Power-aligned 2HDM: a correlative perspective on (g − 2)e,μ

A bstract With the hypothesis of minimal flavor violation, we find that there exists a power-aligned relation between the Yukawa couplings of the two scalar doublets in the two-Higgs-doublet model with Hermitian Yukawa matrices. Within such a power-aligned framework, it is found that a simultaneous...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2021; no. 1; pp. 1 - 23
Main Authors Li, Shao-Ping, Li, Xin-Qiang, Li, Yuan-Yuan, Yang, Ya-Dong, Zhang, Xin
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2021
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract With the hypothesis of minimal flavor violation, we find that there exists a power-aligned relation between the Yukawa couplings of the two scalar doublets in the two-Higgs-doublet model with Hermitian Yukawa matrices. Within such a power-aligned framework, it is found that a simultaneous explanation of the anomalies observed in the electron and muon anomalous magnetic moments can be reached with TeV-scale quasi-degenerate Higgs masses, and the resulting parameter space is also phenomenologically safer under the B-physics, Z and τ decay data, as well as the current LHC bounds. Furthermore, the flavor-universal power that enhances the charged-lepton Yukawa couplings prompts an interesting correlation between the two anomalies, which makes the model distinguishable from the (generalized) linearly aligned and the lepton-specific two-Higgs-doublet models that address the same anomalies but in a non-correlative manner, and hence testable by future precise measurements.
AbstractList With the hypothesis of minimal flavor violation, we find that there exists a power-aligned relation between the Yukawa couplings of the two scalar doublets in the two-Higgs-doublet model with Hermitian Yukawa matrices. Within such a power-aligned framework, it is found that a simultaneous explanation of the anomalies observed in the electron and muon anomalous magnetic moments can be reached with TeV-scale quasi-degenerate Higgs masses, and the resulting parameter space is also phenomenologically safer under the B-physics, Z and τ decay data, as well as the current LHC bounds. Furthermore, the flavor-universal power that enhances the charged-lepton Yukawa couplings prompts an interesting correlation between the two anomalies, which makes the model distinguishable from the (generalized) linearly aligned and the lepton-specific two-Higgs-doublet models that address the same anomalies but in a non-correlative manner, and hence testable by future precise measurements.
With the hypothesis of minimal flavor violation, we find that there exists a power-aligned relation between the Yukawa couplings of the two scalar doublets in the two-Higgs-doublet model with Hermitian Yukawa matrices. Within such a power-aligned framework, it is found that a simultaneous explanation of the anomalies observed in the electron and muon anomalous magnetic moments can be reached with TeV-scale quasi-degenerate Higgs masses, and the resulting parameter space is also phenomenologically safer under the B-physics, Z and τ decay data, as well as the current LHC bounds. Furthermore, the flavor-universal power that enhances the charged-lepton Yukawa couplings prompts an interesting correlation between the two anomalies, which makes the model distinguishable from the (generalized) linearly aligned and the lepton-specific two-Higgs-doublet models that address the same anomalies but in a non-correlative manner, and hence testable by future precise measurements.
Abstract With the hypothesis of minimal flavor violation, we find that there exists a power-aligned relation between the Yukawa couplings of the two scalar doublets in the two-Higgs-doublet model with Hermitian Yukawa matrices. Within such a power-aligned framework, it is found that a simultaneous explanation of the anomalies observed in the electron and muon anomalous magnetic moments can be reached with TeV-scale quasi-degenerate Higgs masses, and the resulting parameter space is also phenomenologically safer under the B-physics, Z and τ decay data, as well as the current LHC bounds. Furthermore, the flavor-universal power that enhances the charged-lepton Yukawa couplings prompts an interesting correlation between the two anomalies, which makes the model distinguishable from the (generalized) linearly aligned and the lepton-specific two-Higgs-doublet models that address the same anomalies but in a non-correlative manner, and hence testable by future precise measurements.
A bstract With the hypothesis of minimal flavor violation, we find that there exists a power-aligned relation between the Yukawa couplings of the two scalar doublets in the two-Higgs-doublet model with Hermitian Yukawa matrices. Within such a power-aligned framework, it is found that a simultaneous explanation of the anomalies observed in the electron and muon anomalous magnetic moments can be reached with TeV-scale quasi-degenerate Higgs masses, and the resulting parameter space is also phenomenologically safer under the B-physics, Z and τ decay data, as well as the current LHC bounds. Furthermore, the flavor-universal power that enhances the charged-lepton Yukawa couplings prompts an interesting correlation between the two anomalies, which makes the model distinguishable from the (generalized) linearly aligned and the lepton-specific two-Higgs-doublet models that address the same anomalies but in a non-correlative manner, and hence testable by future precise measurements.
ArticleNumber 34
Author Zhang, Xin
Li, Shao-Ping
Li, Yuan-Yuan
Yang, Ya-Dong
Li, Xin-Qiang
Author_xml – sequence: 1
  givenname: Shao-Ping
  surname: Li
  fullname: Li, Shao-Ping
  organization: Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University
– sequence: 2
  givenname: Xin-Qiang
  orcidid: 0000-0002-3962-3577
  surname: Li
  fullname: Li, Xin-Qiang
  email: xqli@mail.ccnu.edu.cn
  organization: Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University
– sequence: 3
  givenname: Yuan-Yuan
  surname: Li
  fullname: Li, Yuan-Yuan
  organization: Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University
– sequence: 4
  givenname: Ya-Dong
  surname: Yang
  fullname: Yang, Ya-Dong
  organization: Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University
– sequence: 5
  givenname: Xin
  surname: Zhang
  fullname: Zhang, Xin
  organization: Faculty of Physics and Electronic Science, Hubei University
BookMark eNp1kE1KBDEQhYMoqKNrtw1uRrC1kk4mHReCjD-jKLrQdYjpytBD2xnTPYo3cO15PIOH8CRGW1GE2VQVxfsej7dKFmtfIyEbFHYogNw9Gx1dAe0zYHQLMr5AVigwleZcqsU_9zJZbZoJABVUwQrZv_KPGFJTleMai4SNDi_2EpNYHwJWpi0fMJliaKZov25fJ_1x8v78krAt3H57XSNLzlQNrn_vHrk5ProejtLzy5PT4cF5ajkwnlqVOUmtswpyZQVT1iLeCmMcE3QgCjCKW8oLCRmTWW6VyEGhkyAzh1IVWY-cdr6FNxM9DeWdCU_am1J_PXwYaxPa0laob6WxmcoZV8h5LphxA85wEAcUxgGPXpud1zT4-xk2rZ74WahjfB0hLiTlIosq0als8E0T0GlbtrEQX7fBlJWmoD9r113t-rN2HWuP3O4_7iftfAI6oonKeozhN8885AMPm5Lc
CitedBy_id crossref_primary_10_1103_PhysRevD_108_035043
crossref_primary_10_1140_epjc_s10052_021_09569_9
crossref_primary_10_1103_PhysRevD_104_095008
crossref_primary_10_1088_1361_6471_ad560e
crossref_primary_10_1088_1475_7516_2021_10_014
crossref_primary_10_1140_epjc_s10052_022_10011_x
crossref_primary_10_1140_epjc_s10052_022_10242_y
crossref_primary_10_1103_PhysRevD_104_055011
crossref_primary_10_1007_JHEP10_2021_036
crossref_primary_10_1093_ptep_ptad092
crossref_primary_10_1088_1572_9494_ac7fe9
crossref_primary_10_1007_JHEP07_2022_037
crossref_primary_10_1007_JHEP01_2022_037
crossref_primary_10_1007_JHEP02_2023_051
crossref_primary_10_1007_JHEP11_2022_109
crossref_primary_10_1007_JHEP08_2021_086
crossref_primary_10_1088_1361_6471_ad0ffa
crossref_primary_10_1140_epjc_s10052_022_10691_5
crossref_primary_10_1103_PhysRevD_106_015023
crossref_primary_10_1088_1674_1137_ac71a6
crossref_primary_10_3390_universe9040178
crossref_primary_10_1103_PhysRevD_107_055044
crossref_primary_10_1140_epjc_s10052_021_09850_x
crossref_primary_10_1103_PhysRevD_104_115001
crossref_primary_10_1140_epjc_s10052_022_10148_9
crossref_primary_10_1103_PhysRevD_106_055003
crossref_primary_10_1103_PhysRevD_103_115024
crossref_primary_10_1103_PhysRevD_104_035018
crossref_primary_10_1007_JHEP09_2021_080
crossref_primary_10_1007_JHEP10_2021_063
crossref_primary_10_1140_epjc_s10052_021_09844_9
crossref_primary_10_1088_1475_7516_2022_08_076
crossref_primary_10_1103_PhysRevD_105_015029
crossref_primary_10_1103_PhysRevD_104_055009
crossref_primary_10_1007_JHEP09_2021_043
crossref_primary_10_1140_epjc_s10052_021_09778_2
crossref_primary_10_1007_JHEP08_2022_270
Cites_doi 10.1007/JHEP12(2019)009
10.1103/PhysRevD.99.095034
10.1103/PhysRevD.80.091702
10.1103/PhysRevD.98.075011
10.1103/PhysRevD.102.075037
10.1103/PhysRevD.91.115012
10.1007/JHEP04(2014)076
10.1126/science.aap7706
10.1103/PhysRevD.23.165
10.1103/PhysRevD.39.3443
10.1016/S0550-3213(02)00836-2
10.1016/j.nuclphysb.2015.05.027
10.1103/PhysRevD.102.055017
10.1140/epjc/s10052-011-1725-z
10.1007/JHEP07(2012)181
10.1007/BF01572477
10.1016/j.physletb.2018.11.045
10.1103/PhysRevD.97.036001
10.1016/0370-2693(95)00545-V
10.1103/PhysRevD.102.033002
10.1007/JHEP07(2020)177
10.1016/j.physletb.2010.07.039
10.1103/PhysRevD.102.071901
10.1103/PhysRevLett.44.912
10.1007/JHEP02(2016)097
10.1007/JHEP06(2020)087
10.1016/0370-2693(87)90713-1
10.1143/PTP.49.652
10.1103/PhysRevD.100.115041
10.1093/ptep/ptaa098
10.1016/j.aop.2005.04.002
10.1140/epjc/s2004-01896-y
10.1007/JHEP06(2014)022
10.1007/JHEP11(2020)077
10.1103/PhysRevD.67.075019
10.1103/PhysRevD.102.035023
10.1140/epjc/s10052-019-7354-7
10.1016/j.ppnp.2013.03.003
10.1103/PhysRevD.101.115037
10.1103/PhysRevD.59.093009
10.1016/j.physrep.2020.02.001
10.1103/PhysRevD.18.1626
10.1007/JHEP01(2017)007
10.1103/RevModPhys.82.2701
10.1103/PhysRevLett.100.120801
10.1007/JHEP04(2015)077
10.1016/S0370-2693(01)00061-2
10.1103/PhysRevD.11.2558
10.1007/JHEP08(2019)122
10.1016/j.physletb.2017.06.056
10.1103/PhysRevLett.124.211803
10.1103/PhysRevLett.98.251802
10.1016/j.physletb.2008.10.059
10.1140/epjc/s10052-017-4633-z
10.1007/JHEP12(2017)084
10.1016/S0146-6410(00)00102-2
10.1007/JHEP06(2014)149
10.1103/PhysRevLett.125.091801
10.1007/JHEP10(2010)009
10.1140/epjc/s10052-018-6131-3
10.1007/JHEP11(2010)003
10.1103/PhysRevD.101.115016
10.1103/PhysRevD.52.R2619
10.1103/PhysRevD.12.1502
10.1007/JHEP07(2015)064
10.1007/JHEP01(2020)158
10.1103/RevModPhys.63.313
10.1007/JHEP07(2020)235
10.1007/JHEP09(2020)119
10.1016/S0370-2693(00)00193-3
10.1016/j.physrep.2020.07.006
10.1103/PhysRevLett.123.031802
10.1140/epjc/s2006-02472-3
10.1007/JHEP05(2019)034
10.1007/JHEP08(2020)026
10.1103/PhysRevD.94.034024
10.1016/0550-3213(79)90362-6
10.1016/j.physletb.2010.04.033
10.1103/PhysRevD.98.035046
10.1140/epjc/s10052-011-1812-1
10.1103/PhysRevD.74.033014
10.1007/JHEP05(2015)039
10.1007/JHEP11(2014)058
10.1007/JHEP01(2014)106
10.1103/PhysRevD.89.115023
10.1016/j.physrep.2012.02.002
10.1007/JHEP03(2019)008
10.1103/PhysRevLett.65.21
10.1007/JHEP07(2016)110
10.1007/JHEP11(2018)046
10.1103/PhysRevD.98.113002
10.1016/j.physletb.2003.07.008
10.1103/PhysRevD.100.094508
10.1140/epjc/s10052-020-7839-4
10.1007/JHEP06(2017)110
10.1143/PTP.28.870
10.1103/PhysRevD.76.013006
10.1016/S0370-2693(03)00048-0
10.1103/RevModPhys.91.015001
10.1007/JHEP12(2017)068
10.1103/PhysRevD.102.115002
10.1007/JHEP06(2020)089
10.1103/PhysRevLett.10.531
10.1007/JHEP10(2019)024
10.1007/JHEP06(2020)175
10.1103/PhysRevLett.116.081801
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP01(2021)034
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 23
ExternalDocumentID oai_doaj_org_article_b7ac398249e44852af642e66420daf04
10_1007_JHEP01_2021_034
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
AMVHM
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c4024-c93f71cfc9089c529cceeb5aaf25165d0a94c14d7032738c95809ef7073fe79d3
IEDL.DBID DOA
ISSN 1029-8479
IngestDate Wed Aug 27 01:31:15 EDT 2025
Sat Jul 26 00:14:47 EDT 2025
Thu Apr 24 22:57:06 EDT 2025
Tue Jul 01 00:58:59 EDT 2025
Fri Feb 21 02:48:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Beyond Standard Model
Higgs Physics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4024-c93f71cfc9089c529cceeb5aaf25165d0a94c14d7032738c95809ef7073fe79d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3962-3577
OpenAccessLink https://doaj.org/article/b7ac398249e44852af642e66420daf04
PQID 2494571453
PQPubID 2034718
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_b7ac398249e44852af642e66420daf04
proquest_journals_2494571453
crossref_citationtrail_10_1007_JHEP01_2021_034
crossref_primary_10_1007_JHEP01_2021_034
springer_journals_10_1007_JHEP01_2021_034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References LiS-PLiX-QProbing new physics signals with symmetry-restored Yukawa texturesEur. Phys. J. C2020802682020EPJC...80..268L[arXiv:1907.13555] [INSPIRE]
BauerMNeubertMRennerSSchnubelMThammAAxionlike particles, lepton-flavor violation, and a new explanation of aμand aePhys. Rev. Lett.20201242118032020PhRvL.124u1803B[arXiv:1908.00008] [INSPIRE]
ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group collaborations, Precision electroweak measurements on the Z resonance, Phys. Rept.427 (2006) 257 [hep-ex/0509008] [INSPIRE].
G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B645 (2002) 155 [hep-ph/0207036] [INSPIRE].
ChunEJMondalTExplaining g− 2 anomalies in two Higgs doublet model with vector-like leptonsJHEP2020110772020JHEP...11..077C[arXiv:2009.08314] [INSPIRE]
ChivukulaRGeorgiHComposite technicolor Standard ModelPhys. Lett. B1987188991987PhLB..188...99S[INSPIRE]
CheungKLeeJSSenahaETsengP-YConfronting Higgcision with electric dipole momentsJHEP2014061492014JHEP...06..149C[arXiv:1403.4775] [INSPIRE]
BroggioAChunEJPasseraMPatelKMVempatiSKLimiting two-Higgs-doublet modelsJHEP2014110582014JHEP...11..058B[arXiv:1409.3199] [INSPIRE]
EngelJRamsey-MusolfMJvan KolckUElectric dipole moments of nucleons, nuclei, and atoms: the Standard Model and beyondProg. Part. Nucl. Phys.201371212013PrPNP..71...21E[arXiv:1303.2371] [INSPIRE]
BarbieriRCampliPIsidoriGSalaFStraubDMB-decay CP-asymmetries in SUSY with a U(2)3flavour symmetryEur. Phys. J. C20117118122011EPJC...71.1812B[arXiv:1108.5125] [INSPIRE]
Muon g-2 collaboration, Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
KobayashiMMaskawaTCP violation in the renormalizable theory of weak interactionProg. Theor. Phys.1973496521973PThPh..49..652K[INSPIRE]
X.-Q. Li, J. Lu and A. Pich, Bs,d0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {B}_{s,d}^0 $$\end{document}→ ℓ+ℓ−decays in the aligned two-Higgs-doublet model, JHEP06 (2014) 022 [arXiv:1404.5865] [INSPIRE].
B. Pontecorvo, Mesonium and anti-mesonium, Sov. Phys. JETP6 (1957) 429 [Zh. Eksp. Teor. Fiz.33 (1957) 549] [INSPIRE].
AbbiendiGMeasuring the leading hadronic contribution to the muon g− 2 via μe scatteringEur. Phys. J. C2017771392017EPJC...77..139A[arXiv:1609.08987] [INSPIRE]
S. Borsányi et al., Leading-order hadronic vacuum polarization contribution to the muon magnetic moment from lattice QCD, arXiv:2002.12347 [INSPIRE].
Particle Data Group collaboration, Review of particle physics, PTEP2020 (2020) 083C01 [INSPIRE].
A. Pich and P. Tuzon, Yukawa alignment in the two-Higgs-doublet model, Phys. Rev. D80 (2009) 091702 [arXiv:0908.1554] [INSPIRE].
IlisieVNew Barr-Zee contributions to (g− 2)μin two-Higgs-doublet modelsJHEP2015040772015JHEP...04..077I[arXiv:1502.04199] [INSPIRE]
KingDLenzARauhTBsmixing observables and|Vtd/Vts|from sum rulesJHEP2019050342019JHEP...05..034K[arXiv:1904.00940] [INSPIRE]
H. Fritzsch and Z.-Z. Xing, A symmetry pattern of maximal CP-violation and a determination of the unitarity triangle, Phys. Lett. B353 (1995) 114 [hep-ph/9502297] [INSPIRE].
T. Abe, J. Hisano, T. Kitahara and K. Tobioka, Gauge invariant Barr-Zee type contributions to fermionic EDMs in the two-Higgs doublet models, JHEP01 (2014) 106 [Erratum ibid.04 (2016) 161] [arXiv:1311.4704] [INSPIRE].
BrancoGCEmmanuel-CostaDGonzalez FelipeRSerodioHWeak basis transformations and texture zeros in the leptonic sectorPhys. Lett. B20096703402009PhLB..670..340B[arXiv:0711.1613] [INSPIRE]
A. Keshavarzi, W.J. Marciano, M. Passera and A. Sirlin, Muon g− 2 and ∆α connection, Phys. Rev. D102 (2020) 033002 [arXiv:2006.12666] [INSPIRE].
AoyamaTThe anomalous magnetic moment of the muon in the Standard ModelPhys. Rept.202088712020PhR...887....1A[arXiv:2006.04822] [INSPIRE]
GerardJMFermion mass spectrum in SU(2)L× U(1)Z. Phys. C1983181451983ZPhyC..18..145G[INSPIRE]
NebotMBounded masses in two Higgs doublets models, spontaneous CP violation and Z2symmetryPhys. Rev. D20201021150022020PhRvD.102k5002N4195354[arXiv:1911.02266] [INSPIRE]
LaportaSHigh-precision calculation of the 4-loop contribution to the electron g− 2 in QEDPhys. Lett. B20177722322017PhLB..772..232L[arXiv:1704.06996] [INSPIRE]
G. Hiller, C. Hormigos-Feliu, D.F. Litim and T. Steudtner, Anomalous magnetic moments from asymptotic safety, Phys. Rev. D102 (2020) 071901 [arXiv:1910.14062] [INSPIRE].
S.M. Barr and A. Zee, Electric dipole moment of the electron and of the neutron, Phys. Rev. Lett.65 (1990) 21 [Erratum ibid.65 (1990) 2920] [INSPIRE].
I. Bigaran and R.R. Volkas, Getting chirality right: single scalar leptoquark solutions to the (g− 2)e,μpuzzle, Phys. Rev. D102 (2020) 075037 [arXiv:2002.12544] [INSPIRE].
ParkerRHYuCZhongWEsteyBMüllerHMeasurement of the fine-structure constant as a test of the Standard ModelScience20183601912018Sci...360..191P37926401416.81019[arXiv:1812.04130] [INSPIRE]
BarbieriRButtazzoDSalaFStraubDMFlavour physics from an approximate U(2)3symmetryJHEP2012071812012JHEP...07..181B[arXiv:1203.4218] [INSPIRE]
B. Dutta, S. Ghosh and T. Li, Explaining (g− 2)μ,e, the KOTO anomaly and the MiniBooNE excess in an extended Higgs model with sterile neutrinos, Phys. Rev. D102 (2020) 055017 [arXiv:2006.01319] [INSPIRE].
T. Chupp, P. Fierlinger, M. Ramsey-Musolf and J. Singh, Electric dipole moments of atoms, molecules, nuclei, and particles, Rev. Mod. Phys.91 (2019) 015001 [arXiv:1710.02504] [INSPIRE].
A. Czarnecki, B. Krause and W.J. Marciano, Electroweak fermion loop contributions to the muon anomalous magnetic moment, Phys. Rev. D52 (1995) 2619 [hep-ph/9506256] [INSPIRE].
BrancoGCLavouraLMotaFNearest neighbor interactions and the physical content of Fritzsch mass matricesPhys. Rev. D19893934431989PhRvD..39.3443B[INSPIRE]
K. Matsuda and H. Nishiura, Can four-zero-texture mass matrix model reproduce the quark and lepton mixing angles and CP-violating phases?, Phys. Rev. D74 (2006) 033014 [hep-ph/0606142] [INSPIRE].
Egana-UgrinovicDHomillerSMeadePRHiggs bosons with large couplings to light quarksPhys. Rev. D20191001150412019PhRvD.100k5041E[arXiv:1908.11376] [INSPIRE]
ChenK-FChiangC-WYagyuKAn explanation for the muon and electron g– 2 anomalies and dark matterJHEP2020091192020JHEP...09..119C[arXiv:2006.07929] [INSPIRE]
CabibboNUnitary symmetry and leptonic decaysPhys. Rev. Lett.1963105311963PhRvL..10..531C[INSPIRE]
EndoMYinWExplaining electron and muon g− 2 anomaly in SUSY without lepton-flavor mixingsJHEP2019081222019JHEP...08..122E[arXiv:1906.08768] [INSPIRE]
N. Haba, Y. Shimizu and T. Yamada, Muon and electron g− 2 and the origin of the fermion mass hierarchy, PTEP2020 (2020) 093B05 [arXiv:2002.10230] [INSPIRE].
JungMPichATuzonPCharged-Higgs phenomenology in the aligned two-Higgs-doublet modelJHEP2010110032010JHEP...11..003J1294.81353[arXiv:1006.0470] [INSPIRE]
M. Kirk, A. Lenz and T. Rauh, Dimension-six matrix elements for meson mixing and lifetimes from sum rules, JHEP12 (2017) 068 [Erratum ibid.06 (2020) 162] [arXiv:1711.02100] [INSPIRE].
H.E. Haber and D. O’Neil, Basis-independent methods for the two-Higgs-doublet model III: the CP-conserving limit, custodial symmetry, and the oblique parameters S, T, U, Phys. Rev. D83 (2011) 055017 [arXiv:1011.6188] [INSPIRE].
FritzschHQuark masses and flavor mixingNucl. Phys. B19791551891979NuPhB.155..189F1180.81141[INSPIRE]
A. Mondragon and E. Rodriguez-Jauregui, The breaking of the flavor permutational symmetry: mass textures and the CKM matrix, Phys. Rev. D59 (1999) 093009 [hep-ph/9807214] [INSPIRE].
MisiakMRehmanASteinhauserMTowardsB¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{B} $$\end{document}→Xsγ at the NNLO in QCD without interpolation in mcJHEP2020061752020JHEP...06..175M[arXiv:2002.01548] [INSPIRE]
L. Di Luzio, M. Kirk, A. Lenz and T. Rauh, ∆Mstheory precision confronts flavour anomalies, JHEP12 (2019) 009 [arXiv:1909.11087] [INSPIRE].
J. Horejsi and M. Kladiva, Tree-unitarity bounds for THDM Higgs masses revisited, Eur. Phys. J. C46 (2006) 81 [hep-ph/0510154] [INSPIRE].
A.J. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Universal unitarity triangle and physics beyond the Standard Model, Phys. Lett. B500 (2001) 161 [hep-ph/0007085] [INSPIRE].
M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys.318 (2005) 119 [hep-ph/0504231] [INSPIRE].
XingZ-ZZhaoZ-HOn the four-zero texture of quark mass matrices and its stabilityNucl. Phys. B20158973022015NuPhB.897..302X1329.81370[arXiv:1501.06346] [INSPIRE]
LenzATetlalmatzi-XolocotziGModel-independent bounds on new physics effects in non-leptonic tree-level decays of B-mesonsJHEP2020071772020JHEP...07..177L[arXiv:1912.07621] [INSPIRE]
BrancoGCFerreiraPMLavouraLRebeloMNSherMSilvaJPTheory and phenomenology of two-Higgs-doublet modelsPhys. Rept.201251612012PhR...516....1B[arXiv:1106.0034] [INSPIRE]
HannekeDFogwellSGabrielseGNew measurement of the electron magnetic moment and the fine structure constantPhys. Rev. Lett.20081001208012008PhRvL.100l0801H[arXiv:0801.1134] [INSPIRE]
CalibbiLLópez-IbáñezMLMelisAVivesOMuon and electron g− 2 and lepton masses in flavor modelsJHEP2020060872020JHEP...06..087C[arXiv:2003.06633] [INSPIRE]
HanTKangSKSayreJMuon g− 2 in the aligned two Higgs doublet modelJHEP2016020972016JHEP...02..097H[arXiv:1511.05162] [INSPIRE]
HallerJHoeckerAKoglerRMönigKPeifferTStelzerJUpdate of the global electroweak fit and constraints on two-Higgs-doublet modelsEur. Phys. J. C2018786752018EPJC...78..675H[arXiv:1803.01853] [INSPIRE]
C. Hati, J. Kriewald, J. Orloff and A.M. Teixeira, Anomalies in8Be nuclear transitions and (g−
RN Mohapatra (14530_CR49) 1981; 23
14530_CR91
Z-Z Xing (14530_CR32) 2020; 854
14530_CR10
S Gori (14530_CR85) 2017; 06
14530_CR98
14530_CR11
14530_CR99
14530_CR94
G Senjanović (14530_CR47) 1975; 12
GC Branco (14530_CR82) 2012; 516
Z-Z Xing (14530_CR41) 2015; 897
M Endo (14530_CR65) 2019; 08
EJ Chun (14530_CR78) 2020; 11
M Kobayashi (14530_CR90) 1973; 49
14530_CR80
PM Ferreira (14530_CR83) 2010; 688
Z Maki (14530_CR92) 1962; 28
14530_CR87
RN Mohapatra (14530_CR46) 1975; 11
H Fritzsch (14530_CR34) 1979; 155
S Inoue (14530_CR95) 2014; 89
CB Braeuninger (14530_CR84) 2010; 692
14530_CR79
A Lenz (14530_CR53) 2020; 07
J Haller (14530_CR54) 2018; 78
AE Cárcamo Hernández (14530_CR68) 2020; 101
R Barbieri (14530_CR3) 2011; 71
A Peñuelas (14530_CR26) 2017; 12
14530_CR30
14530_CR33
EJ Chun (14530_CR59) 2016; 07
AG Grozin (14530_CR111) 2016; 94
14530_CR27
14530_CR28
14530_CR24
14530_CR25
S-P Li (14530_CR8) 2020; 80
D Toussaint (14530_CR117) 1978; 18
K Cheung (14530_CR96) 2014; 06
R Barbieri (14530_CR5) 2012; 07
M Jung (14530_CR86) 2010; 11
14530_CR22
14530_CR16
S Laporta (14530_CR21) 2017; 772
T Aoyama (14530_CR12) 2020; 887
14530_CR13
14530_CR14
RN Mohapatra (14530_CR48) 1980; 44
14530_CR15
L Wang (14530_CR60) 2019; 788
14530_CR116
14530_CR115
14530_CR110
L Calibbi (14530_CR73) 2020; 06
14530_CR112
14530_CR52
14530_CR118
14530_CR50
14530_CR119
C Cornella (14530_CR70) 2020; 01
M Bauer (14530_CR66) 2020; 124
M Misiak (14530_CR105) 2020; 06
JM Gerard (14530_CR6) 1983; 18
A Biswas (14530_CR113) 2015; 91
M Jung (14530_CR93) 2014; 04
L Wang (14530_CR56) 2015; 05
S Iguro (14530_CR88) 2018; 11
GC Branco (14530_CR45) 2009; 670
K-F Chen (14530_CR76) 2020; 09
14530_CR121
14530_CR120
A Cherchiglia (14530_CR19) 2017; 01
14530_CR42
14530_CR43
14530_CR44
14530_CR40
G Abbiendi (14530_CR81) 2017; 77
14530_CR38
N Cabibbo (14530_CR89) 1963; 10
14530_CR39
14530_CR36
14530_CR37
T Abe (14530_CR57) 2015; 07
J Engel (14530_CR101) 2013; 71
T Han (14530_CR18) 2016; 02
M Nebot (14530_CR114) 2020; 102
14530_CR74
14530_CR75
G Altarelli (14530_CR31) 2010; 82
J Liu (14530_CR64) 2019; 03
14530_CR77
R Chivukula (14530_CR7) 1987; 188
14530_CR71
M Badziak (14530_CR67) 2019; 10
14530_CR72
RH Parker (14530_CR23) 2018; 360
D Egana-Ugrinovic (14530_CR29) 2019; 100
14530_CR69
S Kanemura (14530_CR97) 2020; 08
14530_CR103
14530_CR102
14530_CR9
14530_CR104
R Barbieri (14530_CR4) 2011; 71
14530_CR100
14530_CR63
14530_CR1
14530_CR2
14530_CR107
D Hanneke (14530_CR20) 2008; 100
14530_CR106
14530_CR61
14530_CR109
14530_CR62
14530_CR108
GC Branco (14530_CR35) 1989; 39
A Broggio (14530_CR55) 2014; 11
D King (14530_CR51) 2019; 05
14530_CR58
V Ilisie (14530_CR17) 2015; 04
References_xml – reference: Muon g-2 collaboration, Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
– reference: L. Di Luzio, M. Kirk, A. Lenz and T. Rauh, ∆Mstheory precision confronts flavour anomalies, JHEP12 (2019) 009 [arXiv:1909.11087] [INSPIRE].
– reference: CabibboNUnitary symmetry and leptonic decaysPhys. Rev. Lett.1963105311963PhRvL..10..531C[INSPIRE]
– reference: CalibbiLLópez-IbáñezMLMelisAVivesOMuon and electron g− 2 and lepton masses in flavor modelsJHEP2020060872020JHEP...06..087C[arXiv:2003.06633] [INSPIRE]
– reference: Particle Data Group collaboration, Review of particle physics, PTEP2020 (2020) 083C01 [INSPIRE].
– reference: AbeTSatoRYagyuKLepton-specific two Higgs doublet model as a solution of muon g− 2 anomalyJHEP2015070642015JHEP...07..064A[arXiv:1504.07059] [INSPIRE]
– reference: G. Hiller, C. Hormigos-Feliu, D.F. Litim and T. Steudtner, Anomalous magnetic moments from asymptotic safety, Phys. Rev. D102 (2020) 071901 [arXiv:1910.14062] [INSPIRE].
– reference: XingZ-ZFlavor structures of charged fermions and massive neutrinosPhys. Rept.202085412020PhR...854....1X4090908[arXiv:1909.09610] [INSPIRE]
– reference: A. Crivellin, J. Heeck and P. Stoffer, A perturbed lepton-specific two-Higgs-doublet model facing experimental hints for physics beyond the Standard Model, Phys. Rev. Lett.116 (2016) 081801 [arXiv:1507.07567] [INSPIRE].
– reference: AbbiendiGMeasuring the leading hadronic contribution to the muon g− 2 via μe scatteringEur. Phys. J. C2017771392017EPJC...77..139A[arXiv:1609.08987] [INSPIRE]
– reference: W. Bernreuther and M. Suzuki, The electric dipole moment of the electron, Rev. Mod. Phys.63 (1991) 313 [Erratum ibid.64 (1992) 633] [INSPIRE].
– reference: G.C. Branco, D. Emmanuel-Costa and R. Gonzalez Felipe, Texture zeros and weak basis transformations, Phys. Lett. B477 (2000) 147 [hep-ph/9911418] [INSPIRE].
– reference: KingDLenzARauhTBsmixing observables and|Vtd/Vts|from sum rulesJHEP2019050342019JHEP...05..034K[arXiv:1904.00940] [INSPIRE]
– reference: HannekeDFogwellSGabrielseGNew measurement of the electron magnetic moment and the fine structure constantPhys. Rev. Lett.20081001208012008PhRvL.100l0801H[arXiv:0801.1134] [INSPIRE]
– reference: X.-Q. Li, J. Lu and A. Pich, Bs,d0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {B}_{s,d}^0 $$\end{document}→ ℓ+ℓ−decays in the aligned two-Higgs-doublet model, JHEP06 (2014) 022 [arXiv:1404.5865] [INSPIRE].
– reference: W. Altmannshofer, S. Gori, N. Hamer and H.H. Patel, Electron EDM in the complex two-Higgs doublet model, arXiv:2009.01258 [INSPIRE].
– reference: CheungKLeeJSSenahaETsengP-YConfronting Higgcision with electric dipole momentsJHEP2014061492014JHEP...06..149C[arXiv:1403.4775] [INSPIRE]
– reference: G. Ahuja, S. Kumar, M. Randhawa, M. Gupta and S. Dev, Texture 4 zero Fritzsch-like lepton mass matrices, Phys. Rev. D76 (2007) 013006 [hep-ph/0703005] [INSPIRE].
– reference: IguroSMuramatsuYOmuraYShigekamiYFlavor physics in the multi-Higgs doublet models induced by the left-right symmetryJHEP2018110462018JHEP...11..046I[arXiv:1804.07478] [INSPIRE]
– reference: F.J. Botella, F. Cornet-Gomez and M. Nebot, Electron and muon g− 2 anomalies in general flavour conserving two Higgs doublets models, Phys. Rev. D102 (2020) 035023 [arXiv:2006.01934] [INSPIRE].
– reference: N. Haba, Y. Shimizu and T. Yamada, Muon and electron g− 2 and the origin of the fermion mass hierarchy, PTEP2020 (2020) 093B05 [arXiv:2002.10230] [INSPIRE].
– reference: ChivukulaRGeorgiHComposite technicolor Standard ModelPhys. Lett. B1987188991987PhLB..188...99S[INSPIRE]
– reference: KanemuraSKubotaMYagyuKAligned CP-violating Higgs sector canceling the electric dipole momentJHEP2020080262020JHEP...08..026K4190199[arXiv:2004.03943] [INSPIRE]
– reference: AltarelliGFeruglioFDiscrete flavor symmetries and models of neutrino mixingRev. Mod. Phys.20108227012010RvMP...82.2701A[arXiv:1002.0211] [INSPIRE]
– reference: BraeuningerCBIbarraASimonettoCRadiatively induced flavour violation in the general two-Higgs doublet model with Yukawa alignmentPhys. Lett. B20106921892010PhLB..692..189B[arXiv:1005.5706] [INSPIRE]
– reference: Flavour Lattice Averaging Group collaboration, FLAG review 2019: Flavour Lattice Averaging Group (FLAG), Eur. Phys. J. C80 (2020) 113 [arXiv:1902.08191] [INSPIRE].
– reference: LiS-PLiX-QProbing new physics signals with symmetry-restored Yukawa texturesEur. Phys. J. C2020802682020EPJC...80..268L[arXiv:1907.13555] [INSPIRE]
– reference: H.E. Haber and D. O’Neil, Basis-independent methods for the two-Higgs-doublet model III: the CP-conserving limit, custodial symmetry, and the oblique parameters S, T, U, Phys. Rev. D83 (2011) 055017 [arXiv:1011.6188] [INSPIRE].
– reference: FritzschHQuark masses and flavor mixingNucl. Phys. B19791551891979NuPhB.155..189F1180.81141[INSPIRE]
– reference: W. Grimus, A.S. Joshipura, L. Lavoura and M. Tanimoto, Symmetry realization of texture zeros, Eur. Phys. J. C36 (2004) 227 [hep-ph/0405016] [INSPIRE].
– reference: GerardJMFermion mass spectrum in SU(2)L× U(1)Z. Phys. C1983181451983ZPhyC..18..145G[INSPIRE]
– reference: A. Pich and P. Tuzon, Yukawa alignment in the two-Higgs-doublet model, Phys. Rev. D80 (2009) 091702 [arXiv:0908.1554] [INSPIRE].
– reference: AoyamaTThe anomalous magnetic moment of the muon in the Standard ModelPhys. Rept.202088712020PhR...887....1A[arXiv:2006.04822] [INSPIRE]
– reference: A. Mondragon and E. Rodriguez-Jauregui, The breaking of the flavor permutational symmetry: mass textures and the CKM matrix, Phys. Rev. D59 (1999) 093009 [hep-ph/9807214] [INSPIRE].
– reference: PeñuelasAPichAFlavour alignment in multi-Higgs-doublet modelsJHEP2017120842017JHEP...12..084P1383.81357[arXiv:1710.02040] [INSPIRE]
– reference: InoueSRamsey-MusolfMJZhangYCP-violating phenomenology of flavor conserving two Higgs doublet modelsPhys. Rev. D2014891150232014PhRvD..89k5023I[arXiv:1403.4257] [INSPIRE]
– reference: LaportaSHigh-precision calculation of the 4-loop contribution to the electron g− 2 in QEDPhys. Lett. B20177722322017PhLB..772..232L[arXiv:1704.06996] [INSPIRE]
– reference: M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys.318 (2005) 119 [hep-ph/0504231] [INSPIRE].
– reference: CherchigliaAKneschkePStöckingerDStöckinger-KimHThe muon magnetic moment in the 2HDM: complete two-loop resultJHEP2017010072017JHEP...01..007C1373.81411[arXiv:1607.06292] [INSPIRE]
– reference: KobayashiMMaskawaTCP violation in the renormalizable theory of weak interactionProg. Theor. Phys.1973496521973PThPh..49..652K[INSPIRE]
– reference: IlisieVNew Barr-Zee contributions to (g− 2)μin two-Higgs-doublet modelsJHEP2015040772015JHEP...04..077I[arXiv:1502.04199] [INSPIRE]
– reference: ChunEJMondalTExplaining g− 2 anomalies in two Higgs doublet model with vector-like leptonsJHEP2020110772020JHEP...11..077C[arXiv:2009.08314] [INSPIRE]
– reference: ChunEJKimJLeptonic precision test of leptophilic two-Higgs-doublet modelJHEP2016071102016JHEP...07..110C[arXiv:1605.06298] [INSPIRE]
– reference: J.-M. Gerard and M. Herquet, A twisted custodial symmetry in the two-Higgs-doublet model, Phys. Rev. Lett.98 (2007) 251802 [hep-ph/0703051] [INSPIRE].
– reference: D. Egana-Ugrinovic, S. Homiller and P. Meade, Aligned and spontaneous flavor violation, Phys. Rev. Lett.123 (2019) 031802 [arXiv:1811.00017] [INSPIRE].
– reference: K. Matsuda and H. Nishiura, Can four-zero-texture mass matrix model reproduce the quark and lepton mixing angles and CP-violating phases?, Phys. Rev. D74 (2006) 033014 [hep-ph/0606142] [INSPIRE].
– reference: S.-P. Li, X.-Q. Li and Y.-D. Yang, Muon g− 2 in a U(1)-symmetric two-Higgs-doublet model, Phys. Rev. D99 (2019) 035010 [arXiv:1808.02424] [INSPIRE].
– reference: A. Crivellin, M. Hoferichter and P. Schmidt-Wellenburg, Combined explanations of (g− 2)μ,eand implications for a large muon EDM, Phys. Rev. D98 (2018) 113002 [arXiv:1807.11484] [INSPIRE].
– reference: BrancoGCEmmanuel-CostaDGonzalez FelipeRSerodioHWeak basis transformations and texture zeros in the leptonic sectorPhys. Lett. B20096703402009PhLB..670..340B[arXiv:0711.1613] [INSPIRE]
– reference: MohapatraRNSenjanovićGNeutrino mass and spontaneous parity nonconservationPhys. Rev. Lett.1980449121980PhRvL..44..912M1404.81306[INSPIRE]
– reference: HallerJHoeckerAKoglerRMönigKPeifferTStelzerJUpdate of the global electroweak fit and constraints on two-Higgs-doublet modelsEur. Phys. J. C2018786752018EPJC...78..675H[arXiv:1803.01853] [INSPIRE]
– reference: Z.-Z. Xing and H. Zhang, Lepton mass matrices with four texture zeros, Phys. Lett. B569 (2003) 30 [hep-ph/0304234] [INSPIRE].
– reference: ToussaintDRenormalization effects from superheavy Higgs particlesPhys. Rev. D19781816261978PhRvD..18.1626T[INSPIRE]
– reference: BroggioAChunEJPasseraMPatelKMVempatiSKLimiting two-Higgs-doublet modelsJHEP2014110582014JHEP...11..058B[arXiv:1409.3199] [INSPIRE]
– reference: MohapatraRNSenjanovićGNeutrino masses and mixings in gauge models with spontaneous parity violationPhys. Rev. D1981231651981PhRvD..23..165M[INSPIRE]
– reference: BadziakMSakuraiKExplanation of electron and muon g− 2 anomalies in the MSSMJHEP2019100242019JHEP...10..024B[arXiv:1908.03607] [INSPIRE]
– reference: B. Malaescu and M. Schott, Impact of correlations between aμand αQEDon the EW fit, arXiv:2008.08107 [INSPIRE].
– reference: C. Hati, J. Kriewald, J. Orloff and A.M. Teixeira, Anomalies in8Be nuclear transitions and (g− 2)e,μ: towards a minimal combined explanation, JHEP07 (2020) 235 [arXiv:2005.00028] [INSPIRE].
– reference: S. Jana, V.P.K. and S. Saad, Resolving electron and muon g− 2 within the 2HDM, Phys. Rev. D101 (2020) 115037 [arXiv:2003.03386] [INSPIRE].
– reference: HanTKangSKSayreJMuon g− 2 in the aligned two Higgs doublet modelJHEP2016020972016JHEP...02..097H[arXiv:1511.05162] [INSPIRE]
– reference: A.J. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Universal unitarity triangle and physics beyond the Standard Model, Phys. Lett. B500 (2001) 161 [hep-ph/0007085] [INSPIRE].
– reference: BarbieriRIsidoriGJones-PerezJLodonePStraubDMU(2) and minimal flavour violation in supersymmetryEur. Phys. J. C20117117252011EPJC...71.1725B[arXiv:1105.2296] [INSPIRE]
– reference: T. Aoyama, T. Kinoshita and M. Nio, Revised and improved value of the QED tenth-order electron anomalous magnetic moment, Phys. Rev. D97 (2018) 036001 [arXiv:1712.06060] [INSPIRE].
– reference: ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group collaborations, Precision electroweak measurements on the Z resonance, Phys. Rept.427 (2006) 257 [hep-ex/0509008] [INSPIRE].
– reference: JungMPichATuzonPCharged-Higgs phenomenology in the aligned two-Higgs-doublet modelJHEP2010110032010JHEP...11..003J1294.81353[arXiv:1006.0470] [INSPIRE]
– reference: MakiZNakagawaMSakataSRemarks on the unified model of elementary particlesProg. Theor. Phys.1962288701962PThPh..28..870M0125.22605[INSPIRE]
– reference: WangLYangJMZhangMZhangYRevisiting lepton-specific 2HDM in light of muon g− 2 anomalyPhys. Lett. B20197885192019PhLB..788..519W[arXiv:1809.05857] [INSPIRE]
– reference: T. Abe, J. Hisano, T. Kitahara and K. Tobioka, Gauge invariant Barr-Zee type contributions to fermionic EDMs in the two-Higgs doublet models, JHEP01 (2014) 106 [Erratum ibid.04 (2016) 161] [arXiv:1311.4704] [INSPIRE].
– reference: A. Czarnecki, B. Krause and W.J. Marciano, Electroweak fermion loop contributions to the muon anomalous magnetic moment, Phys. Rev. D52 (1995) 2619 [hep-ph/9506256] [INSPIRE].
– reference: BrancoGCFerreiraPMLavouraLRebeloMNSherMSilvaJPTheory and phenomenology of two-Higgs-doublet modelsPhys. Rept.201251612012PhR...516....1B[arXiv:1106.0034] [INSPIRE]
– reference: F. Feruglio and A. Romanino, Neutrino flavour symmetries, arXiv:1912.06028 [INSPIRE].
– reference: ParkerRHYuCZhongWEsteyBMüllerHMeasurement of the fine-structure constant as a test of the Standard ModelScience20183601912018Sci...360..191P37926401416.81019[arXiv:1812.04130] [INSPIRE]
– reference: BarbieriRButtazzoDSalaFStraubDMFlavour physics from an approximate U(2)3symmetryJHEP2012071812012JHEP...07..181B[arXiv:1203.4218] [INSPIRE]
– reference: G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B645 (2002) 155 [hep-ph/0207036] [INSPIRE].
– reference: RBC/UKQCD collaboration, SU(3)-breaking ratios for D(s)and B(s)mesons, arXiv:1812.08791 [INSPIRE].
– reference: BarbieriRCampliPIsidoriGSalaFStraubDMB-decay CP-asymmetries in SUSY with a U(2)3flavour symmetryEur. Phys. J. C20117118122011EPJC...71.1812B[arXiv:1108.5125] [INSPIRE]
– reference: A.J. Buras, M.V. Carlucci, S. Gori and G. Isidori, Higgs-mediated FCNCs: natural flavour conservation vs. minimal flavour violation, JHEP10 (2010) 009 [arXiv:1005.5310] [INSPIRE].
– reference: SenjanovićGMohapatraRNExact left-right symmetry and spontaneous violation of parityPhys. Rev. D19751215021975PhRvD..12.1502S[INSPIRE]
– reference: HFLAV collaboration, Averages of b-hadron, c-hadron, and τ-lepton properties as of 2018, arXiv:1909.12524 [INSPIRE].
– reference: H. Fritzsch and Z.-Z. Xing, Four zero texture of Hermitian quark mass matrices and current experimental tests, Phys. Lett. B555 (2003) 63 [hep-ph/0212195] [INSPIRE].
– reference: M. Abe et al., A new approach for measuring the muon anomalous magnetic moment and electric dipole moment, PTEP2019 (2019) 053C02 [arXiv:1901.03047] [INSPIRE].
– reference: LenzATetlalmatzi-XolocotziGModel-independent bounds on new physics effects in non-leptonic tree-level decays of B-mesonsJHEP2020071772020JHEP...07..177L[arXiv:1912.07621] [INSPIRE]
– reference: S.M. Barr and A. Zee, Electric dipole moment of the electron and of the neutron, Phys. Rev. Lett.65 (1990) 21 [Erratum ibid.65 (1990) 2920] [INSPIRE].
– reference: XingZ-ZZhaoZ-HOn the four-zero texture of quark mass matrices and its stabilityNucl. Phys. B20158973022015NuPhB.897..302X1329.81370[arXiv:1501.06346] [INSPIRE]
– reference: Muon g-2 collaboration, Muon (g− 2) technical design report, arXiv:1501.06858 [INSPIRE].
– reference: H. Fritzsch and Z.-Z. Xing, Mass and flavor mixing schemes of quarks and leptons, Prog. Part. Nucl. Phys.45 (2000) 1 [hep-ph/9912358] [INSPIRE].
– reference: MisiakMRehmanASteinhauserMTowardsB¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{B} $$\end{document}→Xsγ at the NNLO in QCD without interpolation in mcJHEP2020061752020JHEP...06..175M[arXiv:2002.01548] [INSPIRE]
– reference: CornellaCParadisiPSumensariOHunting for ALPs with lepton flavor violationJHEP2020011582020JHEP...01..158C[arXiv:1911.06279] [INSPIRE]
– reference: I. Doršner, S. Fajfer and S. Saad, μ→eγ selecting scalar leptoquark solutions for the (g− 2)e,μpuzzles, Phys. Rev. D102 (2020) 075007 [arXiv:2006.11624] [INSPIRE].
– reference: X.-F. Han, T. Li, L. Wang and Y. Zhang, Simple interpretations of lepton anomalies in the lepton-specific inert two-Higgs-doublet model, Phys. Rev. D99 (2019) 095034 [arXiv:1812.02449] [INSPIRE].
– reference: J. Horejsi and M. Kladiva, Tree-unitarity bounds for THDM Higgs masses revisited, Eur. Phys. J. C46 (2006) 81 [hep-ph/0510154] [INSPIRE].
– reference: J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: the approach to the decoupling limit, Phys. Rev. D67 (2003) 075019 [hep-ph/0207010] [INSPIRE].
– reference: WangLHanX-FA light pseudoscalar of 2HDM confronted with muon g− 2 and experimental constraintsJHEP2015050392015JHEP...05..039W[arXiv:1412.4874] [INSPIRE]
– reference: GoriSHaberHESantosEHigh scale flavor alignment in two-Higgs doublet models and its phenomenologyJHEP2017061102017JHEP...06..110G1380.81401[arXiv:1703.05873] [INSPIRE]
– reference: A. Keshavarzi, W.J. Marciano, M. Passera and A. Sirlin, Muon g− 2 and ∆α connection, Phys. Rev. D102 (2020) 033002 [arXiv:2006.12666] [INSPIRE].
– reference: M. Kirk, A. Lenz and T. Rauh, Dimension-six matrix elements for meson mixing and lifetimes from sum rules, JHEP12 (2017) 068 [Erratum ibid.06 (2020) 162] [arXiv:1711.02100] [INSPIRE].
– reference: Egana-UgrinovicDHomillerSMeadePRHiggs bosons with large couplings to light quarksPhys. Rev. D20191001150412019PhRvD.100k5041E[arXiv:1908.11376] [INSPIRE]
– reference: MohapatraRNPatiJCA natural left-right symmetryPhys. Rev. D19751125581975PhRvD..11.2558M[INSPIRE]
– reference: T. Chupp, P. Fierlinger, M. Ramsey-Musolf and J. Singh, Electric dipole moments of atoms, molecules, nuclei, and particles, Rev. Mod. Phys.91 (2019) 015001 [arXiv:1710.02504] [INSPIRE].
– reference: GrozinAGKleinRMannelTPivovarovAAB0−B¯0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\overline{B}}^0 $$\end{document}mixing at next-to-leading orderPhys. Rev. D2016942016PhRvD..94c4024G[arXiv:1606.06054] [INSPIRE]
– reference: EngelJRamsey-MusolfMJvan KolckUElectric dipole moments of nucleons, nuclei, and atoms: the Standard Model and beyondProg. Part. Nucl. Phys.201371212013PrPNP..71...21E[arXiv:1303.2371] [INSPIRE]
– reference: BrancoGCLavouraLMotaFNearest neighbor interactions and the physical content of Fritzsch mass matricesPhys. Rev. D19893934431989PhRvD..39.3443B[INSPIRE]
– reference: NebotMBounded masses in two Higgs doublets models, spontaneous CP violation and Z2symmetryPhys. Rev. D20201021150022020PhRvD.102k5002N4195354[arXiv:1911.02266] [INSPIRE]
– reference: LiuJWagnerCEMWangX-PA light complex scalar for the electron and muon anomalous magnetic momentsJHEP2019030082019JHEP...03..008L[arXiv:1810.11028] [INSPIRE]
– reference: BiswasALahiriAMasses of physical scalars in two Higgs doublet modelsPhys. Rev. D2015911150122015PhRvD..91k5012B[arXiv:1412.6187] [INSPIRE]
– reference: F.J. Botella, F. Cornet-Gomez and M. Nebot, Flavor conservation in two-Higgs-doublet models, Phys. Rev. D98 (2018) 035046 [arXiv:1803.08521] [INSPIRE].
– reference: Fermilab Lattice and MILC collaborations, Bs0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {B}_{(s)}^0 $$\end{document}-mixing matrix elements from lattice QCD for the Standard Model and beyond, Phys. Rev. D93 (2016) 113016 [arXiv:1602.03560] [INSPIRE].
– reference: B. Pontecorvo, Mesonium and anti-mesonium, Sov. Phys. JETP6 (1957) 429 [Zh. Eksp. Teor. Fiz.33 (1957) 549] [INSPIRE].
– reference: JungMPichAElectric dipole moments in two-Higgs-doublet modelsJHEP2014040762014JHEP...04..076J[arXiv:1308.6283] [INSPIRE]
– reference: Cárcamo HernándezAEKingSFLeeHRowleySJIs it possible to explain the muon and electron g− 2 in a Z′ model?Phys. Rev. D20201011150162020PhRvD.101k5016H[arXiv:1910.10734] [INSPIRE]
– reference: B. Dutta, S. Ghosh and T. Li, Explaining (g− 2)μ,e, the KOTO anomaly and the MiniBooNE excess in an extended Higgs model with sterile neutrinos, Phys. Rev. D102 (2020) 055017 [arXiv:2006.01319] [INSPIRE].
– reference: H. Fritzsch and Z.-Z. Xing, A symmetry pattern of maximal CP-violation and a determination of the unitarity triangle, Phys. Lett. B353 (1995) 114 [hep-ph/9502297] [INSPIRE].
– reference: I. Bigaran and R.R. Volkas, Getting chirality right: single scalar leptoquark solutions to the (g− 2)e,μpuzzle, Phys. Rev. D102 (2020) 075037 [arXiv:2002.12544] [INSPIRE].
– reference: R.J. Dowdall et al., Neutral B-meson mixing from full lattice QCD at the physical point, Phys. Rev. D100 (2019) 094508 [arXiv:1907.01025] [INSPIRE].
– reference: EndoMYinWExplaining electron and muon g− 2 anomaly in SUSY without lepton-flavor mixingsJHEP2019081222019JHEP...08..122E[arXiv:1906.08768] [INSPIRE]
– reference: ChenK-FChiangC-WYagyuKAn explanation for the muon and electron g– 2 anomalies and dark matterJHEP2020091192020JHEP...09..119C[arXiv:2006.07929] [INSPIRE]
– reference: BauerMNeubertMRennerSSchnubelMThammAAxionlike particles, lepton-flavor violation, and a new explanation of aμand aePhys. Rev. Lett.20201242118032020PhRvL.124u1803B[arXiv:1908.00008] [INSPIRE]
– reference: S. Borsányi et al., Leading-order hadronic vacuum polarization contribution to the muon magnetic moment from lattice QCD, arXiv:2002.12347 [INSPIRE].
– reference: A. Crivellin, M. Hoferichter, C.A. Manzari and M. Montull, Hadronic vacuum polarization: (g− 2)μversus global electroweak fits, Phys. Rev. Lett.125 (2020) 091801 [arXiv:2003.04886] [INSPIRE].
– reference: H. Davoudiasl and W.J. Marciano, Tale of two anomalies, Phys. Rev. D98 (2018) 075011 [arXiv:1806.10252] [INSPIRE].
– reference: FerreiraPMLavouraLSilvaJPRenormalization-group constraints on Yukawa alignment in multi-Higgs-doublet modelsPhys. Lett. B20106883412010PhLB..688..341F[arXiv:1001.2561] [INSPIRE]
– ident: 14530_CR52
  doi: 10.1007/JHEP12(2019)009
– ident: 14530_CR61
  doi: 10.1103/PhysRevD.99.095034
– ident: 14530_CR106
– ident: 14530_CR9
  doi: 10.1103/PhysRevD.80.091702
– ident: 14530_CR62
  doi: 10.1103/PhysRevD.98.075011
– ident: 14530_CR72
  doi: 10.1103/PhysRevD.102.075037
– volume: 91
  start-page: 115012
  year: 2015
  ident: 14530_CR113
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.115012
– volume: 04
  start-page: 076
  year: 2014
  ident: 14530_CR93
  publication-title: JHEP
  doi: 10.1007/JHEP04(2014)076
– ident: 14530_CR103
– volume: 360
  start-page: 191
  year: 2018
  ident: 14530_CR23
  publication-title: Science
  doi: 10.1126/science.aap7706
– volume: 23
  start-page: 165
  year: 1981
  ident: 14530_CR49
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.23.165
– ident: 14530_CR91
– volume: 39
  start-page: 3443
  year: 1989
  ident: 14530_CR35
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.39.3443
– ident: 14530_CR1
  doi: 10.1016/S0550-3213(02)00836-2
– volume: 897
  start-page: 302
  year: 2015
  ident: 14530_CR41
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2015.05.027
– ident: 14530_CR75
  doi: 10.1103/PhysRevD.102.055017
– volume: 71
  start-page: 1725
  year: 2011
  ident: 14530_CR3
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-011-1725-z
– volume: 07
  start-page: 181
  year: 2012
  ident: 14530_CR5
  publication-title: JHEP
  doi: 10.1007/JHEP07(2012)181
– volume: 18
  start-page: 145
  year: 1983
  ident: 14530_CR6
  publication-title: Z. Phys. C
  doi: 10.1007/BF01572477
– volume: 788
  start-page: 519
  year: 2019
  ident: 14530_CR60
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2018.11.045
– ident: 14530_CR22
  doi: 10.1103/PhysRevD.97.036001
– ident: 14530_CR36
  doi: 10.1016/0370-2693(95)00545-V
– ident: 14530_CR16
  doi: 10.1103/PhysRevD.102.033002
– volume: 07
  start-page: 177
  year: 2020
  ident: 14530_CR53
  publication-title: JHEP
  doi: 10.1007/JHEP07(2020)177
– ident: 14530_CR15
– volume: 692
  start-page: 189
  year: 2010
  ident: 14530_CR84
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2010.07.039
– ident: 14530_CR121
– ident: 14530_CR69
  doi: 10.1103/PhysRevD.102.071901
– volume: 44
  start-page: 912
  year: 1980
  ident: 14530_CR48
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.44.912
– volume: 02
  start-page: 097
  year: 2016
  ident: 14530_CR18
  publication-title: JHEP
  doi: 10.1007/JHEP02(2016)097
– volume: 06
  start-page: 087
  year: 2020
  ident: 14530_CR73
  publication-title: JHEP
  doi: 10.1007/JHEP06(2020)087
– ident: 14530_CR80
– volume: 188
  start-page: 99
  year: 1987
  ident: 14530_CR7
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(87)90713-1
– volume: 49
  start-page: 652
  year: 1973
  ident: 14530_CR90
  publication-title: Prog. Theor. Phys.
  doi: 10.1143/PTP.49.652
– volume: 100
  start-page: 115041
  year: 2019
  ident: 14530_CR29
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.115041
– ident: 14530_CR71
  doi: 10.1093/ptep/ptaa098
– ident: 14530_CR100
  doi: 10.1016/j.aop.2005.04.002
– ident: 14530_CR40
  doi: 10.1140/epjc/s2004-01896-y
– ident: 14530_CR87
  doi: 10.1007/JHEP06(2014)022
– volume: 11
  start-page: 077
  year: 2020
  ident: 14530_CR78
  publication-title: JHEP
  doi: 10.1007/JHEP11(2020)077
– ident: 14530_CR115
  doi: 10.1103/PhysRevD.67.075019
– ident: 14530_CR25
  doi: 10.1103/PhysRevD.102.035023
– ident: 14530_CR107
  doi: 10.1140/epjc/s10052-019-7354-7
– ident: 14530_CR104
– volume: 71
  start-page: 21
  year: 2013
  ident: 14530_CR101
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2013.03.003
– ident: 14530_CR13
– ident: 14530_CR24
  doi: 10.1103/PhysRevD.101.115037
– ident: 14530_CR37
  doi: 10.1103/PhysRevD.59.093009
– volume: 854
  start-page: 1
  year: 2020
  ident: 14530_CR32
  publication-title: Phys. Rept.
  doi: 10.1016/j.physrep.2020.02.001
– volume: 18
  start-page: 1626
  year: 1978
  ident: 14530_CR117
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.18.1626
– volume: 01
  start-page: 007
  year: 2017
  ident: 14530_CR19
  publication-title: JHEP
  doi: 10.1007/JHEP01(2017)007
– volume: 82
  start-page: 2701
  year: 2010
  ident: 14530_CR31
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.2701
– volume: 100
  start-page: 120801
  year: 2008
  ident: 14530_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.120801
– volume: 04
  start-page: 077
  year: 2015
  ident: 14530_CR17
  publication-title: JHEP
  doi: 10.1007/JHEP04(2015)077
– ident: 14530_CR109
– ident: 14530_CR2
  doi: 10.1016/S0370-2693(01)00061-2
– volume: 11
  start-page: 2558
  year: 1975
  ident: 14530_CR46
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.11.2558
– ident: 14530_CR33
– volume: 08
  start-page: 122
  year: 2019
  ident: 14530_CR65
  publication-title: JHEP
  doi: 10.1007/JHEP08(2019)122
– volume: 772
  start-page: 232
  year: 2017
  ident: 14530_CR21
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2017.06.056
– volume: 124
  start-page: 211803
  year: 2020
  ident: 14530_CR66
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.211803
– ident: 14530_CR118
  doi: 10.1103/PhysRevLett.98.251802
– volume: 670
  start-page: 340
  year: 2009
  ident: 14530_CR45
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2008.10.059
– volume: 77
  start-page: 139
  year: 2017
  ident: 14530_CR81
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-017-4633-z
– volume: 12
  start-page: 084
  year: 2017
  ident: 14530_CR26
  publication-title: JHEP
  doi: 10.1007/JHEP12(2017)084
– ident: 14530_CR30
  doi: 10.1016/S0146-6410(00)00102-2
– volume: 06
  start-page: 149
  year: 2014
  ident: 14530_CR96
  publication-title: JHEP
  doi: 10.1007/JHEP06(2014)149
– ident: 14530_CR14
  doi: 10.1103/PhysRevLett.125.091801
– ident: 14530_CR10
  doi: 10.1007/JHEP10(2010)009
– volume: 78
  start-page: 675
  year: 2018
  ident: 14530_CR54
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-018-6131-3
– ident: 14530_CR11
– volume: 11
  start-page: 003
  year: 2010
  ident: 14530_CR86
  publication-title: JHEP
  doi: 10.1007/JHEP11(2010)003
– volume: 101
  start-page: 115016
  year: 2020
  ident: 14530_CR68
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.115016
– ident: 14530_CR120
  doi: 10.1103/PhysRevD.52.R2619
– volume: 12
  start-page: 1502
  year: 1975
  ident: 14530_CR47
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.12.1502
– volume: 07
  start-page: 064
  year: 2015
  ident: 14530_CR57
  publication-title: JHEP
  doi: 10.1007/JHEP07(2015)064
– volume: 01
  start-page: 158
  year: 2020
  ident: 14530_CR70
  publication-title: JHEP
  doi: 10.1007/JHEP01(2020)158
– ident: 14530_CR99
  doi: 10.1103/RevModPhys.63.313
– ident: 14530_CR74
  doi: 10.1007/JHEP07(2020)235
– volume: 09
  start-page: 119
  year: 2020
  ident: 14530_CR76
  publication-title: JHEP
  doi: 10.1007/JHEP09(2020)119
– ident: 14530_CR38
  doi: 10.1016/S0370-2693(00)00193-3
– volume: 887
  start-page: 1
  year: 2020
  ident: 14530_CR12
  publication-title: Phys. Rept.
  doi: 10.1016/j.physrep.2020.07.006
– ident: 14530_CR28
  doi: 10.1103/PhysRevLett.123.031802
– ident: 14530_CR112
  doi: 10.1140/epjc/s2006-02472-3
– volume: 05
  start-page: 034
  year: 2019
  ident: 14530_CR51
  publication-title: JHEP
  doi: 10.1007/JHEP05(2019)034
– volume: 08
  start-page: 026
  year: 2020
  ident: 14530_CR97
  publication-title: JHEP
  doi: 10.1007/JHEP08(2020)026
– volume: 94
  year: 2016
  ident: 14530_CR111
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.94.034024
– volume: 155
  start-page: 189
  year: 1979
  ident: 14530_CR34
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(79)90362-6
– volume: 688
  start-page: 341
  year: 2010
  ident: 14530_CR83
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2010.04.033
– ident: 14530_CR27
  doi: 10.1103/PhysRevD.98.035046
– ident: 14530_CR98
– volume: 71
  start-page: 1812
  year: 2011
  ident: 14530_CR4
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-011-1812-1
– ident: 14530_CR44
  doi: 10.1103/PhysRevD.74.033014
– volume: 05
  start-page: 039
  year: 2015
  ident: 14530_CR56
  publication-title: JHEP
  doi: 10.1007/JHEP05(2015)039
– ident: 14530_CR110
– volume: 11
  start-page: 058
  year: 2014
  ident: 14530_CR55
  publication-title: JHEP
  doi: 10.1007/JHEP11(2014)058
– ident: 14530_CR94
  doi: 10.1007/JHEP01(2014)106
– volume: 89
  start-page: 115023
  year: 2014
  ident: 14530_CR95
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.115023
– volume: 516
  start-page: 1
  year: 2012
  ident: 14530_CR82
  publication-title: Phys. Rept.
  doi: 10.1016/j.physrep.2012.02.002
– volume: 03
  start-page: 008
  year: 2019
  ident: 14530_CR64
  publication-title: JHEP
  doi: 10.1007/JHEP03(2019)008
– ident: 14530_CR119
  doi: 10.1103/PhysRevLett.65.21
– volume: 07
  start-page: 110
  year: 2016
  ident: 14530_CR59
  publication-title: JHEP
  doi: 10.1007/JHEP07(2016)110
– volume: 11
  start-page: 046
  year: 2018
  ident: 14530_CR88
  publication-title: JHEP
  doi: 10.1007/JHEP11(2018)046
– ident: 14530_CR63
  doi: 10.1103/PhysRevD.98.113002
– ident: 14530_CR42
  doi: 10.1016/j.physletb.2003.07.008
– ident: 14530_CR108
  doi: 10.1103/PhysRevD.100.094508
– volume: 80
  start-page: 268
  year: 2020
  ident: 14530_CR8
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-7839-4
– volume: 06
  start-page: 110
  year: 2017
  ident: 14530_CR85
  publication-title: JHEP
  doi: 10.1007/JHEP06(2017)110
– volume: 28
  start-page: 870
  year: 1962
  ident: 14530_CR92
  publication-title: Prog. Theor. Phys.
  doi: 10.1143/PTP.28.870
– ident: 14530_CR43
  doi: 10.1103/PhysRevD.76.013006
– ident: 14530_CR39
  doi: 10.1016/S0370-2693(03)00048-0
– ident: 14530_CR102
  doi: 10.1103/RevModPhys.91.015001
– ident: 14530_CR50
  doi: 10.1007/JHEP12(2017)068
– volume: 102
  start-page: 115002
  year: 2020
  ident: 14530_CR114
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.115002
– ident: 14530_CR77
  doi: 10.1007/JHEP06(2020)089
– volume: 10
  start-page: 531
  year: 1963
  ident: 14530_CR89
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.10.531
– volume: 10
  start-page: 024
  year: 2019
  ident: 14530_CR67
  publication-title: JHEP
  doi: 10.1007/JHEP10(2019)024
– ident: 14530_CR79
– volume: 06
  start-page: 175
  year: 2020
  ident: 14530_CR105
  publication-title: JHEP
  doi: 10.1007/JHEP06(2020)175
– ident: 14530_CR58
  doi: 10.1103/PhysRevLett.116.081801
– ident: 14530_CR116
SSID ssj0015190
Score 2.5618253
Snippet A bstract With the hypothesis of minimal flavor violation, we find that there exists a power-aligned relation between the Yukawa couplings of the two scalar...
With the hypothesis of minimal flavor violation, we find that there exists a power-aligned relation between the Yukawa couplings of the two scalar doublets in...
Abstract With the hypothesis of minimal flavor violation, we find that there exists a power-aligned relation between the Yukawa couplings of the two scalar...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Anomalies
Beyond Standard Model
Classical and Quantum Gravitation
Couplings
Elementary Particles
Flavors
Higgs Physics
High energy physics
Hypotheses
Leptons
Magnetic moments
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Quarks
Regular Article - Theoretical Physics
Relativity Theory
String Theory
Symmetry
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NahsxEBapQ6GXkp-Wuk2CDjnY0G20K2m1yiEhPw4mEGNKDb4t8kjyJdhOnL5Dz32ePEMeIk-S0Vpr40ACyx5W2mWZ0Yy-0UjfEHKYZSlwyESC7ToRFgMUY0ElGXDvCsesrjaP3_Ty7kBcD-UwLrjN47bK2idWjtpOIayRH2GYIKRKheSns7skVI0K2dVYQuMD2UQXXBQNsnne6fV_L_MIiE9YTejD1NF1t9NnaQsD_rTNuFibiyrK_jWc-So1Ws04V1vkc4SK9Gyh222y4SY75GO1ZRPmu-SkHwqcJYijx-gqada9vDmmhkIot3Fb0XnT2eokJZ1OaGtMn__9p1nb_Xx6_EIGV50_F90kVkNIAGM8kYDmXqXgIWTqQGYacH4bSWM8QpRcWma0gFRYNOFw3Aa0LJh2XqENe6e05V9JYzKduG-EcqENlzmo3BfC8cKgRhD5WAd4qdQ2ya9aLiVEqvBQseK2rEmOF4IsgyBLFGSTtJYvzBYsGW93PQ-CXnYL9NbVg-n9uIzWUo6UAa4L1LnD8FFmxmOY5HK8MWs8w4_s1Woqo83Ny9UIaZJ2rbpV8xv_8_39T_0gn0LPxaLLHmk83P91-whDHkYHcay9ACd12OY
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSgMxEA5aEbyIv1itkoOHFlzd3SSbjQdBa0sRlB4s9Lakk6SX0hZ_3sGzz-Mz-BA-iZPtbksVD8KyLJtJWGZ2Nt_sJN8QchrHETCIeYDtKuAGAxRtQAYxMGdTGxqVLx6_f0g6PX7XF_2CJMnvhfmRv7-467S6YVTHED1qhIyvkjURMelrNDST5jxdgDAkLHl7fndamnJyZv4lOPkjA5pPLO0tslkgQno9M-E2WbHjHbKer8yE511y1fV1zAKEy0P8ItK4c3t_STUFX1VjlLN20-liwySdjGl9SL_e3mncsGefH3uk1249NjtBUfQgAAzleACKORmBA5-QAxErwGlsILR2iEQSYUKtOETcoKf6XTWgRBoq6yS6qrNSGbZPKuPJ2B4QyrjSTCQgE5dyy1KNikeAYyzgISNTJeelXjIoGMF9YYpRVnIZzxSZeUVmqMgqqc87TGdkGH-L3nhFz8U8i3V-A42bFU6RDaQGplKMAC1GiSLWDqMhm-ApNNqFOEitNFNWuNZzhtJcyIgLViWN0nSL5j-e5_Afskdkw1_OfrTUSOXl6dUeI_R4GZzkr903fVzO8A
  priority: 102
  providerName: Springer Nature
Title Power-aligned 2HDM: a correlative perspective on (g − 2)e,μ
URI https://link.springer.com/article/10.1007/JHEP01(2021)034
https://www.proquest.com/docview/2494571453
https://doaj.org/article/b7ac398249e44852af642e66420daf04
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSxxBEC6iIngJ8RHcaJY-5LALTpzpx_R0LkE3u1kEZQlZ8Db0Vnd7kVV8_AfP_h5_gz_CX2L1PHwExEtgaJjpmqGpmp76aqr7K4BvnGcokMuE-k0iHQUo1qFOOIrgC586Uy0ePzzKx1N5cKyOX5T6imvCanrgWnG7M21RmIKiBE-RhOI2EGL2OTWps6FmAiWf1wZTTf6AcEnaEvmkevdgPJykWY8C_ayfCvnKB1VU_a_w5T8p0crTjD7BxwYisr16aKvwwc_XYLlaqomX6_BzEgubJYSfT-gTyfj41-EPZhnGMhunFY03O3_eQcnO5qx3wh5ubhnvM79zf7cB09Hw72CcNGUQEqTgTiZoRNAZBowpOlTcIDm2mbI2EDbJlUutkZhJR3M37rNBo4rU-KBp8gavjROfYXF-NvebwIQ0VqgcdR4K6UVhyRQEeZxHOnTmOvC9VUyJDUd4LFVxWrbsxrUmy6jJkjTZgd7TDec1PcbbovtR009ikde6ukDWLhtrl-9ZuwPbrZ3KZrJdliQtlc6kEh3ot7Z77n5jPF_-x3i2YCU-r_4nsw2LVxfX_iuhlKtZFxaK0e8uLO0PjyZ_6GzAZWzzQbd6Vamd8r1HYmDkiw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbhMx0CpFiF4QT5G2gA8gJRJLvbZ3vUYCBLRh-0jVQyv1ZpyxnUuVpE0R4g967ofwBXwDH8GXMN5HoiKVW6XVHtYPrebhmfG8CHnJeQoCuExwXCfSoYFiHaiEgwi-8MzpKnh8sJ-XR3LnODteIj_bXJgYVtmeidVB7SYQ78g30EyQmUplJj5MT5PYNSp6V9sWGjVZ7Pof39Fkm73b3kT8vuK8v3X4uUyargIJoK0kE9AiqBQCRI8XZFwDyolhZm1AUZ9njlktIZUOWSGmrYDOCqZ9UMgLwSvtBO57i9yWAiV5zEzvf5l7LVAbYm35IKY2dsqtA5Z2OYrRHhPyiuSrGgRc0Wr_ccRW8q1_n9xrFFP6saakB2TJjx-SO1WAKMwekfcHsZ1aglr7CA9mysvNwVtqKcTmHidV8XA6XeRt0smYdkf0z8Ul5T3_-vevx-ToRqD0hCyPJ2P_lFAhtRVZDioPhfSisIh_1LOcB3xU6jrkTQsXA01h8tgf48S0JZVrQJoISIOA7JDufMG0rslx_dRPEdDzabGYdvVhcjYyDW-aobIgdIEU5tFYzbgNaJT5HF_M2cBwk_UWTabh8JlZ0GOH9FrULYav-Z_V_2_1gtwtDwd7Zm97f3eNrMRV9XXPOlk-P_vmn6ECdD58XlEdJV9vmsz_Am9AE-c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6VVCAuiF8RKOADSInEkl3bu14jAaIkUdrSKEJU6m1xxnYuVRKaIsQbcOZxEM_AQ_AkjPcnUZHKrdJqD-sfrcbfeGY84xmAp5wnKJDLiNp1JC0ZKMaiijgK73IXW10Gjx-Os9GR3D9Oj7fgZ3MXJoRVNntiuVHbBYYz8h6ZCTJViUxFz9dhEZP-8M3ycxQqSAVPa1NOo4LIgfv2lcy31au9Pq31M86Hg4_vRlFdYSBCsptkhFp4laDH4P3ClGskmTFNjfEk9rPUxkZLTKQltghXWFCneaydV8QX3iltBc17BbZVsIpasL07GE8-rH0YpBvFTTKhWPX2R4NJnHQ4CdVuLOQ5OViWCzin4_7jli2l3fAm3KjVVPa2wtUt2HLz23C1DBfF1R14PQnF1SLS4We0TTM-6h--ZIZhKPVxUqYSZ8vNLU62mLPOjP35_oPxrnv--9ddOLoUOt2D1nwxd_eBCamNSDNUmc-lE7khNJDWZR3SoxLbhhcNXQqs05SHahknRZNguSJkEQhZECHb0FkPWFYZOi7uuhsIve4WUmuXHxans6Lm1GKqDAqdE94cma4pN55MNJfRK7bGxzTJTrNMRc3vq2KDzjZ0m6XbNF_wPw_-P9UTuEYQL97vjQ8ewvUwqDr72YHW2ekX94i0obPp4xp2DD5dNtL_AgiyGXk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Power-aligned+2HDM%3A+a+correlative+perspective+on+%28g+%E2%88%92+2%29+e%2C%CE%BC&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Shao-Ping+Li&rft.au=Xin-Qiang+Li&rft.au=Yuan-Yuan+Li&rft.au=Ya-Dong+Yang&rft.date=2021-01-01&rft.pub=SpringerOpen&rft.eissn=1029-8479&rft.volume=2021&rft.issue=1&rft.spage=1&rft.epage=23&rft_id=info:doi/10.1007%2FJHEP01%282021%29034&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b7ac398249e44852af642e66420daf04
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon