The metabolic syndrome alters the miRNA signature of porcine adipose tissue‐derived mesenchymal stem cells
Autologous transplantation of mesenchymal stem cells (MSCs) is a viable option for the treatment of several diseases. Evidence indicates that MSCs release extracellular vesicles (EVs) and that EVs shuttle miRNAs to damaged parenchymal cells to activate an endogenous repair program. We hypothesize th...
Saved in:
Published in | Cytometry. Part A Vol. 93; no. 1; pp. 93 - 103 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Autologous transplantation of mesenchymal stem cells (MSCs) is a viable option for the treatment of several diseases. Evidence indicates that MSCs release extracellular vesicles (EVs) and that EVs shuttle miRNAs to damaged parenchymal cells to activate an endogenous repair program. We hypothesize that comorbidities may interfere with the packaging of cargo in MSC‐derived EVs. Therefore, we examined whether metabolic syndrome (MetS) modulates the miRNA content packed within MSC‐derived EVs. MSCs were collected from swine abdominal adipose tissue after 16 weeks of lean or obese diet (n = 7 each). Next‐generation RNA sequencing of miRNAs (miRNA‐seq) was performed to identify miRNAs enriched in MSC‐derived EVs and their predicted target genes. Functional pathway analysis of the top 50 target genes of the top 4 miRNAs enriched in each group was performed using gene ontology analysis. Lean‐ and MetS‐EVs were enriched in, respectively, 14 and 8 distinct miRNAs. Target genes of miRNAs enriched in MetS‐EVs were implicated in the development of MetS and its complications, including diabetes‐related pathways, validated transcriptional targets of AP1 family members Fra1 and Fra2, Class A/1 (Rhodopsin‐like receptors), and Peptide ligand‐binding receptors. In contrast, miRNAs enriched in Lean EVs target primarily EphrinA‐EPHA and the Rho family of GTPases. MetS alters the miRNA content of EVs derived from porcine adipose tissue MSCs. These alterations could impair the efficacy and limit the therapeutic use of autologous MSCs in subjects with MetS. Our findings may assist in developing adequate regenerative strategies to preserve the reparative potency of MSCs in individuals with MetS. © 2017 International Society for Advancement of Cytometry |
---|---|
AbstractList | Autologous transplantation of mesenchymal stem cells (MSCs) is a viable option for the treatment of several diseases. Evidence indicates that MSCs release extracellular vesicles (EVs) and that EVs shuttle miRNAs to damaged parenchymal cells to activate an endogenous repair program. We hypothesize that comorbidities may interfere with the packaging of cargo in MSC‐derived EVs. Therefore, we examined whether metabolic syndrome (MetS) modulates the miRNA content packed within MSC‐derived EVs. MSCs were collected from swine abdominal adipose tissue after 16 weeks of lean or obese diet (n = 7 each). Next‐generation RNA sequencing of miRNAs (miRNA‐seq) was performed to identify miRNAs enriched in MSC‐derived EVs and their predicted target genes. Functional pathway analysis of the top 50 target genes of the top 4 miRNAs enriched in each group was performed using gene ontology analysis. Lean‐ and MetS‐EVs were enriched in, respectively, 14 and 8 distinct miRNAs. Target genes of miRNAs enriched in MetS‐EVs were implicated in the development of MetS and its complications, including diabetes‐related pathways, validated transcriptional targets of AP1 family members Fra1 and Fra2, Class A/1 (Rhodopsin‐like receptors), and Peptide ligand‐binding receptors. In contrast, miRNAs enriched in Lean EVs target primarily EphrinA‐EPHA and the Rho family of GTPases. MetS alters the miRNA content of EVs derived from porcine adipose tissue MSCs. These alterations could impair the efficacy and limit the therapeutic use of autologous MSCs in subjects with MetS. Our findings may assist in developing adequate regenerative strategies to preserve the reparative potency of MSCs in individuals with MetS. © 2017 International Society for Advancement of Cytometry Autologous transplantation of mesenchymal stem cells (MSCs) is a viable option for the treatment of several diseases. Evidence indicates that MSCs release extracellular vesicles (EVs) and that EVs shuttle miRNAs to damaged parenchymal cells to activate an endogenous repair program. We hypothesize that comorbidities may interfere with the packaging of cargo in MSC-derived EVs. Therefore, we examined whether metabolic syndrome (MetS) modulates the miRNA content packed within MSC-derived EVs. MSCs were collected from swine abdominal adipose tissue after 16 weeks of lean or obese diet (n = 7 each). Next-generation RNA sequencing of miRNAs (miRNA-seq) was performed to identify miRNAs enriched in MSC-derived EVs and their predicted target genes. Functional pathway analysis of the top 50 target genes of the top 4 miRNAs enriched in each group was performed using gene ontology analysis. Lean- and MetS-EVs were enriched in, respectively, 14 and 8 distinct miRNAs. Target genes of miRNAs enriched in MetS-EVs were implicated in the development of MetS and its complications, including diabetes-related pathways, validated transcriptional targets of AP1 family members Fra1 and Fra2, Class A/1 (Rhodopsin-like receptors), and Peptide ligand-binding receptors. In contrast, miRNAs enriched in Lean EVs target primarily EphrinA-EPHA and the Rho family of GTPases. MetS alters the miRNA content of EVs derived from porcine adipose tissue MSCs. These alterations could impair the efficacy and limit the therapeutic use of autologous MSCs in subjects with MetS. Our findings may assist in developing adequate regenerative strategies to preserve the reparative potency of MSCs in individuals with MetS. © 2017 International Society for Advancement of Cytometry.Autologous transplantation of mesenchymal stem cells (MSCs) is a viable option for the treatment of several diseases. Evidence indicates that MSCs release extracellular vesicles (EVs) and that EVs shuttle miRNAs to damaged parenchymal cells to activate an endogenous repair program. We hypothesize that comorbidities may interfere with the packaging of cargo in MSC-derived EVs. Therefore, we examined whether metabolic syndrome (MetS) modulates the miRNA content packed within MSC-derived EVs. MSCs were collected from swine abdominal adipose tissue after 16 weeks of lean or obese diet (n = 7 each). Next-generation RNA sequencing of miRNAs (miRNA-seq) was performed to identify miRNAs enriched in MSC-derived EVs and their predicted target genes. Functional pathway analysis of the top 50 target genes of the top 4 miRNAs enriched in each group was performed using gene ontology analysis. Lean- and MetS-EVs were enriched in, respectively, 14 and 8 distinct miRNAs. Target genes of miRNAs enriched in MetS-EVs were implicated in the development of MetS and its complications, including diabetes-related pathways, validated transcriptional targets of AP1 family members Fra1 and Fra2, Class A/1 (Rhodopsin-like receptors), and Peptide ligand-binding receptors. In contrast, miRNAs enriched in Lean EVs target primarily EphrinA-EPHA and the Rho family of GTPases. MetS alters the miRNA content of EVs derived from porcine adipose tissue MSCs. These alterations could impair the efficacy and limit the therapeutic use of autologous MSCs in subjects with MetS. Our findings may assist in developing adequate regenerative strategies to preserve the reparative potency of MSCs in individuals with MetS. © 2017 International Society for Advancement of Cytometry. Autologous transplantation of mesenchymal stem cells (MSCs) is a viable option for the treatment of several diseases. Evidence indicates that MSCs release extracellular vesicles (EVs) and that EVs shuttle miRNAs to damaged parenchymal cells to activate an endogenous repair program. We hypothesize that comorbidities may interfere with the packaging of cargo in MSC-derived EVs. Therefore, we examined whether metabolic syndrome (MetS) modulates the miRNA content packed within MSC-derived EVs. MSCs were collected from swine abdominal adipose tissue after 16 weeks of lean or obese diet (n = 7 each). Next-generation RNA sequencing of miRNAs (miRNA-seq) was performed to identify miRNAs enriched in MSC-derived EVs and their predicted target genes. Functional pathway analysis of the top 50 target genes of the top 4 miRNAs enriched in each group was performed using gene ontology analysis. Lean- and MetS-EVs were enriched in, respectively, 14 and 8 distinct miRNAs. Target genes of miRNAs enriched in MetS-EVs were implicated in the development of MetS and its complications, including diabetes-related pathways, validated transcriptional targets of AP1 family members Fra1 and Fra2, Class A/1 (Rhodopsin-like receptors), and Peptide ligand-binding receptors. In contrast, miRNAs enriched in Lean EVs target primarily EphrinA-EPHA and the Rho family of GTPases. MetS alters the miRNA content of EVs derived from porcine adipose tissue MSCs. These alterations could impair the efficacy and limit the therapeutic use of autologous MSCs in subjects with MetS. Our findings may assist in developing adequate regenerative strategies to preserve the reparative potency of MSCs in individuals with MetS. © 2017 International Society for Advancement of Cytometry. Autologous transplantation of mesenchymal stem cells (MSCs) is a viable option for the treatment of several diseases. Evidence indicates that MSCs release extracellular vesicles (EVs) and that EVs shuttle miRNAs to damaged parenchymal cells to activate an endogenous repair program. We hypothesize that comorbidities may interfere with the packaging of cargo in MSC‐derived EVs. Therefore, we examined whether metabolic syndrome (MetS) modulates the miRNA content packed within MSC‐derived EVs. MSCs were collected from swine abdominal adipose tissue after 16 weeks of lean or obese diet ( n = 7 each). Next‐generation RNA sequencing of miRNAs (miRNA‐seq) was performed to identify miRNAs enriched in MSC‐derived EVs and their predicted target genes. Functional pathway analysis of the top 50 target genes of the top 4 miRNAs enriched in each group was performed using gene ontology analysis. Lean‐ and MetS‐EVs were enriched in, respectively, 14 and 8 distinct miRNAs. Target genes of miRNAs enriched in MetS‐EVs were implicated in the development of MetS and its complications, including diabetes‐related pathways, validated transcriptional targets of AP1 family members Fra1 and Fra2, Class A/1 (Rhodopsin‐like receptors), and Peptide ligand‐binding receptors. In contrast, miRNAs enriched in Lean EVs target primarily EphrinA‐EPHA and the Rho family of GTPases. MetS alters the miRNA content of EVs derived from porcine adipose tissue MSCs. These alterations could impair the efficacy and limit the therapeutic use of autologous MSCs in subjects with MetS. Our findings may assist in developing adequate regenerative strategies to preserve the reparative potency of MSCs in individuals with MetS. © 2017 International Society for Advancement of Cytometry |
Author | Tang, Hui Chanana, Pritha Meng, Yu Eirin, Alfonso Lerman, Amir Van Wijnen, Andre J. Zhu, Xiang‐Yang Lerman, Lilach O. |
Author_xml | – sequence: 1 givenname: Yu surname: Meng fullname: Meng, Yu organization: the First Hospital Affiliated to Jinan University – sequence: 2 givenname: Alfonso surname: Eirin fullname: Eirin, Alfonso organization: Mayo Clinic – sequence: 3 givenname: Xiang‐Yang surname: Zhu fullname: Zhu, Xiang‐Yang organization: Mayo Clinic – sequence: 4 givenname: Hui surname: Tang fullname: Tang, Hui organization: Mayo Clinic – sequence: 5 givenname: Pritha surname: Chanana fullname: Chanana, Pritha organization: Mayo Clinic – sequence: 6 givenname: Amir surname: Lerman fullname: Lerman, Amir organization: Mayo Clinic – sequence: 7 givenname: Andre J. surname: Van Wijnen fullname: Van Wijnen, Andre J. organization: Mayo Clinic – sequence: 8 givenname: Lilach O. surname: Lerman fullname: Lerman, Lilach O. email: Lerman.Lilach@Mayo.Edu organization: Mayo Clinic |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28678424$$D View this record in MEDLINE/PubMed |
BookMark | eNp90btuFDEUBmALJSIX6KiRJRoKdvFlPOMpVytuUpRIaCmoLK_nDHHksRcfD2g6HoFn5EmYZZMUkUJlS_7-oyP_Z-QopgiEvOBsyRkTb91U0tIuheS1ekJOuVJiUbWSHd3fhTghZ4g3jEnFpHhKToSuG12J6pSEzTXQAYrdpuAdxSl2OQ1AbSiQkZb9q_98uaLov0Vbxgw09XSXsvNxVp3fJQRaPOIIf3797iD7H9DNExGiu54GGygWGKiDEPAZOe5tQHh-e56TL-_fbdYfFxdXHz6tVxcLVzGhFq2tW-ekdHrrtNZW9lbwuulU0-lWbRsOHFpdKc1s3XPVcGUZY10vKi0YWC7PyevD3F1O30fAYgaP-w1shDSi4S2vpWZ1pWb66gG9SWOO83azajlvainZrF7eqnE7QGd22Q82T-buH2cgDsDlhJihN84XW3yKJVsfDGdmX5bZl2Ws-VfWHHrzIHQ39xFeHfhPH2D6rzXrr5ur1SH2F29EqCw |
CitedBy_id | crossref_primary_10_1002_adhm_202203131 crossref_primary_10_3389_fendo_2021_687586 crossref_primary_10_3389_fendo_2021_774634 crossref_primary_10_1002_sctm_18_0199 crossref_primary_10_3389_fmed_2021_725598 crossref_primary_10_1152_ajprenal_00434_2019 crossref_primary_10_3389_fcell_2021_660851 crossref_primary_10_1002_sctm_18_0171 crossref_primary_10_1016_j_scr_2019_101423 crossref_primary_10_1007_s12015_022_10473_2 crossref_primary_10_1016_j_biochi_2019_10_002 crossref_primary_10_2147_IJN_S355366 crossref_primary_10_3390_ani14152147 crossref_primary_10_1002_cyto_a_23166 crossref_primary_10_1016_j_jcjd_2020_12_005 crossref_primary_10_3390_jcm9092762 crossref_primary_10_1152_ajprenal_00368_2018 crossref_primary_10_1016_j_ekir_2023_06_009 crossref_primary_10_1038_s41419_024_06774_8 crossref_primary_10_1152_ajpendo_00413_2021 crossref_primary_10_1186_s12964_020_00624_8 crossref_primary_10_1007_s12015_020_09988_3 crossref_primary_10_1161_HYPERTENSIONAHA_121_14596 crossref_primary_10_1177_0963689719860840 crossref_primary_10_3390_ijms21249598 crossref_primary_10_3389_fcell_2020_581436 crossref_primary_10_3390_ijms221910890 crossref_primary_10_3390_cells11111803 crossref_primary_10_1093_stmcls_sxad052 crossref_primary_10_1016_j_cyto_2020_155080 crossref_primary_10_1186_s12933_023_01988_0 crossref_primary_10_3390_genes8100271 crossref_primary_10_1161_HYPERTENSIONAHA_119_14546 crossref_primary_10_1186_s13287_017_0727_7 crossref_primary_10_1016_j_scr_2020_101877 crossref_primary_10_1002_sctm_19_0418 crossref_primary_10_1155_2020_8845635 crossref_primary_10_3390_cells10040763 crossref_primary_10_1177_0963689718795692 crossref_primary_10_5230_jgc_2022_22_e28 crossref_primary_10_3390_cells7120255 crossref_primary_10_1038_s41366_022_01103_5 crossref_primary_10_1186_s13098_018_0359_9 crossref_primary_10_3389_fcell_2020_00197 crossref_primary_10_3389_fmolb_2021_667056 |
Cites_doi | 10.1016/j.addr.2012.07.001 10.1210/endo-124-4-1980 10.1091/mbc.E06-04-0322 10.1080/14737159.2016.1174578 10.1093/mutage/gew023 10.1007/s11259-011-9492-8 10.1016/j.ecl.2004.03.005 10.1152/ajprenal.00018.2011 10.1002/oby.20971 10.1016/j.bbadis.2017.02.023 10.1002/stem.1129 10.3892/mmr.2016.5335 10.1038/srep09930 10.1016/j.redox.2016.11.012 10.2337/db11-0415 10.1371/journal.pone.0163580 10.1186/s13287-015-0116-z 10.1111/j.1365-2567.2009.03239.x 10.1016/j.gene.2014.08.041 10.1002/cyto.a.22649 10.1194/jlr.M062497 10.1186/scrt541 10.2217/rme.11.35 10.1074/jbc.M111.267047 10.1371/journal.pone.0174303 10.1016/B978-0-12-800174-5.00002-8 10.1101/gr.097600.109 10.1080/14653240600855905 10.1111/xen.12000 10.1186/1471-2164-15-423 10.1039/C0MB00230E 10.1097/01.shk.0000235087.45798.93 10.1038/srep36120 10.1002/jcb.24852 10.2337/diabetes.53.5.1399 10.1038/cddis.2014.485 10.1186/1471-2121-7-14 10.1093/bioinformatics/btp616 10.1159/000134036 10.1242/jcs.180505 10.1093/emboj/17.4.877 10.5966/sctm.2015-0240 |
ContentType | Journal Article |
Copyright | 2017 International Society for Advancement of Cytometry 2017 International Society for Advancement of Cytometry. 2018 International Society for Advancement of Cytometry |
Copyright_xml | – notice: 2017 International Society for Advancement of Cytometry – notice: 2017 International Society for Advancement of Cytometry. – notice: 2018 International Society for Advancement of Cytometry |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 P64 7X8 |
DOI | 10.1002/cyto.a.23165 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1552-4930 |
EndPage | 103 |
ExternalDocumentID | 28678424 10_1002_cyto_a_23165 CYTOA23165 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Central Society of Clinical and Translational Research; and Mayo Clinic (Mary Kathryn and Michael B. Panitch Career Development Award) – fundername: NIH funderid: DK104273, DK100081, HL123160, DK102325, DK106427 – fundername: NIDDK NIH HHS grantid: U01 DK104273 – fundername: NIDDK NIH HHS grantid: R01 DK102325 – fundername: NIDDK NIH HHS grantid: R01 DK073608 – fundername: NHLBI NIH HHS grantid: R01 HL123160 – fundername: NIDDK NIH HHS grantid: K08 DK106427 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 2WC 31~ 33P 3SF 4.4 4ZD 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CO8 CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N QB0 QRW R.K RNS ROL RWI SUPJJ SV3 UB1 V2E W8V W99 WBKPD WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 P64 7X8 |
ID | FETCH-LOGICAL-c4025-9a69cc33c8bc888a3fa2167d57d895b71e1e984580a6f15715a000df24820ea13 |
IEDL.DBID | DR2 |
ISSN | 1552-4922 1552-4930 |
IngestDate | Fri Jul 11 16:02:02 EDT 2025 Fri Jul 25 21:16:38 EDT 2025 Thu Apr 03 06:58:55 EDT 2025 Tue Jul 01 00:49:17 EDT 2025 Thu Apr 24 23:07:57 EDT 2025 Wed Jan 22 16:19:55 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | metabolic syndrome microRNA extracellular vesicles mesenchymal stem cells |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 International Society for Advancement of Cytometry. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4025-9a69cc33c8bc888a3fa2167d57d895b71e1e984580a6f15715a000df24820ea13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cyto.a.23165 |
PMID | 28678424 |
PQID | 1991176330 |
PQPubID | 2045167 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1916380645 proquest_journals_1991176330 pubmed_primary_28678424 crossref_citationtrail_10_1002_cyto_a_23165 crossref_primary_10_1002_cyto_a_23165 wiley_primary_10_1002_cyto_a_23165_CYTOA23165 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2018 2018-01-00 20180101 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: January 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Cytometry. Part A |
PublicationTitleAlternate | Cytometry A |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 6 2015; 5 1995; 70 2017; 1863 2013; 65 2016; 129 2011; 60 2006; 17 2006; 7 2006; 8 2016; 31 2012; 19 2011; 35 2014; 551 2011; 6 2016; 16 2016; 14 2014; 115 2011; 7 2016; 57 2012; 30 2016; 34 2016; 11 2004; 33 2015; 23 2016; 5 2016; 6 1998; 17 2004; 53 2011; 300 2014; 5 2010; 26 1989; 124 2017; 11 2017; 12 2006; 26 2014; 15 2010; 130 2015 2014; 95 2009; 19 2015; 87A 2011; 286 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 Roman‐Pintos LM (e_1_2_8_36_1) 2016; 34 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 Inglis HP (e_1_2_8_18_1) 2015 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 Chinen K (e_1_2_8_32_1) 1995; 70 e_1_2_8_30_1 28700124 - Cytometry A. 2018 Feb;93(2):177-179 |
References_xml | – volume: 6 start-page: 36120 year: 2016 article-title: Comparative proteomic analysis of extracellular vesicles isolated from porcine adipose tissue‐derived mesenchymal stem/stromal cells publication-title: Sci Rep – volume: 19 start-page: 1953 year: 2009 end-page: 1962 article-title: Coexpression network based on natural variation in human gene expression reveals gene interactions and functions publication-title: Genome Res – volume: 11 start-page: 135 year: 2017 end-page: 143 article-title: Specificity protein 1‐zinc finger protein 179 pathway is involved in the attenuation of oxidative stress following brain injury publication-title: Redox Biol – volume: 35 start-page: 487 year: 2011 end-page: 499 article-title: Characterization of adipose‐derived equine and canine mesenchymal stem cells after incubation in agarose‐hydrogel publication-title: Vet Res Commun – volume: 33 start-page: 351 year: 2004 end-page: 375 article-title: The metabolic syndrome: prevalence in worldwide populations publication-title: Endocrinol Metab Clin North Am – volume: 57 start-page: 1360 year: 2016 end-page: 1372 article-title: miR‐146a‐5p inhibits TNF‐alpha‐induced adipogenesis via targeting insulin receptor in primary porcine adipocytes publication-title: J Lipid Res – volume: 551 start-page: 55 year: 2014 end-page: 64 article-title: MicroRNA and mRNA cargo of extracellular vesicles from porcine adipose tissue‐derived mesenchymal stem cells publication-title: Gene – volume: 5 start-page: 893 year: 2016 end-page: 900 article-title: Functional plasticity of adipose‐derived stromal cells during development of obesity publication-title: Stem Cells Transl Med – volume: 129 start-page: 1855 year: 2016 end-page: 1865 article-title: TAK1 determines susceptibility to endoplasmic reticulum stress and leptin resistance in the hypothalamus publication-title: J Cell Sci – volume: 34 start-page: 25617 year: 2016 article-title: Diabetic polyneuropathy in type 2 diabetes mellitus: Inflammation, oxidative stress, and mitochondrial function publication-title: J Diabetes Res – volume: 87A start-page: 1052 year: 2015 end-page: 1063 article-title: Techniques to improve detection and analysis of extracellular vesicles using flow cytometry publication-title: Cytometry Part A – start-page: 97 year: 2015 article-title: Techniques for the analysis of extracellular vesicles using flow cytometry publication-title: J Vis Exp – volume: 14 start-page: 623 year: 2016 end-page: 629 article-title: MicroRNAs regulate signaling pathways in osteogenic differentiation of mesenchymal stem cells (Review) publication-title: Mol Med Rep – volume: 70 start-page: 215 year: 1995 end-page: 217 article-title: Isolation and mapping of the human beta‐signal sequence receptor gene (SSR2) publication-title: Cytogenet Cell Genet – volume: 19 start-page: 273 year: 2012 end-page: 285 article-title: Do mesenchymal stem cells function across species barriers? Relevance for xenotransplantation publication-title: Xenotransplantation – volume: 7 start-page: 871 year: 2011 end-page: 877 article-title: Alteration of microRNA expression correlates to fatty acid‐mediated insulin resistance in mouse myoblasts publication-title: Mol Biosyst – volume: 26 start-page: 575 year: 2006 end-page: 580 article-title: High passage number of stem cells adversely affects stem cell activation and myocardial protection publication-title: Shock – volume: 23 start-page: 399 year: 2015 end-page: 407 article-title: Adipose tissue remodeling in a novel domestic porcine model of diet‐induced obesity publication-title: Obesity – volume: 31 start-page: 573 year: 2016 end-page: 582 article-title: Signal sequence receptor 2 is required for survival of human melanoma cells as part of an unfolded protein response to endoplasmic reticulum stress publication-title: Mutagenesis – volume: 115 start-page: 1816 year: 2014 end-page: 1828 article-title: High‐resolution molecular validation of self‐renewal and spontaneous differentiation in clinical‐grade adipose‐tissue derived human mesenchymal stem cells publication-title: J Cell Biochem – volume: 130 start-page: 399 year: 2010 end-page: 409 article-title: Lipopolysaccharide induces calcitonin gene‐related peptide in the RAW264.7 macrophage cell line publication-title: Immunology – volume: 6 start-page: 481 year: 2011 end-page: 492 article-title: Mesenchymal stem cell exosome: A novel stem cell‐based therapy for cardiovascular disease publication-title: Regen Med – volume: 6 start-page: 127 year: 2015 article-title: Human bone marrow‐ and adipose‐mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species publication-title: Stem Cell Res Ther – volume: 300 start-page: F1410 year: 2011 end-page: F1421 article-title: TGF beta1. activated kinase‐1 regulates inflammation and fibrosis in the obstructed kidney. Am publication-title: J Physiol Renal Physiol – volume: 16 start-page: 623 year: 2016 end-page: 629 article-title: Plasma‐derived exosomes in acute myeloid leukemia for detection of minimal residual disease: are we ready? publication-title: Expert Rev Mol Diagn – volume: 95 start-page: 35 year: 2014 end-page: 62 article-title: Proinsulin entry and transit through the endoplasmic reticulum in pancreatic beta cells publication-title: Vitam Horm – volume: 11 start-page: e0163580 year: 2016 article-title: Tissue‐specific stem cells obtained by reprogramming of non‐obese diabetic (nod) mouse‐derived pancreatic cells confer insulin production in response to glucose publication-title: PLoS One – volume: 17 start-page: 877 year: 1998 end-page: 885 article-title: The first step of glycosylphosphatidylinositol biosynthesis is mediated by a complex of PIG‐A, PIG‐H, PIG‐C and GPI1 publication-title: EMBO J – volume: 286 start-page: 44243 year: 2011 end-page: 44253 article-title: EphrinA1‐EphA2 signal induces compaction and polarization of Madin‐Darby canine kidney cells by inactivating Ezrin through negative regulation of RhoA publication-title: J Biol Chem – volume: 6 start-page: 7 year: 2015 article-title: Intra‐renal delivery of mesenchymal stem cells attenuates myocardial injury after reversal of hypertension in porcine renovascular disease publication-title: Stem Cell Res Ther – volume: 26 start-page: 139 year: 2010 end-page: 140 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics – volume: 15 start-page: 423 year: 2014 article-title: CAP‐miRSeq: a comprehensive analysis pipeline for microRNA sequencing data publication-title: BMC Genomics – volume: 7 start-page: 14 year: 2006 article-title: Aging of mesenchymal stem cell in vitro publication-title: BMC Cell Biol – volume: 1863 start-page: 2085 year: 2017 end-page: 2092 article-title: Mesenchymal stem cells‐derived extracellular vesicles, via miR‐210, improve infarcted cardiac function by promotion of angiogenesis publication-title: Biochim Biophys Acta – volume: 5 start-page: 9930 year: 2015 article-title: miR‐148a is associated with obesity and modulates adipocyte differentiation of mesenchymal stem cells through Wnt signaling publication-title: Sci Rep – volume: 124 start-page: 1980 year: 1989 end-page: 1987 article-title: The acute effects of glucose on the insulin biosynthetic‐secretory pathway in a simian virus 40‐transformed hamster pancreatic islet beta‐cell line publication-title: Endocrinology – volume: 5 start-page: e1532 year: 2014 article-title: MicroRNA‐194 reciprocally stimulates osteogenesis and inhibits adipogenesis via regulating COUP‐TFII expression publication-title: Cell Death Dis – volume: 30 start-page: 1556 year: 2012 end-page: 1564 article-title: Exosome‐mediated transfer of miR‐133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth publication-title: Stem Cells – volume: 17 start-page: 3543 year: 2006 end-page: 3556 article-title: Stable CpG hypomethylation of adipogenic promoters in freshly isolated, cultured, and differentiated mesenchymal stem cells from adipose tissue publication-title: Mol Biol Cell – volume: 53 start-page: 1399 year: 2004 end-page: 1402 article-title: Genome‐wide linkage to chromosome 6 for waist circumference in the Framingham Heart Study publication-title: Diabetes – volume: 12 start-page: e0174303 year: 2017 article-title: Integrated transcriptomic and proteomic analysis of the molecular cargo of extracellular vesicles derived from porcine adipose tissue‐derived mesenchymal stem cells publication-title: PLoS One – volume: 65 start-page: 336 year: 2013 end-page: 341 article-title: Mesenchymal stem cell: An efficient mass producer of exosomes for drug delivery publication-title: Adv Drug Deliv Rev – volume: 60 start-page: 2624 year: 2011 end-page: 2634 article-title: Genome‐wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes publication-title: Diabetes – volume: 8 start-page: 315 year: 2006 end-page: 317 article-title: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement publication-title: Cytotherapy – ident: e_1_2_8_6_1 doi: 10.1016/j.addr.2012.07.001 – ident: e_1_2_8_31_1 doi: 10.1210/endo-124-4-1980 – ident: e_1_2_8_44_1 doi: 10.1091/mbc.E06-04-0322 – ident: e_1_2_8_19_1 doi: 10.1080/14737159.2016.1174578 – start-page: 97 year: 2015 ident: e_1_2_8_18_1 article-title: Techniques for the analysis of extracellular vesicles using flow cytometry publication-title: J Vis Exp – ident: e_1_2_8_33_1 doi: 10.1093/mutage/gew023 – volume: 34 start-page: 25617 year: 2016 ident: e_1_2_8_36_1 article-title: Diabetic polyneuropathy in type 2 diabetes mellitus: Inflammation, oxidative stress, and mitochondrial function publication-title: J Diabetes Res – ident: e_1_2_8_3_1 doi: 10.1007/s11259-011-9492-8 – ident: e_1_2_8_10_1 doi: 10.1016/j.ecl.2004.03.005 – ident: e_1_2_8_40_1 doi: 10.1152/ajprenal.00018.2011 – ident: e_1_2_8_11_1 doi: 10.1002/oby.20971 – ident: e_1_2_8_25_1 doi: 10.1016/j.bbadis.2017.02.023 – ident: e_1_2_8_27_1 doi: 10.1002/stem.1129 – ident: e_1_2_8_24_1 doi: 10.3892/mmr.2016.5335 – ident: e_1_2_8_21_1 doi: 10.1038/srep09930 – ident: e_1_2_8_37_1 doi: 10.1016/j.redox.2016.11.012 – ident: e_1_2_8_30_1 doi: 10.2337/db11-0415 – ident: e_1_2_8_34_1 doi: 10.1371/journal.pone.0163580 – ident: e_1_2_8_23_1 doi: 10.1186/s13287-015-0116-z – ident: e_1_2_8_42_1 doi: 10.1111/j.1365-2567.2009.03239.x – ident: e_1_2_8_7_1 doi: 10.1016/j.gene.2014.08.041 – ident: e_1_2_8_17_1 doi: 10.1002/cyto.a.22649 – ident: e_1_2_8_22_1 doi: 10.1194/jlr.M062497 – ident: e_1_2_8_16_1 doi: 10.1186/scrt541 – ident: e_1_2_8_5_1 doi: 10.2217/rme.11.35 – ident: e_1_2_8_39_1 doi: 10.1074/jbc.M111.267047 – ident: e_1_2_8_8_1 doi: 10.1371/journal.pone.0174303 – ident: e_1_2_8_28_1 doi: 10.1016/B978-0-12-800174-5.00002-8 – ident: e_1_2_8_29_1 doi: 10.1101/gr.097600.109 – ident: e_1_2_8_2_1 doi: 10.1080/14653240600855905 – ident: e_1_2_8_4_1 doi: 10.1111/xen.12000 – ident: e_1_2_8_13_1 doi: 10.1186/1471-2164-15-423 – ident: e_1_2_8_20_1 doi: 10.1039/C0MB00230E – ident: e_1_2_8_45_1 doi: 10.1097/01.shk.0000235087.45798.93 – ident: e_1_2_8_9_1 doi: 10.1038/srep36120 – ident: e_1_2_8_14_1 doi: 10.1002/jcb.24852 – ident: e_1_2_8_38_1 doi: 10.2337/diabetes.53.5.1399 – ident: e_1_2_8_26_1 doi: 10.1038/cddis.2014.485 – ident: e_1_2_8_43_1 doi: 10.1186/1471-2121-7-14 – ident: e_1_2_8_15_1 doi: 10.1093/bioinformatics/btp616 – volume: 70 start-page: 215 year: 1995 ident: e_1_2_8_32_1 article-title: Isolation and mapping of the human beta‐signal sequence receptor gene (SSR2) publication-title: Cytogenet Cell Genet doi: 10.1159/000134036 – ident: e_1_2_8_41_1 doi: 10.1242/jcs.180505 – ident: e_1_2_8_35_1 doi: 10.1093/emboj/17.4.877 – ident: e_1_2_8_12_1 doi: 10.5966/sctm.2015-0240 – reference: 28700124 - Cytometry A. 2018 Feb;93(2):177-179 |
SSID | ssj0035032 |
Score | 2.378854 |
Snippet | Autologous transplantation of mesenchymal stem cells (MSCs) is a viable option for the treatment of several diseases. Evidence indicates that MSCs release... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 93 |
SubjectTerms | Adipose tissue Adipose Tissue - metabolism Adipose Tissue - pathology Animals Autografts Cytometry Diabetes mellitus Disease Models, Animal Enrichment extracellular vesicles Extracellular Vesicles - genetics Extracellular Vesicles - metabolism Female Fra1 protein Gene sequencing Genes Mesenchymal Stem Cell Transplantation Mesenchymal stem cells Mesenchymal Stem Cells - metabolism Mesenchymal Stem Cells - pathology Mesenchyme Metabolic disorders Metabolic syndrome Metabolic Syndrome - genetics Metabolic Syndrome - metabolism Metabolic Syndrome - pathology microRNA MicroRNAs - genetics MicroRNAs - metabolism miRNA Receptors Rhodopsin Ribonucleic acid RNA Stem cell transplantation Stem cells Sus scrofa Swine Transcription factors Translational Medical Research Transplantation |
Title | The metabolic syndrome alters the miRNA signature of porcine adipose tissue‐derived mesenchymal stem cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcyto.a.23165 https://www.ncbi.nlm.nih.gov/pubmed/28678424 https://www.proquest.com/docview/1991176330 https://www.proquest.com/docview/1916380645 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA8yEPaizvlRnZKBPknvmo-26eNlOIbghLHBfAr5Kl68ux1rr3B98k_Y37i_ZOekvdUpCu6lFJI0ac45yS_Jye8Q8iaTRtVVAYscz1wqXVanVoqQGuu8MswYW-M-5Mej4vBUfjjLz4YNN7wL0_NDjBtuaBlxvEYDN7bd-0ka6lZdMzETwCcF3jFHdy3ERMcje5TIsxifDEnGUllxPvi9Q_G9XwvfnpH-gJm3UWucdg4eEr1ucO9t8nWy7OzEff-Ny_Huf_SIPBgQKZ32KrRF7oXFY3K_j1G52iZzUCR6HjpQlvnM0TXDAY3H7C3tMHV2fDSl6AkSWUJpU1NA9XhiT42fXTRtoF2U7_WPKw8a_y14-GIL9vFldQ5VI5c0xROE9gk5PXh_sn-YDiEaUicxEG5liso5IZyyDtbSRtSGs6L0eelVlduSBRYqJXOVmaJmeclyA2Owr7kE5BEME0_JxqJZhOeE8loFEFIphI0kiUoFx0LhTMnh6auEvFuLSbuBvxzDaMx1z7zMNfafNjr2X0Lejrkvet6Ov-TbWUtcD9bbanQHYzDwiiwhu2My2B12hVmEZol5EMki219CnvWaMlbEFUAAyWVC0ijvf7ZA738--TSNry_-M_9LstkzA-CO0A7Z6C6X4RVgpM6-jpZwA3WjDyU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BEYIL_4VAASPBCWUbO07iHFcV1QLtIlVbqZyCYztixXZTkSzScuIReEaehBknGygIJMQliuRx4nhm7M9j5xuAp5HUqspTXORYbkJpoiosZexCXRqrNNe6rCgOeThNJ8fy1Uly0uc5pX9hOn6IIeBGnuHHa3JwCkjv_mANNeu2HukRApQ0uQiXKKm3X1MdDfxRcRL5DGVEMxbKXIj-5DvW3_259vk56TegeR63-oln_zq82zS5O2_yYbRqy5H5_Aub43980w241oNSNu6s6CZccMtbcLlLU7m-DQu0JXbqWrSXxdywDckB8zvtDWupdH40HTM6DOKJQlldMQT2tGnPtJ2f1Y1jrVfxty9fLRr9J2fxiQ26yPv1Kb6a6KQZbSI0d-B4_8VsbxL2WRpCIykXbq7T3Jg4Nqo0uJzWcaUFTzObZFblSZlxx12uZKIinVY8yXiicRi2lZAIPpzm8TZsLeuluwdMVMqhlrI4Lj1PolLOcJcanQm82jyA5xs9FaanMKdMGouiI18WBfVfoQvffwE8G6TPOuqOP8jtbFRe9A7cFHQijOPYG0cBPBmK0fWoK_TS1SuSITBLhH8B3O1MZXiRUIgCpJABhF7hf21Bsfd29mbsb-__o_xjuDKZHR4UBy-nrx_AVYRzqgsQ7cBW-3HlHiJkastH3i2-A1GPE0k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5BEYgL_4VAASPBCWUbJ07iHFctq_K3oKqVyslybEes2G5WJIu0nHgEnpEnYcbJBgoCCS5RJI8TxzNjfx473wA8joSWVZHhIsdyEwoTVWEpEhfq0lipudZlRXHI19Ps4Fi8OElP-oAb_QvT8UMMATfyDD9ek4MvbbX7gzTUrNt6pEeIT7L0PFwQWSTJqvcPB_qoJI18gjJiGQtFEcf9wXesv_tz7bNT0m848yxs9fPO5CqoTYu74yYfRqu2HJnPv5A5_v8nXYMrPSRl486GrsM5t7gBF7skleubMEdLYqeuRWuZzwzbUBwwv8_esJZKZ4fTMaOjIJ4mlNUVQ1hPW_ZM29mybhxrvYK_fflq0eQ_OYtPbNBB3q9P8dVEJs1oC6G5BceTZ0d7B2GfoyE0gjLhFjorjEkSI0uDi2mdVDrmWW7T3MoiLXPuuCukSGWks4qnOU81DsK2igVCD6d5sg1bi3rh7gCLK-lQSXmSlJ4lUUpnuMuMzmO82iKApxs1KdMTmFMejbnqqJdjRf2ntPL9F8CTQXrZEXf8QW5no3HVu2-j6DwYx5E3iQJ4NBSj41FX6IWrVyRDUJbo_gK43VnK8KJYIgYQsQgg9Pr-awvU3rujN2N_e_cf5R_Cpbf7E_Xq-fTlPbiMWE520aEd2Go_rtx9xEtt-cA7xXcudxIB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+metabolic+syndrome+alters+the+miRNA+signature+of+porcine+adipose+tissue-derived+mesenchymal+stem+cells&rft.jtitle=Cytometry.+Part+A&rft.au=Meng%2C+Yu&rft.au=Eirin%2C+Alfonso&rft.au=Zhu%2C+Xiang-Yang&rft.au=Tang%2C+Hui&rft.date=2018-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1552-4922&rft.eissn=1552-4930&rft.volume=93&rft.issue=1&rft.spage=93&rft_id=info:doi/10.1002%2Fcyto.a.23165&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4922&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4922&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4922&client=summon |