Innovative fluorescent probes for in vivo visualization of biomolecules in living Caenorhabditis elegans
Caenorhabditis elegans (C. elegans) as a well‐established multicellular model organism has been widely used in the biological field for half a century. Its numerous advantages including small body size, rapid life cycle, high‐reproductive rate, well‐defined anatomy, and conserved genome, has made C....
Saved in:
Published in | Cytometry. Part A Vol. 99; no. 6; pp. 560 - 574 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.06.2021
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1552-4922 1552-4930 1552-4930 |
DOI | 10.1002/cyto.a.24325 |
Cover
Loading…
Abstract | Caenorhabditis elegans (C. elegans) as a well‐established multicellular model organism has been widely used in the biological field for half a century. Its numerous advantages including small body size, rapid life cycle, high‐reproductive rate, well‐defined anatomy, and conserved genome, has made C. elegans one of the most successful multicellular model organisms. Discoveries obtained from the C. elegans model have made great contributions to research fields such as development, aging, biophysics, immunology, and neuroscience. Because of its transparent body and giant cell size, C. elegans is also an ideal subject for high resolution and high‐throughput optical imaging and analysis. During the past decade, great advances have been made to develop biomolecule‐targeting techniques for noninvasive optical imaging. These novel technologies expanded the toolbox for qualitative and quantitative analysis of biomolecules in C. elegans. In this review, we summarize recently developed fluorescent probes or labeling techniques for visualizing biomolecules at the cellular, subcellular or molecular scale by using C. elegans as the major model organism or designed specifically for the applications in C. elegans. Combining the technological advantages of the C. elegans model with the novel fluorescent labeling techniques will provide new horizons for high‐efficiency quantitative optical analysis in live organisms. |
---|---|
AbstractList | Caenorhabditis elegans (C. elegans) as a well‐established multicellular model organism has been widely used in the biological field for half a century. Its numerous advantages including small body size, rapid life cycle, high‐reproductive rate, well‐defined anatomy, and conserved genome, has made C. elegans one of the most successful multicellular model organisms. Discoveries obtained from the C. elegans model have made great contributions to research fields such as development, aging, biophysics, immunology, and neuroscience. Because of its transparent body and giant cell size, C. elegans is also an ideal subject for high resolution and high‐throughput optical imaging and analysis. During the past decade, great advances have been made to develop biomolecule‐targeting techniques for noninvasive optical imaging. These novel technologies expanded the toolbox for qualitative and quantitative analysis of biomolecules in C. elegans. In this review, we summarize recently developed fluorescent probes or labeling techniques for visualizing biomolecules at the cellular, subcellular or molecular scale by using C. elegans as the major model organism or designed specifically for the applications in C. elegans. Combining the technological advantages of the C. elegans model with the novel fluorescent labeling techniques will provide new horizons for high‐efficiency quantitative optical analysis in live organisms. Caenorhabditis elegans ( C. elegans ) as a well‐established multicellular model organism has been widely used in the biological field for half a century. Its numerous advantages including small body size, rapid life cycle, high‐reproductive rate, well‐defined anatomy, and conserved genome, has made C. elegans one of the most successful multicellular model organisms. Discoveries obtained from the C. elegans model have made great contributions to research fields such as development, aging, biophysics, immunology, and neuroscience. Because of its transparent body and giant cell size, C. elegans is also an ideal subject for high resolution and high‐throughput optical imaging and analysis. During the past decade, great advances have been made to develop biomolecule‐targeting techniques for noninvasive optical imaging. These novel technologies expanded the toolbox for qualitative and quantitative analysis of biomolecules in C. elegans . In this review, we summarize recently developed fluorescent probes or labeling techniques for visualizing biomolecules at the cellular, subcellular or molecular scale by using C. elegans as the major model organism or designed specifically for the applications in C. elegans . Combining the technological advantages of the C. elegans model with the novel fluorescent labeling techniques will provide new horizons for high‐efficiency quantitative optical analysis in live organisms. Caenorhabditis elegans (C. elegans) as a well-established multicellular model organism has been widely used in the biological field for half a century. Its numerous advantages including small body size, rapid life cycle, high-reproductive rate, well-defined anatomy, and conserved genome, has made C. elegans one of the most successful multicellular model organisms. Discoveries obtained from the C. elegans model have made great contributions to research fields such as development, aging, biophysics, immunology, and neuroscience. Because of its transparent body and giant cell size, C. elegans is also an ideal subject for high resolution and high-throughput optical imaging and analysis. During the past decade, great advances have been made to develop biomolecule-targeting techniques for noninvasive optical imaging. These novel technologies expanded the toolbox for qualitative and quantitative analysis of biomolecules in C. elegans. In this review, we summarize recently developed fluorescent probes or labeling techniques for visualizing biomolecules at the cellular, subcellular or molecular scale by using C. elegans as the major model organism or designed specifically for the applications in C. elegans. Combining the technological advantages of the C. elegans model with the novel fluorescent labeling techniques will provide new horizons for high-efficiency quantitative optical analysis in live organisms.Caenorhabditis elegans (C. elegans) as a well-established multicellular model organism has been widely used in the biological field for half a century. Its