Innovative fluorescent probes for in vivo visualization of biomolecules in living Caenorhabditis elegans

Caenorhabditis elegans (C. elegans) as a well‐established multicellular model organism has been widely used in the biological field for half a century. Its numerous advantages including small body size, rapid life cycle, high‐reproductive rate, well‐defined anatomy, and conserved genome, has made C....

Full description

Saved in:
Bibliographic Details
Published inCytometry. Part A Vol. 99; no. 6; pp. 560 - 574
Main Authors Wang, Chunxia, Xia, Chujie, Zhu, Yi, Zhang, Huimin
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.06.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1552-4922
1552-4930
1552-4930
DOI10.1002/cyto.a.24325

Cover

Loading…
Abstract Caenorhabditis elegans (C. elegans) as a well‐established multicellular model organism has been widely used in the biological field for half a century. Its numerous advantages including small body size, rapid life cycle, high‐reproductive rate, well‐defined anatomy, and conserved genome, has made C. elegans one of the most successful multicellular model organisms. Discoveries obtained from the C. elegans model have made great contributions to research fields such as development, aging, biophysics, immunology, and neuroscience. Because of its transparent body and giant cell size, C. elegans is also an ideal subject for high resolution and high‐throughput optical imaging and analysis. During the past decade, great advances have been made to develop biomolecule‐targeting techniques for noninvasive optical imaging. These novel technologies expanded the toolbox for qualitative and quantitative analysis of biomolecules in C. elegans. In this review, we summarize recently developed fluorescent probes or labeling techniques for visualizing biomolecules at the cellular, subcellular or molecular scale by using C. elegans as the major model organism or designed specifically for the applications in C. elegans. Combining the technological advantages of the C. elegans model with the novel fluorescent labeling techniques will provide new horizons for high‐efficiency quantitative optical analysis in live organisms.
AbstractList Caenorhabditis elegans (C. elegans) as a well‐established multicellular model organism has been widely used in the biological field for half a century. Its numerous advantages including small body size, rapid life cycle, high‐reproductive rate, well‐defined anatomy, and conserved genome, has made C. elegans one of the most successful multicellular model organisms. Discoveries obtained from the C. elegans model have made great contributions to research fields such as development, aging, biophysics, immunology, and neuroscience. Because of its transparent body and giant cell size, C. elegans is also an ideal subject for high resolution and high‐throughput optical imaging and analysis. During the past decade, great advances have been made to develop biomolecule‐targeting techniques for noninvasive optical imaging. These novel technologies expanded the toolbox for qualitative and quantitative analysis of biomolecules in C. elegans. In this review, we summarize recently developed fluorescent probes or labeling techniques for visualizing biomolecules at the cellular, subcellular or molecular scale by using C. elegans as the major model organism or designed specifically for the applications in C. elegans. Combining the technological advantages of the C. elegans model with the novel fluorescent labeling techniques will provide new horizons for high‐efficiency quantitative optical analysis in live organisms.
Caenorhabditis elegans ( C. elegans ) as a well‐established multicellular model organism has been widely used in the biological field for half a century. Its numerous advantages including small body size, rapid life cycle, high‐reproductive rate, well‐defined anatomy, and conserved genome, has made C. elegans one of the most successful multicellular model organisms. Discoveries obtained from the C. elegans model have made great contributions to research fields such as development, aging, biophysics, immunology, and neuroscience. Because of its transparent body and giant cell size, C. elegans is also an ideal subject for high resolution and high‐throughput optical imaging and analysis. During the past decade, great advances have been made to develop biomolecule‐targeting techniques for noninvasive optical imaging. These novel technologies expanded the toolbox for qualitative and quantitative analysis of biomolecules in C. elegans . In this review, we summarize recently developed fluorescent probes or labeling techniques for visualizing biomolecules at the cellular, subcellular or molecular scale by using C. elegans as the major model organism or designed specifically for the applications in C. elegans . Combining the technological advantages of the C. elegans model with the novel fluorescent labeling techniques will provide new horizons for high‐efficiency quantitative optical analysis in live organisms.
Caenorhabditis elegans (C. elegans) as a well-established multicellular model organism has been widely used in the biological field for half a century. Its numerous advantages including small body size, rapid life cycle, high-reproductive rate, well-defined anatomy, and conserved genome, has made C. elegans one of the most successful multicellular model organisms. Discoveries obtained from the C. elegans model have made great contributions to research fields such as development, aging, biophysics, immunology, and neuroscience. Because of its transparent body and giant cell size, C. elegans is also an ideal subject for high resolution and high-throughput optical imaging and analysis. During the past decade, great advances have been made to develop biomolecule-targeting techniques for noninvasive optical imaging. These novel technologies expanded the toolbox for qualitative and quantitative analysis of biomolecules in C. elegans. In this review, we summarize recently developed fluorescent probes or labeling techniques for visualizing biomolecules at the cellular, subcellular or molecular scale by using C. elegans as the major model organism or designed specifically for the applications in C. elegans. Combining the technological advantages of the C. elegans model with the novel fluorescent labeling techniques will provide new horizons for high-efficiency quantitative optical analysis in live organisms.Caenorhabditis elegans (C. elegans) as a well-established multicellular model organism has been widely used in the biological field for half a century. Its numerous advantages including small body size, rapid life cycle, high-reproductive rate, well-defined anatomy, and conserved genome, has made C. elegans one of the most successful multicellular model organisms. Discoveries obtained from the C. elegans model have made great contributions to research fields such as development, aging, biophysics, immunology, and neuroscience. Because of its transparent body and giant cell size, C. elegans is also an ideal subject for high resolution and high-throughput optical imaging and analysis. During the past decade, great advances have been made to develop biomolecule-targeting techniques for noninvasive optical imaging. These novel technologies expanded the toolbox for qualitative and quantitative analysis of biomolecules in C. elegans. In this review, we summarize recently developed fluorescent probes or labeling techniques for visualizing biomolecules at the cellular, subcellular or molecular scale by using C. elegans as the major model organism or designed specifically for the applications in C. elegans. Combining the technological advantages of the C. elegans model with the novel fluorescent labeling techniques will provide new horizons for high-efficiency quantitative optical analysis in live organisms.
Author Xia, Chujie
Zhang, Huimin
Wang, Chunxia
Zhu, Yi
Author_xml – sequence: 1
  givenname: Chunxia
  surname: Wang
  fullname: Wang, Chunxia
  organization: Institutes of Biology and Medical Sciences, Soochow University
– sequence: 2
  givenname: Chujie
  surname: Xia
  fullname: Xia, Chujie
  organization: Institutes of Biology and Medical Sciences, Soochow University
– sequence: 3
  givenname: Yi
  surname: Zhu
  fullname: Zhu, Yi
  organization: Institutes of Biology and Medical Sciences, Soochow University
– sequence: 4
  givenname: Huimin
  orcidid: 0000-0002-2167-9644
  surname: Zhang
  fullname: Zhang, Huimin
  email: zhanghuimin@suda.edu.cn
  organization: Institutes of Biology and Medical Sciences, Soochow University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33638604$$D View this record in MEDLINE/PubMed
BookMark eNp90T1vHCEQBmBkOfJX0qWOkNK48F2AYeEorZPjWLLkxilSIXZ31sbiwIHdjS6_Pthnp7CUNEDxvCNm5pjsxxSRkI-cLTlj4ku3HdPSLYUE0eyRI940YiENsP2_byEOyXEpD4xBw0AckEMABSvF5BG5v4oxzW70M9IhTClj6TCO9DGnFgsdUqY-0tnPqR5lcsH_rjhFmgba-rRJAbspVFlV8LOPd3TtMKZ879rej75QDHjnYnlP3g0uFPzwcp-Q718vbtffFtc3l1fr8-tFJ5loFro30himFW97xFbCoMA4rXpjVGPAoG6lEGzQDqXUguuu-l6BUsD10HdwQk53dWsHPycso9342lIILmKaihXSSGCCC6j08xv6kKYc6--saEBLWOkVr-rTi5raDfb2MfuNy1v7OsMKxA50OZWScbCdH5-HNGbng-XMPi3KPi3KOvu8qBo6exN6rfsPLnf8lw-4_a-16x-3N-e72B_REKYq
CitedBy_id crossref_primary_10_1002_cyto_a_24508
crossref_primary_10_1016_j_jep_2021_114802
crossref_primary_10_1016_j_biopha_2023_115594
crossref_primary_10_3390_toxins16070319
crossref_primary_10_1016_j_dyepig_2024_112541
crossref_primary_10_21603_2308_4057_2022_2_544
crossref_primary_10_1016_j_addr_2022_114528
crossref_primary_10_1096_fj_202403250RR
Cites_doi 10.7554/eLife.26376
10.1039/c3mb70269c
10.1016/j.jgg.2014.03.002
10.5483/BMBRep.2016.49.2.261
10.1021/jacs.5b03042
10.3389/fnmol.2013.00002
10.1016/0092-8674(90)90495-Z
10.1242/jcs.246793
10.1021/ja100351w
10.1016/j.tma.2018.01.001
10.1021/ja210065g
10.1002/chem.201002896
10.1038/nmeth.1460
10.1074/jbc.M506357200
10.1073/pnas.0913154107
10.1038/ncomms5974
10.1038/s41565-019-0365-6
10.1016/j.gde.2011.09.003
10.1021/ja306045j
10.4161/auto.24870
10.1038/nmeth.2413
10.1021/ja3036256
10.1117/1.2939094
10.1016/j.cell.2020.12.012
10.1038/nmeth.1209
10.1074/jbc.M301333200
10.1016/j.bbamcr.2015.05.020
10.1105/tpc.106.044073
10.1038/nmeth.1227
10.1038/378082a0
10.1039/b919265d
10.1016/j.jgg.2018.03.005
10.1002/anie.201903005
10.1038/nchembio0605-13
10.1073/pnas.0707090104
10.1194/jlr.R000034
10.1039/C8IB00063H
10.1039/c3an01339a
10.1109/JSTQE.2009.2032512
10.1021/cb800025k
10.1038/s41598-019-51399-z
10.1039/c001986k
10.1073/pnas.1101929108
10.1534/g3.116.038133
10.1038/377351a0
10.1016/j.cub.2008.02.079
10.1126/science.1155106
10.1038/s41467-017-00944-3
10.1016/S0074-7696(08)62507-3
10.1038/nmeth.1945
10.1038/nrm3786
10.1016/j.biomaterials.2013.07.043
10.1021/ja072601x
10.1126/science.8303295
10.1111/j.1460-9568.2007.05511.x
10.1038/ncomms1340
10.1093/genetics/118.1.75
10.1895/wormbook.1.167.1
10.1042/BJ20060874
10.1002/anie.201311133
10.1073/pnas.0703594104
10.1038/378078a0
10.1007/s12274-017-1677-1
10.1126/science.1221762
10.1038/nrm1912
10.1126/science.1252966
10.1126/science.6857247
10.1016/j.immuni.2015.01.014
10.1039/b707861g
10.1073/pnas.1115485109
10.1038/nnano.2009.294
10.1038/nmeth.1203
10.1534/genetics.119.302063
10.1016/j.jinsphys.2017.07.010
10.1039/C2CS35416K
10.1073/pnas.0712008105
10.1016/0092-8674(93)90485-9
10.1534/g3.117.040824
10.1016/0092-8674(86)90004-8
10.1039/b910703g
10.1021/cb900254y
10.1038/nmeth.2333
10.1016/B978-0-12-394447-4.20074-6
10.1101/gr.10.5.703
10.1038/nmeth.1556
10.1016/j.molcel.2016.02.001
10.1126/science.282.5396.2012
10.1021/ja904843x
10.1039/C7RA11347A
10.1002/cbic.201400033
10.1371/journal.pone.0028674
10.1091/mbc.e16-01-0063
10.1038/ncb2915
10.1002/cbic.201400032
10.1038/nmat2398
10.1007/978-1-4939-7471-9_4
10.1038/nmeth.4074
10.1021/ol403470d
10.1038/366461a0
10.3389/fgene.2014.00279
10.1093/geronj/43.4.B102
10.1016/j.cell.2009.11.005
10.1021/cb500499x
10.1016/0092-8674(83)90377-X
10.1021/nl0519175
10.1021/acs.analchem.9b00447
10.1038/nmeth.1250
10.1038/s42003-019-0589-x
10.1371/journal.pone.0017896
10.1038/nbt994
10.1016/S0896-6273(01)00394-4
10.1002/cyto.a.21070
10.1016/j.tibtech.2011.08.002
10.1038/348503a0
10.1038/nbt1044
10.1074/mcp.M111.016345
10.1242/dev.116.2.309
10.1016/j.celrep.2020.108410
10.1098/rstb.1986.0056
10.3390/genes11070778
10.1074/jbc.M102815200
10.1038/s41467-018-05401-3
10.1016/j.molcel.2009.03.006
10.1073/pnas.0503274102
10.1895/wormbook.1.164.1
10.3389/fnmol.2017.00141
10.1002/wdev.79
10.1038/cddis.2014.583
ContentType Journal Article
Copyright 2021 International Society for Advancement of Cytometry.
2021 International Society for Advancement of Cytometry
Copyright_xml – notice: 2021 International Society for Advancement of Cytometry.
– notice: 2021 International Society for Advancement of Cytometry
DBID AAYXX
CITATION
NPM
7QO
7TK
8FD
FR3
P64
7X8
DOI 10.1002/cyto.a.24325
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
Engineering Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1552-4930
EndPage 574
ExternalDocumentID 33638604
10_1002_cyto_a_24325
CYTOA24325
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 31670912; 31871384
– fundername: Natural Science Foundation of Jiangsu Province of China
  funderid: BK20160009
– fundername: Program for Changjiang Scholars and Innovative Research Team in University
  funderid: IRT1075
– fundername: National Key R&D Program of China
  funderid: 2019YFA0802400
– fundername: National Natural Science Foundation of China
  grantid: 31670912
– fundername: Natural Science Foundation of Jiangsu Province of China
  grantid: BK20160009
– fundername: National Natural Science Foundation of China
  grantid: 31871384
– fundername: National Key R&D Program of China
  grantid: 2019YFA0802400
– fundername: Program for Changjiang Scholars and Innovative Research Team in University
  grantid: IRT1075
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
2WC
31~
33P
3SF
4.4
4ZD
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
RNS
ROL
RWI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7QO
7TK
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
P64
7X8
ID FETCH-LOGICAL-c4025-7d94990761bdeeb43f639a76d9965939e7b4220f7ae447217c949d6366317fdc3
IEDL.DBID DR2
ISSN 1552-4922
1552-4930
IngestDate Thu Jul 10 23:51:52 EDT 2025
Fri Jul 25 21:07:47 EDT 2025
Wed Feb 19 02:29:21 EST 2025
Tue Jul 01 00:49:20 EDT 2025
Thu Apr 24 22:55:19 EDT 2025
Wed Jan 22 16:28:34 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Caenorhabditis elegans
biomolecules
optical imaging
fluorescent probes
Language English
License 2021 International Society for Advancement of Cytometry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4025-7d94990761bdeeb43f639a76d9965939e7b4220f7ae447217c949d6366317fdc3
Notes Funding information
National Key R&D Program of China, Grant/Award Number: 2019YFA0802400; National Natural Science Foundation of China, Grant/Award Numbers: 31670912, 31871384; Natural Science Foundation of Jiangsu Province of China, Grant/Award Number: BK20160009; Program for Changjiang Scholars and Innovative Research Team in University, Grant/Award Number: IRT1075
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-2167-9644
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cyto.a.24325
PMID 33638604
PQID 2537438781
PQPubID 2045167
PageCount 15
ParticipantIDs proquest_miscellaneous_2494302123
proquest_journals_2537438781
pubmed_primary_33638604
crossref_citationtrail_10_1002_cyto_a_24325
crossref_primary_10_1002_cyto_a_24325
wiley_primary_10_1002_cyto_a_24325_CYTOA24325
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2021
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hoboken
PublicationTitle Cytometry. Part A
PublicationTitleAlternate Cytometry A
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2007; 104
2004; 22
2010; 10
2019; 91
2019; 2019
2010; 16
1990; 348
2010; 107
2019; 14
2008; 105
1995; 378
1995; 377
2020; 11
2018; 45
1993; 366
2003; 278
2012; 11
2013; 6
2013; 9
2017; 207
2018; 9
2018; 8
2018; 2
2012; 134
2015; 137
2005; 102
2000; 10
1994; 263
1992; 116
2014; 16
2014; 15
2007; 7
2006; 281
2016; 49
2010; 7
1998; 282
2019; 9
2011; 2
2018; 106
2019; 2
2006; 351
2011; 79
2015; 1853
2020; 33
2014; 41
2011; 6
2011; 8
2012; 109
2012; 30
2001; 276
2019; 212
2005; 1
2018; 11
2018; 10
2016; 27
2010; 51
2001; 31
2017; 6
2017; 7
2017; 8
2019; 58
2008; 5
2008; 3
2011; 17
2005; 23
2014; 5
1983; 220
2013; 10
1986; 44
2015; 42
1993; 75
1988; 43
2011; 21
2020; 133
2014; 9
2012; 337
2018; 1706
2007; 25
2006; 400
2014; 53
2007; 129
2015; 6
1986; 314
2015; 200
2008; 18
2013; 42
2006; 7
2021; 184
2006; 18
2008; 13
2006; 6
1996; 166
2009; 131
2008; 320
1983; 34
2009; 139
2009; 34
1990; 63
2011; 108
2012; 1
2017; 14
2013; 34
2013; 138
2017; 10
2010; 132
2009; 9
2009; 8
2016
2016; 61
2009; 4
1988; 118
2014; 345
2012; 9
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_131_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_116_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_112_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_120_1
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_124_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
Uebel C (e_1_2_10_71_1) 2019; 2019
Watts JL (e_1_2_10_39_1) 2017; 207
e_1_2_10_132_1
e_1_2_10_90_1
e_1_2_10_117_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_121_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_110_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_133_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_119_1
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_126_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_122_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_108_1
Corsi AK (e_1_2_10_2_1) 2015; 200
Pulak R (e_1_2_10_26_1) 2006; 351
e_1_2_10_130_1
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_115_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_111_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 61
  start-page: 496
  year: 2016
  end-page: 505
  article-title: RNA processing and genome stability: Cause and consequence
  publication-title: Mol Cell
– volume: 138
  start-page: 7326
  year: 2013
  end-page: 30
  article-title: Fluorogenic probes using 4‐substituted‐2‐nitrobenzenesulfonyl derivatives as caging groups for the analysis of human glutathione transferase catalyzed reactions
  publication-title: Analyst
– volume: 200
  start-page: 387
  issue: 2
  year: 2015
  end-page: 407
  article-title: A transparent window into biology: A primer on
  publication-title: WormBook
– volume: 166
  start-page: 103
  year: 1996
  end-page: 37
  article-title: Vitellogenin receptors: Oocyte‐specific members of the low‐density lipoprotein receptor supergene family
  publication-title: Int Rev Cytol
– volume: 75
  start-page: 641
  year: 1993
  end-page: 52
  article-title: The C. elegans cell death gene ced‐3 encodes a protein similar to mammalian interleukin‐1β‐converting enzyme
  publication-title: Cell
– volume: 378
  start-page: 78
  year: 1995
  end-page: 81
  article-title: Mechanosensory signalling in mediated by the GLR‐1 glutamate receptor
  publication-title: Nature
– volume: 337
  start-page: 437
  year: 2012
  end-page: 44
  article-title: The connectome of a decision‐making neural network
  publication-title: Science
– volume: 139
  start-page: 855
  year: 2009
  end-page: 60
  article-title: Lipid droplets finally get a little R‐E‐S‐P‐E‐C‐T
  publication-title: Cell
– volume: 184
  start-page: 272
  year: 2021
  end-page: 288.e211
  article-title: NeuroPAL: A multicolor atlas for whole‐brain neuronal identification in
  publication-title: Cell
– volume: 320
  start-page: 664
  year: 2008
  end-page: 7
  article-title: In vivo imaging of membrane‐associated glycans in developing zebrafish
  publication-title: Science
– volume: 1706
  start-page: 53
  year: 2018
  end-page: 75
  article-title: What can we learn about human disease from the Nematode ?
  publication-title: Methods Mol Biol
– volume: 10
  start-page: 419
  year: 2018
  end-page: 28
  article-title: Enhancing fluorescent protein photostability through robot‐assisted photobleaching
  publication-title: Integr Biol (Camb)
– volume: 132
  start-page: 4907
  year: 2010
  end-page: 16
  article-title: Switchable nile red‐based probe for cholesterol and lipid order at the outer leaflet of biomembranes
  publication-title: J Am Chem Soc
– volume: 134
  start-page: 12157
  year: 2012
  end-page: 67
  article-title: Organelle‐specific detection of phosphatase activities with two‐photon fluorogenic probes in cells and tissues
  publication-title: J Am Chem Soc
– volume: 51
  start-page: 468
  year: 2010
  end-page: 71
  article-title: Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT‐family of intracellular lipid storage droplet proteins
  publication-title: J Lipid Res
– volume: 131
  start-page: 11308
  year: 2009
  end-page: 9
  article-title: Carbon dots for optical imaging in vivo
  publication-title: J Am Chem Soc
– volume: 43
  start-page: B102
  year: 1988
  end-page: 9
  article-title: Three mutants that extend both mean and maximum life span of the nematode, , define the age‐1 gene
  publication-title: J Gerontol
– volume: 45
  start-page: 259
  year: 2018
  end-page: 72
  article-title: Whole‐genome RNAi screen identifies methylation‐related genes influencing lipid metabolism in
  publication-title: J Genet Genomics
– volume: 102
  start-page: 8740
  year: 2005
  end-page: 5
  article-title: Detection of glutamate release from neurons by genetically encoded surface‐displayed FRET nanosensors
  publication-title: Proc Natl Acad Sci U S A
– volume: 34
  start-page: 435
  year: 1983
  end-page: 44
  article-title: The lin‐12 locus specifies cell fates in
  publication-title: Cell
– volume: 16
  start-page: 756
  year: 2014
  end-page: 9
  article-title: New fluoranthene FLUN‐550 as a fluorescent probe for selective staining and quantification of intracellular lipid droplets
  publication-title: Org Lett
– volume: 107
  start-page: 6526
  year: 2010
  end-page: 31
  article-title: Imaging extrasynaptic glutamate dynamics in the brain
  publication-title: Proc Natl Acad Sci U S A
– volume: 5
  start-page: 637
  year: 2008
  end-page: 43
  article-title: Automated on‐chip rapid microscopy, phenotyping and sorting of
  publication-title: Nat Methods
– volume: 105
  start-page: 4411
  year: 2008
  end-page: 6
  article-title: Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate‐sensitive fluorescent reporters
  publication-title: Proc Natl Acad Sci U S A
– volume: 2
  start-page: 1
  year: 2018
  end-page: 10
  article-title: A toolkit for DNA assembly, genome engineering and multicolor imaging for
  publication-title: Transl Med Aging
– volume: 34
  start-page: 3
  year: 2009
  end-page: 11
  article-title: How common are extraribosomal functions of ribosomal proteins?
  publication-title: Mol Cell
– volume: 207
  start-page: 413
  year: 2017
  end-page: 46
  article-title: Lipid and carbohydrate metabolism in
  publication-title: Genetics
– volume: 33
  year: 2020
  article-title: A Hemidesmosome‐to‐cytoplasm translocation of small heat shock proteins provides immediate protection against heat stress
  publication-title: Cell Rep
– volume: 5
  start-page: 279
  year: 2014
  article-title: Use of as a model to study Alzheimer's disease and other neurodegenerative diseases
  publication-title: Front Genet
– volume: 14
  start-page: 53
  year: 2017
  end-page: 6
  article-title: mScarlet: A bright monomeric red fluorescent protein for cellular imaging
  publication-title: Nat Methods
– volume: 314
  start-page: 1
  year: 1986
  end-page: 340
  article-title: The structure of the nervous system of the nematode
  publication-title: Philos Trans R Soc Lond B Biol Sci
– start-page: 845
  year: 2016
  end-page: 52
– volume: 5
  start-page: 531
  year: 2008
  end-page: 3
  article-title: Femtosecond laser nanoaxotomy lab‐on‐a‐chip for in vivo nerve regeneration studies
  publication-title: Nat Methods
– volume: 2
  start-page: 340
  year: 2011
  article-title: An autonomous DNA nanomachine maps spatiotemporal pH changes in a multicellular living organism
  publication-title: Nat Commun
– volume: 400
  start-page: 531
  year: 2006
  end-page: 40
  article-title: Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: Structural characterization and applications in fluorescence imaging
  publication-title: Biochem J
– volume: 1
  start-page: 13
  year: 2005
  end-page: 21
  article-title: Chemistry in living systems
  publication-title: Nat Chem Biol
– volume: 79
  start-page: 799
  year: 2011
  end-page: 813
  article-title: Wormometry‐on‐a‐chip: Innovative technologies for in situ analysis of small multicellular organisms
  publication-title: Cytometry A
– volume: 345
  start-page: 1240
  year: 2014
  end-page: 1
  article-title: RNA function. RNA and dynamic nuclear organization
  publication-title: Science
– volume: 53
  start-page: 4469
  year: 2014
  end-page: 74
  article-title: An activatable theranostic for targeted cancer therapy and imaging
  publication-title: Angew Chem Int Ed Engl
– volume: 7
  start-page: 1429
  year: 2017
  end-page: 37
  article-title: Reliable CRISPR/Cas9 genome engineering in using a single efficient sgRNA and an easily recognizable phenotype
  publication-title: G3 (Bethesda)
– volume: 220
  start-page: 1277
  year: 1983
  end-page: 9
  article-title: Mutations affecting programmed cell deaths in the nematode
  publication-title: Science
– volume: 106
  start-page: 55
  year: 2018
  end-page: 64
  article-title: Live imaging using a FRET glucose sensor reveals glucose delivery to all cell types in the drosophila brain
  publication-title: J Insect Physiol
– volume: 15
  start-page: 327
  year: 2014
  end-page: 39
  article-title: Advances in whole‐embryo imaging: A quantitative transition is underway
  publication-title: Nat Rev Mol Cell Biol
– volume: 10
  start-page: 589
  year: 2010
  end-page: 97
  article-title: Lifespan‐on‐a‐chip: Microfluidic chambers for performing lifelong observation of
  publication-title: Lab Chip
– volume: 5
  start-page: 869
  year: 2008
  end-page: 72
  article-title: Automated screening for mutants affecting dopaminergic‐neuron specification in
  publication-title: Nat Methods
– volume: 8
  start-page: 135
  year: 2011
  end-page: 8
  article-title: RNAi screening for fat regulatory genes with SRS microscopy
  publication-title: Nat Methods
– volume: 104
  start-page: 14658
  year: 2007
  end-page: 63
  article-title: Monitoring of lipid storage in using coherent anti‐stokes Raman scattering (CARS) microscopy
  publication-title: Proc Natl Acad Sci U S A
– volume: 10
  start-page: 407
  year: 2013
  end-page: 9
  article-title: A bright monomeric green fluorescent protein derived from
  publication-title: Nat Methods
– volume: 108
  start-page: E201
  year: 2011
  end-page: 10
  article-title: Targeting and imaging single biomolecules in living cells by complementation‐activated light microscopy with split‐fluorescent proteins
  publication-title: Proc Natl Acad Sci U S A
– volume: 25
  start-page: 2249
  year: 2007
  end-page: 59
  article-title: Optical glutamate sensor for spatiotemporal analysis of synaptic transmission
  publication-title: Eur J Neurosci
– volume: 21
  start-page: 585
  year: 2011
  end-page: 90
  article-title: Label‐free imaging of lipid dynamics using coherent anti‐stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy
  publication-title: Curr Opin Genet Dev
– volume: 14
  start-page: 252
  year: 2019
  end-page: 9
  article-title: DNA nanodevices map enzymatic activity in organelles
  publication-title: Nat Nanotechnol
– volume: 9
  start-page: 2764
  year: 2009
  end-page: 6
  article-title: Automated high‐throughput cell microsurgery on‐chip
  publication-title: Lab Chip
– volume: 22
  start-page: 969
  year: 2004
  end-page: 76
  article-title: In vivo cancer targeting and imaging with semiconductor quantum dots
  publication-title: Nat Biotechnol
– volume: 8
  start-page: 331
  year: 2009
  end-page: 6
  article-title: Biodegradable luminescent porous silicon nanoparticles for in vivo applications
  publication-title: Nat Mater
– volume: 31
  start-page: 617
  year: 2001
  end-page: 30
  article-title: The glutamate receptor subunit NMR‐1 is required for slow NMDA‐activated currents that regulate reversal frequency during locomotion
  publication-title: Neuron
– volume: 4
  start-page: 773
  year: 2009
  end-page: 80
  article-title: A route to brightly fluorescent carbon nanotubes for near‐infrared imaging in mice
  publication-title: Nat Nanotechnol
– volume: 1
  start-page: 861
  year: 2012
  end-page: 78
  article-title: The epidermis as a model skin. I: Development, patterning, and growth
  publication-title: Wiley Interdiscip Rev Dev Biol
– volume: 11
  start-page: 317
  year: 2012
  end-page: 28
  article-title: Proteomic study and marker protein identification of lipid droplets
  publication-title: Mol Cell Proteomics
– volume: 91
  start-page: 4821
  year: 2019
  end-page: 30
  article-title: Green fluorescent protein‐based glucose indicators report glucose dynamics in living cells
  publication-title: Anal Chem
– volume: 348
  start-page: 503
  year: 1990
  end-page: 9
  article-title: ras gene let‐60 acts as a switch in the pathway of vulval induction
  publication-title: Nature
– volume: 10
  start-page: 162
  year: 2013
  end-page: 70
  article-title: An optimized fluorescent probe for visualizing glutamate neurotransmission
  publication-title: Nat Methods
– volume: 27
  start-page: 3385
  year: 2016
  end-page: 94
  article-title: Comparative assessment of fluorescent proteins for in vivo imaging in an animal model system
  publication-title: Mol Biol Cell
– volume: 13
  year: 2008
  article-title: Characterization of an improved donor fluorescent protein for Forster resonance energy transfer microscopy
  publication-title: J Biomed Opt
– volume: 9
  start-page: 477
  year: 2012
  end-page: 9
  article-title: Direct visualization of specifically modified extracellular glycans in living animals
  publication-title: Nat Methods
– volume: 6
  year: 2011
  article-title: An enhanced monomeric blue fluorescent protein with the high chemical stability of the chromophore
  publication-title: PLoS One
– volume: 9
  start-page: 3001
  year: 2013
  end-page: 8
  article-title: A fluorogenic probe for β‐galactosidase activity imaging in living cells
  publication-title: Mol Biosyst
– volume: 34
  start-page: 8352
  year: 2013
  end-page: 60
  article-title: Fluorescent nanodiamond as a probe for the intercellular transport of proteins in vivo
  publication-title: Biomaterials
– volume: 18
  start-page: 2314
  year: 2006
  end-page: 25
  article-title: Rapid metabolism of glucose detected with FRET glucose nanosensors in epidermal cells and intact roots of Arabidopsis RNA‐silencing mutants
  publication-title: Plant Cell
– volume: 9
  start-page: 1214
  year: 2013
  end-page: 27
  article-title: IκB kinase complex (IKK) triggers detachment‐induced autophagy in mammary epithelial cells independently of the PI3K‐AKT‐MTORC1 pathway
  publication-title: Autophagy
– volume: 282
  start-page: 2012
  year: 1998
  end-page: 8
  article-title: Genome sequence of the nematode : A platform for investigating biology
  publication-title: Science
– volume: 17
  start-page: 5165
  year: 2011
  end-page: 70
  article-title: Development of lipid targeting Raman probes for in vivo imaging of
  publication-title: Chemistry
– volume: 7
  start-page: 473
  year: 2010
  end-page: 8
  article-title: A photoconvertible reporter of the ubiquitin‐proteasome system in vivo
  publication-title: Nat Methods
– volume: 18
  start-page: 481
  year: 2008
  end-page: 9
  article-title: Distinct innate immune responses to infection and wounding in the epidermis
  publication-title: Curr Biol
– volume: 16
  start-page: 506
  year: 2010
  end-page: 15
  article-title: Coherent anti‐stokes Raman scattering microscopy of cellular lipid storage
  publication-title: IEEE J Sel Top Quantum Electron
– volume: 9
  start-page: 2412
  year: 2014
  end-page: 20
  article-title: RNA mango aptamer‐fluorophore: A bright, high‐affinity complex for RNA labeling and tracking
  publication-title: ACS Chem Biol
– volume: 281
  start-page: 4654
  year: 2006
  end-page: 62
  article-title: 3‐O‐sulfated oligosaccharide structures are recognized by anti‐heparan sulfate antibody HS4C3
  publication-title: J Biol Chem
– volume: 6
  start-page: e26376
  year: 2017
  article-title: Microtubule‐dependent ribosome localization in neurons
  publication-title: Elife
– volume: 7
  start-page: 1515
  year: 2007
  end-page: 23
  article-title: A microfabricated array of clamps for immobilizing and imaging
  publication-title: Lab Chip
– volume: 133
  start-page: jcs246793
  issue: 21
  year: 2020
  article-title: Periodic subcellular structures undergo long‐range synchronized reorganization during epidermal development
  publication-title: J Cell Sci
– volume: 10
  start-page: 141
  year: 2017
  article-title: A systematic RNAi screen reveals a novel role of a spindle assembly checkpoint protein BuGZ in synaptic transmission in C elegans
  publication-title: Front Mol Neurosci
– volume: 3
  start-page: 373
  year: 2008
  end-page: 82
  article-title: HaloTag: A novel protein labeling technology for cell imaging and protein analysis
  publication-title: ACS Chem Biol
– volume: 278
  start-page: 19127
  year: 2003
  end-page: 33
  article-title: In vivo imaging of the dynamics of glucose uptake in the cytosol of COS‐7 cells by fluorescent nanosensors
  publication-title: J Biol Chem
– volume: 9
  start-page: 2995
  year: 2018
  article-title: Optical imaging of metabolic dynamics in animals
  publication-title: Nat Commun
– volume: 16
  start-page: 224
  year: 2014
  end-page: 33
  article-title: Mechanical control of the sense of touch by β‐spectrin
  publication-title: Nat Cell Biol
– volume: 134
  start-page: 14310
  year: 2012
  end-page: 3
  article-title: Development of a fluorogenic probe with a transesterification switch for detection of histone deacetylase activity
  publication-title: J Am Chem Soc
– volume: 44
  start-page: 817
  year: 1986
  end-page: 829
– volume: 4
  start-page: 1068
  year: 2009
  end-page: 72
  article-title: In vivo imaging of glycans
  publication-title: ACS Chem Biol
– volume: 6
  year: 2011
  article-title: An improved cerulean fluorescent protein with enhanced brightness and reduced reversible photoswitching
  publication-title: PLoS One
– volume: 137
  start-page: 7404
  year: 2015
  end-page: 14
  article-title: A fluorogenic aryl fluorosulfate for intraorganellar transthyretin imaging in living cells and in
  publication-title: J Am Chem Soc
– volume: 42
  start-page: 309
  year: 2015
  end-page: 20
  article-title: Structural damage in the epidermis causes release of STA‐2 and induction of an innate immune response
  publication-title: Immunity
– volume: 134
  start-page: 1316
  year: 2012
  end-page: 22
  article-title: Hepatocyte‐targeting single galactose‐appended naphthalimide: A tool for intracellular thiol imaging in vivo
  publication-title: J Am Chem Soc
– volume: 6
  start-page: 2
  year: 2013
  article-title: Genetically encoded calcium indicators for multi‐color neural activity imaging and combination with optogenetics
  publication-title: Front Mol Neurosci
– volume: 6
  start-page: e1619
  year: 2015
  article-title: Loss of anchorage primarily induces non‐apoptotic cell death in a human mammary epithelial cell line under atypical focal adhesion kinase signaling
  publication-title: Cell Death Dis
– volume: 11
  start-page: 778
  issue: 7
  year: 2020
  end-page: 87
  article-title: Genetic variation in complex traits in transgenic α‐Synuclein strains of
  publication-title: Genes (Basel)
– volume: 366
  start-page: 461
  year: 1993
  end-page: 4
  article-title: A mutant that lives twice as long as wild type
  publication-title: Nature
– volume: 109
  start-page: E690
  year: 2012
  end-page: 7
  article-title: Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin
  publication-title: Proc Natl Acad Sci U S A
– volume: 8
  start-page: 865
  year: 2017
  article-title: High‐throughput screens using photo‐highlighting discover BMP signaling in mitochondrial lipid oxidation
  publication-title: Nat Commun
– volume: 1853
  start-page: 2481
  year: 2015
  end-page: 91
  article-title: Identification of lipid droplet structure‐like/resident proteins in
  publication-title: Biochim Biophys Acta
– volume: 378
  start-page: 82
  year: 1995
  end-page: 5
  article-title: Synaptic code for sensory modalities revealed by GLR‐1 glutamate receptor
  publication-title: Nature
– volume: 9
  start-page: 14902
  year: 2019
  article-title: MDT‐28/PLIN‐1 mediates lipid droplet‐microtubule interaction via DLC‐1 in
  publication-title: Sci Rep
– volume: 41
  start-page: 305
  year: 2014
  end-page: 13
  article-title: A lipid droplet‐associated GFP reporter‐based screen identifies new fat storage regulators in
  publication-title: J Genet Genomics
– volume: 118
  start-page: 75
  year: 1988
  end-page: 86
  article-title: A mutation in the age‐1 gene in lengthens life and reduces hermaphrodite fertility
  publication-title: Genetics
– volume: 10
  start-page: 703
  year: 2000
  end-page: 13
  article-title: Identification of novel human genes evolutionarily conserved in by comparative proteomics
  publication-title: Genome Res
– volume: 276
  start-page: 29188
  year: 2001
  end-page: 94
  article-title: Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications
  publication-title: J Biol Chem
– volume: 7
  start-page: 373
  year: 2006
  end-page: 8
  article-title: Lipid droplets: A unified view of a dynamic organelle
  publication-title: Nat Rev Mol Cell Biol
– volume: 15
  start-page: 1101
  year: 2014
  end-page: 5
  article-title: An expanded set of fluorogenic sulfatase activity probes
  publication-title: ChemBioChem
– volume: 2019
  start-page: 143
  year: 2019
  end-page: 147
  article-title: Phase‐separated protein dynamics are affected by fluorescent tag choice
  publication-title: MicroPubl Biol
– volume: 58
  start-page: 7087
  year: 2019
  end-page: 91
  article-title: Membrane‐penetrating carbon quantum dots for imaging nucleic acid structures in live organisms
  publication-title: Angew Chem Int Ed Engl
– volume: 104
  start-page: 16793
  year: 2007
  end-page: 7
  article-title: Copper‐free click chemistry for dynamic in vivo imaging
  publication-title: Proc Natl Acad Sci U S A
– volume: 10
  start-page: 1862
  year: 2010
  end-page: 8
  article-title: Long‐term high‐resolution imaging and culture of in chip‐gel hybrid microfluidic device for developmental studies
  publication-title: Lab Chip
– volume: 263
  start-page: 802
  year: 1994
  end-page: 5
  article-title: Green fluorescent protein as a marker for gene expression
  publication-title: Science
– volume: 6
  start-page: 169
  year: 2006
  end-page: 74
  article-title: In vivo and scanning electron microscopy imaging of up‐converting nanophosphors in
  publication-title: Nano Lett
– volume: 42
  start-page: 4284
  year: 2013
  end-page: 96
  article-title: Chemical probing of glycans in cells and organisms
  publication-title: Chem Soc Rev
– volume: 49
  start-page: 81
  year: 2016
  end-page: 92
  article-title: The role of insulin/IGF‐1 signaling in the longevity of model invertebrates, C. elegans and
  publication-title: BMB Rep
– volume: 15
  start-page: 961
  year: 2014
  end-page: 76
  article-title: Rational design, synthesis and biological evaluation of modular fluorogenic substrates with high affinity and selectivity for PTP1B
  publication-title: ChemBioChem
– volume: 212
  start-page: 387
  year: 2019
  end-page: 95
  article-title: NATF (native and tissue‐specific fluorescence): A strategy for bright, tissue‐specific GFP labeling of native proteins in
  publication-title: Genetics
– volume: 5
  start-page: 545
  year: 2008
  end-page: 51
  article-title: Improving the photostability of bright monomeric orange and red fluorescent proteins
  publication-title: Nat Methods
– volume: 351
  start-page: 275
  year: 2006
  end-page: 86
  article-title: Techniques for analysis, sorting, and dispensing of on the COPAS flow‐sorting system
  publication-title: Methods Mol Biol
– volume: 116
  start-page: 309
  year: 1992
  end-page: 20
  article-title: The cell death gene ced‐4 encodes a novel protein and is expressed during the period of extensive programmed cell death
  publication-title: Development
– volume: 11
  start-page: 2336
  year: 2018
  end-page: 46
  article-title: The in vivo targeted molecular imaging of fluorescent silicon nanoparticles in
  publication-title: Nano Res
– volume: 5
  start-page: 4974
  year: 2014
  article-title: In vivo single‐molecule imaging identifies altered dynamics of calcium channels in dystrophin‐mutant C elegans
  publication-title: Nat Commun
– volume: 23
  start-page: 102
  year: 2005
  end-page: 7
  article-title: Protein tagging and detection with engineered self‐assembling fragments of green fluorescent protein
  publication-title: Nat Biotechnol
– volume: 30
  start-page: 8
  year: 2012
  end-page: 16
  article-title: Imaging proteins inside cells with fluorescent tags
  publication-title: Trends Biotechnol
– volume: 63
  start-page: 921
  year: 1990
  end-page: 31
  article-title: Let‐60, a gene that specifies cell fates during vulval induction, encodes a ras protein
  publication-title: Cell
– volume: 8
  start-page: 2485
  year: 2018
  end-page: 9
  article-title: Glucose monitoring in living cells with single fluorescent protein‐based sensors
  publication-title: RSC Adv
– volume: 377
  start-page: 351
  year: 1995
  end-page: 4
  article-title: Facilitation of lin‐12‐mediated signalling by sel‐12, a S182 Alzheimer's disease gene
  publication-title: Nature
– volume: 129
  start-page: 14518
  year: 2007
  end-page: 22
  article-title: Harnessing functional plasticity of enzymes: A fluorogenic probe for imaging 17beta‐HSD10 dehydrogenase, an enzyme involved in Alzheimer's and Parkinson's diseases
  publication-title: J Am Chem Soc
– volume: 7
  start-page: 607
  year: 2017
  end-page: 15
  article-title: The bright fluorescent protein mNeonGreen facilitates protein expression analysis in vivo
  publication-title: G3 (Bethesda)
– volume: 2
  start-page: 344
  year: 2019
  article-title: Bright split red fluorescent proteins for the visualization of endogenous proteins and synapses
  publication-title: Commun Biol
– ident: e_1_2_10_65_1
  doi: 10.7554/eLife.26376
– ident: e_1_2_10_88_1
  doi: 10.1039/c3mb70269c
– ident: e_1_2_10_54_1
  doi: 10.1016/j.jgg.2014.03.002
– ident: e_1_2_10_23_1
  doi: 10.5483/BMBRep.2016.49.2.261
– ident: e_1_2_10_95_1
  doi: 10.1021/jacs.5b03042
– ident: e_1_2_10_116_1
  doi: 10.3389/fnmol.2013.00002
– ident: e_1_2_10_12_1
  doi: 10.1016/0092-8674(90)90495-Z
– ident: e_1_2_10_87_1
  doi: 10.1242/jcs.246793
– ident: e_1_2_10_50_1
  doi: 10.1021/ja100351w
– ident: e_1_2_10_73_1
  doi: 10.1016/j.tma.2018.01.001
– ident: e_1_2_10_128_1
  doi: 10.1021/ja210065g
– ident: e_1_2_10_49_1
  doi: 10.1002/chem.201002896
– ident: e_1_2_10_86_1
  doi: 10.1038/nmeth.1460
– ident: e_1_2_10_110_1
  doi: 10.1074/jbc.M506357200
– ident: e_1_2_10_114_1
  doi: 10.1073/pnas.0913154107
– ident: e_1_2_10_64_1
  doi: 10.1038/ncomms5974
– ident: e_1_2_10_129_1
  doi: 10.1038/s41565-019-0365-6
– ident: e_1_2_10_43_1
  doi: 10.1016/j.gde.2011.09.003
– ident: e_1_2_10_90_1
  doi: 10.1021/ja306045j
– ident: e_1_2_10_133_1
  doi: 10.4161/auto.24870
– ident: e_1_2_10_83_1
  doi: 10.1038/nmeth.2413
– ident: e_1_2_10_94_1
  doi: 10.1021/ja3036256
– ident: e_1_2_10_76_1
  doi: 10.1117/1.2939094
– ident: e_1_2_10_72_1
  doi: 10.1016/j.cell.2020.12.012
– ident: e_1_2_10_81_1
  doi: 10.1038/nmeth.1209
– ident: e_1_2_10_120_1
  doi: 10.1074/jbc.M301333200
– ident: e_1_2_10_52_1
  doi: 10.1016/j.bbamcr.2015.05.020
– ident: e_1_2_10_121_1
  doi: 10.1105/tpc.106.044073
– ident: e_1_2_10_31_1
  doi: 10.1038/nmeth.1227
– ident: e_1_2_10_119_1
  doi: 10.1038/378082a0
– ident: e_1_2_10_27_1
  doi: 10.1039/b919265d
– ident: e_1_2_10_55_1
  doi: 10.1016/j.jgg.2018.03.005
– ident: e_1_2_10_59_1
  doi: 10.1002/anie.201903005
– ident: e_1_2_10_105_1
  doi: 10.1038/nchembio0605-13
– ident: e_1_2_10_106_1
  doi: 10.1073/pnas.0707090104
– ident: e_1_2_10_53_1
  doi: 10.1194/jlr.R000034
– ident: e_1_2_10_78_1
  doi: 10.1039/C8IB00063H
– ident: e_1_2_10_89_1
  doi: 10.1039/c3an01339a
– ident: e_1_2_10_44_1
  doi: 10.1109/JSTQE.2009.2032512
– ident: e_1_2_10_126_1
  doi: 10.1021/cb800025k
– ident: e_1_2_10_56_1
  doi: 10.1038/s41598-019-51399-z
– ident: e_1_2_10_32_1
  doi: 10.1039/c001986k
– ident: e_1_2_10_63_1
  doi: 10.1073/pnas.1101929108
– ident: e_1_2_10_85_1
  doi: 10.1534/g3.116.038133
– ident: e_1_2_10_10_1
  doi: 10.1038/377351a0
– ident: e_1_2_10_35_1
  doi: 10.1016/j.cub.2008.02.079
– volume: 351
  start-page: 275
  year: 2006
  ident: e_1_2_10_26_1
  article-title: Techniques for analysis, sorting, and dispensing of C. elegans on the COPAS flow‐sorting system
  publication-title: Methods Mol Biol
– ident: e_1_2_10_108_1
  doi: 10.1126/science.1155106
– ident: e_1_2_10_46_1
  doi: 10.1038/s41467-017-00944-3
– ident: e_1_2_10_103_1
  doi: 10.1016/S0074-7696(08)62507-3
– ident: e_1_2_10_109_1
  doi: 10.1038/nmeth.1945
– ident: e_1_2_10_34_1
  doi: 10.1038/nrm3786
– volume: 200
  start-page: 387
  issue: 2
  year: 2015
  ident: e_1_2_10_2_1
  article-title: A transparent window into biology: A primer on Caenorhabditis elegans
  publication-title: WormBook
– ident: e_1_2_10_102_1
  doi: 10.1016/j.biomaterials.2013.07.043
– ident: e_1_2_10_93_1
  doi: 10.1021/ja072601x
– ident: e_1_2_10_61_1
  doi: 10.1126/science.8303295
– ident: e_1_2_10_113_1
  doi: 10.1111/j.1460-9568.2007.05511.x
– ident: e_1_2_10_130_1
  doi: 10.1038/ncomms1340
– ident: e_1_2_10_19_1
  doi: 10.1093/genetics/118.1.75
– ident: e_1_2_10_25_1
  doi: 10.1895/wormbook.1.167.1
– ident: e_1_2_10_75_1
  doi: 10.1042/BJ20060874
– ident: e_1_2_10_127_1
  doi: 10.1002/anie.201311133
– ident: e_1_2_10_42_1
  doi: 10.1073/pnas.0703594104
– ident: e_1_2_10_117_1
  doi: 10.1038/378078a0
– ident: e_1_2_10_101_1
  doi: 10.1007/s12274-017-1677-1
– ident: e_1_2_10_14_1
  doi: 10.1126/science.1221762
– ident: e_1_2_10_40_1
  doi: 10.1038/nrm1912
– ident: e_1_2_10_57_1
  doi: 10.1126/science.1252966
– ident: e_1_2_10_5_1
  doi: 10.1126/science.6857247
– ident: e_1_2_10_18_1
  doi: 10.1016/j.immuni.2015.01.014
– ident: e_1_2_10_28_1
  doi: 10.1039/b707861g
– ident: e_1_2_10_69_1
  doi: 10.1073/pnas.1115485109
– ident: e_1_2_10_100_1
  doi: 10.1038/nnano.2009.294
– ident: e_1_2_10_29_1
  doi: 10.1038/nmeth.1203
– ident: e_1_2_10_67_1
  doi: 10.1534/genetics.119.302063
– ident: e_1_2_10_122_1
  doi: 10.1016/j.jinsphys.2017.07.010
– ident: e_1_2_10_104_1
  doi: 10.1039/C2CS35416K
– ident: e_1_2_10_112_1
  doi: 10.1073/pnas.0712008105
– ident: e_1_2_10_8_1
  doi: 10.1016/0092-8674(93)90485-9
– ident: e_1_2_10_82_1
  doi: 10.1534/g3.117.040824
– ident: e_1_2_10_6_1
  doi: 10.1016/0092-8674(86)90004-8
– volume: 2019
  start-page: 143
  year: 2019
  ident: e_1_2_10_71_1
  article-title: Phase‐separated protein dynamics are affected by fluorescent tag choice
  publication-title: MicroPubl Biol
– ident: e_1_2_10_30_1
  doi: 10.1039/b910703g
– ident: e_1_2_10_107_1
  doi: 10.1021/cb900254y
– ident: e_1_2_10_115_1
  doi: 10.1038/nmeth.2333
– ident: e_1_2_10_16_1
  doi: 10.1016/B978-0-12-394447-4.20074-6
– ident: e_1_2_10_4_1
  doi: 10.1101/gr.10.5.703
– ident: e_1_2_10_45_1
  doi: 10.1038/nmeth.1556
– ident: e_1_2_10_58_1
  doi: 10.1016/j.molcel.2016.02.001
– ident: e_1_2_10_3_1
  doi: 10.1126/science.282.5396.2012
– ident: e_1_2_10_99_1
  doi: 10.1021/ja904843x
– ident: e_1_2_10_123_1
  doi: 10.1039/C7RA11347A
– ident: e_1_2_10_92_1
  doi: 10.1002/cbic.201400033
– ident: e_1_2_10_70_1
  doi: 10.1371/journal.pone.0028674
– ident: e_1_2_10_84_1
  doi: 10.1091/mbc.e16-01-0063
– ident: e_1_2_10_77_1
  doi: 10.1038/ncb2915
– ident: e_1_2_10_91_1
  doi: 10.1002/cbic.201400032
– ident: e_1_2_10_98_1
  doi: 10.1038/nmat2398
– ident: e_1_2_10_17_1
  doi: 10.1007/978-1-4939-7471-9_4
– ident: e_1_2_10_80_1
  doi: 10.1038/nmeth.4074
– ident: e_1_2_10_48_1
  doi: 10.1021/ol403470d
– ident: e_1_2_10_21_1
  doi: 10.1038/366461a0
– ident: e_1_2_10_15_1
  doi: 10.3389/fgene.2014.00279
– ident: e_1_2_10_20_1
  doi: 10.1093/geronj/43.4.B102
– ident: e_1_2_10_41_1
  doi: 10.1016/j.cell.2009.11.005
– ident: e_1_2_10_60_1
  doi: 10.1021/cb500499x
– ident: e_1_2_10_9_1
  doi: 10.1016/0092-8674(83)90377-X
– ident: e_1_2_10_97_1
  doi: 10.1021/nl0519175
– ident: e_1_2_10_124_1
  doi: 10.1021/acs.analchem.9b00447
– ident: e_1_2_10_36_1
  doi: 10.1038/nmeth.1250
– ident: e_1_2_10_68_1
  doi: 10.1038/s42003-019-0589-x
– ident: e_1_2_10_74_1
  doi: 10.1371/journal.pone.0017896
– ident: e_1_2_10_96_1
  doi: 10.1038/nbt994
– ident: e_1_2_10_118_1
  doi: 10.1016/S0896-6273(01)00394-4
– ident: e_1_2_10_33_1
  doi: 10.1002/cyto.a.21070
– ident: e_1_2_10_125_1
  doi: 10.1016/j.tibtech.2011.08.002
– volume: 207
  start-page: 413
  year: 2017
  ident: e_1_2_10_39_1
  article-title: Lipid and carbohydrate metabolism in Caenorhabditis elegans
  publication-title: Genetics
– ident: e_1_2_10_11_1
  doi: 10.1038/348503a0
– ident: e_1_2_10_62_1
  doi: 10.1038/nbt1044
– ident: e_1_2_10_51_1
  doi: 10.1074/mcp.M111.016345
– ident: e_1_2_10_7_1
  doi: 10.1242/dev.116.2.309
– ident: e_1_2_10_131_1
  doi: 10.1016/j.celrep.2020.108410
– ident: e_1_2_10_13_1
  doi: 10.1098/rstb.1986.0056
– ident: e_1_2_10_38_1
  doi: 10.3390/genes11070778
– ident: e_1_2_10_79_1
  doi: 10.1074/jbc.M102815200
– ident: e_1_2_10_47_1
  doi: 10.1038/s41467-018-05401-3
– ident: e_1_2_10_66_1
  doi: 10.1016/j.molcel.2009.03.006
– ident: e_1_2_10_111_1
  doi: 10.1073/pnas.0503274102
– ident: e_1_2_10_22_1
  doi: 10.1895/wormbook.1.164.1
– ident: e_1_2_10_37_1
  doi: 10.3389/fnmol.2017.00141
– ident: e_1_2_10_24_1
  doi: 10.1002/wdev.79
– ident: e_1_2_10_132_1
  doi: 10.1038/cddis.2014.583
SSID ssj0035032
Score 2.35054
SecondaryResourceType review_article
Snippet Caenorhabditis elegans (C. elegans) as a well‐established multicellular model organism has been widely used in the biological field for half a century. Its...
Caenorhabditis elegans ( C. elegans ) as a well‐established multicellular model organism has been widely used in the biological field for half a century. Its...
Caenorhabditis elegans (C. elegans) as a well-established multicellular model organism has been widely used in the biological field for half a century. Its...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 560
SubjectTerms Aging
Biomolecules
Biophysics
Body size
Caenorhabditis elegans
Cell size
DNA probes
Fluorescent indicators
fluorescent probes
Genomes
Immunology
Labeling
Life cycles
Nematodes
Nervous system
Optical analysis
optical imaging
Organisms
Probes
Qualitative analysis
Quantitative analysis
Worms
Title Innovative fluorescent probes for in vivo visualization of biomolecules in living Caenorhabditis elegans
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcyto.a.24325
https://www.ncbi.nlm.nih.gov/pubmed/33638604
https://www.proquest.com/docview/2537438781
https://www.proquest.com/docview/2494302123
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS90wFD4MYbAXdZvT-mNkoE-j19skbdpHuShusA1EwT2Fpknx4qWV-wv0r_ecpLebGxPmSyn0hKZJTvLlNOf7AA5zlxRGpWksuLOxVCokK8eFtEokqVOJZ7z59j07v5Jfr9PrLuBGuTCBH6IPuJFn-PmaHLw0s-NfpKHV_bwdlAMuBaccczquRZjoomePEunQ65MRyVgsC867c-9Y_Pj3wk9XpL9g5lPU6pedsw3QqwqH0ya3g8XcDKqHP7gcX_5Fm7DeIVJ2EobQW3jlmnfwOmhU3r-Hmy-dburSsXqyaKeB_4mREo2bMcS8bNyw5XjZ4mVGKZohsZO1NaPc_iC_i5ZoNRlT-IKNSte005vSWCJUYqR8gQvmFlydnV6OzuNOniGupBfBtURsQ3EQY50zUtSIdkqV2YJICkXhlJGcD2tVOilxo6kqtLeZQIyTqNpW4gOsNW3jdoAZW-QZ7gRz3DFLKyqi0cuzGtFlZpNaZRF8XnWRrjrucpLQmOjAusw1tZ0utW-7CI5667vA2fEPu_1Vb-vOc2eapwJBVa7yJIJP_WP0OfqRUjauXaCNJNJ6WvQj2A6jpH-REDijZUMZQez7-tka6NHPyx8n_nb3P-334A2n4zU-ILQPa_Ppwh0gPpqbj94LHgGmmgqO
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9UwFD7oRPRluulc53QR9El6d5ukTfs4ro473SbIHcyn2DYpu-zSjvsLtr_ec5LezikK4ksp9ISmSU7y5TTn-wDepjbKChXHoeDWhFIpn6wcZtIoEcVWRY7x5uQ0GZ7JT-fxeatzSrkwnh-iC7iRZ7j5mhycAtL7t6yh5fW86eU9LgWP78MDEvUmCYMPXzv-KBH3nUIZ0YyFMuO8PfmO5fd_Ln13TfoNaN7FrW7hOXwC31dV9udNLnuLedErb35hc_yPb3oK6y0oZQd-FG3APVtvwkMvU3n9DC6OWunUpWXVZNFMPQUUIzEaO2MIe9m4ZsvxssHLjLI0fW4naypG6f1egRct0WoypggGG-S2bqYXeWGIU4mR-AWumc_h7PDjaDAMW4WGsJROB9cQtw2FQgpjbSFFhYAnV4nJiKdQZFYVkvN-pXIrJe41VYn2JhEIcyJVmVJswVrd1HYbWGGyNMHNYIqbZmlESUx6aVIhwExMVKkkgPerPtJlS19OKhoT7YmXuaa207l2bRfAu876ytN2_MFud9XdunXemeaxQFyVqjQK4E33GN2O_qXktW0WaCOJt57W_QBe-GHSvUgInNSSvgwgdJ391xrowbfRlwN3u_OP9nvwaDg6OdbHR6efX8JjTqdtXHxoF9bm04V9hXBpXrx2LvEDPI4OqA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BEYhLy7uBFowEJ5Ttxnbs5Fhtu2p5FIRaqZysJHbUFauk2pdUfj0zdjZQEEhwiSJlrDi2x_488XwfwKvMJXmp0zQW3NlYah2SleNcWi2S1OnEM958OFFHZ_LteXreBdwoFybwQ_QBN_IMP1-Tg1_aeu8HaWh1tWgHxYBLwdObcEsq9BcCRZ97-iiRDr1AGbGMxTLnvDv4juX3fi59fUn6DWdeh61-3RlvgVnXOBw3-TpYLspB9e0XMsf__6R7sNlBUrYfxtB9uOGaB3A7iFRePYSL4044deVYPV22s0AAxUiKxs0Zgl42adhqsmrxMqcczZDZydqaUXJ_0N9FS7SaTih-wUaFa9rZRVFaYlRiJH2BK-YjOBsfno6O4k6fIa6kV8G1xGxDgZDSOldKUSPcKbSyObEUitzpUnI-rHXhpMSdpq7Q3iqBICfRta3EY9ho2sZtAyttnincCma4ZZZWVMSjl6ka4aWySa1VBG_WXWSqjrycNDSmJtAuc0NtZwrj2y6C1731ZSDt-IPdzrq3Tee6c8NTgagq01kSwcv-MTod_UkpGtcu0UYSaz2t-hE8CaOkf5EQOKWpoYwg9n391xqY0ZfTj_v-9uk_2r-AO58Oxub98cm7Z3CX01EbHxzagY3FbOl2ESstyufeIb4DJZkNYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Innovative+fluorescent+probes+for+in+vivo+visualization+of+biomolecules+in+living+Caenorhabditis+elegans&rft.jtitle=Cytometry.+Part+A&rft.au=Wang%2C+Chunxia&rft.au=Xia%2C+Chujie&rft.au=Zhu%2C+Yi&rft.au=Zhang%2C+Huimin&rft.date=2021-06-01&rft.issn=1552-4930&rft.eissn=1552-4930&rft.volume=99&rft.issue=6&rft.spage=560&rft_id=info:doi/10.1002%2Fcyto.a.24325&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4922&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4922&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4922&client=summon