Power-aligned 2HDM: a correlative perspective on (g − 2)e,μ
A bstract With the hypothesis of minimal flavor violation, we find that there exists a power-aligned relation between the Yukawa couplings of the two scalar doublets in the two-Higgs-doublet model with Hermitian Yukawa matrices. Within such a power-aligned framework, it is found that a simultaneous...
Saved in:
Published in | The journal of high energy physics Vol. 2021; no. 1; pp. 1 - 23 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2021
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
With the hypothesis of minimal flavor violation, we find that there exists a power-aligned relation between the Yukawa couplings of the two scalar doublets in the two-Higgs-doublet model with Hermitian Yukawa matrices. Within such a power-aligned framework, it is found that a simultaneous explanation of the anomalies observed in the electron and muon anomalous magnetic moments can be reached with TeV-scale quasi-degenerate Higgs masses, and the resulting parameter space is also phenomenologically safer under the B-physics,
Z
and
τ
decay data, as well as the current LHC bounds. Furthermore, the flavor-universal power that enhances the charged-lepton Yukawa couplings prompts an interesting correlation between the two anomalies, which makes the model distinguishable from the (generalized) linearly aligned and the lepton-specific two-Higgs-doublet models that address the same anomalies but in a non-correlative manner, and hence testable by future precise measurements. |
---|---|
AbstractList | With the hypothesis of minimal flavor violation, we find that there exists a power-aligned relation between the Yukawa couplings of the two scalar doublets in the two-Higgs-doublet model with Hermitian Yukawa matrices. Within such a power-aligned framework, it is found that a simultaneous explanation of the anomalies observed in the electron and muon anomalous magnetic moments can be reached with TeV-scale quasi-degenerate Higgs masses, and the resulting parameter space is also phenomenologically safer under the B-physics, Z and τ decay data, as well as the current LHC bounds. Furthermore, the flavor-universal power that enhances the charged-lepton Yukawa couplings prompts an interesting correlation between the two anomalies, which makes the model distinguishable from the (generalized) linearly aligned and the lepton-specific two-Higgs-doublet models that address the same anomalies but in a non-correlative manner, and hence testable by future precise measurements. With the hypothesis of minimal flavor violation, we find that there exists a power-aligned relation between the Yukawa couplings of the two scalar doublets in the two-Higgs-doublet model with Hermitian Yukawa matrices. Within such a power-aligned framework, it is found that a simultaneous explanation of the anomalies observed in the electron and muon anomalous magnetic moments can be reached with TeV-scale quasi-degenerate Higgs masses, and the resulting parameter space is also phenomenologically safer under the B-physics, Z and τ decay data, as well as the current LHC bounds. Furthermore, the flavor-universal power that enhances the charged-lepton Yukawa couplings prompts an interesting correlation between the two anomalies, which makes the model distinguishable from the (generalized) linearly aligned and the lepton-specific two-Higgs-doublet models that address the same anomalies but in a non-correlative manner, and hence testable by future precise measurements. Abstract With the hypothesis of minimal flavor violation, we find that there exists a power-aligned relation between the Yukawa couplings of the two scalar doublets in the two-Higgs-doublet model with Hermitian Yukawa matrices. Within such a power-aligned framework, it is found that a simultaneous explanation of the anomalies observed in the electron and muon anomalous magnetic moments can be reached with TeV-scale quasi-degenerate Higgs masses, and the resulting parameter space is also phenomenologically safer under the B-physics, Z and τ decay data, as well as the current LHC bounds. Furthermore, the flavor-universal power that enhances the charged-lepton Yukawa couplings prompts an interesting correlation between the two anomalies, which makes the model distinguishable from the (generalized) linearly aligned and the lepton-specific two-Higgs-doublet models that address the same anomalies but in a non-correlative manner, and hence testable by future precise measurements. A bstract With the hypothesis of minimal flavor violation, we find that there exists a power-aligned relation between the Yukawa couplings of the two scalar doublets in the two-Higgs-doublet model with Hermitian Yukawa matrices. Within such a power-aligned framework, it is found that a simultaneous explanation of the anomalies observed in the electron and muon anomalous magnetic moments can be reached with TeV-scale quasi-degenerate Higgs masses, and the resulting parameter space is also phenomenologically safer under the B-physics, Z and τ decay data, as well as the current LHC bounds. Furthermore, the flavor-universal power that enhances the charged-lepton Yukawa couplings prompts an interesting correlation between the two anomalies, which makes the model distinguishable from the (generalized) linearly aligned and the lepton-specific two-Higgs-doublet models that address the same anomalies but in a non-correlative manner, and hence testable by future precise measurements. |
ArticleNumber | 34 |
Author | Zhang, Xin Li, Shao-Ping Li, Yuan-Yuan Yang, Ya-Dong Li, Xin-Qiang |
Author_xml | – sequence: 1 givenname: Shao-Ping surname: Li fullname: Li, Shao-Ping organization: Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University – sequence: 2 givenname: Xin-Qiang orcidid: 0000-0002-3962-3577 surname: Li fullname: Li, Xin-Qiang email: xqli@mail.ccnu.edu.cn organization: Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University – sequence: 3 givenname: Yuan-Yuan surname: Li fullname: Li, Yuan-Yuan organization: Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University – sequence: 4 givenname: Ya-Dong surname: Yang fullname: Yang, Ya-Dong organization: Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University – sequence: 5 givenname: Xin surname: Zhang fullname: Zhang, Xin organization: Faculty of Physics and Electronic Science, Hubei University |
BookMark | eNp1kE1KBDEQhYMoqKNrtw1uRrC1kk4mHReCjD-jKLrQdYjpytBD2xnTPYo3cO15PIOH8CRGW1GE2VQVxfsej7dKFmtfIyEbFHYogNw9Gx1dAe0zYHQLMr5AVigwleZcqsU_9zJZbZoJABVUwQrZv_KPGFJTleMai4SNDi_2EpNYHwJWpi0fMJliaKZov25fJ_1x8v78krAt3H57XSNLzlQNrn_vHrk5ProejtLzy5PT4cF5ajkwnlqVOUmtswpyZQVT1iLeCmMcE3QgCjCKW8oLCRmTWW6VyEGhkyAzh1IVWY-cdr6FNxM9DeWdCU_am1J_PXwYaxPa0laob6WxmcoZV8h5LphxA85wEAcUxgGPXpud1zT4-xk2rZ74WahjfB0hLiTlIosq0als8E0T0GlbtrEQX7fBlJWmoD9r113t-rN2HWuP3O4_7iftfAI6oonKeozhN8885AMPm5Lc |
CitedBy_id | crossref_primary_10_1103_PhysRevD_108_035043 crossref_primary_10_1140_epjc_s10052_021_09569_9 crossref_primary_10_1103_PhysRevD_104_095008 crossref_primary_10_1088_1361_6471_ad560e crossref_primary_10_1088_1475_7516_2021_10_014 crossref_primary_10_1140_epjc_s10052_022_10011_x crossref_primary_10_1140_epjc_s10052_022_10242_y crossref_primary_10_1103_PhysRevD_104_055011 crossref_primary_10_1007_JHEP10_2021_036 crossref_primary_10_1093_ptep_ptad092 crossref_primary_10_1088_1572_9494_ac7fe9 crossref_primary_10_1007_JHEP07_2022_037 crossref_primary_10_1007_JHEP01_2022_037 crossref_primary_10_1007_JHEP02_2023_051 crossref_primary_10_1007_JHEP11_2022_109 crossref_primary_10_1007_JHEP08_2021_086 crossref_primary_10_1088_1361_6471_ad0ffa crossref_primary_10_1140_epjc_s10052_022_10691_5 crossref_primary_10_1103_PhysRevD_106_015023 crossref_primary_10_1088_1674_1137_ac71a6 crossref_primary_10_3390_universe9040178 crossref_primary_10_1103_PhysRevD_107_055044 crossref_primary_10_1140_epjc_s10052_021_09850_x crossref_primary_10_1103_PhysRevD_104_115001 crossref_primary_10_1140_epjc_s10052_022_10148_9 crossref_primary_10_1103_PhysRevD_106_055003 crossref_primary_10_1103_PhysRevD_103_115024 crossref_primary_10_1103_PhysRevD_104_035018 crossref_primary_10_1007_JHEP09_2021_080 crossref_primary_10_1007_JHEP10_2021_063 crossref_primary_10_1140_epjc_s10052_021_09844_9 crossref_primary_10_1088_1475_7516_2022_08_076 crossref_primary_10_1103_PhysRevD_105_015029 crossref_primary_10_1103_PhysRevD_104_055009 crossref_primary_10_1007_JHEP09_2021_043 crossref_primary_10_1140_epjc_s10052_021_09778_2 crossref_primary_10_1007_JHEP08_2022_270 |
Cites_doi | 10.1007/JHEP12(2019)009 10.1103/PhysRevD.99.095034 10.1103/PhysRevD.80.091702 10.1103/PhysRevD.98.075011 10.1103/PhysRevD.102.075037 10.1103/PhysRevD.91.115012 10.1007/JHEP04(2014)076 10.1126/science.aap7706 10.1103/PhysRevD.23.165 10.1103/PhysRevD.39.3443 10.1016/S0550-3213(02)00836-2 10.1016/j.nuclphysb.2015.05.027 10.1103/PhysRevD.102.055017 10.1140/epjc/s10052-011-1725-z 10.1007/JHEP07(2012)181 10.1007/BF01572477 10.1016/j.physletb.2018.11.045 10.1103/PhysRevD.97.036001 10.1016/0370-2693(95)00545-V 10.1103/PhysRevD.102.033002 10.1007/JHEP07(2020)177 10.1016/j.physletb.2010.07.039 10.1103/PhysRevD.102.071901 10.1103/PhysRevLett.44.912 10.1007/JHEP02(2016)097 10.1007/JHEP06(2020)087 10.1016/0370-2693(87)90713-1 10.1143/PTP.49.652 10.1103/PhysRevD.100.115041 10.1093/ptep/ptaa098 10.1016/j.aop.2005.04.002 10.1140/epjc/s2004-01896-y 10.1007/JHEP06(2014)022 10.1007/JHEP11(2020)077 10.1103/PhysRevD.67.075019 10.1103/PhysRevD.102.035023 10.1140/epjc/s10052-019-7354-7 10.1016/j.ppnp.2013.03.003 10.1103/PhysRevD.101.115037 10.1103/PhysRevD.59.093009 10.1016/j.physrep.2020.02.001 10.1103/PhysRevD.18.1626 10.1007/JHEP01(2017)007 10.1103/RevModPhys.82.2701 10.1103/PhysRevLett.100.120801 10.1007/JHEP04(2015)077 10.1016/S0370-2693(01)00061-2 10.1103/PhysRevD.11.2558 10.1007/JHEP08(2019)122 10.1016/j.physletb.2017.06.056 10.1103/PhysRevLett.124.211803 10.1103/PhysRevLett.98.251802 10.1016/j.physletb.2008.10.059 10.1140/epjc/s10052-017-4633-z 10.1007/JHEP12(2017)084 10.1016/S0146-6410(00)00102-2 10.1007/JHEP06(2014)149 10.1103/PhysRevLett.125.091801 10.1007/JHEP10(2010)009 10.1140/epjc/s10052-018-6131-3 10.1007/JHEP11(2010)003 10.1103/PhysRevD.101.115016 10.1103/PhysRevD.52.R2619 10.1103/PhysRevD.12.1502 10.1007/JHEP07(2015)064 10.1007/JHEP01(2020)158 10.1103/RevModPhys.63.313 10.1007/JHEP07(2020)235 10.1007/JHEP09(2020)119 10.1016/S0370-2693(00)00193-3 10.1016/j.physrep.2020.07.006 10.1103/PhysRevLett.123.031802 10.1140/epjc/s2006-02472-3 10.1007/JHEP05(2019)034 10.1007/JHEP08(2020)026 10.1103/PhysRevD.94.034024 10.1016/0550-3213(79)90362-6 10.1016/j.physletb.2010.04.033 10.1103/PhysRevD.98.035046 10.1140/epjc/s10052-011-1812-1 10.1103/PhysRevD.74.033014 10.1007/JHEP05(2015)039 10.1007/JHEP11(2014)058 10.1007/JHEP01(2014)106 10.1103/PhysRevD.89.115023 10.1016/j.physrep.2012.02.002 10.1007/JHEP03(2019)008 10.1103/PhysRevLett.65.21 10.1007/JHEP07(2016)110 10.1007/JHEP11(2018)046 10.1103/PhysRevD.98.113002 10.1016/j.physletb.2003.07.008 10.1103/PhysRevD.100.094508 10.1140/epjc/s10052-020-7839-4 10.1007/JHEP06(2017)110 10.1143/PTP.28.870 10.1103/PhysRevD.76.013006 10.1016/S0370-2693(03)00048-0 10.1103/RevModPhys.91.015001 10.1007/JHEP12(2017)068 10.1103/PhysRevD.102.115002 10.1007/JHEP06(2020)089 10.1103/PhysRevLett.10.531 10.1007/JHEP10(2019)024 10.1007/JHEP06(2020)175 10.1103/PhysRevLett.116.081801 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1007/JHEP01(2021)034 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 23 |
ExternalDocumentID | oai_doaj_org_article_b7ac398249e44852af642e66420daf04 10_1007_JHEP01_2021_034 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX AMVHM CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c4024-c93f71cfc9089c529cceeb5aaf25165d0a94c14d7032738c95809ef7073fe79d3 |
IEDL.DBID | DOA |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:31:15 EDT 2025 Sat Jul 26 00:14:47 EDT 2025 Thu Apr 24 22:57:06 EDT 2025 Tue Jul 01 00:58:59 EDT 2025 Fri Feb 21 02:48:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Beyond Standard Model Higgs Physics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4024-c93f71cfc9089c529cceeb5aaf25165d0a94c14d7032738c95809ef7073fe79d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3962-3577 |
OpenAccessLink | https://doaj.org/article/b7ac398249e44852af642e66420daf04 |
PQID | 2494571453 |
PQPubID | 2034718 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b7ac398249e44852af642e66420daf04 proquest_journals_2494571453 crossref_citationtrail_10_1007_JHEP01_2021_034 crossref_primary_10_1007_JHEP01_2021_034 springer_journals_10_1007_JHEP01_2021_034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | LiS-PLiX-QProbing new physics signals with symmetry-restored Yukawa texturesEur. Phys. J. C2020802682020EPJC...80..268L[arXiv:1907.13555] [INSPIRE] BauerMNeubertMRennerSSchnubelMThammAAxionlike particles, lepton-flavor violation, and a new explanation of aμand aePhys. Rev. Lett.20201242118032020PhRvL.124u1803B[arXiv:1908.00008] [INSPIRE] ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group collaborations, Precision electroweak measurements on the Z resonance, Phys. Rept.427 (2006) 257 [hep-ex/0509008] [INSPIRE]. G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B645 (2002) 155 [hep-ph/0207036] [INSPIRE]. ChunEJMondalTExplaining g− 2 anomalies in two Higgs doublet model with vector-like leptonsJHEP2020110772020JHEP...11..077C[arXiv:2009.08314] [INSPIRE] ChivukulaRGeorgiHComposite technicolor Standard ModelPhys. Lett. B1987188991987PhLB..188...99S[INSPIRE] CheungKLeeJSSenahaETsengP-YConfronting Higgcision with electric dipole momentsJHEP2014061492014JHEP...06..149C[arXiv:1403.4775] [INSPIRE] BroggioAChunEJPasseraMPatelKMVempatiSKLimiting two-Higgs-doublet modelsJHEP2014110582014JHEP...11..058B[arXiv:1409.3199] [INSPIRE] EngelJRamsey-MusolfMJvan KolckUElectric dipole moments of nucleons, nuclei, and atoms: the Standard Model and beyondProg. Part. Nucl. Phys.201371212013PrPNP..71...21E[arXiv:1303.2371] [INSPIRE] BarbieriRCampliPIsidoriGSalaFStraubDMB-decay CP-asymmetries in SUSY with a U(2)3flavour symmetryEur. Phys. J. C20117118122011EPJC...71.1812B[arXiv:1108.5125] [INSPIRE] Muon g-2 collaboration, Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D73 (2006) 072003 [hep-ex/0602035] [INSPIRE]. KobayashiMMaskawaTCP violation in the renormalizable theory of weak interactionProg. Theor. Phys.1973496521973PThPh..49..652K[INSPIRE] X.-Q. Li, J. Lu and A. Pich, Bs,d0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {B}_{s,d}^0 $$\end{document}→ ℓ+ℓ−decays in the aligned two-Higgs-doublet model, JHEP06 (2014) 022 [arXiv:1404.5865] [INSPIRE]. B. Pontecorvo, Mesonium and anti-mesonium, Sov. Phys. JETP6 (1957) 429 [Zh. Eksp. Teor. Fiz.33 (1957) 549] [INSPIRE]. AbbiendiGMeasuring the leading hadronic contribution to the muon g− 2 via μe scatteringEur. Phys. J. C2017771392017EPJC...77..139A[arXiv:1609.08987] [INSPIRE] S. Borsányi et al., Leading-order hadronic vacuum polarization contribution to the muon magnetic moment from lattice QCD, arXiv:2002.12347 [INSPIRE]. Particle Data Group collaboration, Review of particle physics, PTEP2020 (2020) 083C01 [INSPIRE]. A. Pich and P. Tuzon, Yukawa alignment in the two-Higgs-doublet model, Phys. Rev. D80 (2009) 091702 [arXiv:0908.1554] [INSPIRE]. IlisieVNew Barr-Zee contributions to (g− 2)μin two-Higgs-doublet modelsJHEP2015040772015JHEP...04..077I[arXiv:1502.04199] [INSPIRE] KingDLenzARauhTBsmixing observables and|Vtd/Vts|from sum rulesJHEP2019050342019JHEP...05..034K[arXiv:1904.00940] [INSPIRE] H. Fritzsch and Z.-Z. Xing, A symmetry pattern of maximal CP-violation and a determination of the unitarity triangle, Phys. Lett. B353 (1995) 114 [hep-ph/9502297] [INSPIRE]. T. Abe, J. Hisano, T. Kitahara and K. Tobioka, Gauge invariant Barr-Zee type contributions to fermionic EDMs in the two-Higgs doublet models, JHEP01 (2014) 106 [Erratum ibid.04 (2016) 161] [arXiv:1311.4704] [INSPIRE]. BrancoGCEmmanuel-CostaDGonzalez FelipeRSerodioHWeak basis transformations and texture zeros in the leptonic sectorPhys. Lett. B20096703402009PhLB..670..340B[arXiv:0711.1613] [INSPIRE] A. Keshavarzi, W.J. Marciano, M. Passera and A. Sirlin, Muon g− 2 and ∆α connection, Phys. Rev. D102 (2020) 033002 [arXiv:2006.12666] [INSPIRE]. AoyamaTThe anomalous magnetic moment of the muon in the Standard ModelPhys. Rept.202088712020PhR...887....1A[arXiv:2006.04822] [INSPIRE] GerardJMFermion mass spectrum in SU(2)L× U(1)Z. Phys. C1983181451983ZPhyC..18..145G[INSPIRE] NebotMBounded masses in two Higgs doublets models, spontaneous CP violation and Z2symmetryPhys. Rev. D20201021150022020PhRvD.102k5002N4195354[arXiv:1911.02266] [INSPIRE] LaportaSHigh-precision calculation of the 4-loop contribution to the electron g− 2 in QEDPhys. Lett. B20177722322017PhLB..772..232L[arXiv:1704.06996] [INSPIRE] G. Hiller, C. Hormigos-Feliu, D.F. Litim and T. Steudtner, Anomalous magnetic moments from asymptotic safety, Phys. Rev. D102 (2020) 071901 [arXiv:1910.14062] [INSPIRE]. S.M. Barr and A. Zee, Electric dipole moment of the electron and of the neutron, Phys. Rev. Lett.65 (1990) 21 [Erratum ibid.65 (1990) 2920] [INSPIRE]. I. Bigaran and R.R. Volkas, Getting chirality right: single scalar leptoquark solutions to the (g− 2)e,μpuzzle, Phys. Rev. D102 (2020) 075037 [arXiv:2002.12544] [INSPIRE]. ParkerRHYuCZhongWEsteyBMüllerHMeasurement of the fine-structure constant as a test of the Standard ModelScience20183601912018Sci...360..191P37926401416.81019[arXiv:1812.04130] [INSPIRE] BarbieriRButtazzoDSalaFStraubDMFlavour physics from an approximate U(2)3symmetryJHEP2012071812012JHEP...07..181B[arXiv:1203.4218] [INSPIRE] B. Dutta, S. Ghosh and T. Li, Explaining (g− 2)μ,e, the KOTO anomaly and the MiniBooNE excess in an extended Higgs model with sterile neutrinos, Phys. Rev. D102 (2020) 055017 [arXiv:2006.01319] [INSPIRE]. T. Chupp, P. Fierlinger, M. Ramsey-Musolf and J. Singh, Electric dipole moments of atoms, molecules, nuclei, and particles, Rev. Mod. Phys.91 (2019) 015001 [arXiv:1710.02504] [INSPIRE]. A. Czarnecki, B. Krause and W.J. Marciano, Electroweak fermion loop contributions to the muon anomalous magnetic moment, Phys. Rev. D52 (1995) 2619 [hep-ph/9506256] [INSPIRE]. BrancoGCLavouraLMotaFNearest neighbor interactions and the physical content of Fritzsch mass matricesPhys. Rev. D19893934431989PhRvD..39.3443B[INSPIRE] K. Matsuda and H. Nishiura, Can four-zero-texture mass matrix model reproduce the quark and lepton mixing angles and CP-violating phases?, Phys. Rev. D74 (2006) 033014 [hep-ph/0606142] [INSPIRE]. Egana-UgrinovicDHomillerSMeadePRHiggs bosons with large couplings to light quarksPhys. Rev. D20191001150412019PhRvD.100k5041E[arXiv:1908.11376] [INSPIRE] ChenK-FChiangC-WYagyuKAn explanation for the muon and electron g– 2 anomalies and dark matterJHEP2020091192020JHEP...09..119C[arXiv:2006.07929] [INSPIRE] CabibboNUnitary symmetry and leptonic decaysPhys. Rev. Lett.1963105311963PhRvL..10..531C[INSPIRE] EndoMYinWExplaining electron and muon g− 2 anomaly in SUSY without lepton-flavor mixingsJHEP2019081222019JHEP...08..122E[arXiv:1906.08768] [INSPIRE] N. Haba, Y. Shimizu and T. Yamada, Muon and electron g− 2 and the origin of the fermion mass hierarchy, PTEP2020 (2020) 093B05 [arXiv:2002.10230] [INSPIRE]. JungMPichATuzonPCharged-Higgs phenomenology in the aligned two-Higgs-doublet modelJHEP2010110032010JHEP...11..003J1294.81353[arXiv:1006.0470] [INSPIRE] M. Kirk, A. Lenz and T. Rauh, Dimension-six matrix elements for meson mixing and lifetimes from sum rules, JHEP12 (2017) 068 [Erratum ibid.06 (2020) 162] [arXiv:1711.02100] [INSPIRE]. H.E. Haber and D. O’Neil, Basis-independent methods for the two-Higgs-doublet model III: the CP-conserving limit, custodial symmetry, and the oblique parameters S, T, U, Phys. Rev. D83 (2011) 055017 [arXiv:1011.6188] [INSPIRE]. FritzschHQuark masses and flavor mixingNucl. Phys. B19791551891979NuPhB.155..189F1180.81141[INSPIRE] A. Mondragon and E. Rodriguez-Jauregui, The breaking of the flavor permutational symmetry: mass textures and the CKM matrix, Phys. Rev. D59 (1999) 093009 [hep-ph/9807214] [INSPIRE]. MisiakMRehmanASteinhauserMTowardsB¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{B} $$\end{document}→Xsγ at the NNLO in QCD without interpolation in mcJHEP2020061752020JHEP...06..175M[arXiv:2002.01548] [INSPIRE] L. Di Luzio, M. Kirk, A. Lenz and T. Rauh, ∆Mstheory precision confronts flavour anomalies, JHEP12 (2019) 009 [arXiv:1909.11087] [INSPIRE]. J. Horejsi and M. Kladiva, Tree-unitarity bounds for THDM Higgs masses revisited, Eur. Phys. J. C46 (2006) 81 [hep-ph/0510154] [INSPIRE]. A.J. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Universal unitarity triangle and physics beyond the Standard Model, Phys. Lett. B500 (2001) 161 [hep-ph/0007085] [INSPIRE]. M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys.318 (2005) 119 [hep-ph/0504231] [INSPIRE]. XingZ-ZZhaoZ-HOn the four-zero texture of quark mass matrices and its stabilityNucl. Phys. B20158973022015NuPhB.897..302X1329.81370[arXiv:1501.06346] [INSPIRE] LenzATetlalmatzi-XolocotziGModel-independent bounds on new physics effects in non-leptonic tree-level decays of B-mesonsJHEP2020071772020JHEP...07..177L[arXiv:1912.07621] [INSPIRE] BrancoGCFerreiraPMLavouraLRebeloMNSherMSilvaJPTheory and phenomenology of two-Higgs-doublet modelsPhys. Rept.201251612012PhR...516....1B[arXiv:1106.0034] [INSPIRE] HannekeDFogwellSGabrielseGNew measurement of the electron magnetic moment and the fine structure constantPhys. Rev. Lett.20081001208012008PhRvL.100l0801H[arXiv:0801.1134] [INSPIRE] CalibbiLLópez-IbáñezMLMelisAVivesOMuon and electron g− 2 and lepton masses in flavor modelsJHEP2020060872020JHEP...06..087C[arXiv:2003.06633] [INSPIRE] HanTKangSKSayreJMuon g− 2 in the aligned two Higgs doublet modelJHEP2016020972016JHEP...02..097H[arXiv:1511.05162] [INSPIRE] HallerJHoeckerAKoglerRMönigKPeifferTStelzerJUpdate of the global electroweak fit and constraints on two-Higgs-doublet modelsEur. Phys. J. C2018786752018EPJC...78..675H[arXiv:1803.01853] [INSPIRE] C. Hati, J. Kriewald, J. Orloff and A.M. Teixeira, Anomalies in8Be nuclear transitions and (g− RN Mohapatra (14530_CR49) 1981; 23 14530_CR91 Z-Z Xing (14530_CR32) 2020; 854 14530_CR10 S Gori (14530_CR85) 2017; 06 14530_CR98 14530_CR11 14530_CR99 14530_CR94 G Senjanović (14530_CR47) 1975; 12 GC Branco (14530_CR82) 2012; 516 Z-Z Xing (14530_CR41) 2015; 897 M Endo (14530_CR65) 2019; 08 EJ Chun (14530_CR78) 2020; 11 M Kobayashi (14530_CR90) 1973; 49 14530_CR80 PM Ferreira (14530_CR83) 2010; 688 Z Maki (14530_CR92) 1962; 28 14530_CR87 RN Mohapatra (14530_CR46) 1975; 11 H Fritzsch (14530_CR34) 1979; 155 S Inoue (14530_CR95) 2014; 89 CB Braeuninger (14530_CR84) 2010; 692 14530_CR79 A Lenz (14530_CR53) 2020; 07 J Haller (14530_CR54) 2018; 78 AE Cárcamo Hernández (14530_CR68) 2020; 101 R Barbieri (14530_CR3) 2011; 71 A Peñuelas (14530_CR26) 2017; 12 14530_CR30 14530_CR33 EJ Chun (14530_CR59) 2016; 07 AG Grozin (14530_CR111) 2016; 94 14530_CR27 14530_CR28 14530_CR24 14530_CR25 S-P Li (14530_CR8) 2020; 80 D Toussaint (14530_CR117) 1978; 18 K Cheung (14530_CR96) 2014; 06 R Barbieri (14530_CR5) 2012; 07 M Jung (14530_CR86) 2010; 11 14530_CR22 14530_CR16 S Laporta (14530_CR21) 2017; 772 T Aoyama (14530_CR12) 2020; 887 14530_CR13 14530_CR14 RN Mohapatra (14530_CR48) 1980; 44 14530_CR15 L Wang (14530_CR60) 2019; 788 14530_CR116 14530_CR115 14530_CR110 L Calibbi (14530_CR73) 2020; 06 14530_CR112 14530_CR52 14530_CR118 14530_CR50 14530_CR119 C Cornella (14530_CR70) 2020; 01 M Bauer (14530_CR66) 2020; 124 M Misiak (14530_CR105) 2020; 06 JM Gerard (14530_CR6) 1983; 18 A Biswas (14530_CR113) 2015; 91 M Jung (14530_CR93) 2014; 04 L Wang (14530_CR56) 2015; 05 S Iguro (14530_CR88) 2018; 11 GC Branco (14530_CR45) 2009; 670 K-F Chen (14530_CR76) 2020; 09 14530_CR121 14530_CR120 A Cherchiglia (14530_CR19) 2017; 01 14530_CR42 14530_CR43 14530_CR44 14530_CR40 G Abbiendi (14530_CR81) 2017; 77 14530_CR38 N Cabibbo (14530_CR89) 1963; 10 14530_CR39 14530_CR36 14530_CR37 T Abe (14530_CR57) 2015; 07 J Engel (14530_CR101) 2013; 71 T Han (14530_CR18) 2016; 02 M Nebot (14530_CR114) 2020; 102 14530_CR74 14530_CR75 G Altarelli (14530_CR31) 2010; 82 J Liu (14530_CR64) 2019; 03 14530_CR77 R Chivukula (14530_CR7) 1987; 188 14530_CR71 M Badziak (14530_CR67) 2019; 10 14530_CR72 RH Parker (14530_CR23) 2018; 360 D Egana-Ugrinovic (14530_CR29) 2019; 100 14530_CR69 S Kanemura (14530_CR97) 2020; 08 14530_CR103 14530_CR102 14530_CR9 14530_CR104 R Barbieri (14530_CR4) 2011; 71 14530_CR100 14530_CR63 14530_CR1 14530_CR2 14530_CR107 D Hanneke (14530_CR20) 2008; 100 14530_CR106 14530_CR61 14530_CR109 14530_CR62 14530_CR108 GC Branco (14530_CR35) 1989; 39 A Broggio (14530_CR55) 2014; 11 D King (14530_CR51) 2019; 05 14530_CR58 V Ilisie (14530_CR17) 2015; 04 |
References_xml | – reference: Muon g-2 collaboration, Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D73 (2006) 072003 [hep-ex/0602035] [INSPIRE]. – reference: L. Di Luzio, M. Kirk, A. Lenz and T. Rauh, ∆Mstheory precision confronts flavour anomalies, JHEP12 (2019) 009 [arXiv:1909.11087] [INSPIRE]. – reference: CabibboNUnitary symmetry and leptonic decaysPhys. Rev. Lett.1963105311963PhRvL..10..531C[INSPIRE] – reference: CalibbiLLópez-IbáñezMLMelisAVivesOMuon and electron g− 2 and lepton masses in flavor modelsJHEP2020060872020JHEP...06..087C[arXiv:2003.06633] [INSPIRE] – reference: Particle Data Group collaboration, Review of particle physics, PTEP2020 (2020) 083C01 [INSPIRE]. – reference: AbeTSatoRYagyuKLepton-specific two Higgs doublet model as a solution of muon g− 2 anomalyJHEP2015070642015JHEP...07..064A[arXiv:1504.07059] [INSPIRE] – reference: G. Hiller, C. Hormigos-Feliu, D.F. Litim and T. Steudtner, Anomalous magnetic moments from asymptotic safety, Phys. Rev. D102 (2020) 071901 [arXiv:1910.14062] [INSPIRE]. – reference: XingZ-ZFlavor structures of charged fermions and massive neutrinosPhys. Rept.202085412020PhR...854....1X4090908[arXiv:1909.09610] [INSPIRE] – reference: A. Crivellin, J. Heeck and P. Stoffer, A perturbed lepton-specific two-Higgs-doublet model facing experimental hints for physics beyond the Standard Model, Phys. Rev. Lett.116 (2016) 081801 [arXiv:1507.07567] [INSPIRE]. – reference: AbbiendiGMeasuring the leading hadronic contribution to the muon g− 2 via μe scatteringEur. Phys. J. C2017771392017EPJC...77..139A[arXiv:1609.08987] [INSPIRE] – reference: W. Bernreuther and M. Suzuki, The electric dipole moment of the electron, Rev. Mod. Phys.63 (1991) 313 [Erratum ibid.64 (1992) 633] [INSPIRE]. – reference: G.C. Branco, D. Emmanuel-Costa and R. Gonzalez Felipe, Texture zeros and weak basis transformations, Phys. Lett. B477 (2000) 147 [hep-ph/9911418] [INSPIRE]. – reference: KingDLenzARauhTBsmixing observables and|Vtd/Vts|from sum rulesJHEP2019050342019JHEP...05..034K[arXiv:1904.00940] [INSPIRE] – reference: HannekeDFogwellSGabrielseGNew measurement of the electron magnetic moment and the fine structure constantPhys. Rev. Lett.20081001208012008PhRvL.100l0801H[arXiv:0801.1134] [INSPIRE] – reference: X.-Q. Li, J. Lu and A. Pich, Bs,d0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {B}_{s,d}^0 $$\end{document}→ ℓ+ℓ−decays in the aligned two-Higgs-doublet model, JHEP06 (2014) 022 [arXiv:1404.5865] [INSPIRE]. – reference: W. Altmannshofer, S. Gori, N. Hamer and H.H. Patel, Electron EDM in the complex two-Higgs doublet model, arXiv:2009.01258 [INSPIRE]. – reference: CheungKLeeJSSenahaETsengP-YConfronting Higgcision with electric dipole momentsJHEP2014061492014JHEP...06..149C[arXiv:1403.4775] [INSPIRE] – reference: G. Ahuja, S. Kumar, M. Randhawa, M. Gupta and S. Dev, Texture 4 zero Fritzsch-like lepton mass matrices, Phys. Rev. D76 (2007) 013006 [hep-ph/0703005] [INSPIRE]. – reference: IguroSMuramatsuYOmuraYShigekamiYFlavor physics in the multi-Higgs doublet models induced by the left-right symmetryJHEP2018110462018JHEP...11..046I[arXiv:1804.07478] [INSPIRE] – reference: F.J. Botella, F. Cornet-Gomez and M. Nebot, Electron and muon g− 2 anomalies in general flavour conserving two Higgs doublets models, Phys. Rev. D102 (2020) 035023 [arXiv:2006.01934] [INSPIRE]. – reference: N. Haba, Y. Shimizu and T. Yamada, Muon and electron g− 2 and the origin of the fermion mass hierarchy, PTEP2020 (2020) 093B05 [arXiv:2002.10230] [INSPIRE]. – reference: ChivukulaRGeorgiHComposite technicolor Standard ModelPhys. Lett. B1987188991987PhLB..188...99S[INSPIRE] – reference: KanemuraSKubotaMYagyuKAligned CP-violating Higgs sector canceling the electric dipole momentJHEP2020080262020JHEP...08..026K4190199[arXiv:2004.03943] [INSPIRE] – reference: AltarelliGFeruglioFDiscrete flavor symmetries and models of neutrino mixingRev. Mod. Phys.20108227012010RvMP...82.2701A[arXiv:1002.0211] [INSPIRE] – reference: BraeuningerCBIbarraASimonettoCRadiatively induced flavour violation in the general two-Higgs doublet model with Yukawa alignmentPhys. Lett. B20106921892010PhLB..692..189B[arXiv:1005.5706] [INSPIRE] – reference: Flavour Lattice Averaging Group collaboration, FLAG review 2019: Flavour Lattice Averaging Group (FLAG), Eur. Phys. J. C80 (2020) 113 [arXiv:1902.08191] [INSPIRE]. – reference: LiS-PLiX-QProbing new physics signals with symmetry-restored Yukawa texturesEur. Phys. J. C2020802682020EPJC...80..268L[arXiv:1907.13555] [INSPIRE] – reference: H.E. Haber and D. O’Neil, Basis-independent methods for the two-Higgs-doublet model III: the CP-conserving limit, custodial symmetry, and the oblique parameters S, T, U, Phys. Rev. D83 (2011) 055017 [arXiv:1011.6188] [INSPIRE]. – reference: FritzschHQuark masses and flavor mixingNucl. Phys. B19791551891979NuPhB.155..189F1180.81141[INSPIRE] – reference: W. Grimus, A.S. Joshipura, L. Lavoura and M. Tanimoto, Symmetry realization of texture zeros, Eur. Phys. J. C36 (2004) 227 [hep-ph/0405016] [INSPIRE]. – reference: GerardJMFermion mass spectrum in SU(2)L× U(1)Z. Phys. C1983181451983ZPhyC..18..145G[INSPIRE] – reference: A. Pich and P. Tuzon, Yukawa alignment in the two-Higgs-doublet model, Phys. Rev. D80 (2009) 091702 [arXiv:0908.1554] [INSPIRE]. – reference: AoyamaTThe anomalous magnetic moment of the muon in the Standard ModelPhys. Rept.202088712020PhR...887....1A[arXiv:2006.04822] [INSPIRE] – reference: A. Mondragon and E. Rodriguez-Jauregui, The breaking of the flavor permutational symmetry: mass textures and the CKM matrix, Phys. Rev. D59 (1999) 093009 [hep-ph/9807214] [INSPIRE]. – reference: PeñuelasAPichAFlavour alignment in multi-Higgs-doublet modelsJHEP2017120842017JHEP...12..084P1383.81357[arXiv:1710.02040] [INSPIRE] – reference: InoueSRamsey-MusolfMJZhangYCP-violating phenomenology of flavor conserving two Higgs doublet modelsPhys. Rev. D2014891150232014PhRvD..89k5023I[arXiv:1403.4257] [INSPIRE] – reference: LaportaSHigh-precision calculation of the 4-loop contribution to the electron g− 2 in QEDPhys. Lett. B20177722322017PhLB..772..232L[arXiv:1704.06996] [INSPIRE] – reference: M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys.318 (2005) 119 [hep-ph/0504231] [INSPIRE]. – reference: CherchigliaAKneschkePStöckingerDStöckinger-KimHThe muon magnetic moment in the 2HDM: complete two-loop resultJHEP2017010072017JHEP...01..007C1373.81411[arXiv:1607.06292] [INSPIRE] – reference: KobayashiMMaskawaTCP violation in the renormalizable theory of weak interactionProg. Theor. Phys.1973496521973PThPh..49..652K[INSPIRE] – reference: IlisieVNew Barr-Zee contributions to (g− 2)μin two-Higgs-doublet modelsJHEP2015040772015JHEP...04..077I[arXiv:1502.04199] [INSPIRE] – reference: ChunEJMondalTExplaining g− 2 anomalies in two Higgs doublet model with vector-like leptonsJHEP2020110772020JHEP...11..077C[arXiv:2009.08314] [INSPIRE] – reference: ChunEJKimJLeptonic precision test of leptophilic two-Higgs-doublet modelJHEP2016071102016JHEP...07..110C[arXiv:1605.06298] [INSPIRE] – reference: J.-M. Gerard and M. Herquet, A twisted custodial symmetry in the two-Higgs-doublet model, Phys. Rev. Lett.98 (2007) 251802 [hep-ph/0703051] [INSPIRE]. – reference: D. Egana-Ugrinovic, S. Homiller and P. Meade, Aligned and spontaneous flavor violation, Phys. Rev. Lett.123 (2019) 031802 [arXiv:1811.00017] [INSPIRE]. – reference: K. Matsuda and H. Nishiura, Can four-zero-texture mass matrix model reproduce the quark and lepton mixing angles and CP-violating phases?, Phys. Rev. D74 (2006) 033014 [hep-ph/0606142] [INSPIRE]. – reference: S.-P. Li, X.-Q. Li and Y.-D. Yang, Muon g− 2 in a U(1)-symmetric two-Higgs-doublet model, Phys. Rev. D99 (2019) 035010 [arXiv:1808.02424] [INSPIRE]. – reference: A. Crivellin, M. Hoferichter and P. Schmidt-Wellenburg, Combined explanations of (g− 2)μ,eand implications for a large muon EDM, Phys. Rev. D98 (2018) 113002 [arXiv:1807.11484] [INSPIRE]. – reference: BrancoGCEmmanuel-CostaDGonzalez FelipeRSerodioHWeak basis transformations and texture zeros in the leptonic sectorPhys. Lett. B20096703402009PhLB..670..340B[arXiv:0711.1613] [INSPIRE] – reference: MohapatraRNSenjanovićGNeutrino mass and spontaneous parity nonconservationPhys. Rev. Lett.1980449121980PhRvL..44..912M1404.81306[INSPIRE] – reference: HallerJHoeckerAKoglerRMönigKPeifferTStelzerJUpdate of the global electroweak fit and constraints on two-Higgs-doublet modelsEur. Phys. J. C2018786752018EPJC...78..675H[arXiv:1803.01853] [INSPIRE] – reference: Z.-Z. Xing and H. Zhang, Lepton mass matrices with four texture zeros, Phys. Lett. B569 (2003) 30 [hep-ph/0304234] [INSPIRE]. – reference: ToussaintDRenormalization effects from superheavy Higgs particlesPhys. Rev. D19781816261978PhRvD..18.1626T[INSPIRE] – reference: BroggioAChunEJPasseraMPatelKMVempatiSKLimiting two-Higgs-doublet modelsJHEP2014110582014JHEP...11..058B[arXiv:1409.3199] [INSPIRE] – reference: MohapatraRNSenjanovićGNeutrino masses and mixings in gauge models with spontaneous parity violationPhys. Rev. D1981231651981PhRvD..23..165M[INSPIRE] – reference: BadziakMSakuraiKExplanation of electron and muon g− 2 anomalies in the MSSMJHEP2019100242019JHEP...10..024B[arXiv:1908.03607] [INSPIRE] – reference: B. Malaescu and M. Schott, Impact of correlations between aμand αQEDon the EW fit, arXiv:2008.08107 [INSPIRE]. – reference: C. Hati, J. Kriewald, J. Orloff and A.M. Teixeira, Anomalies in8Be nuclear transitions and (g− 2)e,μ: towards a minimal combined explanation, JHEP07 (2020) 235 [arXiv:2005.00028] [INSPIRE]. – reference: S. Jana, V.P.K. and S. Saad, Resolving electron and muon g− 2 within the 2HDM, Phys. Rev. D101 (2020) 115037 [arXiv:2003.03386] [INSPIRE]. – reference: HanTKangSKSayreJMuon g− 2 in the aligned two Higgs doublet modelJHEP2016020972016JHEP...02..097H[arXiv:1511.05162] [INSPIRE] – reference: A.J. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Universal unitarity triangle and physics beyond the Standard Model, Phys. Lett. B500 (2001) 161 [hep-ph/0007085] [INSPIRE]. – reference: BarbieriRIsidoriGJones-PerezJLodonePStraubDMU(2) and minimal flavour violation in supersymmetryEur. Phys. J. C20117117252011EPJC...71.1725B[arXiv:1105.2296] [INSPIRE] – reference: T. Aoyama, T. Kinoshita and M. Nio, Revised and improved value of the QED tenth-order electron anomalous magnetic moment, Phys. Rev. D97 (2018) 036001 [arXiv:1712.06060] [INSPIRE]. – reference: ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group collaborations, Precision electroweak measurements on the Z resonance, Phys. Rept.427 (2006) 257 [hep-ex/0509008] [INSPIRE]. – reference: JungMPichATuzonPCharged-Higgs phenomenology in the aligned two-Higgs-doublet modelJHEP2010110032010JHEP...11..003J1294.81353[arXiv:1006.0470] [INSPIRE] – reference: MakiZNakagawaMSakataSRemarks on the unified model of elementary particlesProg. Theor. Phys.1962288701962PThPh..28..870M0125.22605[INSPIRE] – reference: WangLYangJMZhangMZhangYRevisiting lepton-specific 2HDM in light of muon g− 2 anomalyPhys. Lett. B20197885192019PhLB..788..519W[arXiv:1809.05857] [INSPIRE] – reference: T. Abe, J. Hisano, T. Kitahara and K. Tobioka, Gauge invariant Barr-Zee type contributions to fermionic EDMs in the two-Higgs doublet models, JHEP01 (2014) 106 [Erratum ibid.04 (2016) 161] [arXiv:1311.4704] [INSPIRE]. – reference: A. Czarnecki, B. Krause and W.J. Marciano, Electroweak fermion loop contributions to the muon anomalous magnetic moment, Phys. Rev. D52 (1995) 2619 [hep-ph/9506256] [INSPIRE]. – reference: BrancoGCFerreiraPMLavouraLRebeloMNSherMSilvaJPTheory and phenomenology of two-Higgs-doublet modelsPhys. Rept.201251612012PhR...516....1B[arXiv:1106.0034] [INSPIRE] – reference: F. Feruglio and A. Romanino, Neutrino flavour symmetries, arXiv:1912.06028 [INSPIRE]. – reference: ParkerRHYuCZhongWEsteyBMüllerHMeasurement of the fine-structure constant as a test of the Standard ModelScience20183601912018Sci...360..191P37926401416.81019[arXiv:1812.04130] [INSPIRE] – reference: BarbieriRButtazzoDSalaFStraubDMFlavour physics from an approximate U(2)3symmetryJHEP2012071812012JHEP...07..181B[arXiv:1203.4218] [INSPIRE] – reference: G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B645 (2002) 155 [hep-ph/0207036] [INSPIRE]. – reference: RBC/UKQCD collaboration, SU(3)-breaking ratios for D(s)and B(s)mesons, arXiv:1812.08791 [INSPIRE]. – reference: BarbieriRCampliPIsidoriGSalaFStraubDMB-decay CP-asymmetries in SUSY with a U(2)3flavour symmetryEur. Phys. J. C20117118122011EPJC...71.1812B[arXiv:1108.5125] [INSPIRE] – reference: A.J. Buras, M.V. Carlucci, S. Gori and G. Isidori, Higgs-mediated FCNCs: natural flavour conservation vs. minimal flavour violation, JHEP10 (2010) 009 [arXiv:1005.5310] [INSPIRE]. – reference: SenjanovićGMohapatraRNExact left-right symmetry and spontaneous violation of parityPhys. Rev. D19751215021975PhRvD..12.1502S[INSPIRE] – reference: HFLAV collaboration, Averages of b-hadron, c-hadron, and τ-lepton properties as of 2018, arXiv:1909.12524 [INSPIRE]. – reference: H. Fritzsch and Z.-Z. Xing, Four zero texture of Hermitian quark mass matrices and current experimental tests, Phys. Lett. B555 (2003) 63 [hep-ph/0212195] [INSPIRE]. – reference: M. Abe et al., A new approach for measuring the muon anomalous magnetic moment and electric dipole moment, PTEP2019 (2019) 053C02 [arXiv:1901.03047] [INSPIRE]. – reference: LenzATetlalmatzi-XolocotziGModel-independent bounds on new physics effects in non-leptonic tree-level decays of B-mesonsJHEP2020071772020JHEP...07..177L[arXiv:1912.07621] [INSPIRE] – reference: S.M. Barr and A. Zee, Electric dipole moment of the electron and of the neutron, Phys. Rev. Lett.65 (1990) 21 [Erratum ibid.65 (1990) 2920] [INSPIRE]. – reference: XingZ-ZZhaoZ-HOn the four-zero texture of quark mass matrices and its stabilityNucl. Phys. B20158973022015NuPhB.897..302X1329.81370[arXiv:1501.06346] [INSPIRE] – reference: Muon g-2 collaboration, Muon (g− 2) technical design report, arXiv:1501.06858 [INSPIRE]. – reference: H. Fritzsch and Z.-Z. Xing, Mass and flavor mixing schemes of quarks and leptons, Prog. Part. Nucl. Phys.45 (2000) 1 [hep-ph/9912358] [INSPIRE]. – reference: MisiakMRehmanASteinhauserMTowardsB¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{B} $$\end{document}→Xsγ at the NNLO in QCD without interpolation in mcJHEP2020061752020JHEP...06..175M[arXiv:2002.01548] [INSPIRE] – reference: CornellaCParadisiPSumensariOHunting for ALPs with lepton flavor violationJHEP2020011582020JHEP...01..158C[arXiv:1911.06279] [INSPIRE] – reference: I. Doršner, S. Fajfer and S. Saad, μ→eγ selecting scalar leptoquark solutions for the (g− 2)e,μpuzzles, Phys. Rev. D102 (2020) 075007 [arXiv:2006.11624] [INSPIRE]. – reference: X.-F. Han, T. Li, L. Wang and Y. Zhang, Simple interpretations of lepton anomalies in the lepton-specific inert two-Higgs-doublet model, Phys. Rev. D99 (2019) 095034 [arXiv:1812.02449] [INSPIRE]. – reference: J. Horejsi and M. Kladiva, Tree-unitarity bounds for THDM Higgs masses revisited, Eur. Phys. J. C46 (2006) 81 [hep-ph/0510154] [INSPIRE]. – reference: J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: the approach to the decoupling limit, Phys. Rev. D67 (2003) 075019 [hep-ph/0207010] [INSPIRE]. – reference: WangLHanX-FA light pseudoscalar of 2HDM confronted with muon g− 2 and experimental constraintsJHEP2015050392015JHEP...05..039W[arXiv:1412.4874] [INSPIRE] – reference: GoriSHaberHESantosEHigh scale flavor alignment in two-Higgs doublet models and its phenomenologyJHEP2017061102017JHEP...06..110G1380.81401[arXiv:1703.05873] [INSPIRE] – reference: A. Keshavarzi, W.J. Marciano, M. Passera and A. Sirlin, Muon g− 2 and ∆α connection, Phys. Rev. D102 (2020) 033002 [arXiv:2006.12666] [INSPIRE]. – reference: M. Kirk, A. Lenz and T. Rauh, Dimension-six matrix elements for meson mixing and lifetimes from sum rules, JHEP12 (2017) 068 [Erratum ibid.06 (2020) 162] [arXiv:1711.02100] [INSPIRE]. – reference: Egana-UgrinovicDHomillerSMeadePRHiggs bosons with large couplings to light quarksPhys. Rev. D20191001150412019PhRvD.100k5041E[arXiv:1908.11376] [INSPIRE] – reference: MohapatraRNPatiJCA natural left-right symmetryPhys. Rev. D19751125581975PhRvD..11.2558M[INSPIRE] – reference: T. Chupp, P. Fierlinger, M. Ramsey-Musolf and J. Singh, Electric dipole moments of atoms, molecules, nuclei, and particles, Rev. Mod. Phys.91 (2019) 015001 [arXiv:1710.02504] [INSPIRE]. – reference: GrozinAGKleinRMannelTPivovarovAAB0−B¯0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\overline{B}}^0 $$\end{document}mixing at next-to-leading orderPhys. Rev. D2016942016PhRvD..94c4024G[arXiv:1606.06054] [INSPIRE] – reference: EngelJRamsey-MusolfMJvan KolckUElectric dipole moments of nucleons, nuclei, and atoms: the Standard Model and beyondProg. Part. Nucl. Phys.201371212013PrPNP..71...21E[arXiv:1303.2371] [INSPIRE] – reference: BrancoGCLavouraLMotaFNearest neighbor interactions and the physical content of Fritzsch mass matricesPhys. Rev. D19893934431989PhRvD..39.3443B[INSPIRE] – reference: NebotMBounded masses in two Higgs doublets models, spontaneous CP violation and Z2symmetryPhys. Rev. D20201021150022020PhRvD.102k5002N4195354[arXiv:1911.02266] [INSPIRE] – reference: LiuJWagnerCEMWangX-PA light complex scalar for the electron and muon anomalous magnetic momentsJHEP2019030082019JHEP...03..008L[arXiv:1810.11028] [INSPIRE] – reference: BiswasALahiriAMasses of physical scalars in two Higgs doublet modelsPhys. Rev. D2015911150122015PhRvD..91k5012B[arXiv:1412.6187] [INSPIRE] – reference: F.J. Botella, F. Cornet-Gomez and M. Nebot, Flavor conservation in two-Higgs-doublet models, Phys. Rev. D98 (2018) 035046 [arXiv:1803.08521] [INSPIRE]. – reference: Fermilab Lattice and MILC collaborations, Bs0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {B}_{(s)}^0 $$\end{document}-mixing matrix elements from lattice QCD for the Standard Model and beyond, Phys. Rev. D93 (2016) 113016 [arXiv:1602.03560] [INSPIRE]. – reference: B. Pontecorvo, Mesonium and anti-mesonium, Sov. Phys. JETP6 (1957) 429 [Zh. Eksp. Teor. Fiz.33 (1957) 549] [INSPIRE]. – reference: JungMPichAElectric dipole moments in two-Higgs-doublet modelsJHEP2014040762014JHEP...04..076J[arXiv:1308.6283] [INSPIRE] – reference: Cárcamo HernándezAEKingSFLeeHRowleySJIs it possible to explain the muon and electron g− 2 in a Z′ model?Phys. Rev. D20201011150162020PhRvD.101k5016H[arXiv:1910.10734] [INSPIRE] – reference: B. Dutta, S. Ghosh and T. Li, Explaining (g− 2)μ,e, the KOTO anomaly and the MiniBooNE excess in an extended Higgs model with sterile neutrinos, Phys. Rev. D102 (2020) 055017 [arXiv:2006.01319] [INSPIRE]. – reference: H. Fritzsch and Z.-Z. Xing, A symmetry pattern of maximal CP-violation and a determination of the unitarity triangle, Phys. Lett. B353 (1995) 114 [hep-ph/9502297] [INSPIRE]. – reference: I. Bigaran and R.R. Volkas, Getting chirality right: single scalar leptoquark solutions to the (g− 2)e,μpuzzle, Phys. Rev. D102 (2020) 075037 [arXiv:2002.12544] [INSPIRE]. – reference: R.J. Dowdall et al., Neutral B-meson mixing from full lattice QCD at the physical point, Phys. Rev. D100 (2019) 094508 [arXiv:1907.01025] [INSPIRE]. – reference: EndoMYinWExplaining electron and muon g− 2 anomaly in SUSY without lepton-flavor mixingsJHEP2019081222019JHEP...08..122E[arXiv:1906.08768] [INSPIRE] – reference: ChenK-FChiangC-WYagyuKAn explanation for the muon and electron g– 2 anomalies and dark matterJHEP2020091192020JHEP...09..119C[arXiv:2006.07929] [INSPIRE] – reference: BauerMNeubertMRennerSSchnubelMThammAAxionlike particles, lepton-flavor violation, and a new explanation of aμand aePhys. Rev. Lett.20201242118032020PhRvL.124u1803B[arXiv:1908.00008] [INSPIRE] – reference: S. Borsányi et al., Leading-order hadronic vacuum polarization contribution to the muon magnetic moment from lattice QCD, arXiv:2002.12347 [INSPIRE]. – reference: A. Crivellin, M. Hoferichter, C.A. Manzari and M. Montull, Hadronic vacuum polarization: (g− 2)μversus global electroweak fits, Phys. Rev. Lett.125 (2020) 091801 [arXiv:2003.04886] [INSPIRE]. – reference: H. Davoudiasl and W.J. Marciano, Tale of two anomalies, Phys. Rev. D98 (2018) 075011 [arXiv:1806.10252] [INSPIRE]. – reference: FerreiraPMLavouraLSilvaJPRenormalization-group constraints on Yukawa alignment in multi-Higgs-doublet modelsPhys. Lett. B20106883412010PhLB..688..341F[arXiv:1001.2561] [INSPIRE] – ident: 14530_CR52 doi: 10.1007/JHEP12(2019)009 – ident: 14530_CR61 doi: 10.1103/PhysRevD.99.095034 – ident: 14530_CR106 – ident: 14530_CR9 doi: 10.1103/PhysRevD.80.091702 – ident: 14530_CR62 doi: 10.1103/PhysRevD.98.075011 – ident: 14530_CR72 doi: 10.1103/PhysRevD.102.075037 – volume: 91 start-page: 115012 year: 2015 ident: 14530_CR113 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.115012 – volume: 04 start-page: 076 year: 2014 ident: 14530_CR93 publication-title: JHEP doi: 10.1007/JHEP04(2014)076 – ident: 14530_CR103 – volume: 360 start-page: 191 year: 2018 ident: 14530_CR23 publication-title: Science doi: 10.1126/science.aap7706 – volume: 23 start-page: 165 year: 1981 ident: 14530_CR49 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.23.165 – ident: 14530_CR91 – volume: 39 start-page: 3443 year: 1989 ident: 14530_CR35 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.39.3443 – ident: 14530_CR1 doi: 10.1016/S0550-3213(02)00836-2 – volume: 897 start-page: 302 year: 2015 ident: 14530_CR41 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2015.05.027 – ident: 14530_CR75 doi: 10.1103/PhysRevD.102.055017 – volume: 71 start-page: 1725 year: 2011 ident: 14530_CR3 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-011-1725-z – volume: 07 start-page: 181 year: 2012 ident: 14530_CR5 publication-title: JHEP doi: 10.1007/JHEP07(2012)181 – volume: 18 start-page: 145 year: 1983 ident: 14530_CR6 publication-title: Z. Phys. C doi: 10.1007/BF01572477 – volume: 788 start-page: 519 year: 2019 ident: 14530_CR60 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2018.11.045 – ident: 14530_CR22 doi: 10.1103/PhysRevD.97.036001 – ident: 14530_CR36 doi: 10.1016/0370-2693(95)00545-V – ident: 14530_CR16 doi: 10.1103/PhysRevD.102.033002 – volume: 07 start-page: 177 year: 2020 ident: 14530_CR53 publication-title: JHEP doi: 10.1007/JHEP07(2020)177 – ident: 14530_CR15 – volume: 692 start-page: 189 year: 2010 ident: 14530_CR84 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2010.07.039 – ident: 14530_CR121 – ident: 14530_CR69 doi: 10.1103/PhysRevD.102.071901 – volume: 44 start-page: 912 year: 1980 ident: 14530_CR48 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.44.912 – volume: 02 start-page: 097 year: 2016 ident: 14530_CR18 publication-title: JHEP doi: 10.1007/JHEP02(2016)097 – volume: 06 start-page: 087 year: 2020 ident: 14530_CR73 publication-title: JHEP doi: 10.1007/JHEP06(2020)087 – ident: 14530_CR80 – volume: 188 start-page: 99 year: 1987 ident: 14530_CR7 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(87)90713-1 – volume: 49 start-page: 652 year: 1973 ident: 14530_CR90 publication-title: Prog. Theor. Phys. doi: 10.1143/PTP.49.652 – volume: 100 start-page: 115041 year: 2019 ident: 14530_CR29 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.115041 – ident: 14530_CR71 doi: 10.1093/ptep/ptaa098 – ident: 14530_CR100 doi: 10.1016/j.aop.2005.04.002 – ident: 14530_CR40 doi: 10.1140/epjc/s2004-01896-y – ident: 14530_CR87 doi: 10.1007/JHEP06(2014)022 – volume: 11 start-page: 077 year: 2020 ident: 14530_CR78 publication-title: JHEP doi: 10.1007/JHEP11(2020)077 – ident: 14530_CR115 doi: 10.1103/PhysRevD.67.075019 – ident: 14530_CR25 doi: 10.1103/PhysRevD.102.035023 – ident: 14530_CR107 doi: 10.1140/epjc/s10052-019-7354-7 – ident: 14530_CR104 – volume: 71 start-page: 21 year: 2013 ident: 14530_CR101 publication-title: Prog. Part. Nucl. Phys. doi: 10.1016/j.ppnp.2013.03.003 – ident: 14530_CR13 – ident: 14530_CR24 doi: 10.1103/PhysRevD.101.115037 – ident: 14530_CR37 doi: 10.1103/PhysRevD.59.093009 – volume: 854 start-page: 1 year: 2020 ident: 14530_CR32 publication-title: Phys. Rept. doi: 10.1016/j.physrep.2020.02.001 – volume: 18 start-page: 1626 year: 1978 ident: 14530_CR117 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.18.1626 – volume: 01 start-page: 007 year: 2017 ident: 14530_CR19 publication-title: JHEP doi: 10.1007/JHEP01(2017)007 – volume: 82 start-page: 2701 year: 2010 ident: 14530_CR31 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.2701 – volume: 100 start-page: 120801 year: 2008 ident: 14530_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.120801 – volume: 04 start-page: 077 year: 2015 ident: 14530_CR17 publication-title: JHEP doi: 10.1007/JHEP04(2015)077 – ident: 14530_CR109 – ident: 14530_CR2 doi: 10.1016/S0370-2693(01)00061-2 – volume: 11 start-page: 2558 year: 1975 ident: 14530_CR46 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.11.2558 – ident: 14530_CR33 – volume: 08 start-page: 122 year: 2019 ident: 14530_CR65 publication-title: JHEP doi: 10.1007/JHEP08(2019)122 – volume: 772 start-page: 232 year: 2017 ident: 14530_CR21 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2017.06.056 – volume: 124 start-page: 211803 year: 2020 ident: 14530_CR66 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.211803 – ident: 14530_CR118 doi: 10.1103/PhysRevLett.98.251802 – volume: 670 start-page: 340 year: 2009 ident: 14530_CR45 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2008.10.059 – volume: 77 start-page: 139 year: 2017 ident: 14530_CR81 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-017-4633-z – volume: 12 start-page: 084 year: 2017 ident: 14530_CR26 publication-title: JHEP doi: 10.1007/JHEP12(2017)084 – ident: 14530_CR30 doi: 10.1016/S0146-6410(00)00102-2 – volume: 06 start-page: 149 year: 2014 ident: 14530_CR96 publication-title: JHEP doi: 10.1007/JHEP06(2014)149 – ident: 14530_CR14 doi: 10.1103/PhysRevLett.125.091801 – ident: 14530_CR10 doi: 10.1007/JHEP10(2010)009 – volume: 78 start-page: 675 year: 2018 ident: 14530_CR54 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-018-6131-3 – ident: 14530_CR11 – volume: 11 start-page: 003 year: 2010 ident: 14530_CR86 publication-title: JHEP doi: 10.1007/JHEP11(2010)003 – volume: 101 start-page: 115016 year: 2020 ident: 14530_CR68 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.115016 – ident: 14530_CR120 doi: 10.1103/PhysRevD.52.R2619 – volume: 12 start-page: 1502 year: 1975 ident: 14530_CR47 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.12.1502 – volume: 07 start-page: 064 year: 2015 ident: 14530_CR57 publication-title: JHEP doi: 10.1007/JHEP07(2015)064 – volume: 01 start-page: 158 year: 2020 ident: 14530_CR70 publication-title: JHEP doi: 10.1007/JHEP01(2020)158 – ident: 14530_CR99 doi: 10.1103/RevModPhys.63.313 – ident: 14530_CR74 doi: 10.1007/JHEP07(2020)235 – volume: 09 start-page: 119 year: 2020 ident: 14530_CR76 publication-title: JHEP doi: 10.1007/JHEP09(2020)119 – ident: 14530_CR38 doi: 10.1016/S0370-2693(00)00193-3 – volume: 887 start-page: 1 year: 2020 ident: 14530_CR12 publication-title: Phys. Rept. doi: 10.1016/j.physrep.2020.07.006 – ident: 14530_CR28 doi: 10.1103/PhysRevLett.123.031802 – ident: 14530_CR112 doi: 10.1140/epjc/s2006-02472-3 – volume: 05 start-page: 034 year: 2019 ident: 14530_CR51 publication-title: JHEP doi: 10.1007/JHEP05(2019)034 – volume: 08 start-page: 026 year: 2020 ident: 14530_CR97 publication-title: JHEP doi: 10.1007/JHEP08(2020)026 – volume: 94 year: 2016 ident: 14530_CR111 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.94.034024 – volume: 155 start-page: 189 year: 1979 ident: 14530_CR34 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(79)90362-6 – volume: 688 start-page: 341 year: 2010 ident: 14530_CR83 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2010.04.033 – ident: 14530_CR27 doi: 10.1103/PhysRevD.98.035046 – ident: 14530_CR98 – volume: 71 start-page: 1812 year: 2011 ident: 14530_CR4 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-011-1812-1 – ident: 14530_CR44 doi: 10.1103/PhysRevD.74.033014 – volume: 05 start-page: 039 year: 2015 ident: 14530_CR56 publication-title: JHEP doi: 10.1007/JHEP05(2015)039 – ident: 14530_CR110 – volume: 11 start-page: 058 year: 2014 ident: 14530_CR55 publication-title: JHEP doi: 10.1007/JHEP11(2014)058 – ident: 14530_CR94 doi: 10.1007/JHEP01(2014)106 – volume: 89 start-page: 115023 year: 2014 ident: 14530_CR95 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.115023 – volume: 516 start-page: 1 year: 2012 ident: 14530_CR82 publication-title: Phys. Rept. doi: 10.1016/j.physrep.2012.02.002 – volume: 03 start-page: 008 year: 2019 ident: 14530_CR64 publication-title: JHEP doi: 10.1007/JHEP03(2019)008 – ident: 14530_CR119 doi: 10.1103/PhysRevLett.65.21 – volume: 07 start-page: 110 year: 2016 ident: 14530_CR59 publication-title: JHEP doi: 10.1007/JHEP07(2016)110 – volume: 11 start-page: 046 year: 2018 ident: 14530_CR88 publication-title: JHEP doi: 10.1007/JHEP11(2018)046 – ident: 14530_CR63 doi: 10.1103/PhysRevD.98.113002 – ident: 14530_CR42 doi: 10.1016/j.physletb.2003.07.008 – ident: 14530_CR108 doi: 10.1103/PhysRevD.100.094508 – volume: 80 start-page: 268 year: 2020 ident: 14530_CR8 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-020-7839-4 – volume: 06 start-page: 110 year: 2017 ident: 14530_CR85 publication-title: JHEP doi: 10.1007/JHEP06(2017)110 – volume: 28 start-page: 870 year: 1962 ident: 14530_CR92 publication-title: Prog. Theor. Phys. doi: 10.1143/PTP.28.870 – ident: 14530_CR43 doi: 10.1103/PhysRevD.76.013006 – ident: 14530_CR39 doi: 10.1016/S0370-2693(03)00048-0 – ident: 14530_CR102 doi: 10.1103/RevModPhys.91.015001 – ident: 14530_CR50 doi: 10.1007/JHEP12(2017)068 – volume: 102 start-page: 115002 year: 2020 ident: 14530_CR114 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.102.115002 – ident: 14530_CR77 doi: 10.1007/JHEP06(2020)089 – volume: 10 start-page: 531 year: 1963 ident: 14530_CR89 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.10.531 – volume: 10 start-page: 024 year: 2019 ident: 14530_CR67 publication-title: JHEP doi: 10.1007/JHEP10(2019)024 – ident: 14530_CR79 – volume: 06 start-page: 175 year: 2020 ident: 14530_CR105 publication-title: JHEP doi: 10.1007/JHEP06(2020)175 – ident: 14530_CR58 doi: 10.1103/PhysRevLett.116.081801 – ident: 14530_CR116 |
SSID | ssj0015190 |
Score | 2.5618253 |
Snippet | A
bstract
With the hypothesis of minimal flavor violation, we find that there exists a power-aligned relation between the Yukawa couplings of the two scalar... With the hypothesis of minimal flavor violation, we find that there exists a power-aligned relation between the Yukawa couplings of the two scalar doublets in... Abstract With the hypothesis of minimal flavor violation, we find that there exists a power-aligned relation between the Yukawa couplings of the two scalar... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Anomalies Beyond Standard Model Classical and Quantum Gravitation Couplings Elementary Particles Flavors Higgs Physics High energy physics Hypotheses Leptons Magnetic moments Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Quarks Regular Article - Theoretical Physics Relativity Theory String Theory Symmetry |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NahsxEBapQ6GXkp-Wuk2CDjnY0G20K2m1yiEhPw4mEGNKDb4t8kjyJdhOnL5Dz32ePEMeIk-S0Vpr40ACyx5W2mWZ0Yy-0UjfEHKYZSlwyESC7ToRFgMUY0ElGXDvCsesrjaP3_Ty7kBcD-UwLrjN47bK2idWjtpOIayRH2GYIKRKheSns7skVI0K2dVYQuMD2UQXXBQNsnne6fV_L_MIiE9YTejD1NF1t9NnaQsD_rTNuFibiyrK_jWc-So1Ws04V1vkc4SK9Gyh222y4SY75GO1ZRPmu-SkHwqcJYijx-gqada9vDmmhkIot3Fb0XnT2eokJZ1OaGtMn__9p1nb_Xx6_EIGV50_F90kVkNIAGM8kYDmXqXgIWTqQGYacH4bSWM8QpRcWma0gFRYNOFw3Aa0LJh2XqENe6e05V9JYzKduG-EcqENlzmo3BfC8cKgRhD5WAd4qdQ2ya9aLiVEqvBQseK2rEmOF4IsgyBLFGSTtJYvzBYsGW93PQ-CXnYL9NbVg-n9uIzWUo6UAa4L1LnD8FFmxmOY5HK8MWs8w4_s1Woqo83Ny9UIaZJ2rbpV8xv_8_39T_0gn0LPxaLLHmk83P91-whDHkYHcay9ACd12OY priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSgMxEA5aEbyIv1itkoOHFlzd3SSbjQdBa0sRlB4s9Lakk6SX0hZ_3sGzz-Mz-BA-iZPtbksVD8KyLJtJWGZ2Nt_sJN8QchrHETCIeYDtKuAGAxRtQAYxMGdTGxqVLx6_f0g6PX7XF_2CJMnvhfmRv7-467S6YVTHED1qhIyvkjURMelrNDST5jxdgDAkLHl7fndamnJyZv4lOPkjA5pPLO0tslkgQno9M-E2WbHjHbKer8yE511y1fV1zAKEy0P8ItK4c3t_STUFX1VjlLN20-liwySdjGl9SL_e3mncsGefH3uk1249NjtBUfQgAAzleACKORmBA5-QAxErwGlsILR2iEQSYUKtOETcoKf6XTWgRBoq6yS6qrNSGbZPKuPJ2B4QyrjSTCQgE5dyy1KNikeAYyzgISNTJeelXjIoGMF9YYpRVnIZzxSZeUVmqMgqqc87TGdkGH-L3nhFz8U8i3V-A42bFU6RDaQGplKMAC1GiSLWDqMhm-ApNNqFOEitNFNWuNZzhtJcyIgLViWN0nSL5j-e5_Afskdkw1_OfrTUSOXl6dUeI_R4GZzkr903fVzO8A priority: 102 providerName: Springer Nature |
Title | Power-aligned 2HDM: a correlative perspective on (g − 2)e,μ |
URI | https://link.springer.com/article/10.1007/JHEP01(2021)034 https://www.proquest.com/docview/2494571453 https://doaj.org/article/b7ac398249e44852af642e66420daf04 |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSxxBEC6iIngJ8RHcaJY-5LALTpzpx_R0LkE3u1kEZQlZ8Db0Vnd7kVV8_AfP_h5_gz_CX2L1PHwExEtgaJjpmqGpmp76aqr7K4BvnGcokMuE-k0iHQUo1qFOOIrgC586Uy0ePzzKx1N5cKyOX5T6imvCanrgWnG7M21RmIKiBE-RhOI2EGL2OTWps6FmAiWf1wZTTf6AcEnaEvmkevdgPJykWY8C_ayfCvnKB1VU_a_w5T8p0crTjD7BxwYisr16aKvwwc_XYLlaqomX6_BzEgubJYSfT-gTyfj41-EPZhnGMhunFY03O3_eQcnO5qx3wh5ubhnvM79zf7cB09Hw72CcNGUQEqTgTiZoRNAZBowpOlTcIDm2mbI2EDbJlUutkZhJR3M37rNBo4rU-KBp8gavjROfYXF-NvebwIQ0VqgcdR4K6UVhyRQEeZxHOnTmOvC9VUyJDUd4LFVxWrbsxrUmy6jJkjTZgd7TDec1PcbbovtR009ikde6ukDWLhtrl-9ZuwPbrZ3KZrJdliQtlc6kEh3ot7Z77n5jPF_-x3i2YCU-r_4nsw2LVxfX_iuhlKtZFxaK0e8uLO0PjyZ_6GzAZWzzQbd6Vamd8r1HYmDkiw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbhMx0CpFiF4QT5G2gA8gJRJLvbZ3vUYCBLRh-0jVQyv1ZpyxnUuVpE0R4g967ofwBXwDH8GXMN5HoiKVW6XVHtYPrebhmfG8CHnJeQoCuExwXCfSoYFiHaiEgwi-8MzpKnh8sJ-XR3LnODteIj_bXJgYVtmeidVB7SYQ78g30EyQmUplJj5MT5PYNSp6V9sWGjVZ7Pof39Fkm73b3kT8vuK8v3X4uUyargIJoK0kE9AiqBQCRI8XZFwDyolhZm1AUZ9njlktIZUOWSGmrYDOCqZ9UMgLwSvtBO57i9yWAiV5zEzvf5l7LVAbYm35IKY2dsqtA5Z2OYrRHhPyiuSrGgRc0Wr_ccRW8q1_n9xrFFP6saakB2TJjx-SO1WAKMwekfcHsZ1aglr7CA9mysvNwVtqKcTmHidV8XA6XeRt0smYdkf0z8Ul5T3_-vevx-ToRqD0hCyPJ2P_lFAhtRVZDioPhfSisIh_1LOcB3xU6jrkTQsXA01h8tgf48S0JZVrQJoISIOA7JDufMG0rslx_dRPEdDzabGYdvVhcjYyDW-aobIgdIEU5tFYzbgNaJT5HF_M2cBwk_UWTabh8JlZ0GOH9FrULYav-Z_V_2_1gtwtDwd7Zm97f3eNrMRV9XXPOlk-P_vmn6ECdD58XlEdJV9vmsz_Am9AE-c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6VVCAuiF8RKOADSInEkl3bu14jAaIkUdrSKEJU6m1xxnYuVRKaIsQbcOZxEM_AQ_AkjPcnUZHKrdJqD-sfrcbfeGY84xmAp5wnKJDLiNp1JC0ZKMaiijgK73IXW10Gjx-Os9GR3D9Oj7fgZ3MXJoRVNntiuVHbBYYz8h6ZCTJViUxFz9dhEZP-8M3ycxQqSAVPa1NOo4LIgfv2lcy31au9Pq31M86Hg4_vRlFdYSBCsptkhFp4laDH4P3ClGskmTFNjfEk9rPUxkZLTKQltghXWFCneaydV8QX3iltBc17BbZVsIpasL07GE8-rH0YpBvFTTKhWPX2R4NJnHQ4CdVuLOQ5OViWCzin4_7jli2l3fAm3KjVVPa2wtUt2HLz23C1DBfF1R14PQnF1SLS4We0TTM-6h--ZIZhKPVxUqYSZ8vNLU62mLPOjP35_oPxrnv--9ddOLoUOt2D1nwxd_eBCamNSDNUmc-lE7khNJDWZR3SoxLbhhcNXQqs05SHahknRZNguSJkEQhZECHb0FkPWFYZOi7uuhsIve4WUmuXHxans6Lm1GKqDAqdE94cma4pN55MNJfRK7bGxzTJTrNMRc3vq2KDzjZ0m6XbNF_wPw_-P9UTuEYQL97vjQ8ewvUwqDr72YHW2ekX94i0obPp4xp2DD5dNtL_AgiyGXk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Power-aligned+2HDM%3A+a+correlative+perspective+on+%28g+%E2%88%92+2%29+e%2C%CE%BC&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Shao-Ping+Li&rft.au=Xin-Qiang+Li&rft.au=Yuan-Yuan+Li&rft.au=Ya-Dong+Yang&rft.date=2021-01-01&rft.pub=SpringerOpen&rft.eissn=1029-8479&rft.volume=2021&rft.issue=1&rft.spage=1&rft.epage=23&rft_id=info:doi/10.1007%2FJHEP01%282021%29034&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b7ac398249e44852af642e66420daf04 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |