossref_primary_10_1016_j_crad_2014_10_006 crossref_primary_10_1007_s00330_012_2469_3 crossref_primary_10_1002_jmri_26730 crossref_primary_10_1016_j_jacr_2013_05_016 crossref_primary_10_1155_2017_3805073 crossref_primary_10_1002_jmri_24397 crossref_primary_10_1177_0284185115610934 crossref_primary_10_1053_j_sult_2016_08_009 crossref_primary_10_1002_jmri_28876 crossref_primary_10_1016_j_ejrad_2020_109230 crossref_primary_10_1155_2013_219297 crossref_primary_10_1002_mrm_26072 crossref_primary_10_1016_j_ejrad_2019_108775 crossref_primary_10_3348_kjr_2018_19_3_389 crossref_primary_10_1002_jmri_24833 crossref_primary_10_1007_s11604_012_0105_4 crossref_primary_10_1007_s00261_022_03549_7 crossref_primary_10_1016_j_ejrad_2013_11_016 crossref_primary_10_1148_rg_343135047 crossref_primary_10_1186_s40644_019_0216_6 crossref_primary_10_1016_j_crad_2014_06_017 crossref_primary_10_1016_j_crad_2014_12_007 crossref_primary_10_1007_s00261_020_02916_6 crossref_primary_10_1371_journal_pone_0086280 crossref_primary_10_1002_pros_22764 crossref_primary_10_1007_s00261_023_04179_3 crossref_primary_10_1016_j_rcl_2015_01_002 crossref_primary_10_1097_MD_0000000000005910 crossref_primary_10_1007_s00247_013_2626_0 crossref_primary_10_1016_S1470_2045_15_00164_3 crossref_primary_10_2478_raon_2019_0021 crossref_primary_10_1016_j_crad_2014_04_004 crossref_primary_10_1007_s00330_019_06113_y crossref_primary_10_1002_jmri_25277 crossref_primary_10_1007_s10334_021_00932_1 crossref_primary_10_1016_j_acra_2014_01_005 crossref_primary_10_1177_0284185118786063 crossref_primary_10_5114_pjr_2018_79651 crossref_primary_10_4329_wjr_v8_i9_785 crossref_primary_10_1016_j_rcl_2014_02_018 crossref_primary_10_1002_lt_23502 crossref_primary_10_1007_s00261_014_0215_9 crossref_primary_10_1097_MD_0000000000015104 crossref_primary_10_1371_journal_pone_0253025 crossref_primary_10_1148_radiol_12112765 crossref_primary_10_1016_j_jradio_2012_10_008 crossref_primary_10_7759_cureus_15734 crossref_primary_10_3390_diagnostics14202268 crossref_primary_10_1097_RLI_0000000000000812 crossref_primary_10_1002_jmri_23765 crossref_primary_10_1002_jmri_24337 crossref_primary_10_1186_s13244_019_0690_1 crossref_primary_10_2463_mrms_mp_2015_0161 crossref_primary_10_1002_pros_24833 crossref_primary_10_1007_s00330_014_3201_2 crossref_primary_10_1097_IGC_0000000000000445 crossref_primary_10_1002_jmri_22671 crossref_primary_10_1007_s11547_014_0479_8 crossref_primary_10_1186_s13244_022_01350_0 crossref_primary_10_4236_ojrad_2014_44037 crossref_primary_10_1007_s00261_020_02718_w crossref_primary_10_1186_s13244_022_01290_9 crossref_primary_10_3348_kjr_2016_17_2_209 crossref_primary_10_1016_j_ejrad_2012_01_032 crossref_primary_10_1038_s41598_023_38360_x crossref_primary_10_1186_s40792_017_0414_z crossref_primary_10_1002_jmri_28097 crossref_primary_10_1007_s00261_018_1467_6 crossref_primary_10_38175_phnx_806582 crossref_primary_10_1016_j_clinimag_2021_11_033 crossref_primary_10_2214_AJR_14_13930 crossref_primary_10_1097_RMR_0b013e31822a3294 crossref_primary_10_2463_mrms_2013_0038 |
Cites_doi | 10.1148/radiol.2493080080 10.1148/rg.275075023 10.1002/mrm.21525 10.1148/radiol.09090021 10.1007/s00330-006-0175-8 10.1148/radiol.2513080724 10.1016/S0221-0363(04)97582-8 10.1097/RCT.0b013e3181591cf2 10.2214/AJR.05.0778 10.1002/hep.21747 10.1097/01.RVI.0000200052.02183.92 10.2214/AJR.05.1918 10.1097/RLI.0b013e3181c8ceac 10.1002/jmri.21461 10.1148/radiology.210.3.r99fe17617 10.1148/radiol.2342031323 10.1148/radiol.2512080880 10.1148/radiol.2212001823 10.1002/mrm.21989 10.1002/jmri.10142 10.1148/radiol.2353040554 10.2214/AJR.08.1461 10.1002/jmri.21569 10.1148/radiol.2492071681 10.1148/radiol.2342031626 10.1593/neo.81328 10.1016/j.crad.2006.06.014 10.1016/j.ejrad.2007.09.013 10.1148/radiol.2463070432 10.1002/jmri.21508 10.2214/ajr.183.3.1830677 10.1002/jmri.22156 10.1148/radiol.2493080160 10.1007/s10334-009-0183-1 10.2214/AJR.07.2086 10.1148/radiol.2483071407 10.1002/nbm.1028 10.1002/jmri.20969 10.1148/radiol.2261011904 10.1148/radiol.2303021331 10.1002/jmri.22081 10.1148/radiol.2413060103 10.1002/jmri.21227 10.2214/AJR.06.0601 10.2214/ajr.181.3.1810708 10.1148/radiol.2502080849 |
ContentType | Journal Article |
Copyright | Copyright © 2010 Wiley‐Liss, Inc. Copyright © 2010 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2010 Wiley‐Liss, Inc. – notice: Copyright © 2010 Wiley-Liss, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/jmri.22395 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1522-2586 |
EndPage | 135 |
ExternalDocumentID | 21182130 10_1002_jmri_22395 JMRI22395 ark_67375_WNG_95SJMLSH_Q |
Genre | article Evaluation Studies Journal Article Comparative Study |
GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c4025-a394b9f8e84c931101d81d24aee3f6ac21617be6dba6c3b924252bcc73da59253 |
IEDL.DBID | DR2 |
ISSN | 1053-1807 1522-2586 |
IngestDate | Fri Jul 11 01:45:52 EDT 2025 Mon Jul 21 05:38:00 EDT 2025 Tue Jul 01 01:41:24 EDT 2025 Thu Apr 24 23:07:44 EDT 2025 Wed Jan 22 16:20:46 EST 2025 Wed Oct 30 10:00:03 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2010 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4025-a394b9f8e84c931101d81d24aee3f6ac21617be6dba6c3b924252bcc73da59253 |
Notes | istex:EBA6268CFAEC27E7BEA7A869BA1CFCBB4113B0AD ark:/67375/WNG-95SJMLSH-Q ArticleID:JMRI22395 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.22395 |
PMID | 21182130 |
PQID | 821199445 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_821199445 pubmed_primary_21182130 crossref_primary_10_1002_jmri_22395 crossref_citationtrail_10_1002_jmri_22395 wiley_primary_10_1002_jmri_22395_JMRI22395 istex_primary_ark_67375_WNG_95SJMLSH_Q |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-01 January 2011 2011-01-00 2011-Jan 20110101 |
PublicationDateYYYYMMDD | 2011-01-01 |
PublicationDate_xml | – month: 01 year: 2011 text: 2011-01 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Journal of magnetic resonance imaging |
PublicationTitleAlternate | J. Magn. Reson. Imaging |
PublicationYear | 2011 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Dale BM, Braithwaite AC, Boll DT, Merkle EM. Field strength and diffusion encoding technique affect the apparent diffusion coefficient measurements in diffusion-weighted imaging of the abdomen. Invest Radiol 2010; 45: 104-108. Luciani A, Vignaud A, Cavet M, et al. Liver cirrhosis: intravoxel incoherent motion MR imaging--pilot study. Radiology 2008; 249: 891-899. de Bazelaire CM, Duhamel GD, Rofsky NM, Alsop DC. MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 2004; 230: 652-659. Oner AY, Celik H, Oktar SO, Tali T. Single breath-hold diffusion-weighted MRI of the liver with parallel imaging: initial experience. Clin Radiol 2006; 61: 959-965. Thoeny HC, Zumstein D, Simon-Zoula S, et al. Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. Radiology 2006; 241: 812-821. Kuhl CK, Gieseke J, von Falkenhausen M, et al. Sensitivity encoding for diffusion-weighted MR imaging at 3.0 T: intraindividual comparative study. Radiology 2005; 234: 517-526. Koh DM, Scurr E, Collins D, et al. Predicting response of colorectal hepatic metastasis: value of pretreatment apparent diffusion coefficients. AJR Am J Roentgenol 2007; 188: 1001-1008. Mannelli L, Kim S, Hajdu CH, Babb JS, Clark TW, Taouli B. Assessment of tumor necrosis of hepatocellular carcinoma after chemoembolization: diffusion-weighted and contrast-enhanced MRI with histopathologic correlation of the explanted liver. AJR Am J Roentgenol 2009; 193: 1044-1052. Sasaki M, Yamada K, Watanabe Y, et al. Variability in absolute apparent diffusion coefficient values across different platforms may be substantial: a multivendor, multi-institutional comparison study. Radiology 2008; 249: 624-630. Binser T, Thoeny HC, Eisenberger U, Stemmer A, Boesch C, Vermathen P. Comparison of physiological triggering schemes for diffusion-weighted magnetic resonance imaging in kidneys. J Magn Reson Imaging 2010; 31: 1144-1150. Padhani AR, Liu G, Koh DM, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 2009; 11: 102-125. Braithwaite AC, Dale BM, Boll DT, Merkle EM. Short- and midterm reproducibility of apparent diffusion coefficient measurements at 3.0-T diffusion-weighted imaging of the abdomen. Radiology 2009; 250: 459-465. Akisik MF, Aisen AM, Sandrasegaran K, et al. Assessment of chronic pancreatitis: utility of diffusion-weighted MR imaging with secretin enhancement. Radiology 2009; 250: 103-109. Cui Y, Zhang XP, Sun YS, Tang L, Shen L. Apparent diffusion coefficient: potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastases. Radiology 2008; 248: 894-900. Ichikawa T, Erturk SM, Motosugi U, et al. High-b value diffusion-weighted MRI for detecting pancreatic adenocarcinoma: preliminary results. AJR Am J Roentgenol 2007; 188: 409-414. Yamada I, Aung W, Himeno Y, Nakagawa T, Shibuya H. Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology 1999; 210: 617-623. Coenegrachts K, Delanote J, Ter Beek L, et al. Evaluation of true diffusion, perfusion factor, and apparent diffusion coefficient in non-necrotic liver metastases and uncomplicated liver hemangiomas using black-blood echo planar imaging. Eur J Radiol 2009; 69: 131-138. Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO. Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 2007; 26: 375-385. Kwee TC, Takahara T, Koh DM, Nievelstein RA, Luijten PR. Comparison and reproducibility of ADC measurements in breathhold, respiratory triggered, and free-breathing diffusion-weighted MR imaging of the liver. J Magn Reson Imaging 2008; 28: 1141-1148. Altbach MI, Outwater EK, Trouard TP, et al. Radial fast spin-echo method for T2-weighted imaging and T2 mapping of the liver. J Magn Reson Imaging 2002; 16: 179-189. Deng J, Omary RA, Larson AC. Multishot diffusion-weighted SPLICE PROPELLER MRI of the abdomen. Magn Reson Med 2008; 59: 947-953. Kwee TC, Takahara T, Niwa T, et al. Influence of cardiac motion on diffusion-weighted magnetic resonance imaging of the liver. Magma 2009; 22: 319-325. Hollingsworth KG, Lomas DJ. Influence of perfusion on hepatic MR diffusion measurement. NMR Biomed 2006; 19: 231-235. Kim S, Jain M, Harris AB, et al. T1 hyperintense renal lesions: characterization with diffusion-weighted MR imaging versus contrast-enhanced MR imaging. Radiology 2009; 251: 796-807. Yoshikawa T, Kawamitsu H, Mitchell DG, et al. ADC measurement of abdominal organs and lesions using parallel imaging technique. AJR Am J Roentgenol 2006; 187: 1521-1530. Parikh T, Drew SJ, Lee VS, et al. Focal liver lesion detection and characterization with diffusion-weighted MR imaging: comparison with standard breath-hold T2-weighted imaging. Radiology 2008; 246: 812-822. Lee SS, Byun JH, Park BJ, et al. Quantitative analysis of diffusion-weighted magnetic resonance imaging of the pancreas: usefulness in characterizing solid pancreatic masses. J Magn Reson Imaging 2008; 28: 928-936. Akisik FM, Sandrasegaran K, Aisen AM, Lin C, Lall C. Abdominal MR imaging at 3.0 T. Radiographics 2007; 27: 1433-1444; discussion 1462-1464. Girometti R, Furlan A, Esposito G, et al. Relevance of b-values in evaluating liver fibrosis: a study in healthy and cirrhotic subjects using two single-shot spin-echo echo-planar diffusion-weighted sequences. J Magn Reson Imaging 2008; 28: 411-419. Taouli B, Vilgrain V, Dumont E, Daire JL, Fan B, Menu Y. Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology 2003; 226: 71-78. Deng J, Larson AC. Modified PROPELLER approach for T2-mapping of the abdomen. Magn Reson Med 2009; 61: 1269-1278. Taouli B, Tolia AJ, Losada M, et al. Diffusion-weighted MRI for quantification of liver fibrosis: preliminary experience. AJR Am J Roentgenol 2007; 189: 799-806. Lewin M, Poujol-Robert A, Boelle PY, et al. Diffusion-weighted magnetic resonance imaging for the assessment of fibrosis in chronic hepatitis C. HEPATOLOGY 2007; 46: 658-665. Aube C, Racineux PX, Lebigot J, et al. [Diagnosis and quantification of hepatic fibrosis with diffusion weighted MR imaging: preliminary results]. J Radiol 2004; 85: 301-306. Taouli B, Martin AJ, Qayyum A, et al. Parallel imaging and diffusion tensor imaging for diffusion-weighted MRI of the liver: preliminary experience in healthy volunteers. AJR Am J Roentgenol 2004; 183: 677-680. Erturk SM, Ichikawa T, Sano K, Motosugi U, Sou H, Araki T. Diffusion-weighted magnetic resonance imaging for characterization of focal liver masses: impact of parallel imaging (SENSE) and b value. J Comput Assist Tomogr 2008; 32: 865-871. Taouli B, Chouli M, Martin AJ, Qayyum A, Coakley FV, Vilgrain V. Chronic hepatitis: role of diffusion-weighted imaging and diffusion tensor imaging for the diagnosis of liver fibrosis and inflammation. J Magn Reson Imaging 2008; 28: 89-95. Hunsche S, Moseley ME, Stoeter P, Hedehus M. Diffusion-tensor MR imaging at 1.5 and 3.0 T: initial observations. Radiology 2001; 221: 550-556. Kamel IR, Bluemke DA, Ramsey D, et al. Role of diffusion-weighted imaging in estimating tumor necrosis after chemoembolization of hepatocellular carcinoma. AJR Am J Roentgenol 2003; 181: 708-710. Patel J, Sigmund EE, Rusinek H, Oei M, Babb JS, Taouli B. Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience. J Magn Reson Imaging 2010; 31: 589-600. Kamel IR, Bluemke DA, Eng J, et al. The role of functional MR imaging in the assessment of tumor response after chemoembolization in patients with hepatocellular carcinoma. J Vasc Interv Radiol 2006; 17: 505-512. Thoeny HC, De Keyzer F, Oyen RH, Peeters RR. Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology 2005; 235: 911-917. Kuhl CK, Textor J, Gieseke J, et al. Acute and subacute ischemic stroke at high-field-strength (3.0-T) diffusion-weighted MR imaging: intraindividual comparative study. Radiology 2005; 234: 509-516. Taouli B, Thakur RK, Mannelli L, et al. Renal lesions: characterization with diffusion-weighted imaging versus contrast-enhanced MR imaging. Radiology 2009; 251: 398-407. Taouli B, Koh DM. Diffusion-weighted MR imaging of the liver. Radiology 2010; 254: 47-66. Huisman TA, Loenneker T, Barta G, et al. Quantitative diffusion tensor MR imaging of the brain: field strength related variance of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) scalars. Eur Radiol 2006; 16: 1651-1658. 2001; 221 2002; 16 2009; 22 2007; 189 2009; 69 2004; 85 2010; 31 2009; 61 2010 2005; 234 2005; 235 2006; 16 2007; 188 2006; 17 2004; 183 2008; 59 2008; 249 2006; 19 2008; 248 2008; 32 2009; 250 2008; 246 2009; 251 2010; 45 2009; 11 2004; 230 2006; 61 2003; 226 2009; 193 2008; 28 2010; 254 2006; 187 2006; 241 2003; 181 1999; 210 2007; 46 2007; 26 2007; 27 e_1_2_5_26_2 e_1_2_5_27_2 e_1_2_5_48_2 e_1_2_5_24_2 e_1_2_5_47_2 e_1_2_5_25_2 e_1_2_5_46_2 e_1_2_5_22_2 e_1_2_5_45_2 e_1_2_5_23_2 e_1_2_5_44_2 e_1_2_5_20_2 e_1_2_5_43_2 e_1_2_5_21_2 e_1_2_5_42_2 e_1_2_5_28_2 e_1_2_5_29_2 e_1_2_5_41_2 e_1_2_5_40_2 e_1_2_5_14_2 e_1_2_5_37_2 e_1_2_5_13_2 e_1_2_5_38_2 e_1_2_5_9_2 e_1_2_5_16_2 e_1_2_5_35_2 e_1_2_5_8_2 e_1_2_5_15_2 e_1_2_5_36_2 e_1_2_5_7_2 e_1_2_5_10_2 e_1_2_5_33_2 e_1_2_5_6_2 e_1_2_5_34_2 e_1_2_5_5_2 e_1_2_5_12_2 e_1_2_5_31_2 e_1_2_5_4_2 e_1_2_5_11_2 e_1_2_5_32_2 e_1_2_5_3_2 e_1_2_5_2_2 e_1_2_5_18_2 e_1_2_5_17_2 e_1_2_5_39_2 e_1_2_5_19_2 e_1_2_5_30_2 |