numerous advantages including small body size, rapid life cycle, high-reproductive rate, well-defined anatomy, and conserved genome, has made C. elegans one of the most successful multicellular model organisms. Discoveries obtained from the C. elegans model have made great contributions to research fields such as development, aging, biophysics, immunology, and neuroscience. Because of its transparent body and giant cell size, C. elegans is also an ideal subject for high resolution and high-throughput optical imaging and analysis. During the past decade, great advances have been made to develop biomolecule-targeting techniques for noninvasive optical imaging. These novel technologies expanded the toolbox for qualitative and quantitative analysis of biomolecules in C. elegans. In this review, we summarize recently developed fluorescent probes or labeling techniques for visualizing biomolecules at the cellular, subcellular or molecular scale by using C. elegans as the major model organism or designed specifically for the applications in C. elegans. Combining the technological advantages of the C. elegans model with the novel fluorescent labeling techniques will provide new horizons for high-efficiency quantitative optical analysis in live organisms. |
Author | Xia, Chujie Zhang, Huimin Wang, Chunxia Zhu, Yi |
Author_xml | – sequence: 1 givenname: Chunxia surname: Wang fullname: Wang, Chunxia organization: Institutes of Biology and Medical Sciences, Soochow University – sequence: 2 givenname: Chujie surname: Xia fullname: Xia, Chujie organization: Institutes of Biology and Medical Sciences, Soochow University – sequence: 3 givenname: Yi surname: Zhu fullname: Zhu, Yi organization: Institutes of Biology and Medical Sciences, Soochow University – sequence: 4 givenname: Huimin orcidid: 0000-0002-2167-9644 surname: Zhang fullname: Zhang, Huimin email: zhanghuimin@suda.edu.cn organization: Institutes of Biology and Medical Sciences, Soochow University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33638604$$D View this record in MEDLINE/PubMed |
BookMark | eNp90T1vHCEQBmBkOfJX0qWOkNK48F2AYeEorZPjWLLkxilSIXZ31sbiwIHdjS6_Pthnp7CUNEDxvCNm5pjsxxSRkI-cLTlj4ku3HdPSLYUE0eyRI940YiENsP2_byEOyXEpD4xBw0AckEMABSvF5BG5v4oxzW70M9IhTClj6TCO9DGnFgsdUqY-0tnPqR5lcsH_rjhFmgba-rRJAbspVFlV8LOPd3TtMKZ879rej75QDHjnYnlP3g0uFPzwcp-Q718vbtffFtc3l1fr8-tFJ5loFro30himFW97xFbCoMA4rXpjVGPAoG6lEGzQDqXUguuu-l6BUsD10HdwQk53dWsHPycso9342lIILmKaihXSSGCCC6j08xv6kKYc6--saEBLWOkVr-rTi5raDfb2MfuNy1v7OsMKxA50OZWScbCdH5-HNGbng-XMPi3KPi3KOvu8qBo6exN6rfsPLnf8lw-4_a-16x-3N-e72B_REKYq |
CitedBy_id | crossref_primary_10_1002_cyto_a_24508 crossref_primary_10_1016_j_jep_2021_114802 crossref_primary_10_1016_j_biopha_2023_115594 crossref_primary_10_3390_toxins16070319 crossref_primary_10_1016_j_dyepig_2024_112541 crossref_primary_10_21603_2308_4057_2022_2_544 crossref_primary_10_1016_j_addr_2022_114528 crossref_primary_10_1096_fj_202403250RR |
Cites_doi | 10.7554/eLife.26376 10.1039/c3mb70269c 10.1016/j.jgg.2014.03.002 10.5483/BMBRep.2016.49.2.261 10.1021/jacs.5b03042 10.3389/fnmol.2013.00002 10.1016/0092-8674(90)90495-Z 10.1242/jcs.246793 10.1021/ja100351w 10.1016/j.tma.2018.01.001 10.1021/ja210065g 10.1002/chem.201002896 10.1038/nmeth.1460 10.1074/jbc.M506357200 10.1073/pnas.0913154107 10.1038/ncomms5974 10.1038/s41565-019-0365-6 10.1016/j.gde.2011.09.003 10.1021/ja306045j 10.4161/auto.24870 10.1038/nmeth.2413 10.1021/ja3036256 10.1117/1.2939094 10.1016/j.cell.2020.12.012 10.1038/nmeth.1209 10.1074/jbc.M301333200 10.1016/j.bbamcr.2015.05.020 10.1105/tpc.106.044073 10.1038/nmeth.1227 10.1038/378082a0 10.1039/b919265d 10.1016/j.jgg.2018.03.005 10.1002/anie.201903005 10.1038/nchembio0605-13 10.1073/pnas.0707090104 10.1194/jlr.R000034 10.1039/C8IB00063H 10.1039/c3an01339a 10.1109/JSTQE.2009.2032512 10.1021/cb800025k 10.1038/s41598-019-51399-z 10.1039/c001986k 10.1073/pnas.1101929108 10.1534/g3.116.038133 10.1038/377351a0 10.1016/j.cub.2008.02.079 10.1126/science.1155106 10.1038/s41467-017-00944-3 10.1016/S0074-7696(08)62507-3 10.1038/nmeth.1945 10.1038/nrm3786 10.1016/j.biomaterials.2013.07.043 10.1021/ja072601x 10.1126/science.8303295 10.1111/j.1460-9568.2007.05511.x 10.1038/ncomms1340 10.1093/genetics/118.1.75 10.1895/wormbook.1.167.1 10.1042/BJ20060874 10.1002/anie.201311133 10.1073/pnas.0703594104 10.1038/378078a0 10.1007/s12274-017-1677-1 10.1126/science.1221762 10.1038/nrm1912 10.1126/science.1252966 10.1126/science.6857247 10.1016/j.immuni.2015.01.014 10.1039/b707861g 10.1073/pnas.1115485109 10.1038/nnano.2009.294 10.1038/nmeth.1203 10.1534/genetics.119.302063 10.1016/j.jinsphys.2017.07.010 10.1039/C2CS35416K 10.1073/pnas.0712008105 10.1016/0092-8674(93)90485-9 10.1534/g3.117.040824 10.1016/0092-8674(86)90004-8 10.1039/b910703g 10.1021/cb900254y 10.1038/nmeth.2333 10.1016/B978-0-12-394447-4.20074-6 10.1101/gr.10.5.703 10.1038/nmeth.1556 10.1016/j.molcel.2016.02.001 10.1126/science.282.5396.2012 10.1021/ja904843x 10.1039/C7RA11347A 10.1002/cbic.201400033 10.1371/journal.pone.0028674 10.1091/mbc.e16-01-0063 10.1038/ncb2915 10.1002/cbic.201400032 10.1038/nmat2398 10.1007/978-1-4939-7471-9_4 10.1038/nmeth.4074 10.1021/ol403470d 10.1038/366461a0 10.3389/fgene.2014.00279 10.1093/geronj/43.4.B102 10.1016/j.cell.2009.11.005 10.1021/cb500499x 10.1016/0092-8674(83)90377-X 10.1021/nl0519175 10.1021/acs.analchem.9b00447 10.1038/nmeth.1250 10.1038/s42003-019-0589-x 10.1371/journal.pone.0017896 10.1038/nbt994 10.1016/S0896-6273(01)00394-4 10.1002/cyto.a.21070 10.1016/j.tibtech.2011.08.002 10.1038/348503a0 10.1038/nbt1044 10.1074/mcp.M111.016345 10.1242/dev.116.2.309 10.1016/j.celrep.2020.108410 10.1098/rstb.1986.0056 10.3390/genes11070778 10.1074/jbc.M102815200 10.1038/s41467-018-05401-3 10.1016/j.molcel.2009.03.006 10.1073/pnas.0503274102 10.1895/wormbook.1.164.1 10.3389/fnmol.2017.00141 10.1002/wdev.79 10.1038/cddis.2014.583 |
ContentType | Journal Article |
Copyright | 2021 International Society for Advancement of Cytometry. 2021 International Society for Advancement of Cytometry |
Copyright_xml | – notice: 2021 International Society for Advancement of Cytometry. – notice: 2021 International Society for Advancement of Cytometry |
DBID | AAYXX CITATION NPM 7QO 7TK 8FD FR3 P64 7X8 |
DOI | 10.1002/cyto.a.24325 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Engineering Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1552-4930 |
EndPage | 574 |
ExternalDocumentID | 33638604 10_1002_cyto_a_24325 CYTOA24325 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 31670912; 31871384 – fundername: Natural Science Foundation of Jiangsu Province of China funderid: BK20160009 – fundername: Program for Changjiang Scholars and Innovative Research Team in University funderid: IRT1075 – fundername: National Key R&D Program of China funderid: 2019YFA0802400 – fundername: National Natural Science Foundation of China grantid: 31670912 – fundername: Natural Science Foundation of Jiangsu Province of China grantid: BK20160009 – fundername: National Natural Science Foundation of China grantid: 31871384 – fundername: National Key R&D Program of China grantid: 2019YFA0802400 – fundername: Program for Changjiang Scholars and Innovative Research Team in University grantid: IRT1075 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 2WC 31~ 33P 3SF 4.4 4ZD 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CO8 CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N QB0 QRW R.K RNS ROL RWI SUPJJ SV3 UB1 V2E W8V W99 WBKPD WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGYGG CITATION NPM 7QO 7TK 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 P64 7X8 |
ID | FETCH-LOGICAL-c4025-7d94990761bdeeb43f639a76d9965939e7b4220f7ae447217c949d6366317fdc3 |
IEDL.DBID | DR2 |
ISSN | 1552-4922 1552-4930 |
IngestDate | Thu Jul 10 23:51:52 EDT 2025 Fri Jul 25 21:07:47 EDT 2025 Wed Feb 19 02:29:21 EST 2025 Tue Jul 01 00:49:20 EDT 2025 Thu Apr 24 22:55:19 EDT 2025 Wed Jan 22 16:28:34 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Caenorhabditis elegans biomolecules optical imaging fluorescent probes |
Language | English |
License | 2021 International Society for Advancement of Cytometry. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4025-7d94990761bdeeb43f639a76d9965939e7b4220f7ae447217c949d6366317fdc3 |
Notes | Funding information National Key R&D Program of China, Grant/Award Number: 2019YFA0802400; National Natural Science Foundation of China, Grant/Award Numbers: 31670912, 31871384; Natural Science Foundation of Jiangsu Province of China, Grant/Award Number: BK20160009; Program for Changjiang Scholars and Innovative Research Team in University, Grant/Award Number: IRT1075 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-2167-9644 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cyto.a.24325 |
PMID | 33638604 |
PQID | 2537438781 |
PQPubID | 2045167 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2494302123 proquest_journals_2537438781 pubmed_primary_33638604 crossref_citationtrail_10_1002_cyto_a_24325 crossref_primary_10_1002_cyto_a_24325 wiley_primary_10_1002_cyto_a_24325_CYTOA24325 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2021 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Hoboken |
PublicationTitle | Cytometry. Part A |
PublicationTitleAlternate | Cytometry A |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2007; 104 2004; 22 2010; 10 2019; 91 2019; 2019 2010; 16 1990; 348 2010; 107 2019; 14 2008; 105 1995; 378 1995; 377 2020; 11 2018; 45 1993; 366 2003; 278 2012; 11 2013; 6 2013; 9 2017; 207 2018; 9 2018; 8 2018; 2 2012; 134 2015; 137 2005; 102 2000; 10 1994; 263 1992; 116 2014; 16 2014; 15 2007; 7 2006; 281 2016; 49 2010; 7 1998; 282 2019; 9 2011; 2 2018; 106 2019; 2 2006; 351 2011; 79 2015; 1853 2020; 33 2014; 41 2011; 6 2011; 8 2012; 109 2012; 30 2001; 276 2019; 212 2005; 1 2018; 11 2018; 10 2016; 27 2010; 51 2001; 31 2017; 6 2017; 7 2017; 8 2019; 58 2008; 5 2008; 3 2011; 17 2005; 23 2014; 5 1983; 220 2013; 10 1986; 44 2015; 42 1993; 75 1988; 43 2011; 21 2020; 133 2014; 9 2012; 337 2018; 1706 2007; 25 2006; 400 2014; 53 2007; 129 2015; 6 1986; 314 2015; 200 2008; 18 2013; 42 2006; 7 2021; 184 2006; 18 2008; 13 2006; 6 1996; 166 2009; 131 2008; 320 1983; 34 2009; 139 2009; 34 1990; 63 2011; 108 2012; 1 2017; 14 2013; 34 2013; 138 2017; 10 2010; 132 2009; 9 2009; 8 2016 2016; 61 2009; 4 1988; 118 2014; 345 2012; 9 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_131_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_120_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_124_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 Uebel C (e_1_2_10_71_1) 2019; 2019 Watts JL (e_1_2_10_39_1) 2017; 207 e_1_2_10_132_1 e_1_2_10_90_1 e_1_2_10_117_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_121_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_110_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_119_1 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_126_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_108_1 Corsi AK (e_1_2_10_2_1) 2015; 200 Pulak R (e_1_2_10_26_1) 2006; 351 e_1_2_10_130_1 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – volume: 61 start-page: 496 year: 2016 end-page: 505 article-title: RNA processing and genome stability: Cause and consequence publication-title: Mol Cell – volume: 138 start-page: 7326 year: 2013 end-page: 30 article-title: Fluorogenic probes using 4‐substituted‐2‐nitrobenzenesulfonyl derivatives as caging groups for the analysis of human glutathione transferase catalyzed reactions publication-title: Analyst – volume: 200 start-page: 387 issue: 2 year: 2015 end-page: 407 article-title: A transparent window into biology: A primer on publication-title: WormBook – volume: 166 start-page: 103 year: 1996 end-page: 37 article-title: Vitellogenin receptors: Oocyte‐specific members of the low‐density lipoprotein receptor supergene family publication-title: Int Rev Cytol – volume: 75 start-page: 641 year: 1993 end-page: 52 article-title: The C. elegans cell death gene ced‐3 encodes a protein similar to mammalian interleukin‐1β‐converting enzyme publication-title: Cell – volume: 378 start-page: 78 year: 1995 end-page: 81 article-title: Mechanosensory signalling in mediated by the GLR‐1 glutamate receptor publication-title: Nature – volume: 337 start-page: 437 year: 2012 end-page: 44 article-title: The connectome of a decision‐making neural network publication-title: Science – volume: 139 start-page: 855 year: 2009 end-page: 60 article-title: Lipid droplets finally get a little R‐E‐S‐P‐E‐C‐T publication-title: Cell – volume: 184 start-page: 272 year: 2021 end-page: 288.e211 article-title: NeuroPAL: A multicolor atlas for whole‐brain neuronal identification in publication-title: Cell – volume: 320 start-page: 664 year: 2008 end-page: 7 article-title: In vivo imaging of membrane‐associated glycans in developing zebrafish publication-title: Science – volume: 1706 start-page: 53 year: 2018 end-page: 75 article-title: What can we learn about human disease from the Nematode ? publication-title: Methods Mol Biol – volume: 10 start-page: 419 year: 2018 end-page: 28 article-title: Enhancing fluorescent protein photostability through robot‐assisted photobleaching publication-title: Integr Biol (Camb) – volume: 132 start-page: 4907 year: 2010 end-page: 16 article-title: Switchable nile red‐based probe for cholesterol and lipid order at the outer leaflet of biomembranes publication-title: J Am Chem Soc – volume: 134 start-page: 12157 year: 2012 end-page: 67 article-title: Organelle‐specific detection of phosphatase activities with two‐photon fluorogenic probes in cells and tissues publication-title: J Am Chem Soc – volume: 51 start-page: 468 year: 2010 end-page: 71 article-title: Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT‐family of intracellular lipid storage droplet proteins publication-title: J Lipid Res – volume: 131 start-page: 11308 year: 2009 end-page: 9 article-title: Carbon dots for optical imaging in vivo publication-title: J Am Chem Soc – volume: 43 start-page: B102 year: 1988 end-page: 9 article-title: Three mutants that extend both mean and maximum life span of the nematode, , define the age‐1 gene publication-title: J Gerontol – volume: 45 start-page: 259 year: 2018 end-page: 72 article-title: Whole‐genome RNAi screen identifies methylation‐related genes influencing lipid metabolism in publication-title: J Genet Genomics – volume: 102 start-page: 8740 year: 2005 end-page: 5 article-title: Detection of glutamate release from neurons by genetically encoded surface‐displayed FRET nanosensors publication-title: Proc Natl Acad Sci U S A – volume: 34 start-page: 435 year: 1983 end-page: 44 article-title: The lin‐12 locus specifies cell fates in publication-title: Cell – volume: 16 start-page: 756 year: 2014 end-page: 9 article-title: New fluoranthene FLUN‐550 as a fluorescent probe for selective staining and quantification of intracellular lipid droplets publication-title: Org Lett – volume: 107 start-page: 6526 year: 2010 end-page: 31 article-title: Imaging extrasynaptic glutamate dynamics in the brain publication-title: Proc Natl Acad Sci U S A – volume: 5 start-page: 637 year: 2008 end-page: 43 article-title: Automated on‐chip rapid microscopy, phenotyping and sorting of publication-title: Nat Methods – volume: 105 start-page: 4411 year: 2008 end-page: 6 article-title: Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate‐sensitive fluorescent reporters publication-title: Proc Natl Acad Sci U S A – volume: 2 start-page: 1 year: 2018 end-page: 10 article-title: A toolkit for DNA assembly, genome engineering and multicolor imaging for publication-title: Transl Med Aging – volume: 34 start-page: 3 year: 2009 end-page: 11 article-title: How common are extraribosomal functions of ribosomal proteins? publication-title: Mol Cell – volume: 207 start-page: 413 year: 2017 end-page: 46 article-title: Lipid and carbohydrate metabolism in publication-title: Genetics – volume: 33 year: 2020 article-title: A Hemidesmosome‐to‐cytoplasm translocation of small heat shock proteins provides immediate protection against heat stress publication-title: Cell Rep – volume: 5 start-page: 279 year: 2014 article-title: Use of as a model to study Alzheimer's disease and other neurodegenerative diseases publication-title: Front Genet – volume: 14 start-page: 53 year: 2017 end-page: 6 article-title: mScarlet: A bright monomeric red fluorescent protein for cellular imaging publication-title: Nat Methods – volume: 314 start-page: 1 year: 1986 end-page: 340 article-title: The structure of the nervous system of the nematode publication-title: Philos Trans R Soc Lond B Biol Sci – start-page: 845 year: 2016 end-page: 52 – volume: 5 start-page: 531 year: 2008 end-page: 3 article-title: Femtosecond laser nanoaxotomy lab‐on‐a‐chip for in vivo nerve regeneration studies publication-title: Nat Methods – volume: 2 start-page: 340 year: 2011 article-title: An autonomous DNA nanomachine maps spatiotemporal pH changes in a multicellular living organism publication-title: Nat Commun – volume: 400 start-page: 531 year: 2006 end-page: 40 article-title: Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: Structural characterization and applications in fluorescence imaging publication-title: Biochem J – volume: 1 start-page: 13 year: 2005 end-page: 21 article-title: Chemistry in living systems publication-title: Nat Chem Biol – volume: 79 start-page: 799 year: 2011 end-page: 813 article-title: Wormometry‐on‐a‐chip: Innovative technologies for in situ analysis of small multicellular organisms publication-title: Cytometry A – volume: 345 start-page: 1240 year: 2014 end-page: 1 article-title: RNA function. RNA and dynamic nuclear organization publication-title: Science – volume: 53 start-page: 4469 year: 2014 end-page: 74 article-title: An activatable theranostic for targeted cancer therapy and imaging publication-title: Angew Chem Int Ed Engl – volume: 7 start-page: 1429 year: 2017 end-page: 37 article-title: Reliable CRISPR/Cas9 genome engineering in using a single efficient sgRNA and an easily recognizable phenotype publication-title: G3 (Bethesda) – volume: 220 start-page: 1277 year: 1983 end-page: 9 article-title: Mutations affecting programmed cell deaths in the nematode publication-title: Science – volume: 106 start-page: 55 year: 2018 end-page: 64 article-title: Live imaging using a FRET glucose sensor reveals glucose delivery to all cell types in the drosophila brain publication-title: J Insect Physiol – volume: 15 start-page: 327 year: 2014 end-page: 39 article-title: Advances in whole‐embryo imaging: A quantitative transition is underway publication-title: Nat Rev Mol Cell Biol – volume: 10 start-page: 589 year: 2010 end-page: 97 article-title: Lifespan‐on‐a‐chip: Microfluidic chambers for performing lifelong observation of publication-title: Lab Chip – volume: 5 start-page: 869 year: 2008 end-page: 72 article-title: Automated screening for mutants affecting dopaminergic‐neuron specification in publication-title: Nat Methods – volume: 8 start-page: 135 year: 2011 end-page: 8 article-title: RNAi screening for fat regulatory genes with SRS microscopy publication-title: Nat Methods – volume: 104 start-page: 14658 year: 2007 end-page: 63 article-title: Monitoring of lipid storage in using coherent anti‐stokes Raman scattering (CARS) microscopy publication-title: Proc Natl Acad Sci U S A – volume: 10 start-page: 407 year: 2013 end-page: 9 article-title: A bright monomeric green fluorescent protein derived from publication-title: Nat Methods – volume: 108 start-page: E201 year: 2011 end-page: 10 article-title: Targeting and imaging single biomolecules in living cells by complementation‐activated light microscopy with split‐fluorescent proteins publication-title: Proc Natl Acad Sci U S A – volume: 25 start-page: 2249 year: 2007 end-page: 59 article-title: Optical glutamate sensor for spatiotemporal analysis of synaptic transmission publication-title: Eur J Neurosci – volume: 21 start-page: 585 year: 2011 end-page: 90 article-title: Label‐free imaging of lipid dynamics using coherent anti‐stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy publication-title: Curr Opin Genet Dev – volume: 14 start-page: 252 year: 2019 end-page: 9 article-title: DNA nanodevices map enzymatic activity in organelles publication-title: Nat Nanotechnol – volume: 9 start-page: 2764 year: 2009 end-page: 6 article-title: Automated high‐throughput cell microsurgery on‐chip publication-title: Lab Chip – volume: 22 start-page: 969 year: 2004 end-page: 76 article-title: In vivo cancer targeting and imaging with semiconductor quantum dots publication-title: Nat Biotechnol – volume: 8 start-page: 331 year: 2009 end-page: 6 article-title: Biodegradable luminescent porous silicon nanoparticles for in vivo applications publication-title: Nat Mater – volume: 31 start-page: 617 year: 2001 end-page: 30 article-title: The glutamate receptor subunit NMR‐1 is required for slow NMDA‐activated currents that regulate reversal frequency during locomotion publication-title: Neuron – volume: 4 start-page: 773 year: 2009 end-page: 80 article-title: A route to brightly fluorescent carbon nanotubes for near‐infrared imaging in mice publication-title: Nat Nanotechnol – volume: 1 start-page: 861 year: 2012 end-page: 78 article-title: The epidermis as a model skin. I: Development, patterning, and growth publication-title: Wiley Interdiscip Rev Dev Biol – volume: 11 start-page: 317 year: 2012 end-page: 28 article-title: Proteomic study and marker protein identification of lipid droplets publication-title: Mol Cell Proteomics – volume: 91 start-page: 4821 year: 2019 end-page: 30 article-title: Green fluorescent protein‐based glucose indicators report glucose dynamics in living cells publication-title: Anal Chem – volume: 348 start-page: 503 year: 1990 end-page: 9 article-title: ras gene let‐60 acts as a switch in the pathway of vulval induction publication-title: Nature – volume: 10 start-page: 162 year: 2013 end-page: 70 article-title: An optimized fluorescent probe for visualizing glutamate neurotransmission publication-title: Nat Methods – volume: 27 start-page: 3385 year: 2016 end-page: 94 article-title: Comparative assessment of fluorescent proteins for in vivo imaging in an animal model system publication-title: Mol Biol Cell – volume: 13 year: 2008 article-title: Characterization of an improved donor fluorescent protein for Forster resonance energy transfer microscopy publication-title: J Biomed Opt – volume: 9 start-page: 477 year: 2012 end-page: 9 article-title: Direct visualization of specifically modified extracellular glycans in living animals publication-title: Nat Methods – volume: 6 year: 2011 article-title: An enhanced monomeric blue fluorescent protein with the high chemical stability of the chromophore publication-title: PLoS One – volume: 9 start-page: 3001 year: 2013 end-page: 8 article-title: A fluorogenic probe for β‐galactosidase activity imaging in living cells publication-title: Mol Biosyst – volume: 34 start-page: 8352 year: 2013 end-page: 60 article-title: Fluorescent nanodiamond as a probe for the intercellular transport of proteins in vivo publication-title: Biomaterials – volume: 18 start-page: 2314 year: 2006 end-page: 25 article-title: Rapid metabolism of glucose detected with FRET glucose nanosensors in epidermal cells and intact roots of Arabidopsis RNA‐silencing mutants publication-title: Plant Cell – volume: 9 start-page: 1214 year: 2013 end-page: 27 article-title: IκB kinase complex (IKK) triggers detachment‐induced autophagy in mammary epithelial cells independently of the PI3K‐AKT‐MTORC1 pathway publication-title: Autophagy – volume: 282 start-page: 2012 year: 1998 end-page: 8 article-title: Genome sequence of the nematode : A platform for investigating biology publication-title: Science – volume: 17 start-page: 5165 year: 2011 end-page: 70 article-title: Development of lipid targeting Raman probes for in vivo imaging of publication-title: Chemistry – volume: 7 start-page: 473 year: 2010 end-page: 8 article-title: A photoconvertible reporter of the ubiquitin‐proteasome system in vivo publication-title: Nat Methods – volume: 18 start-page: 481 year: 2008 end-page: 9 article-title: Distinct innate immune responses to infection and wounding in the epidermis publication-title: Curr Biol – volume: 16 start-page: 506 year: 2010 end-page: 15 article-title: Coherent anti‐stokes Raman scattering microscopy of cellular lipid storage publication-title: IEEE J Sel Top Quantum Electron – volume: 9 start-page: 2412 year: 2014 end-page: 20 article-title: RNA mango aptamer‐fluorophore: A bright, high‐affinity complex for RNA labeling and tracking publication-title: ACS Chem Biol – volume: 281 start-page: 4654 year: 2006 end-page: 62 article-title: 3‐O‐sulfated oligosaccharide structures are recognized by anti‐heparan sulfate antibody HS4C3 publication-title: J Biol Chem – volume: 6 start-page: e26376 year: 2017 article-title: Microtubule‐dependent ribosome localization in neurons publication-title: Elife – volume: 7 start-page: 1515 year: 2007 end-page: 23 article-title: A microfabricated array of clamps for immobilizing and imaging publication-title: Lab Chip – volume: 133 start-page: jcs246793 issue: 21 year: 2020 article-title: Periodic subcellular structures undergo long‐range synchronized reorganization during epidermal development publication-title: J Cell Sci – volume: 10 start-page: 141 year: 2017 article-title: A systematic RNAi screen reveals a novel role of a spindle assembly checkpoint protein BuGZ in synaptic transmission in C elegans publication-title: Front Mol Neurosci – volume: 3 start-page: 373 year: 2008 end-page: 82 article-title: HaloTag: A novel protein labeling technology for cell imaging and protein analysis publication-title: ACS Chem Biol – volume: 278 start-page: 19127 year: 2003 end-page: 33 article-title: In vivo imaging of the dynamics of glucose uptake in the cytosol of COS‐7 cells by fluorescent nanosensors publication-title: J Biol Chem – volume: 9 start-page: 2995 year: 2018 article-title: Optical imaging of metabolic dynamics in animals publication-title: Nat Commun – volume: 16 start-page: 224 year: 2014 end-page: 33 article-title: Mechanical control of the sense of touch by β‐spectrin publication-title: Nat Cell Biol – volume: 134 start-page: 14310 year: 2012 end-page: 3 article-title: Development of a fluorogenic probe with a transesterification switch for detection of histone deacetylase activity publication-title: J Am Chem Soc – volume: 44 start-page: 817 year: 1986 end-page: 829 – volume: 4 start-page: 1068 year: 2009 end-page: 72 article-title: In vivo imaging of glycans publication-title: ACS Chem Biol – volume: 6 year: 2011 article-title: An improved cerulean fluorescent protein with enhanced brightness and reduced reversible photoswitching publication-title: PLoS One – volume: 137 start-page: 7404 year: 2015 end-page: 14 article-title: A fluorogenic aryl fluorosulfate for intraorganellar transthyretin imaging in living cells and in publication-title: J Am Chem Soc – volume: 42 start-page: 309 year: 2015 end-page: 20 article-title: Structural damage in the epidermis causes release of STA‐2 and induction of an innate immune response publication-title: Immunity – volume: 134 start-page: 1316 year: 2012 end-page: 22 article-title: Hepatocyte‐targeting single galactose‐appended naphthalimide: A tool for intracellular thiol imaging in vivo publication-title: J Am Chem Soc – volume: 6 start-page: 2 year: 2013 article-title: Genetically encoded calcium indicators for multi‐color neural activity imaging and combination with optogenetics publication-title: Front Mol Neurosci – volume: 6 start-page: e1619 year: 2015 article-title: Loss of anchorage primarily induces non‐apoptotic cell death in a human mammary epithelial cell line under atypical focal adhesion kinase signaling publication-title: Cell Death Dis – volume: 11 start-page: 778 issue: 7 year: 2020 end-page: 87 article-title: Genetic variation in complex traits in transgenic α‐Synuclein strains of publication-title: Genes (Basel) – volume: 366 start-page: 461 year: 1993 end-page: 4 article-title: A mutant that lives twice as long as wild type publication-title: Nature – volume: 109 start-page: E690 year: 2012 end-page: 7 article-title: Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin publication-title: Proc Natl Acad Sci U S A – volume: 8 start-page: 865 year: 2017 article-title: High‐throughput screens using photo‐highlighting discover BMP signaling in mitochondrial lipid oxidation publication-title: Nat Commun – volume: 1853 start-page: 2481 year: 2015 end-page: 91 article-title: Identification of lipid droplet structure‐like/resident proteins in publication-title: Biochim Biophys Acta – volume: 378 start-page: 82 year: 1995 end-page: 5 article-title: Synaptic code for sensory modalities revealed by GLR‐1 glutamate receptor publication-title: Nature – volume: 9 start-page: 14902 year: 2019 article-title: MDT‐28/PLIN‐1 mediates lipid droplet‐microtubule interaction via DLC‐1 in publication-title: Sci Rep – volume: 41 start-page: 305 year: 2014 end-page: 13 article-title: A lipid droplet‐associated GFP reporter‐based screen identifies new fat storage regulators in publication-title: J Genet Genomics – volume: 118 start-page: 75 year: 1988 end-page: 86 article-title: A mutation in the age‐1 gene in lengthens life and reduces hermaphrodite fertility publication-title: Genetics – volume: 10 start-page: 703 year: 2000 end-page: 13 article-title: Identification of novel human genes evolutionarily conserved in by comparative proteomics publication-title: Genome Res – volume: 276 start-page: 29188 year: 2001 end-page: 94 article-title: Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications publication-title: J Biol Chem – volume: 7 start-page: 373 year: 2006 end-page: 8 article-title: Lipid droplets: A unified view of a dynamic organelle publication-title: Nat Rev Mol Cell Biol – volume: 15 start-page: 1101 year: 2014 end-page: 5 article-title: An expanded set of fluorogenic sulfatase activity probes publication-title: ChemBioChem – volume: 2019 start-page: 143 year: 2019 end-page: 147 article-title: Phase‐separated protein dynamics are affected by fluorescent tag choice publication-title: MicroPubl Biol – volume: 58 start-page: 7087 year: 2019 end-page: 91 article-title: Membrane‐penetrating carbon quantum dots for imaging nucleic acid structures in live organisms publication-title: Angew Chem Int Ed Engl – volume: 104 start-page: 16793 year: 2007 end-page: 7 article-title: Copper‐free click chemistry for dynamic in vivo imaging publication-title: Proc Natl Acad Sci U S A – volume: 10 start-page: 1862 year: 2010 end-page: 8 article-title: Long‐term high‐resolution imaging and culture of in chip‐gel hybrid microfluidic device for developmental studies publication-title: Lab Chip – volume: 263 start-page: 802 year: 1994 end-page: 5 article-title: Green fluorescent protein as a marker for gene expression publication-title: Science – volume: 6 start-page: 169 year: 2006 end-page: 74 article-title: In vivo and scanning electron microscopy imaging of up‐converting nanophosphors in publication-title: Nano Lett – volume: 42 start-page: 4284 year: 2013 end-page: 96 article-title: Chemical probing of glycans in cells and organisms publication-title: Chem Soc Rev – volume: 49 start-page: 81 year: 2016 end-page: 92 article-title: The role of insulin/IGF‐1 signaling in the longevity of model invertebrates, C. elegans and publication-title: BMB Rep – volume: 15 start-page: 961 year: 2014 end-page: 76 article-title: Rational design, synthesis and biological evaluation of modular fluorogenic substrates with high affinity and selectivity for PTP1B publication-title: ChemBioChem – volume: 212 start-page: 387 year: 2019 end-page: 95 article-title: NATF (native and tissue‐specific fluorescence): A strategy for bright, tissue‐specific GFP labeling of native proteins in publication-title: Genetics – volume: 5 start-page: 545 year: 2008 end-page: 51 article-title: Improving the photostability of bright monomeric orange and red fluorescent proteins publication-title: Nat Methods – volume: 351 start-page: 275 year: 2006 end-page: 86 article-title: Techniques for analysis, sorting, and dispensing of on the COPAS flow‐sorting system publication-title: Methods Mol Biol – volume: 116 start-page: 309 year: 1992 end-page: 20 article-title: The cell death gene ced‐4 encodes a novel protein and is expressed during the period of extensive programmed cell death publication-title: Development – volume: 11 start-page: 2336 year: 2018 end-page: 46 article-title: The in vivo targeted molecular imaging of fluorescent silicon nanoparticles in publication-title: Nano Res – volume: 5 start-page: 4974 year: 2014 article-title: In vivo single‐molecule imaging identifies altered dynamics of calcium channels in dystrophin‐mutant C elegans publication-title: Nat Commun – volume: 23 start-page: 102 year: 2005 end-page: 7 article-title: Protein tagging and detection with engineered self‐assembling fragments of green fluorescent protein publication-title: Nat Biotechnol – volume: 30 start-page: 8 year: 2012 end-page: 16 article-title: Imaging proteins inside cells with fluorescent tags publication-title: Trends Biotechnol – volume: 63 start-page: 921 year: 1990 end-page: 31 article-title: Let‐60, a gene that specifies cell fates during vulval induction, encodes a ras protein publication-title: Cell – volume: 8 start-page: 2485 year: 2018 end-page: 9 article-title: Glucose monitoring in living cells with single fluorescent protein‐based sensors publication-title: RSC Adv – volume: 377 start-page: 351 year: 1995 end-page: 4 article-title: Facilitation of lin‐12‐mediated signalling by sel‐12, a S182 Alzheimer's disease gene publication-title: Nature – volume: 129 start-page: 14518 year: 2007 end-page: 22 article-title: Harnessing functional plasticity of enzymes: A fluorogenic probe for imaging 17beta‐HSD10 dehydrogenase, an enzyme involved in Alzheimer's and Parkinson's diseases publication-title: J Am Chem Soc – volume: 7 start-page: 607 year: 2017 end-page: 15 article-title: The bright fluorescent protein mNeonGreen facilitates protein expression analysis in vivo publication-title: G3 (Bethesda) – volume: 2 start-page: 344 year: 2019 article-title: Bright split red fluorescent proteins for the visualization of endogenous proteins and synapses publication-title: Commun Biol – ident: e_1_2_10_65_1 doi: 10.7554/eLife.26376 – ident: e_1_2_10_88_1 doi: 10.1039/c3mb70269c – ident: e_1_2_10_54_1 doi: 10.1016/j.jgg.2014.03.002 – ident: e_1_2_10_23_1 doi: 10.5483/BMBRep.2016.49.2.261 – ident: e_1_2_10_95_1 doi: 10.1021/jacs.5b03042 – ident: e_1_2_10_116_1 doi: 10.3389/fnmol.2013.00002 – ident: e_1_2_10_12_1 doi: 10.1016/0092-8674(90)90495-Z – ident: e_1_2_10_87_1 doi: 10.1242/jcs.246793 – ident: e_1_2_10_50_1 doi: 10.1021/ja100351w – ident: e_1_2_10_73_1 doi: 10.1016/j.tma.2018.01.001 – ident: e_1_2_10_128_1 doi: 10.1021/ja210065g – ident: e_1_2_10_49_1 doi: 10.1002/chem.201002896 – ident: e_1_2_10_86_1 doi: 10.1038/nmeth.1460 – ident: e_1_2_10_110_1 doi: 10.1074/jbc.M506357200 – ident: e_1_2_10_114_1 doi: 10.1073/pnas.0913154107 – ident: e_1_2_10_64_1 doi: 10.1038/ncomms5974 – ident: e_1_2_10_129_1 doi: 10.1038/s41565-019-0365-6 – ident: e_1_2_10_43_1 doi: 10.1016/j.gde.2011.09.003 – ident: e_1_2_10_90_1 doi: 10.1021/ja306045j – ident: e_1_2_10_133_1 doi: 10.4161/auto.24870 – ident: e_1_2_10_83_1 doi: 10.1038/nmeth.2413 – ident: e_1_2_10_94_1 doi: 10.1021/ja3036256 – ident: e_1_2_10_76_1 doi: 10.1117/1.2939094 – ident: e_1_2_10_72_1 doi: 10.1016/j.cell.2020.12.012 – ident: e_1_2_10_81_1 doi: 10.1038/nmeth.1209 – ident: e_1_2_10_120_1 doi: 10.1074/jbc.M301333200 – ident: e_1_2_10_52_1 doi: 10.1016/j.bbamcr.2015.05.020 – ident: e_1_2_10_121_1 doi: 10.1105/tpc.106.044073 – ident: e_1_2_10_31_1 doi: 10.1038/nmeth.1227 – ident: e_1_2_10_119_1 doi: 10.1038/378082a0 – ident: e_1_2_10_27_1 doi: 10.1039/b919265d – ident: e_1_2_10_55_1 doi: 10.1016/j.jgg.2018.03.005 – ident: e_1_2_10_59_1 doi: 10.1002/anie.201903005 – ident: e_1_2_10_105_1 doi: 10.1038/nchembio0605-13 – ident: e_1_2_10_106_1 doi: 10.1073/pnas.0707090104 – ident: e_1_2_10_53_1 doi: 10.1194/jlr.R000034 – ident: e_1_2_10_78_1 doi: 10.1039/C8IB00063H – ident: e_1_2_10_89_1 doi: 10.1039/c3an01339a – ident: e_1_2_10_44_1 doi: 10.1109/JSTQE.2009.2032512 – ident: e_1_2_10_126_1 doi: 10.1021/cb800025k – ident: e_1_2_10_56_1 doi: 10.1038/s41598-019-51399-z – ident: e_1_2_10_32_1 doi: 10.1039/c001986k – ident: e_1_2_10_63_1 doi: 10.1073/pnas.1101929108 – ident: e_1_2_10_85_1 doi: 10.1534/g3.116.038133 – ident: e_1_2_10_10_1 doi: 10.1038/377351a0 – ident: e_1_2_10_35_1 doi: 10.1016/j.cub.2008.02.079 – volume: 351 start-page: 275 year: 2006 ident: e_1_2_10_26_1 article-title: Techniques for analysis, sorting, and dispensing of C. elegans on the COPAS flow‐sorting system publication-title: Methods Mol Biol – ident: e_1_2_10_108_1 doi: 10.1126/science.1155106 – ident: e_1_2_10_46_1 doi: 10.1038/s41467-017-00944-3 – ident: e_1_2_10_103_1 doi: 10.1016/S0074-7696(08)62507-3 – ident: e_1_2_10_109_1 doi: 10.1038/nmeth.1945 – ident: e_1_2_10_34_1 doi: 10.1038/nrm3786 – volume: 200 start-page: 387 issue: 2 year: 2015 ident: e_1_2_10_2_1 article-title: A transparent window into biology: A primer on Caenorhabditis elegans publication-title: WormBook – ident: e_1_2_10_102_1 doi: 10.1016/j.biomaterials.2013.07.043 – ident: e_1_2_10_93_1 doi: 10.1021/ja072601x – ident: e_1_2_10_61_1 doi: 10.1126/science.8303295 – ident: e_1_2_10_113_1 doi: 10.1111/j.1460-9568.2007.05511.x – ident: e_1_2_10_130_1 doi: 10.1038/ncomms1340 – ident: e_1_2_10_19_1 doi: 10.1093/genetics/118.1.75 – ident: e_1_2_10_25_1 doi: 10.1895/wormbook.1.167.1 – ident: e_1_2_10_75_1 doi: 10.1042/BJ20060874 – ident: e_1_2_10_127_1 doi: 10.1002/anie.201311133 – ident: e_1_2_10_42_1 doi: 10.1073/pnas.0703594104 – ident: e_1_2_10_117_1 doi: 10.1038/378078a0 – ident: e_1_2_10_101_1 doi: 10.1007/s12274-017-1677-1 – ident: e_1_2_10_14_1 doi: 10.1126/science.1221762 – ident: e_1_2_10_40_1 doi: 10.1038/nrm1912 – ident: e_1_2_10_57_1 doi: 10.1126/science.1252966 – ident: e_1_2_10_5_1 doi: 10.1126/science.6857247 – ident: e_1_2_10_18_1 doi: 10.1016/j.immuni.2015.01.014 – ident: e_1_2_10_28_1 doi: 10.1039/b707861g – ident: e_1_2_10_69_1 doi: 10.1073/pnas.1115485109 – ident: e_1_2_10_100_1 doi: 10.1038/nnano.2009.294 – ident: e_1_2_10_29_1 doi: 10.1038/nmeth.1203 – ident: e_1_2_10_67_1 doi: 10.1534/genetics.119.302063 – ident: e_1_2_10_122_1 doi: 10.1016/j.jinsphys.2017.07.010 – ident: e_1_2_10_104_1 doi: 10.1039/C2CS35416K – ident: e_1_2_10_112_1 doi: 10.1073/pnas.0712008105 – ident: e_1_2_10_8_1 doi: 10.1016/0092-8674(93)90485-9 – ident: e_1_2_10_82_1 doi: 10.1534/g3.117.040824 – ident: e_1_2_10_6_1 doi: 10.1016/0092-8674(86)90004-8 – volume: 2019 start-page: 143 year: 2019 ident: e_1_2_10_71_1 article-title: Phase‐separated protein dynamics are affected by fluorescent tag choice publication-title: MicroPubl Biol – ident: e_1_2_10_30_1 doi: 10.1039/b910703g – ident: e_1_2_10_107_1 doi: 10.1021/cb900254y – ident: e_1_2_10_115_1 doi: 10.1038/nmeth.2333 – ident: e_1_2_10_16_1 doi: 10.1016/B978-0-12-394447-4.20074-6 – ident: e_1_2_10_4_1 doi: 10.1101/gr.10.5.703 – ident: e_1_2_10_45_1 doi: 10.1038/nmeth.1556 – ident: e_1_2_10_58_1 doi: 10.1016/j.molcel.2016.02.001 – ident: e_1_2_10_3_1 doi: 10.1126/science.282.5396.2012 – ident: e_1_2_10_99_1 doi: 10.1021/ja904843x – ident: e_1_2_10_123_1 doi: 10.1039/C7RA11347A – ident: e_1_2_10_92_1 doi: 10.1002/cbic.201400033 – ident: e_1_2_10_70_1 doi: 10.1371/journal.pone.0028674 – ident: e_1_2_10_84_1 doi: 10.1091/mbc.e16-01-0063 – ident: e_1_2_10_77_1 doi: 10.1038/ncb2915 – ident: e_1_2_10_91_1 doi: 10.1002/cbic.201400032 – ident: e_1_2_10_98_1 doi: 10.1038/nmat2398 – ident: e_1_2_10_17_1 doi: 10.1007/978-1-4939-7471-9_4 – ident: e_1_2_10_80_1 doi: 10.1038/nmeth.4074 – ident: e_1_2_10_48_1 doi: 10.1021/ol403470d – ident: e_1_2_10_21_1 doi: 10.1038/366461a0 – ident: e_1_2_10_15_1 doi: 10.3389/fgene.2014.00279 – ident: e_1_2_10_20_1 doi: 10.1093/geronj/43.4.B102 – ident: e_1_2_10_41_1 doi: 10.1016/j.cell.2009.11.005 – ident: e_1_2_10_60_1 doi: 10.1021/cb500499x – ident: e_1_2_10_9_1 doi: 10.1016/0092-8674(83)90377-X – ident: e_1_2_10_97_1 doi: 10.1021/nl0519175 – ident: e_1_2_10_124_1 doi: 10.1021/acs.analchem.9b00447 – ident: e_1_2_10_36_1 doi: 10.1038/nmeth.1250 – ident: e_1_2_10_68_1 doi: 10.1038/s42003-019-0589-x – ident: e_1_2_10_74_1 doi: 10.1371/journal.pone.0017896 – ident: e_1_2_10_96_1 doi: 10.1038/nbt994 – ident: e_1_2_10_118_1 doi: 10.1016/S0896-6273(01)00394-4 – ident: e_1_2_10_33_1 doi: 10.1002/cyto.a.21070 – ident: e_1_2_10_125_1 doi: 10.1016/j.tibtech.2011.08.002 – volume: 207 start-page: 413 year: 2017 ident: e_1_2_10_39_1 article-title: Lipid and carbohydrate metabolism in Caenorhabditis elegans publication-title: Genetics – ident: e_1_2_10_11_1 doi: 10.1038/348503a0 – ident: e_1_2_10_62_1 doi: 10.1038/nbt1044 – ident: e_1_2_10_51_1 doi: 10.1074/mcp.M111.016345 – ident: e_1_2_10_7_1 doi: 10.1242/dev.116.2.309 – ident: e_1_2_10_131_1 doi: 10.1016/j.celrep.2020.108410 – ident: e_1_2_10_13_1 doi: 10.1098/rstb.1986.0056 – ident: e_1_2_10_38_1 doi: 10.3390/genes11070778 – ident: e_1_2_10_79_1 doi: 10.1074/jbc.M102815200 – ident: e_1_2_10_47_1 doi: 10.1038/s41467-018-05401-3 – ident: e_1_2_10_66_1 doi: 10.1016/j.molcel.2009.03.006 – ident: e_1_2_10_111_1 doi: 10.1073/pnas.0503274102 – ident: e_1_2_10_22_1 doi: 10.1895/wormbook.1.164.1 – ident: e_1_2_10_37_1 doi: 10.3389/fnmol.2017.00141 – ident: e_1_2_10_24_1 doi: 10.1002/wdev.79 – ident: e_1_2_10_132_1 doi: 10.1038/cddis.2014.583 |
SSID | ssj0035032 |
Score | 2.35054 |
SecondaryResourceType | review_article |
Snippet | Caenorhabditis elegans (C. elegans) as a well‐established multicellular model organism has been widely used in the biological field for half a century. Its... Caenorhabditis elegans ( C. elegans ) as a well‐established multicellular model organism has been widely used in the biological field for half a century. Its... Caenorhabditis elegans (C. elegans) as a well-established multicellular model organism has been widely used in the biological field for half a century. Its... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 560 |
SubjectTerms | Aging Biomolecules Biophysics Body size Caenorhabditis elegans Cell size DNA probes Fluorescent indicators fluorescent probes Genomes Immunology Labeling Life cycles Nematodes Nervous system Optical analysis optical imaging Organisms Probes Qualitative analysis Quantitative analysis Worms |
Title | Innovative fluorescent probes for in vivo visualization of biomolecules in living Caenorhabditis elegans |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcyto.a.24325 https://www.ncbi.nlm.nih.gov/pubmed/33638604 https://www.proquest.com/docview/2537438781 https://www.proquest.com/docview/2494302123 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS90wFD4MYbAXdZvT-mNkoE-j19skbdpHuShusA1EwT2Fpknx4qWV-wv0r_ecpLebGxPmSyn0hKZJTvLlNOf7AA5zlxRGpWksuLOxVCokK8eFtEokqVOJZ7z59j07v5Jfr9PrLuBGuTCBH6IPuJFn-PmaHLw0s-NfpKHV_bwdlAMuBaccczquRZjoomePEunQ65MRyVgsC867c-9Y_Pj3wk9XpL9g5lPU6pedsw3QqwqH0ya3g8XcDKqHP7gcX_5Fm7DeIVJ2EobQW3jlmnfwOmhU3r-Hmy-dburSsXqyaKeB_4mREo2bMcS8bNyw5XjZ4mVGKZohsZO1NaPc_iC_i5ZoNRlT-IKNSte005vSWCJUYqR8gQvmFlydnV6OzuNOniGupBfBtURsQ3EQY50zUtSIdkqV2YJICkXhlJGcD2tVOilxo6kqtLeZQIyTqNpW4gOsNW3jdoAZW-QZ7gRz3DFLKyqi0cuzGtFlZpNaZRF8XnWRrjrucpLQmOjAusw1tZ0utW-7CI5667vA2fEPu_1Vb-vOc2eapwJBVa7yJIJP_WP0OfqRUjauXaCNJNJ6WvQj2A6jpH-REDijZUMZQez7-tka6NHPyx8n_nb3P-334A2n4zU-ILQPa_Ppwh0gPpqbj94LHgGmmgqO |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9UwFD7oRPRluulc53QR9El6d5ukTfs4ro473SbIHcyn2DYpu-zSjvsLtr_ec5LezikK4ksp9ISmSU7y5TTn-wDepjbKChXHoeDWhFIpn6wcZtIoEcVWRY7x5uQ0GZ7JT-fxeatzSrkwnh-iC7iRZ7j5mhycAtL7t6yh5fW86eU9LgWP78MDEvUmCYMPXzv-KBH3nUIZ0YyFMuO8PfmO5fd_Ln13TfoNaN7FrW7hOXwC31dV9udNLnuLedErb35hc_yPb3oK6y0oZQd-FG3APVtvwkMvU3n9DC6OWunUpWXVZNFMPQUUIzEaO2MIe9m4ZsvxssHLjLI0fW4naypG6f1egRct0WoypggGG-S2bqYXeWGIU4mR-AWumc_h7PDjaDAMW4WGsJROB9cQtw2FQgpjbSFFhYAnV4nJiKdQZFYVkvN-pXIrJe41VYn2JhEIcyJVmVJswVrd1HYbWGGyNMHNYIqbZmlESUx6aVIhwExMVKkkgPerPtJlS19OKhoT7YmXuaa207l2bRfAu876ytN2_MFud9XdunXemeaxQFyVqjQK4E33GN2O_qXktW0WaCOJt57W_QBe-GHSvUgInNSSvgwgdJ391xrowbfRlwN3u_OP9nvwaDg6OdbHR6efX8JjTqdtXHxoF9bm04V9hXBpXrx2LvEDPI4OqA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BEYhLy7uBFowEJ5Ttxnbs5Fhtu2p5FIRaqZysJHbUFauk2pdUfj0zdjZQEEhwiSJlrDi2x_488XwfwKvMJXmp0zQW3NlYah2SleNcWi2S1OnEM958OFFHZ_LteXreBdwoFybwQ_QBN_IMP1-Tg1_aeu8HaWh1tWgHxYBLwdObcEsq9BcCRZ97-iiRDr1AGbGMxTLnvDv4juX3fi59fUn6DWdeh61-3RlvgVnXOBw3-TpYLspB9e0XMsf__6R7sNlBUrYfxtB9uOGaB3A7iFRePYSL4044deVYPV22s0AAxUiKxs0Zgl42adhqsmrxMqcczZDZydqaUXJ_0N9FS7SaTih-wUaFa9rZRVFaYlRiJH2BK-YjOBsfno6O4k6fIa6kV8G1xGxDgZDSOldKUSPcKbSyObEUitzpUnI-rHXhpMSdpq7Q3iqBICfRta3EY9ho2sZtAyttnincCma4ZZZWVMSjl6ka4aWySa1VBG_WXWSqjrycNDSmJtAuc0NtZwrj2y6C1731ZSDt-IPdzrq3Tee6c8NTgagq01kSwcv-MTod_UkpGtcu0UYSaz2t-hE8CaOkf5EQOKWpoYwg9n391xqY0ZfTj_v-9uk_2r-AO58Oxub98cm7Z3CX01EbHxzagY3FbOl2ESstyufeIb4DJZkNYA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Innovative+fluorescent+probes+for+in+vivo+visualization+of+biomolecules+in+living+Caenorhabditis+elegans&rft.jtitle=Cytometry.+Part+A&rft.au=Wang%2C+Chunxia&rft.au=Xia%2C+Chujie&rft.au=Zhu%2C+Yi&rft.au=Zhang%2C+Huimin&rft.date=2021-06-01&rft.issn=1552-4930&rft.eissn=1552-4930&rft.volume=99&rft.issue=6&rft.spage=560&rft_id=info:doi/10.1002%2Fcyto.a.24325&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4922&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4922&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4922&client=summon |