The metabolic syndrome alters the miRNA signature of porcine adipose tissue‐derived mesenchymal stem cells

Autologous transplantation of mesenchymal stem cells (MSCs) is a viable option for the treatment of several diseases. Evidence indicates that MSCs release extracellular vesicles (EVs) and that EVs shuttle miRNAs to damaged parenchymal cells to activate an endogenous repair program. We hypothesize th...

Full description

Saved in:
Bibliographic Details
Published inCytometry. Part A Vol. 93; no. 1; pp. 93 - 103
Main Authors Meng, Yu, Eirin, Alfonso, Zhu, Xiang‐Yang, Tang, Hui, Chanana, Pritha, Lerman, Amir, Van Wijnen, Andre J., Lerman, Lilach O.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Autologous transplantation of mesenchymal stem cells (MSCs) is a viable option for the treatment of several diseases. Evidence indicates that MSCs release extracellular vesicles (EVs) and that EVs shuttle miRNAs to damaged parenchymal cells to activate an endogenous repair program. We hypothesize that comorbidities may interfere with the packaging of cargo in MSC‐derived EVs. Therefore, we examined whether metabolic syndrome (MetS) modulates the miRNA content packed within MSC‐derived EVs. MSCs were collected from swine abdominal adipose tissue after 16 weeks of lean or obese diet (n = 7 each). Next‐generation RNA sequencing of miRNAs (miRNA‐seq) was performed to identify miRNAs enriched in MSC‐derived EVs and their predicted target genes. Functional pathway analysis of the top 50 target genes of the top 4 miRNAs enriched in each group was performed using gene ontology analysis. Lean‐ and MetS‐EVs were enriched in, respectively, 14 and 8 distinct miRNAs. Target genes of miRNAs enriched in MetS‐EVs were implicated in the development of MetS and its complications, including diabetes‐related pathways, validated transcriptional targets of AP1 family members Fra1 and Fra2, Class A/1 (Rhodopsin‐like receptors), and Peptide ligand‐binding receptors. In contrast, miRNAs enriched in Lean EVs target primarily EphrinA‐EPHA and the Rho family of GTPases. MetS alters the miRNA content of EVs derived from porcine adipose tissue MSCs. These alterations could impair the efficacy and limit the therapeutic use of autologous MSCs in subjects with MetS. Our findings may assist in developing adequate regenerative strategies to preserve the reparative potency of MSCs in individuals with MetS. © 2017 International Society for Advancement of Cytometry
AbstractList Autologous transplantation of mesenchymal stem cells (MSCs) is a viable option for the treatment of several diseases. Evidence indicates that MSCs release extracellular vesicles (EVs) and that EVs shuttle miRNAs to damaged parenchymal cells to activate an endogenous repair program. We hypothesize that comorbidities may interfere with the packaging of cargo in MSC‐derived EVs. Therefore, we examined whether metabolic syndrome (MetS) modulates the miRNA content packed within MSC‐derived EVs. MSCs were collected from swine abdominal adipose tissue after 16 weeks of lean or obese diet (n = 7 each). Next‐generation RNA sequencing of miRNAs (miRNA‐seq) was performed to identify miRNAs enriched in MSC‐derived EVs and their predicted target genes. Functional pathway analysis of the top 50 target genes of the top 4 miRNAs enriched in each group was performed using gene ontology analysis. Lean‐ and MetS‐EVs were enriched in, respectively, 14 and 8 distinct miRNAs. Target genes of miRNAs enriched in MetS‐EVs were implicated in the development of MetS and its complications, including diabetes‐related pathways, validated transcriptional targets of AP1 family members Fra1 and Fra2, Class A/1 (Rhodopsin‐like receptors), and Peptide ligand‐binding receptors. In contrast, miRNAs enriched in Lean EVs target primarily EphrinA‐EPHA and the Rho family of GTPases. MetS alters the miRNA content of EVs derived from porcine adipose tissue MSCs. These alterations could impair the efficacy and limit the therapeutic use of autologous MSCs in subjects with MetS. Our findings may assist in developing adequate regenerative strategies to preserve the reparative potency of MSCs in individuals with MetS. © 2017 International Society for Advancement of Cytometry
Autologous transplantation of mesenchymal stem cells (MSCs) is a viable option for the treatment of several diseases. Evidence indicates that MSCs release extracellular vesicles (EVs) and that EVs shuttle miRNAs to damaged parenchymal cells to activate an endogenous repair program. We hypothesize that comorbidities may interfere with the packaging of cargo in MSC-derived EVs. Therefore, we examined whether metabolic syndrome (MetS) modulates the miRNA content packed within MSC-derived EVs. MSCs were collected from swine abdominal adipose tissue after 16 weeks of lean or obese diet (n = 7 each). Next-generation RNA sequencing of miRNAs (miRNA-seq) was performed to identify miRNAs enriched in MSC-derived EVs and their predicted target genes. Functional pathway analysis of the top 50 target genes of the top 4 miRNAs enriched in each group was performed using gene ontology analysis. Lean- and MetS-EVs were enriched in, respectively, 14 and 8 distinct miRNAs. Target genes of miRNAs enriched in MetS-EVs were implicated in the development of MetS and its complications, including diabetes-related pathways, validated transcriptional targets of AP1 family members Fra1 and Fra2, Class A/1 (Rhodopsin-like receptors), and Peptide ligand-binding receptors. In contrast, miRNAs enriched in Lean EVs target primarily EphrinA-EPHA and the Rho family of GTPases. MetS alters the miRNA content of EVs derived from porcine adipose tissue MSCs. These alterations could impair the efficacy and limit the therapeutic use of autologous MSCs in subjects with MetS. Our findings may assist in developing adequate regenerative strategies to preserve the reparative potency of MSCs in individuals with MetS. © 2017 International Society for Advancement of Cytometry.Autologous transplantation of mesenchymal stem cells (MSCs) is a viable option for the treatment of several diseases. Evidence indicates that MSCs release extracellular vesicles (EVs) and that EVs shuttle miRNAs to damaged parenchymal cells to activate an endogenous repair program. We hypothesize that comorbidities may interfere with the packaging of cargo in MSC-derived EVs. Therefore, we examined whether metabolic syndrome (MetS) modulates the miRNA content packed within MSC-derived EVs. MSCs were collected from swine abdominal adipose tissue after 16 weeks of lean or obese diet (n = 7 each). Next-generation RNA sequencing of miRNAs (miRNA-seq) was performed to identify miRNAs enriched in MSC-derived EVs and their predicted target genes. Functional pathway analysis of the top 50 target genes of the top 4 miRNAs enriched in each group was performed using gene ontology analysis. Lean- and MetS-EVs were enriched in, respectively, 14 and 8 distinct miRNAs. Target genes of miRNAs enriched in MetS-EVs were implicated in the development of MetS and its complications, including diabetes-related pathways, validated transcriptional targets of AP1 family members Fra1 and Fra2, Class A/1 (Rhodopsin-like receptors), and Peptide ligand-binding receptors. In contrast, miRNAs enriched in Lean EVs target primarily EphrinA-EPHA and the Rho family of GTPases. MetS alters the miRNA content of EVs derived from porcine adipose tissue MSCs. These alterations could impair the efficacy and limit the therapeutic use of autologous MSCs in subjects with MetS. Our findings may assist in developing adequate regenerative strategies to preserve the reparative potency of MSCs in individuals with MetS. © 2017 International Society for Advancement of Cytometry.
Autologous transplantation of mesenchymal stem cells (MSCs) is a viable option for the treatment of several diseases. Evidence indicates that MSCs release extracellular vesicles (EVs) and that EVs shuttle miRNAs to damaged parenchymal cells to activate an endogenous repair program. We hypothesize that comorbidities may interfere with the packaging of cargo in MSC-derived EVs. Therefore, we examined whether metabolic syndrome (MetS) modulates the miRNA content packed within MSC-derived EVs. MSCs were collected from swine abdominal adipose tissue after 16 weeks of lean or obese diet (n = 7 each). Next-generation RNA sequencing of miRNAs (miRNA-seq) was performed to identify miRNAs enriched in MSC-derived EVs and their predicted target genes. Functional pathway analysis of the top 50 target genes of the top 4 miRNAs enriched in each group was performed using gene ontology analysis. Lean- and MetS-EVs were enriched in, respectively, 14 and 8 distinct miRNAs. Target genes of miRNAs enriched in MetS-EVs were implicated in the development of MetS and its complications, including diabetes-related pathways, validated transcriptional targets of AP1 family members Fra1 and Fra2, Class A/1 (Rhodopsin-like receptors), and Peptide ligand-binding receptors. In contrast, miRNAs enriched in Lean EVs target primarily EphrinA-EPHA and the Rho family of GTPases. MetS alters the miRNA content of EVs derived from porcine adipose tissue MSCs. These alterations could impair the efficacy and limit the therapeutic use of autologous MSCs in subjects with MetS. Our findings may assist in developing adequate regenerative strategies to preserve the reparative potency of MSCs in individuals with MetS. © 2017 International Society for Advancement of Cytometry.
Autologous transplantation of mesenchymal stem cells (MSCs) is a viable option for the treatment of several diseases. Evidence indicates that MSCs release extracellular vesicles (EVs) and that EVs shuttle miRNAs to damaged parenchymal cells to activate an endogenous repair program. We hypothesize that comorbidities may interfere with the packaging of cargo in MSC‐derived EVs. Therefore, we examined whether metabolic syndrome (MetS) modulates the miRNA content packed within MSC‐derived EVs. MSCs were collected from swine abdominal adipose tissue after 16 weeks of lean or obese diet ( n  = 7 each). Next‐generation RNA sequencing of miRNAs (miRNA‐seq) was performed to identify miRNAs enriched in MSC‐derived EVs and their predicted target genes. Functional pathway analysis of the top 50 target genes of the top 4 miRNAs enriched in each group was performed using gene ontology analysis. Lean‐ and MetS‐EVs were enriched in, respectively, 14 and 8 distinct miRNAs. Target genes of miRNAs enriched in MetS‐EVs were implicated in the development of MetS and its complications, including diabetes‐related pathways, validated transcriptional targets of AP1 family members Fra1 and Fra2, Class A/1 (Rhodopsin‐like receptors), and Peptide ligand‐binding receptors. In contrast, miRNAs enriched in Lean EVs target primarily EphrinA‐EPHA and the Rho family of GTPases. MetS alters the miRNA content of EVs derived from porcine adipose tissue MSCs. These alterations could impair the efficacy and limit the therapeutic use of autologous MSCs in subjects with MetS. Our findings may assist in developing adequate regenerative strategies to preserve the reparative potency of MSCs in individuals with MetS. © 2017 International Society for Advancement of Cytometry
Author Tang, Hui
Chanana, Pritha
Meng, Yu
Eirin, Alfonso
Lerman, Amir
Van Wijnen, Andre J.
Zhu, Xiang‐Yang
Lerman, Lilach O.
Author_xml – sequence: 1
  givenname: Yu
  surname: Meng
  fullname: Meng, Yu
  organization: the First Hospital Affiliated to Jinan University
– sequence: 2
  givenname: Alfonso
  surname: Eirin
  fullname: Eirin, Alfonso
  organization: Mayo Clinic
– sequence: 3
  givenname: Xiang‐Yang
  surname: Zhu
  fullname: Zhu, Xiang‐Yang
  organization: Mayo Clinic
– sequence: 4
  givenname: Hui
  surname: Tang
  fullname: Tang, Hui
  organization: Mayo Clinic
– sequence: 5
  givenname: Pritha
  surname: Chanana
  fullname: Chanana, Pritha
  organization: Mayo Clinic
– sequence: 6
  givenname: Amir
  surname: Lerman
  fullname: Lerman, Amir
  organization: Mayo Clinic
– sequence: 7
  givenname: Andre J.
  surname: Van Wijnen
  fullname: Van Wijnen, Andre J.
  organization: Mayo Clinic
– sequence: 8
  givenname: Lilach O.
  surname: Lerman
  fullname: Lerman, Lilach O.
  email: Lerman.Lilach@Mayo.Edu
  organization: Mayo Clinic
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28678424$$D View this record in MEDLINE/PubMed
BookMark eNp90btuFDEUBmALJSIX6KiRJRoKdvFlPOMpVytuUpRIaCmoLK_nDHHksRcfD2g6HoFn5EmYZZMUkUJlS_7-oyP_Z-QopgiEvOBsyRkTb91U0tIuheS1ekJOuVJiUbWSHd3fhTghZ4g3jEnFpHhKToSuG12J6pSEzTXQAYrdpuAdxSl2OQ1AbSiQkZb9q_98uaLov0Vbxgw09XSXsvNxVp3fJQRaPOIIf3797iD7H9DNExGiu54GGygWGKiDEPAZOe5tQHh-e56TL-_fbdYfFxdXHz6tVxcLVzGhFq2tW-ekdHrrtNZW9lbwuulU0-lWbRsOHFpdKc1s3XPVcGUZY10vKi0YWC7PyevD3F1O30fAYgaP-w1shDSi4S2vpWZ1pWb66gG9SWOO83azajlvainZrF7eqnE7QGd22Q82T-buH2cgDsDlhJihN84XW3yKJVsfDGdmX5bZl2Ws-VfWHHrzIHQ39xFeHfhPH2D6rzXrr5ur1SH2F29EqCw
CitedBy_id crossref_primary_10_1002_adhm_202203131
crossref_primary_10_3389_fendo_2021_687586
crossref_primary_10_3389_fendo_2021_774634
crossref_primary_10_1002_sctm_18_0199
crossref_primary_10_3389_fmed_2021_725598
crossref_primary_10_1152_ajprenal_00434_2019
crossref_primary_10_3389_fcell_2021_660851
crossref_primary_10_1002_sctm_18_0171
crossref_primary_10_1016_j_scr_2019_101423
crossref_primary_10_1007_s12015_022_10473_2
crossref_primary_10_1016_j_biochi_2019_10_002
crossref_primary_10_2147_IJN_S355366
crossref_primary_10_3390_ani14152147
crossref_primary_10_1002_cyto_a_23166
crossref_primary_10_1016_j_jcjd_2020_12_005
crossref_primary_10_3390_jcm9092762
crossref_primary_10_1152_ajprenal_00368_2018
crossref_primary_10_1016_j_ekir_2023_06_009
crossref_primary_10_1038_s41419_024_06774_8
crossref_primary_10_1152_ajpendo_00413_2021
crossref_primary_10_1186_s12964_020_00624_8
crossref_primary_10_1007_s12015_020_09988_3
crossref_primary_10_1161_HYPERTENSIONAHA_121_14596
crossref_primary_10_1177_0963689719860840
crossref_primary_10_3390_ijms21249598
crossref_primary_10_3389_fcell_2020_581436
crossref_primary_10_3390_ijms221910890
crossref_primary_10_3390_cells11111803
crossref_primary_10_1093_stmcls_sxad052
crossref_primary_10_1016_j_cyto_2020_155080
crossref_primary_10_1186_s12933_023_01988_0
crossref_primary_10_3390_genes8100271
crossref_primary_10_1161_HYPERTENSIONAHA_119_14546
crossref_primary_10_1186_s13287_017_0727_7
crossref_primary_10_1016_j_scr_2020_101877
crossref_primary_10_1002_sctm_19_0418
crossref_primary_10_1155_2020_8845635
crossref_primary_10_3390_cells10040763
crossref_primary_10_1177_0963689718795692
crossref_primary_10_5230_jgc_2022_22_e28
crossref_primary_10_3390_cells7120255
crossref_primary_10_1038_s41366_022_01103_5
crossref_primary_10_1186_s13098_018_0359_9
crossref_primary_10_3389_fcell_2020_00197
crossref_primary_10_3389_fmolb_2021_667056
Cites_doi 10.1016/j.addr.2012.07.001
10.1210/endo-124-4-1980
10.1091/mbc.E06-04-0322
10.1080/14737159.2016.1174578
10.1093/mutage/gew023
10.1007/s11259-011-9492-8
10.1016/j.ecl.2004.03.005
10.1152/ajprenal.00018.2011
10.1002/oby.20971
10.1016/j.bbadis.2017.02.023
10.1002/stem.1129
10.3892/mmr.2016.5335
10.1038/srep09930
10.1016/j.redox.2016.11.012
10.2337/db11-0415
10.1371/journal.pone.0163580
10.1186/s13287-015-0116-z
10.1111/j.1365-2567.2009.03239.x
10.1016/j.gene.2014.08.041
10.1002/cyto.a.22649
10.1194/jlr.M062497
10.1186/scrt541
10.2217/rme.11.35
10.1074/jbc.M111.267047
10.1371/journal.pone.0174303
10.1016/B978-0-12-800174-5.00002-8
10.1101/gr.097600.109
10.1080/14653240600855905
10.1111/xen.12000
10.1186/1471-2164-15-423
10.1039/C0MB00230E
10.1097/01.shk.0000235087.45798.93
10.1038/srep36120
10.1002/jcb.24852
10.2337/diabetes.53.5.1399
10.1038/cddis.2014.485
10.1186/1471-2121-7-14
10.1093/bioinformatics/btp616
10.1159/000134036
10.1242/jcs.180505
10.1093/emboj/17.4.877
10.5966/sctm.2015-0240
ContentType Journal Article
Copyright 2017 International Society for Advancement of Cytometry
2017 International Society for Advancement of Cytometry.
2018 International Society for Advancement of Cytometry
Copyright_xml – notice: 2017 International Society for Advancement of Cytometry
– notice: 2017 International Society for Advancement of Cytometry.
– notice: 2018 International Society for Advancement of Cytometry
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
P64
7X8
DOI 10.1002/cyto.a.23165
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
CrossRef
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1552-4930
EndPage 103
ExternalDocumentID 28678424
10_1002_cyto_a_23165
CYTOA23165
Genre article
Journal Article
GrantInformation_xml – fundername: Central Society of Clinical and Translational Research; and Mayo Clinic (Mary Kathryn and Michael B. Panitch Career Development Award)
– fundername: NIH
  funderid: DK104273, DK100081, HL123160, DK102325, DK106427
– fundername: NIDDK NIH HHS
  grantid: U01 DK104273
– fundername: NIDDK NIH HHS
  grantid: R01 DK102325
– fundername: NIDDK NIH HHS
  grantid: R01 DK073608
– fundername: NHLBI NIH HHS
  grantid: R01 HL123160
– fundername: NIDDK NIH HHS
  grantid: K08 DK106427
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
2WC
31~
33P
3SF
4.4
4ZD
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
RNS
ROL
RWI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
P64
7X8
ID FETCH-LOGICAL-c4025-9a69cc33c8bc888a3fa2167d57d895b71e1e984580a6f15715a000df24820ea13
IEDL.DBID DR2
ISSN 1552-4922
1552-4930
IngestDate Fri Jul 11 16:02:02 EDT 2025
Fri Jul 25 21:16:38 EDT 2025
Thu Apr 03 06:58:55 EDT 2025
Tue Jul 01 00:49:17 EDT 2025
Thu Apr 24 23:07:57 EDT 2025
Wed Jan 22 16:19:55 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords metabolic syndrome
microRNA
extracellular vesicles
mesenchymal stem cells
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 International Society for Advancement of Cytometry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4025-9a69cc33c8bc888a3fa2167d57d895b71e1e984580a6f15715a000df24820ea13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cyto.a.23165
PMID 28678424
PQID 1991176330
PQPubID 2045167
PageCount 11
ParticipantIDs proquest_miscellaneous_1916380645
proquest_journals_1991176330
pubmed_primary_28678424
crossref_citationtrail_10_1002_cyto_a_23165
crossref_primary_10_1002_cyto_a_23165
wiley_primary_10_1002_cyto_a_23165_CYTOA23165
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2018
2018-01-00
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: January 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Cytometry. Part A
PublicationTitleAlternate Cytometry A
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 6
2015; 5
1995; 70
2017; 1863
2013; 65
2016; 129
2011; 60
2006; 17
2006; 7
2006; 8
2016; 31
2012; 19
2011; 35
2014; 551
2011; 6
2016; 16
2016; 14
2014; 115
2011; 7
2016; 57
2012; 30
2016; 34
2016; 11
2004; 33
2015; 23
2016; 5
2016; 6
1998; 17
2004; 53
2011; 300
2014; 5
2010; 26
1989; 124
2017; 11
2017; 12
2006; 26
2014; 15
2010; 130
2015
2014; 95
2009; 19
2015; 87A
2011; 286
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
Roman‐Pintos LM (e_1_2_8_36_1) 2016; 34
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
Inglis HP (e_1_2_8_18_1) 2015
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
Chinen K (e_1_2_8_32_1) 1995; 70
e_1_2_8_30_1
28700124 - Cytometry A. 2018 Feb;93(2):177-179
References_xml – volume: 6
  start-page: 36120
  year: 2016
  article-title: Comparative proteomic analysis of extracellular vesicles isolated from porcine adipose tissue‐derived mesenchymal stem/stromal cells
  publication-title: Sci Rep
– volume: 19
  start-page: 1953
  year: 2009
  end-page: 1962
  article-title: Coexpression network based on natural variation in human gene expression reveals gene interactions and functions
  publication-title: Genome Res
– volume: 11
  start-page: 135
  year: 2017
  end-page: 143
  article-title: Specificity protein 1‐zinc finger protein 179 pathway is involved in the attenuation of oxidative stress following brain injury
  publication-title: Redox Biol
– volume: 35
  start-page: 487
  year: 2011
  end-page: 499
  article-title: Characterization of adipose‐derived equine and canine mesenchymal stem cells after incubation in agarose‐hydrogel
  publication-title: Vet Res Commun
– volume: 33
  start-page: 351
  year: 2004
  end-page: 375
  article-title: The metabolic syndrome: prevalence in worldwide populations
  publication-title: Endocrinol Metab Clin North Am
– volume: 57
  start-page: 1360
  year: 2016
  end-page: 1372
  article-title: miR‐146a‐5p inhibits TNF‐alpha‐induced adipogenesis via targeting insulin receptor in primary porcine adipocytes
  publication-title: J Lipid Res
– volume: 551
  start-page: 55
  year: 2014
  end-page: 64
  article-title: MicroRNA and mRNA cargo of extracellular vesicles from porcine adipose tissue‐derived mesenchymal stem cells
  publication-title: Gene
– volume: 5
  start-page: 893
  year: 2016
  end-page: 900
  article-title: Functional plasticity of adipose‐derived stromal cells during development of obesity
  publication-title: Stem Cells Transl Med
– volume: 129
  start-page: 1855
  year: 2016
  end-page: 1865
  article-title: TAK1 determines susceptibility to endoplasmic reticulum stress and leptin resistance in the hypothalamus
  publication-title: J Cell Sci
– volume: 34
  start-page: 25617
  year: 2016
  article-title: Diabetic polyneuropathy in type 2 diabetes mellitus: Inflammation, oxidative stress, and mitochondrial function
  publication-title: J Diabetes Res
– volume: 87A
  start-page: 1052
  year: 2015
  end-page: 1063
  article-title: Techniques to improve detection and analysis of extracellular vesicles using flow cytometry
  publication-title: Cytometry Part A
– start-page: 97
  year: 2015
  article-title: Techniques for the analysis of extracellular vesicles using flow cytometry
  publication-title: J Vis Exp
– volume: 14
  start-page: 623
  year: 2016
  end-page: 629
  article-title: MicroRNAs regulate signaling pathways in osteogenic differentiation of mesenchymal stem cells (Review)
  publication-title: Mol Med Rep
– volume: 70
  start-page: 215
  year: 1995
  end-page: 217
  article-title: Isolation and mapping of the human beta‐signal sequence receptor gene (SSR2)
  publication-title: Cytogenet Cell Genet
– volume: 19
  start-page: 273
  year: 2012
  end-page: 285
  article-title: Do mesenchymal stem cells function across species barriers? Relevance for xenotransplantation
  publication-title: Xenotransplantation
– volume: 7
  start-page: 871
  year: 2011
  end-page: 877
  article-title: Alteration of microRNA expression correlates to fatty acid‐mediated insulin resistance in mouse myoblasts
  publication-title: Mol Biosyst
– volume: 26
  start-page: 575
  year: 2006
  end-page: 580
  article-title: High passage number of stem cells adversely affects stem cell activation and myocardial protection
  publication-title: Shock
– volume: 23
  start-page: 399
  year: 2015
  end-page: 407
  article-title: Adipose tissue remodeling in a novel domestic porcine model of diet‐induced obesity
  publication-title: Obesity
– volume: 31
  start-page: 573
  year: 2016
  end-page: 582
  article-title: Signal sequence receptor 2 is required for survival of human melanoma cells as part of an unfolded protein response to endoplasmic reticulum stress
  publication-title: Mutagenesis
– volume: 115
  start-page: 1816
  year: 2014
  end-page: 1828
  article-title: High‐resolution molecular validation of self‐renewal and spontaneous differentiation in clinical‐grade adipose‐tissue derived human mesenchymal stem cells
  publication-title: J Cell Biochem
– volume: 130
  start-page: 399
  year: 2010
  end-page: 409
  article-title: Lipopolysaccharide induces calcitonin gene‐related peptide in the RAW264.7 macrophage cell line
  publication-title: Immunology
– volume: 6
  start-page: 481
  year: 2011
  end-page: 492
  article-title: Mesenchymal stem cell exosome: A novel stem cell‐based therapy for cardiovascular disease
  publication-title: Regen Med
– volume: 6
  start-page: 127
  year: 2015
  article-title: Human bone marrow‐ and adipose‐mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species
  publication-title: Stem Cell Res Ther
– volume: 300
  start-page: F1410
  year: 2011
  end-page: F1421
  article-title: TGF beta1. activated kinase‐1 regulates inflammation and fibrosis in the obstructed kidney. Am
  publication-title: J Physiol Renal Physiol
– volume: 16
  start-page: 623
  year: 2016
  end-page: 629
  article-title: Plasma‐derived exosomes in acute myeloid leukemia for detection of minimal residual disease: are we ready?
  publication-title: Expert Rev Mol Diagn
– volume: 95
  start-page: 35
  year: 2014
  end-page: 62
  article-title: Proinsulin entry and transit through the endoplasmic reticulum in pancreatic beta cells
  publication-title: Vitam Horm
– volume: 11
  start-page: e0163580
  year: 2016
  article-title: Tissue‐specific stem cells obtained by reprogramming of non‐obese diabetic (nod) mouse‐derived pancreatic cells confer insulin production in response to glucose
  publication-title: PLoS One
– volume: 17
  start-page: 877
  year: 1998
  end-page: 885
  article-title: The first step of glycosylphosphatidylinositol biosynthesis is mediated by a complex of PIG‐A, PIG‐H, PIG‐C and GPI1
  publication-title: EMBO J
– volume: 286
  start-page: 44243
  year: 2011
  end-page: 44253
  article-title: EphrinA1‐EphA2 signal induces compaction and polarization of Madin‐Darby canine kidney cells by inactivating Ezrin through negative regulation of RhoA
  publication-title: J Biol Chem
– volume: 6
  start-page: 7
  year: 2015
  article-title: Intra‐renal delivery of mesenchymal stem cells attenuates myocardial injury after reversal of hypertension in porcine renovascular disease
  publication-title: Stem Cell Res Ther
– volume: 26
  start-page: 139
  year: 2010
  end-page: 140
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
– volume: 15
  start-page: 423
  year: 2014
  article-title: CAP‐miRSeq: a comprehensive analysis pipeline for microRNA sequencing data
  publication-title: BMC Genomics
– volume: 7
  start-page: 14
  year: 2006
  article-title: Aging of mesenchymal stem cell in vitro
  publication-title: BMC Cell Biol
– volume: 1863
  start-page: 2085
  year: 2017
  end-page: 2092
  article-title: Mesenchymal stem cells‐derived extracellular vesicles, via miR‐210, improve infarcted cardiac function by promotion of angiogenesis
  publication-title: Biochim Biophys Acta
– volume: 5
  start-page: 9930
  year: 2015
  article-title: miR‐148a is associated with obesity and modulates adipocyte differentiation of mesenchymal stem cells through Wnt signaling
  publication-title: Sci Rep
– volume: 124
  start-page: 1980
  year: 1989
  end-page: 1987
  article-title: The acute effects of glucose on the insulin biosynthetic‐secretory pathway in a simian virus 40‐transformed hamster pancreatic islet beta‐cell line
  publication-title: Endocrinology
– volume: 5
  start-page: e1532
  year: 2014
  article-title: MicroRNA‐194 reciprocally stimulates osteogenesis and inhibits adipogenesis via regulating COUP‐TFII expression
  publication-title: Cell Death Dis
– volume: 30
  start-page: 1556
  year: 2012
  end-page: 1564
  article-title: Exosome‐mediated transfer of miR‐133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth
  publication-title: Stem Cells
– volume: 17
  start-page: 3543
  year: 2006
  end-page: 3556
  article-title: Stable CpG hypomethylation of adipogenic promoters in freshly isolated, cultured, and differentiated mesenchymal stem cells from adipose tissue
  publication-title: Mol Biol Cell
– volume: 53
  start-page: 1399
  year: 2004
  end-page: 1402
  article-title: Genome‐wide linkage to chromosome 6 for waist circumference in the Framingham Heart Study
  publication-title: Diabetes
– volume: 12
  start-page: e0174303
  year: 2017
  article-title: Integrated transcriptomic and proteomic analysis of the molecular cargo of extracellular vesicles derived from porcine adipose tissue‐derived mesenchymal stem cells
  publication-title: PLoS One
– volume: 65
  start-page: 336
  year: 2013
  end-page: 341
  article-title: Mesenchymal stem cell: An efficient mass producer of exosomes for drug delivery
  publication-title: Adv Drug Deliv Rev
– volume: 60
  start-page: 2624
  year: 2011
  end-page: 2634
  article-title: Genome‐wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes
  publication-title: Diabetes
– volume: 8
  start-page: 315
  year: 2006
  end-page: 317
  article-title: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement
  publication-title: Cytotherapy
– ident: e_1_2_8_6_1
  doi: 10.1016/j.addr.2012.07.001
– ident: e_1_2_8_31_1
  doi: 10.1210/endo-124-4-1980
– ident: e_1_2_8_44_1
  doi: 10.1091/mbc.E06-04-0322
– ident: e_1_2_8_19_1
  doi: 10.1080/14737159.2016.1174578
– start-page: 97
  year: 2015
  ident: e_1_2_8_18_1
  article-title: Techniques for the analysis of extracellular vesicles using flow cytometry
  publication-title: J Vis Exp
– ident: e_1_2_8_33_1
  doi: 10.1093/mutage/gew023
– volume: 34
  start-page: 25617
  year: 2016
  ident: e_1_2_8_36_1
  article-title: Diabetic polyneuropathy in type 2 diabetes mellitus: Inflammation, oxidative stress, and mitochondrial function
  publication-title: J Diabetes Res
– ident: e_1_2_8_3_1
  doi: 10.1007/s11259-011-9492-8
– ident: e_1_2_8_10_1
  doi: 10.1016/j.ecl.2004.03.005
– ident: e_1_2_8_40_1
  doi: 10.1152/ajprenal.00018.2011
– ident: e_1_2_8_11_1
  doi: 10.1002/oby.20971
– ident: e_1_2_8_25_1
  doi: 10.1016/j.bbadis.2017.02.023
– ident: e_1_2_8_27_1
  doi: 10.1002/stem.1129
– ident: e_1_2_8_24_1
  doi: 10.3892/mmr.2016.5335
– ident: e_1_2_8_21_1
  doi: 10.1038/srep09930
– ident: e_1_2_8_37_1
  doi: 10.1016/j.redox.2016.11.012
– ident: e_1_2_8_30_1
  doi: 10.2337/db11-0415
– ident: e_1_2_8_34_1
  doi: 10.1371/journal.pone.0163580
– ident: e_1_2_8_23_1
  doi: 10.1186/s13287-015-0116-z
– ident: e_1_2_8_42_1
  doi: 10.1111/j.1365-2567.2009.03239.x
– ident: e_1_2_8_7_1
  doi: 10.1016/j.gene.2014.08.041
– ident: e_1_2_8_17_1
  doi: 10.1002/cyto.a.22649
– ident: e_1_2_8_22_1
  doi: 10.1194/jlr.M062497
– ident: e_1_2_8_16_1
  doi: 10.1186/scrt541
– ident: e_1_2_8_5_1
  doi: 10.2217/rme.11.35
– ident: e_1_2_8_39_1
  doi: 10.1074/jbc.M111.267047
– ident: e_1_2_8_8_1
  doi: 10.1371/journal.pone.0174303
– ident: e_1_2_8_28_1
  doi: 10.1016/B978-0-12-800174-5.00002-8
– ident: e_1_2_8_29_1
  doi: 10.1101/gr.097600.109
– ident: e_1_2_8_2_1
  doi: 10.1080/14653240600855905
– ident: e_1_2_8_4_1
  doi: 10.1111/xen.12000
– ident: e_1_2_8_13_1
  doi: 10.1186/1471-2164-15-423
– ident: e_1_2_8_20_1
  doi: 10.1039/C0MB00230E
– ident: e_1_2_8_45_1
  doi: 10.1097/01.shk.0000235087.45798.93
– ident: e_1_2_8_9_1
  doi: 10.1038/srep36120
– ident: e_1_2_8_14_1
  doi: 10.1002/jcb.24852
– ident: e_1_2_8_38_1
  doi: 10.2337/diabetes.53.5.1399
– ident: e_1_2_8_26_1
  doi: 10.1038/cddis.2014.485
– ident: e_1_2_8_43_1
  doi: 10.1186/1471-2121-7-14
– ident: e_1_2_8_15_1
  doi: 10.1093/bioinformatics/btp616
– volume: 70
  start-page: 215
  year: 1995
  ident: e_1_2_8_32_1
  article-title: Isolation and mapping of the human beta‐signal sequence receptor gene (SSR2)
  publication-title: Cytogenet Cell Genet
  doi: 10.1159/000134036
– ident: e_1_2_8_41_1
  doi: 10.1242/jcs.180505
– ident: e_1_2_8_35_1
  doi: 10.1093/emboj/17.4.877
– ident: e_1_2_8_12_1
  doi: 10.5966/sctm.2015-0240
– reference: 28700124 - Cytometry A. 2018 Feb;93(2):177-179
SSID ssj0035032
Score 2.378854
Snippet Autologous transplantation of mesenchymal stem cells (MSCs) is a viable option for the treatment of several diseases. Evidence indicates that MSCs release...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 93
SubjectTerms Adipose tissue
Adipose Tissue - metabolism
Adipose Tissue - pathology
Animals
Autografts
Cytometry
Diabetes mellitus
Disease Models, Animal
Enrichment
extracellular vesicles
Extracellular Vesicles - genetics
Extracellular Vesicles - metabolism
Female
Fra1 protein
Gene sequencing
Genes
Mesenchymal Stem Cell Transplantation
Mesenchymal stem cells
Mesenchymal Stem Cells - metabolism
Mesenchymal Stem Cells - pathology
Mesenchyme
Metabolic disorders
Metabolic syndrome
Metabolic Syndrome - genetics
Metabolic Syndrome - metabolism
Metabolic Syndrome - pathology
microRNA
MicroRNAs - genetics
MicroRNAs - metabolism
miRNA
Receptors
Rhodopsin
Ribonucleic acid
RNA
Stem cell transplantation
Stem cells
Sus scrofa
Swine
Transcription factors
Translational Medical Research
Transplantation
Title The metabolic syndrome alters the miRNA signature of porcine adipose tissue‐derived mesenchymal stem cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcyto.a.23165
https://www.ncbi.nlm.nih.gov/pubmed/28678424
https://www.proquest.com/docview/1991176330
https://www.proquest.com/docview/1916380645
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA8yEPaizvlRnZKBPknvmo-26eNlOIbghLHBfAr5Kl68ux1rr3B98k_Y37i_ZOekvdUpCu6lFJI0ac45yS_Jye8Q8iaTRtVVAYscz1wqXVanVoqQGuu8MswYW-M-5Mej4vBUfjjLz4YNN7wL0_NDjBtuaBlxvEYDN7bd-0ka6lZdMzETwCcF3jFHdy3ERMcje5TIsxifDEnGUllxPvi9Q_G9XwvfnpH-gJm3UWucdg4eEr1ucO9t8nWy7OzEff-Ny_Huf_SIPBgQKZ32KrRF7oXFY3K_j1G52iZzUCR6HjpQlvnM0TXDAY3H7C3tMHV2fDSl6AkSWUJpU1NA9XhiT42fXTRtoF2U7_WPKw8a_y14-GIL9vFldQ5VI5c0xROE9gk5PXh_sn-YDiEaUicxEG5liso5IZyyDtbSRtSGs6L0eelVlduSBRYqJXOVmaJmeclyA2Owr7kE5BEME0_JxqJZhOeE8loFEFIphI0kiUoFx0LhTMnh6auEvFuLSbuBvxzDaMx1z7zMNfafNjr2X0Lejrkvet6Ov-TbWUtcD9bbanQHYzDwiiwhu2My2B12hVmEZol5EMki219CnvWaMlbEFUAAyWVC0ijvf7ZA738--TSNry_-M_9LstkzA-CO0A7Z6C6X4RVgpM6-jpZwA3WjDyU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BEYIL_4VAASPBCWUbO07iHFcV1QLtIlVbqZyCYztixXZTkSzScuIReEaehBknGygIJMQliuRx4nhm7M9j5xuAp5HUqspTXORYbkJpoiosZexCXRqrNNe6rCgOeThNJ8fy1Uly0uc5pX9hOn6IIeBGnuHHa3JwCkjv_mANNeu2HukRApQ0uQiXKKm3X1MdDfxRcRL5DGVEMxbKXIj-5DvW3_259vk56TegeR63-oln_zq82zS5O2_yYbRqy5H5_Aub43980w241oNSNu6s6CZccMtbcLlLU7m-DQu0JXbqWrSXxdywDckB8zvtDWupdH40HTM6DOKJQlldMQT2tGnPtJ2f1Y1jrVfxty9fLRr9J2fxiQ26yPv1Kb6a6KQZbSI0d-B4_8VsbxL2WRpCIykXbq7T3Jg4Nqo0uJzWcaUFTzObZFblSZlxx12uZKIinVY8yXiicRi2lZAIPpzm8TZsLeuluwdMVMqhlrI4Lj1PolLOcJcanQm82jyA5xs9FaanMKdMGouiI18WBfVfoQvffwE8G6TPOuqOP8jtbFRe9A7cFHQijOPYG0cBPBmK0fWoK_TS1SuSITBLhH8B3O1MZXiRUIgCpJABhF7hf21Bsfd29mbsb-__o_xjuDKZHR4UBy-nrx_AVYRzqgsQ7cBW-3HlHiJkastH3i2-A1GPE0k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5BEYgL_4VAASPBCWUbJ07iHFctq_K3oKqVyslybEes2G5WJIu0nHgEnpEnYcbJBgoCCS5RJI8TxzNjfx473wA8joSWVZHhIsdyEwoTVWEpEhfq0lipudZlRXHI19Ps4Fi8OElP-oAb_QvT8UMMATfyDD9ek4MvbbX7gzTUrNt6pEeIT7L0PFwQWSTJqvcPB_qoJI18gjJiGQtFEcf9wXesv_tz7bNT0m848yxs9fPO5CqoTYu74yYfRqu2HJnPv5A5_v8nXYMrPSRl486GrsM5t7gBF7skleubMEdLYqeuRWuZzwzbUBwwv8_esJZKZ4fTMaOjIJ4mlNUVQ1hPW_ZM29mybhxrvYK_fflq0eQ_OYtPbNBB3q9P8dVEJs1oC6G5BceTZ0d7B2GfoyE0gjLhFjorjEkSI0uDi2mdVDrmWW7T3MoiLXPuuCukSGWks4qnOU81DsK2igVCD6d5sg1bi3rh7gCLK-lQSXmSlJ4lUUpnuMuMzmO82iKApxs1KdMTmFMejbnqqJdjRf2ntPL9F8CTQXrZEXf8QW5no3HVu2-j6DwYx5E3iQJ4NBSj41FX6IWrVyRDUJbo_gK43VnK8KJYIgYQsQgg9Pr-awvU3rujN2N_e_cf5R_Cpbf7E_Xq-fTlPbiMWE520aEd2Go_rtx9xEtt-cA7xXcudxIB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+metabolic+syndrome+alters+the+miRNA+signature+of+porcine+adipose+tissue-derived+mesenchymal+stem+cells&rft.jtitle=Cytometry.+Part+A&rft.au=Meng%2C+Yu&rft.au=Eirin%2C+Alfonso&rft.au=Zhu%2C+Xiang-Yang&rft.au=Tang%2C+Hui&rft.date=2018-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1552-4922&rft.eissn=1552-4930&rft.volume=93&rft.issue=1&rft.spage=93&rft_id=info:doi/10.1002%2Fcyto.a.23165&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4922&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4922&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4922&client=summon