References_xml | – reference: Taouli B, Tolia AJ, Losada M, et al. Diffusion-weighted MRI for quantification of liver fibrosis: preliminary experience. AJR Am J Roentgenol 2007; 189: 799-806. – reference: Akisik MF, Aisen AM, Sandrasegaran K, et al. Assessment of chronic pancreatitis: utility of diffusion-weighted MR imaging with secretin enhancement. Radiology 2009; 250: 103-109. – reference: Kamel IR, Bluemke DA, Ramsey D, et al. Role of diffusion-weighted imaging in estimating tumor necrosis after chemoembolization of hepatocellular carcinoma. AJR Am J Roentgenol 2003; 181: 708-710. – reference: Taouli B, Thakur RK, Mannelli L, et al. Renal lesions: characterization with diffusion-weighted imaging versus contrast-enhanced MR imaging. Radiology 2009; 251: 398-407. – reference: Taouli B, Martin AJ, Qayyum A, et al. Parallel imaging and diffusion tensor imaging for diffusion-weighted MRI of the liver: preliminary experience in healthy volunteers. AJR Am J Roentgenol 2004; 183: 677-680. – reference: Hollingsworth KG, Lomas DJ. Influence of perfusion on hepatic MR diffusion measurement. NMR Biomed 2006; 19: 231-235. – reference: Thoeny HC, De Keyzer F, Oyen RH, Peeters RR. Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology 2005; 235: 911-917. – reference: Yoshikawa T, Kawamitsu H, Mitchell DG, et al. ADC measurement of abdominal organs and lesions using parallel imaging technique. AJR Am J Roentgenol 2006; 187: 1521-1530. – reference: Sasaki M, Yamada K, Watanabe Y, et al. Variability in absolute apparent diffusion coefficient values across different platforms may be substantial: a multivendor, multi-institutional comparison study. Radiology 2008; 249: 624-630. – reference: Mannelli L, Kim S, Hajdu CH, Babb JS, Clark TW, Taouli B. Assessment of tumor necrosis of hepatocellular carcinoma after chemoembolization: diffusion-weighted and contrast-enhanced MRI with histopathologic correlation of the explanted liver. AJR Am J Roentgenol 2009; 193: 1044-1052. – reference: Kuhl CK, Textor J, Gieseke J, et al. Acute and subacute ischemic stroke at high-field-strength (3.0-T) diffusion-weighted MR imaging: intraindividual comparative study. Radiology 2005; 234: 509-516. – reference: Deng J, Omary RA, Larson AC. Multishot diffusion-weighted SPLICE PROPELLER MRI of the abdomen. Magn Reson Med 2008; 59: 947-953. – reference: Kamel IR, Bluemke DA, Eng J, et al. The role of functional MR imaging in the assessment of tumor response after chemoembolization in patients with hepatocellular carcinoma. J Vasc Interv Radiol 2006; 17: 505-512. – reference: Girometti R, Furlan A, Esposito G, et al. Relevance of b-values in evaluating liver fibrosis: a study in healthy and cirrhotic subjects using two single-shot spin-echo echo-planar diffusion-weighted sequences. J Magn Reson Imaging 2008; 28: 411-419. – reference: Hunsche S, Moseley ME, Stoeter P, Hedehus M. Diffusion-tensor MR imaging at 1.5 and 3.0 T: initial observations. Radiology 2001; 221: 550-556. – reference: Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO. Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 2007; 26: 375-385. – reference: Deng J, Larson AC. Modified PROPELLER approach for T2-mapping of the abdomen. Magn Reson Med 2009; 61: 1269-1278. – reference: Binser T, Thoeny HC, Eisenberger U, Stemmer A, Boesch C, Vermathen P. Comparison of physiological triggering schemes for diffusion-weighted magnetic resonance imaging in kidneys. J Magn Reson Imaging 2010; 31: 1144-1150. – reference: Kwee TC, Takahara T, Niwa T, et al. Influence of cardiac motion on diffusion-weighted magnetic resonance imaging of the liver. Magma 2009; 22: 319-325. – reference: Erturk SM, Ichikawa T, Sano K, Motosugi U, Sou H, Araki T. Diffusion-weighted magnetic resonance imaging for characterization of focal liver masses: impact of parallel imaging (SENSE) and b value. J Comput Assist Tomogr 2008; 32: 865-871. – reference: Lewin M, Poujol-Robert A, Boelle PY, et al. Diffusion-weighted magnetic resonance imaging for the assessment of fibrosis in chronic hepatitis C. HEPATOLOGY 2007; 46: 658-665. – reference: Huisman TA, Loenneker T, Barta G, et al. Quantitative diffusion tensor MR imaging of the brain: field strength related variance of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) scalars. Eur Radiol 2006; 16: 1651-1658. – reference: Parikh T, Drew SJ, Lee VS, et al. Focal liver lesion detection and characterization with diffusion-weighted MR imaging: comparison with standard breath-hold T2-weighted imaging. Radiology 2008; 246: 812-822. – reference: Thoeny HC, Zumstein D, Simon-Zoula S, et al. Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. Radiology 2006; 241: 812-821. – reference: Patel J, Sigmund EE, Rusinek H, Oei M, Babb JS, Taouli B. Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience. J Magn Reson Imaging 2010; 31: 589-600. – reference: Akisik FM, Sandrasegaran K, Aisen AM, Lin C, Lall C. Abdominal MR imaging at 3.0 T. Radiographics 2007; 27: 1433-1444; discussion 1462-1464. – reference: Braithwaite AC, Dale BM, Boll DT, Merkle EM. Short- and midterm reproducibility of apparent diffusion coefficient measurements at 3.0-T diffusion-weighted imaging of the abdomen. Radiology 2009; 250: 459-465. – reference: Kuhl CK, Gieseke J, von Falkenhausen M, et al. Sensitivity encoding for diffusion-weighted MR imaging at 3.0 T: intraindividual comparative study. Radiology 2005; 234: 517-526. – reference: Yamada I, Aung W, Himeno Y, Nakagawa T, Shibuya H. Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology 1999; 210: 617-623. – reference: Altbach MI, Outwater EK, Trouard TP, et al. Radial fast spin-echo method for T2-weighted imaging and T2 mapping of the liver. J Magn Reson Imaging 2002; 16: 179-189. – reference: Oner AY, Celik H, Oktar SO, Tali T. Single breath-hold diffusion-weighted MRI of the liver with parallel imaging: initial experience. Clin Radiol 2006; 61: 959-965. – reference: Taouli B, Koh DM. Diffusion-weighted MR imaging of the liver. Radiology 2010; 254: 47-66. – reference: Aube C, Racineux PX, Lebigot J, et al. [Diagnosis and quantification of hepatic fibrosis with diffusion weighted MR imaging: preliminary results]. J Radiol 2004; 85: 301-306. – reference: Dale BM, Braithwaite AC, Boll DT, Merkle EM. Field strength and diffusion encoding technique affect the apparent diffusion coefficient measurements in diffusion-weighted imaging of the abdomen. Invest Radiol 2010; 45: 104-108. – reference: Lee SS, Byun JH, Park BJ, et al. Quantitative analysis of diffusion-weighted magnetic resonance imaging of the pancreas: usefulness in characterizing solid pancreatic masses. J Magn Reson Imaging 2008; 28: 928-936. – reference: Padhani AR, Liu G, Koh DM, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 2009; 11: 102-125. – reference: Ichikawa T, Erturk SM, Motosugi U, et al. High-b value diffusion-weighted MRI for detecting pancreatic adenocarcinoma: preliminary results. AJR Am J Roentgenol 2007; 188: 409-414. – reference: Cui Y, Zhang XP, Sun YS, Tang L, Shen L. Apparent diffusion coefficient: potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastases. Radiology 2008; 248: 894-900. – reference: Taouli B, Vilgrain V, Dumont E, Daire JL, Fan B, Menu Y. Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology 2003; 226: 71-78. – reference: Kwee TC, Takahara T, Koh DM, Nievelstein RA, Luijten PR. Comparison and reproducibility of ADC measurements in breathhold, respiratory triggered, and free-breathing diffusion-weighted MR imaging of the liver. J Magn Reson Imaging 2008; 28: 1141-1148. – reference: de Bazelaire CM, Duhamel GD, Rofsky NM, Alsop DC. MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 2004; 230: 652-659. – reference: Taouli B, Chouli M, Martin AJ, Qayyum A, Coakley FV, Vilgrain V. Chronic hepatitis: role of diffusion-weighted imaging and diffusion tensor imaging for the diagnosis of liver fibrosis and inflammation. J Magn Reson Imaging 2008; 28: 89-95. – reference: Kim S, Jain M, Harris AB, et al. T1 hyperintense renal lesions: characterization with diffusion-weighted MR imaging versus contrast-enhanced MR imaging. Radiology 2009; 251: 796-807. – reference: Luciani A, Vignaud A, Cavet M, et al. Liver cirrhosis: intravoxel incoherent motion MR imaging--pilot study. Radiology 2008; 249: 891-899. – reference: Koh DM, Scurr E, Collins D, et al. Predicting response of colorectal hepatic metastasis: value of pretreatment apparent diffusion coefficients. AJR Am J Roentgenol 2007; 188: 1001-1008. – reference: Coenegrachts K, Delanote J, Ter Beek L, et al. Evaluation of true diffusion, perfusion factor, and apparent diffusion coefficient in non-necrotic liver metastases and uncomplicated liver hemangiomas using black-blood echo planar imaging. Eur J Radiol 2009; 69: 131-138. – volume: 28 start-page: 89 year: 2008 end-page: 95 article-title: Chronic hepatitis: role of diffusion‐weighted imaging and diffusion tensor imaging for the diagnosis of liver fibrosis and inflammation publication-title: J Magn Reson Imaging – volume: 234 start-page: 517 year: 2005 end-page: 526 article-title: Sensitivity encoding for diffusion‐weighted MR imaging at 3.0 T: intraindividual comparative study publication-title: Radiology – volume: 250 start-page: 459 year: 2009 end-page: 465 article-title: Short‐ and midterm reproducibility of apparent diffusion coefficient measurements at 3.0‐T diffusion‐weighted imaging of the abdomen publication-title: Radiology – volume: 235 start-page: 911 year: 2005 end-page: 917 article-title: Diffusion‐weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience publication-title: Radiology – volume: 248 start-page: 894 year: 2008 end-page: 900 article-title: Apparent diffusion coefficient: potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastases publication-title: Radiology – volume: 61 start-page: 959 year: 2006 end-page: 965 article-title: Single breath‐hold diffusion‐weighted MRI of the liver with parallel imaging: initial experience publication-title: Clin Radiol – volume: 183 start-page: 677 year: 2004 end-page: 680 article-title: Parallel imaging and diffusion tensor imaging for diffusion‐weighted MRI of the liver: preliminary experience in healthy volunteers publication-title: AJR Am J Roentgenol – volume: 28 start-page: 1141 year: 2008 end-page: 1148 article-title: Comparison and reproducibility of ADC measurements in breathhold, respiratory triggered, and free‐breathing diffusion‐weighted MR imaging of the liver publication-title: J Magn Reson Imaging – volume: 31 start-page: 1144 year: 2010 end-page: 1150 article-title: Comparison of physiological triggering schemes for diffusion‐weighted magnetic resonance imaging in kidneys publication-title: J Magn Reson Imaging – volume: 187 start-page: 1521 year: 2006 end-page: 1530 article-title: ADC measurement of abdominal organs and lesions using parallel imaging technique publication-title: AJR Am J Roentgenol – volume: 230 start-page: 652 year: 2004 end-page: 659 article-title: MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results publication-title: Radiology – volume: 246 start-page: 812 year: 2008 end-page: 822 article-title: Focal liver lesion detection and characterization with diffusion‐weighted MR imaging: comparison with standard breath‐hold T2‐weighted imaging publication-title: Radiology – volume: 17 start-page: 505 year: 2006 end-page: 512 article-title: The role of functional MR imaging in the assessment of tumor response after chemoembolization in patients with hepatocellular carcinoma publication-title: J Vasc Interv Radiol – year: 2010 – volume: 226 start-page: 71 year: 2003 end-page: 78 article-title: Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single‐shot echo‐planar MR imaging sequences: prospective study in 66 patients publication-title: Radiology – volume: 188 start-page: 409 year: 2007 end-page: 414 article-title: High‐b value diffusion‐weighted MRI for detecting pancreatic adenocarcinoma: preliminary results publication-title: AJR Am J Roentgenol – volume: 59 start-page: 947 year: 2008 end-page: 953 article-title: Multishot diffusion‐weighted SPLICE PROPELLER MRI of the abdomen publication-title: Magn Reson Med – volume: 46 start-page: 658 year: 2007 end-page: 665 article-title: Diffusion‐weighted magnetic resonance imaging for the assessment of fibrosis in chronic hepatitis C publication-title: HEPATOLOGY – volume: 28 start-page: 928 year: 2008 end-page: 936 article-title: Quantitative analysis of diffusion‐weighted magnetic resonance imaging of the pancreas: usefulness in characterizing solid pancreatic masses publication-title: J Magn Reson Imaging – volume: 251 start-page: 398 year: 2009 end-page: 407 article-title: Renal lesions: characterization with diffusion‐weighted imaging versus contrast‐enhanced MR imaging publication-title: Radiology – volume: 26 start-page: 375 year: 2007 end-page: 385 article-title: Measurement of signal‐to‐noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters publication-title: J Magn Reson Imaging – volume: 32 start-page: 865 year: 2008 end-page: 871 article-title: Diffusion‐weighted magnetic resonance imaging for characterization of focal liver masses: impact of parallel imaging (SENSE) and b value publication-title: J Comput Assist Tomogr – volume: 31 start-page: 589 year: 2010 end-page: 600 article-title: Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast‐enhanced MRI alone and in combination: preliminary experience publication-title: J Magn Reson Imaging – volume: 28 start-page: 411 year: 2008 end-page: 419 article-title: Relevance of b‐values in evaluating liver fibrosis: a study in healthy and cirrhotic subjects using two single‐shot spin‐echo echo‐planar diffusion‐weighted sequences publication-title: J Magn Reson Imaging – volume: 189 start-page: 799 year: 2007 end-page: 806 article-title: Diffusion‐weighted MRI for quantification of liver fibrosis: preliminary experience publication-title: AJR Am J Roentgenol – volume: 249 start-page: 624 year: 2008 end-page: 630 article-title: Variability in absolute apparent diffusion coefficient values across different platforms may be substantial: a multivendor, multi‐institutional comparison study publication-title: Radiology – volume: 16 start-page: 1651 year: 2006 end-page: 1658 article-title: Quantitative diffusion tensor MR imaging of the brain: field strength related variance of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) scalars publication-title: Eur Radiol – volume: 69 start-page: 131 year: 2009 end-page: 138 article-title: Evaluation of true diffusion, perfusion factor, and apparent diffusion coefficient in non‐necrotic liver metastases and uncomplicated liver hemangiomas using black‐blood echo planar imaging publication-title: Eur J Radiol – volume: 45 start-page: 104 year: 2010 end-page: 108 article-title: Field strength and diffusion encoding technique affect the apparent diffusion coefficient measurements in diffusion‐weighted imaging of the abdomen publication-title: Invest Radiol – volume: 22 start-page: 319 year: 2009 end-page: 325 article-title: Influence of cardiac motion on diffusion‐weighted magnetic resonance imaging of the liver publication-title: Magma – volume: 241 start-page: 812 year: 2006 end-page: 821 article-title: Functional evaluation of transplanted kidneys with diffusion‐weighted and BOLD MR imaging: initial experience publication-title: Radiology – volume: 181 start-page: 708 year: 2003 end-page: 710 article-title: Role of diffusion‐weighted imaging in estimating tumor necrosis after chemoembolization of hepatocellular carcinoma publication-title: AJR Am J Roentgenol – volume: 19 start-page: 231 year: 2006 end-page: 235 article-title: Influence of perfusion on hepatic MR diffusion measurement publication-title: NMR Biomed – volume: 16 start-page: 179 year: 2002 end-page: 189 article-title: Radial fast spin‐echo method for T2‐weighted imaging and T2 mapping of the liver publication-title: J Magn Reson Imaging – volume: 249 start-page: 891 year: 2008 end-page: 899 article-title: Liver cirrhosis: intravoxel incoherent motion MR imaging‐‐pilot study publication-title: Radiology – volume: 188 start-page: 1001 year: 2007 end-page: 1008 article-title: Predicting response of colorectal hepatic metastasis: value of pretreatment apparent diffusion coefficients publication-title: AJR Am J Roentgenol – volume: 234 start-page: 509 year: 2005 end-page: 516 article-title: Acute and subacute ischemic stroke at high‐field‐strength (3.0‐T) diffusion‐weighted MR imaging: intraindividual comparative study publication-title: Radiology – volume: 250 start-page: 103 year: 2009 end-page: 109 article-title: Assessment of chronic pancreatitis: utility of diffusion‐weighted MR imaging with secretin enhancement publication-title: Radiology – volume: 193 start-page: 1044 year: 2009 end-page: 1052 article-title: Assessment of tumor necrosis of hepatocellular carcinoma after chemoembolization: diffusion‐weighted and contrast‐enhanced MRI with histopathologic correlation of the explanted liver publication-title: AJR Am J Roentgenol – volume: 221 start-page: 550 year: 2001 end-page: 556 article-title: Diffusion‐tensor MR imaging at 1.5 and 3.0 T: initial observations publication-title: Radiology – volume: 85 start-page: 301 year: 2004 end-page: 306 article-title: [Diagnosis and quantification of hepatic fibrosis with diffusion weighted MR imaging: preliminary results] publication-title: J Radiol – volume: 210 start-page: 617 year: 1999 end-page: 623 article-title: Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo‐planar MR imaging publication-title: Radiology – volume: 11 start-page: 102 year: 2009 end-page: 125 article-title: Diffusion‐weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations publication-title: Neoplasia – volume: 27 start-page: 1433 year: 2007 end-page: 1444; discussion 1462–1464 article-title: Abdominal MR imaging at 3.0 T publication-title: Radiographics – volume: 61 start-page: 1269 year: 2009 end-page: 1278 article-title: Modified PROPELLER approach for T2‐mapping of the abdomen publication-title: Magn Reson Med – volume: 251 start-page: 796 year: 2009 end-page: 807 article-title: T1 hyperintense renal lesions: characterization with diffusion‐weighted MR imaging versus contrast‐enhanced MR imaging publication-title: Radiology – volume: 254 start-page: 47 year: 2010 end-page: 66 article-title: Diffusion‐weighted MR imaging of the liver publication-title: Radiology – ident: e_1_2_5_35_2 doi: 10.1148/radiol.2493080080 – ident: e_1_2_5_23_2 doi: 10.1148/rg.275075023 – ident: e_1_2_5_41_2 doi: 10.1002/mrm.21525 – ident: e_1_2_5_39_2 – ident: e_1_2_5_21_2 doi: 10.1148/radiol.09090021 – ident: e_1_2_5_33_2 doi: 10.1007/s00330-006-0175-8 – ident: e_1_2_5_15_2 doi: 10.1148/radiol.2513080724 – ident: e_1_2_5_31_2 doi: 10.1016/S0221-0363(04)97582-8 – ident: e_1_2_5_45_2 doi: 10.1097/RCT.0b013e3181591cf2 – ident: e_1_2_5_46_2 doi: 10.2214/AJR.05.0778 – ident: e_1_2_5_3_2 doi: 10.1002/hep.21747 – ident: e_1_2_5_19_2 doi: 10.1097/01.RVI.0000200052.02183.92 – ident: e_1_2_5_16_2 doi: 10.2214/AJR.05.1918 – ident: e_1_2_5_34_2 doi: 10.1097/RLI.0b013e3181c8ceac – ident: e_1_2_5_26_2 doi: 10.1002/jmri.21461 – ident: e_1_2_5_28_2 doi: 10.1148/radiology.210.3.r99fe17617 – ident: e_1_2_5_22_2 doi: 10.1148/radiol.2342031323 – ident: e_1_2_5_20_2 doi: 10.1148/radiol.2512080880 – ident: e_1_2_5_24_2 doi: 10.1148/radiol.2212001823 – ident: e_1_2_5_37_2 doi: 10.1002/mrm.21989 – ident: e_1_2_5_38_2 doi: 10.1002/jmri.10142 – ident: e_1_2_5_7_2 doi: 10.1148/radiol.2353040554 – ident: e_1_2_5_14_2 doi: 10.2214/AJR.08.1461 – ident: e_1_2_5_29_2 doi: 10.1002/jmri.21569 – ident: e_1_2_5_25_2 doi: 10.1148/radiol.2492071681 – ident: e_1_2_5_40_2 doi: 10.1148/radiol.2342031626 – ident: e_1_2_5_13_2 doi: 10.1593/neo.81328 – ident: e_1_2_5_44_2 doi: 10.1016/j.crad.2006.06.014 – ident: e_1_2_5_27_2 doi: 10.1016/j.ejrad.2007.09.013 – ident: e_1_2_5_12_2 doi: 10.1148/radiol.2463070432 – ident: e_1_2_5_17_2 doi: 10.1002/jmri.21508 – ident: e_1_2_5_47_2 doi: 10.2214/ajr.183.3.1830677 – ident: e_1_2_5_43_2 doi: 10.1002/jmri.22156 – ident: e_1_2_5_8_2 doi: 10.1148/radiol.2493080160 – ident: e_1_2_5_42_2 doi: 10.1007/s10334-009-0183-1 – ident: e_1_2_5_2_2 doi: 10.2214/AJR.07.2086 – ident: e_1_2_5_10_2 doi: 10.1148/radiol.2483071407 – ident: e_1_2_5_30_2 doi: 10.1002/nbm.1028 – ident: e_1_2_5_48_2 doi: 10.1002/jmri.20969 – ident: e_1_2_5_9_2 doi: 10.1148/radiol.2261011904 – ident: e_1_2_5_36_2 doi: 10.1148/radiol.2303021331 – ident: e_1_2_5_5_2 doi: 10.1002/jmri.22081 – ident: e_1_2_5_6_2 doi: 10.1148/radiol.2413060103 – ident: e_1_2_5_4_2 doi: 10.1002/jmri.21227 – ident: e_1_2_5_11_2 doi: 10.2214/AJR.06.0601 – ident: e_1_2_5_18_2 doi: 10.2214/ajr.181.3.1810708 – ident: e_1_2_5_32_2 doi: 10.1148/radiol.2502080849 |
SSID | ssj0009945 |
Score | 2.4203932 |
Snippet | Purpose
To compare single‐shot echo‐planar imaging (SS EPI) diffusion‐weighted MRI (DWI) of abdominal organs between 1.5 Tesla (T) and 3.0T in healthy... To compare single-shot echo-planar imaging (SS EPI) diffusion-weighted MRI (DWI) of abdominal organs between 1.5 Tesla (T) and 3.0T in healthy volunteers in... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 128 |
SubjectTerms | abdomen Abdomen - pathology ADC reproducibility Adenoma - pathology Adult Aged Aged, 80 and over apparent diffusion coefficient Diffusion Magnetic Resonance Imaging - methods diffusion-weighted imaging Female Humans Image Enhancement - methods liver Male Middle Aged Pancreatic Neoplasms - pathology Reproducibility of Results Sensitivity and Specificity |
Title | Diffusion-weighted imaging of the abdomen at 3.0 Tesla: Image quality and apparent diffusion coefficient reproducibility compared with 1.5 Tesla |
URI | https://api.istex.fr/ark:/67375/WNG-95SJMLSH-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.22395 https://www.ncbi.nlm.nih.gov/pubmed/21182130 https://www.proquest.com/docview/821199445 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA6lgvji_bJq5YAiKMx0N5eZifSlqHW7uAV7wb5ISCYZWGtny3YWrU_-BOlP9JeYk-zMUimCwjwMw5lDJnNO8uXk5DuEPEPMUDBnEiOMSLjQMjGZX6VIV-VUVH5GzPC883gnGx7w0aE4XCEb7VmYyA_RBdzQM8J4jQ6uzen6kjT08_FskvrJTeIJc0zWQkS0u-SOkjJUKPb4gSWDop933KR0ffnqhdnoCnbst8ug5kXkGqaerRvkU9vomHFylM4bk5bf_-Bz_N-vukmuLzApbEYjukVWXH2bXB0vdt3vkPM3k6qaY1jt14-fX0Ms1VmYHIcCRzCtwINI0MYimQPoBljah33nbe0VbHshB_Hk5hno2oI-wZz3ugHbKoVy6gKRBT5Fkk3koI1Ju2fQ5sgDBoxhkIqo-S452Hq7_3qYLGo5JCXHirmaSW5kVbiCl5J5zDGwHilTrp1jVaZLiuss4zJrdFYyI3ElRE1Z5sxqIalg98hqPa3dAwJF5QdFKjUrCsEtz2XfZIXNs5zS3A501SMv2n-qygXROdbb-KIiRTNV2MkqdHKPPO1kTyK9x6VSz4NpdCJ6doQJcblQH3feKSn2RuP3e0P1oUegtR3l3RT3XnTtpvNTVSCTnuTc67ofbapTRnGN56FEj7wMlvGXhqjReHc73D38F-FH5FoMheP1mKw2s7lb81iqMU-Cz_wG4tobBw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELZgk4Av43Wj480SCAmkZK1fkphvCBhtaSqxddq-WXbsSGUsnbpUMD7xExA_kV-Cz05TDU1IIOVDFF1OiXMXP3c-P4fQM8AMGbU60lzziHElIp24KEXYMiW8dDNiAvud83HSP2DDI37U1ObAXpjAD9Em3MAz_P8aHBwS0jsr1tBPJ_Np7GY3wa-idWjp7SOqvRV7lBC-R7FDEDTqZd20ZSclO6t7L8xH6zC0Xy8Dmxexq598dm-GDqtnnrMQak6O40Wt4-LbH4yO__1et9BGA0vx62BHt9EVW91B1_Jm4f0u-vl2WpYLyKz9-v7ji0-nWoOnJ77HEZ6V2OFIrLQBPgesakzjLp5YZ26v8MAJWRw2b55jVRmsTqHsvaqxWSrFxcx6Lgu4CjybQEMb6nbP8bJMHkPOGPdiHjTfQwe77yZv-lHTziEqGDTNVVQwLcrMZqwQ1MGOnnFgmTBlLS0TVRAItbRNjFZJQbWAYIjookipUVwQTjfRWjWr7H2Es9L9F4lQNMs4MywVXZ1kJk1SQlLTU2UHvVh-VFk0XOfQcuOzDCzNRMIgSz_IHfS0lT0NDB-XSj33ttGKqPkx1MSlXB6O30vB94f5aL8vP3YQXhqPdJ4Kyy-qsrPFmcyATE8w5nRtBaNqlREI8xya6KCX3jT-8iBymO8N_Nn2vwg_Qdf7k3wkR4PxhwfoRsiMw_EQrdXzhX3koFWtH3sH-g13dx8i |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7rLiy-eL-M14AiKLQ7k0ubiC_iOM6MO4Puhd0XCUmTwuylM4wddH3yJ4g_0V9iTjrtsLIICn0o5TSk6TnJd05OvoPQU8AMgjoTGW54xLiWkUm8lyJdnhKe-xUxgfPOo3HS32fDQ364hl7VZ2Eqfogm4AaWEeZrMPCZzbdWpKFHp_NJ7Bc3yS-hDZa0Beh0d2dFHiVlKFHsAQSNOqKdNuSkZGv17rnlaANG9utFWPM8dA1rT-8q-lT3uko5OY4XpYmzb38QOv7vZ11DV5agFL-utOg6WnPFDbQ5Wm6730Q_u5M8X0Bc7df3H19CMNVZPDkNFY7wNMceRWJtLLA5YF1iGrfxnvPK9hIPvJDD1dHNM6wLi_UMkt6LEtu6UZxNXWCygKfAsgkktFXW7hmuk-QxRIxxJ-ZVy7fQfu_t3pt-tCzmEGUMSuZqKpmRuXCCZZJ60NGxHioTpp2jeaIzAo6WcYk1OsmokeAKEZNlKbWaS8LpbbReTAt3F2GR-1mRSE2F4MyyVLZNImyapISktqPzFnpe_1OVLZnOoeDGiao4momCQVZhkFvoSSM7q_g9LpR6FlSjEdHzY8iIS7k6GL9Tku8OR9u7ffWxhXCtO8rbKWy-6MJNF5-VACo9yZhv606lU01jBJw8jyVa6EXQjL90RA1HO4Nwd-9fhB-jzQ_dntoejN_fR5ersDhcD9B6OV-4hx5XleZRMJ_fJt8d2g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diffusion-weighted+imaging+of+the+abdomen+at+3.0+Tesla%3A+Image+quality+and+apparent+diffusion+coefficient+reproducibility+compared+with+1.5+Tesla&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Rosenkrantz%2C+Andrew+B.&rft.au=Oei%2C+Marcel&rft.au=Babb%2C+James+S.&rft.au=Niver%2C+Benjamin+E.&rft.date=2011-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=33&rft.issue=1&rft.spage=128&rft.epage=135&rft_id=info:doi/10.1002%2Fjmri.22395&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_95SJMLSH_Q |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |