High‐precision screening and sorting of double emulsion droplets

Mounting evidence suggests that cell populations are extremely heterogeneous, with individual cells fulfilling different roles within the population. Flow cytometry (FC) is a high‐throughput tool for single‐cell analysis that works at high optical resolution. Sub‐populations with unique properties c...

Full description

Saved in:
Bibliographic Details
Published inCytometry. Part A Vol. 105; no. 7; pp. 547 - 554
Main Authors Zhuang, Siyuan, Semenec, Lucie, Nagy, Stephanie S., Cain, Amy K., Inglis, David W.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.07.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mounting evidence suggests that cell populations are extremely heterogeneous, with individual cells fulfilling different roles within the population. Flow cytometry (FC) is a high‐throughput tool for single‐cell analysis that works at high optical resolution. Sub‐populations with unique properties can be screened, isolated and sorted through fluorescence‐activated cell sorting (FACS), using intracellular fluorescent products or surface‐tagged fluorescent products of interest. However, traditional FC and FACS methods cannot identify or isolate cells that secrete extracellular products of interest. Double emulsion (DE) droplets are an innovative approach to retaining these extracellular products so cells producing them can be identified and isolated with FC and FACS. The water‐in‐oil‐in‐water structure makes DE droplets compatible with the sheath flow of flow cytometry. Single cells can be encapsulated with other reagents into DEs, which act as pico‐reactors. These droplets allow biological activities to take place while allowing for cell cultivation monitoring, rare mutant identification, and cellular events characterization. However, using DEs in FACS presents technical challenges, including rupture of DEs, poor accuracy and low sorting efficiency. This study presents high‐performance sorting using fluorescent beads (as simulants for cells). This study aims to guide researchers in the use of DE‐based flow cytometry, offering insights into how to resolve the technical difficulties associated with DE‐based screening and sorting using FC. Fluorescent particles, similar in size to bacterial cells, were encapsulated in double emulsion droplets. The droplet samples were collected into a centrifuge tube suspended in 1× PBS buffer for FACS sorting. The optimal drop delay unit was determined and produced sorting yields of 88% with over 90% sorting accuracy for single‐bead double emulsion droplets.
AbstractList Mounting evidence suggests that cell populations are extremely heterogeneous, with individual cells fulfilling different roles within the population. Flow cytometry (FC) is a high-throughput tool for single-cell analysis that works at high optical resolution. Sub-populations with unique properties can be screened, isolated and sorted through fluorescence-activated cell sorting (FACS), using intracellular fluorescent products or surface-tagged fluorescent products of interest. However, traditional FC and FACS methods cannot identify or isolate cells that secrete extracellular products of interest. Double emulsion (DE) droplets are an innovative approach to retaining these extracellular products so cells producing them can be identified and isolated with FC and FACS. The water-in-oil-in-water structure makes DE droplets compatible with the sheath flow of flow cytometry. Single cells can be encapsulated with other reagents into DEs, which act as pico-reactors. These droplets allow biological activities to take place while allowing for cell cultivation monitoring, rare mutant identification, and cellular events characterization. However, using DEs in FACS presents technical challenges, including rupture of DEs, poor accuracy and low sorting efficiency. This study presents high-performance sorting using fluorescent beads (as simulants for cells). This study aims to guide researchers in the use of DE-based flow cytometry, offering insights into how to resolve the technical difficulties associated with DE-based screening and sorting using FC.
Mounting evidence suggests that cell populations are extremely heterogeneous, with individual cells fulfilling different roles within the population. Flow cytometry (FC) is a high‐throughput tool for single‐cell analysis that works at high optical resolution. Sub‐populations with unique properties can be screened, isolated and sorted through fluorescence‐activated cell sorting (FACS), using intracellular fluorescent products or surface‐tagged fluorescent products of interest. However, traditional FC and FACS methods cannot identify or isolate cells that secrete extracellular products of interest. Double emulsion (DE) droplets are an innovative approach to retaining these extracellular products so cells producing them can be identified and isolated with FC and FACS. The water‐in‐oil‐in‐water structure makes DE droplets compatible with the sheath flow of flow cytometry. Single cells can be encapsulated with other reagents into DEs, which act as pico‐reactors. These droplets allow biological activities to take place while allowing for cell cultivation monitoring, rare mutant identification, and cellular events characterization. However, using DEs in FACS presents technical challenges, including rupture of DEs, poor accuracy and low sorting efficiency. This study presents high‐performance sorting using fluorescent beads (as simulants for cells). This study aims to guide researchers in the use of DE‐based flow cytometry, offering insights into how to resolve the technical difficulties associated with DE‐based screening and sorting using FC. Fluorescent particles, similar in size to bacterial cells, were encapsulated in double emulsion droplets. The droplet samples were collected into a centrifuge tube suspended in 1× PBS buffer for FACS sorting. The optimal drop delay unit was determined and produced sorting yields of 88% with over 90% sorting accuracy for single‐bead double emulsion droplets.
Mounting evidence suggests that cell populations are extremely heterogeneous, with individual cells fulfilling different roles within the population. Flow cytometry (FC) is a high-throughput tool for single-cell analysis that works at high optical resolution. Sub-populations with unique properties can be screened, isolated and sorted through fluorescence-activated cell sorting (FACS), using intracellular fluorescent products or surface-tagged fluorescent products of interest. However, traditional FC and FACS methods cannot identify or isolate cells that secrete extracellular products of interest. Double emulsion (DE) droplets are an innovative approach to retaining these extracellular products so cells producing them can be identified and isolated with FC and FACS. The water-in-oil-in-water structure makes DE droplets compatible with the sheath flow of flow cytometry. Single cells can be encapsulated with other reagents into DEs, which act as pico-reactors. These droplets allow biological activities to take place while allowing for cell cultivation monitoring, rare mutant identification, and cellular events characterization. However, using DEs in FACS presents technical challenges, including rupture of DEs, poor accuracy and low sorting efficiency. This study presents high-performance sorting using fluorescent beads (as simulants for cells). This study aims to guide researchers in the use of DE-based flow cytometry, offering insights into how to resolve the technical difficulties associated with DE-based screening and sorting using FC.Mounting evidence suggests that cell populations are extremely heterogeneous, with individual cells fulfilling different roles within the population. Flow cytometry (FC) is a high-throughput tool for single-cell analysis that works at high optical resolution. Sub-populations with unique properties can be screened, isolated and sorted through fluorescence-activated cell sorting (FACS), using intracellular fluorescent products or surface-tagged fluorescent products of interest. However, traditional FC and FACS methods cannot identify or isolate cells that secrete extracellular products of interest. Double emulsion (DE) droplets are an innovative approach to retaining these extracellular products so cells producing them can be identified and isolated with FC and FACS. The water-in-oil-in-water structure makes DE droplets compatible with the sheath flow of flow cytometry. Single cells can be encapsulated with other reagents into DEs, which act as pico-reactors. These droplets allow biological activities to take place while allowing for cell cultivation monitoring, rare mutant identification, and cellular events characterization. However, using DEs in FACS presents technical challenges, including rupture of DEs, poor accuracy and low sorting efficiency. This study presents high-performance sorting using fluorescent beads (as simulants for cells). This study aims to guide researchers in the use of DE-based flow cytometry, offering insights into how to resolve the technical difficulties associated with DE-based screening and sorting using FC.
Author Inglis, David W.
Nagy, Stephanie S.
Semenec, Lucie
Zhuang, Siyuan
Cain, Amy K.
Author_xml – sequence: 1
  givenname: Siyuan
  surname: Zhuang
  fullname: Zhuang, Siyuan
  organization: Macquarie University
– sequence: 2
  givenname: Lucie
  surname: Semenec
  fullname: Semenec, Lucie
  organization: Macquarie University
– sequence: 3
  givenname: Stephanie S.
  surname: Nagy
  fullname: Nagy, Stephanie S.
  organization: Macquarie University
– sequence: 4
  givenname: Amy K.
  surname: Cain
  fullname: Cain, Amy K.
  organization: Macquarie University
– sequence: 5
  givenname: David W.
  orcidid: 0000-0001-8239-5568
  surname: Inglis
  fullname: Inglis, David W.
  email: david.inglis@mq.edu.au
  organization: Macquarie University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38634684$$D View this record in MEDLINE/PubMed
BookMark eNp90b1OwzAQB3ALFUELbMwoEgsDKfbZcZ2xVHxJlbqUgclyHAdcpXGxE6FuPALPyJPgUmBAgskn6_c_nX0D1GtcYxA6JnhIMIYLvW7dUA2BCQY7qE-yDFKWU9z7qQH20SCEBcY0wxT20D4VnDIuWB9d3trHp_fXt5U32gbrmiRob0xjm8dENWUSnG83tauS0nVFbRKz7OpPWHq3qk0bDtFupepgjr7OA3R_fTWf3KbT2c3dZDxNNcMAaUFLkhecacVLVoEqeFmVECcRROmqKsSIZznonBsG8X6UMyF0RTFWIIosZ_QAnW37rrx77kxo5dIGbepaNcZ1QVLMCFDCGY_09BdduM43cbqoBAAhGUBUJ1-qK5amlCtvl8qv5ffvRABboL0LwZtKatuqNj6-9crWkmC5WYHcrEAq-bmCGDr_Ffru-wdnW_5ia7P-18rJw3w23sY-AJE9mRs
CitedBy_id crossref_primary_10_1002_smll_202404121
crossref_primary_10_1063_5_0242599
crossref_primary_10_3390_mi15080971
Cites_doi 10.1039/D1RA02636D
10.1021/acs.analchem.2c03475
10.1007/s12010-009-8794-6
10.1038/85533
10.1038/srep39385
10.1039/C3LC50736J
10.1039/D0LC00261E
10.1016/j.tibtech.2006.06.009
10.1002/eji.201970107
10.2144/btn-2018-0124
10.1039/C3LC50945A
10.1002/cyto.a.23902
10.1038/nchembio.510
10.1016/S1369-7021(08)70053-1
10.1021/ac403585p
10.1038/nri.2016.56
10.1039/C7CC03576D
10.1021/ac2033084
10.1002/cyto.a.10072
10.1016/j.molonc.2010.09.001
10.1073/pnas.1811250115
10.1039/D1LC00469G
10.1177/1087057110396361
10.1002/bit.25019
10.1002/cyto.a.22779
10.1002/bit.27002
10.1073/pnas.1621226114
10.1039/C5LC00693G
10.1039/C2LC40461C
10.1021/acs.analchem.2c04697
10.1021/acs.analchem.1c01861
10.3390/mi4040402
ContentType Journal Article
Copyright 2024 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.
2024 The Authors. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.
2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.
– notice: 2024 The Authors. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7QO
7TK
8FD
FR3
P64
7X8
DOI 10.1002/cyto.a.24842
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
Engineering Research Database
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1552-4930
EndPage 554
ExternalDocumentID 38634684
10_1002_cyto_a_24842
CYTOA24842
Genre technicalNote
Journal Article
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
2WC
31~
33P
3SF
4.4
4ZD
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
RNS
ROL
RWI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7QO
7TK
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c4022-b3d19b64ca6d4f2ab6dfd238681acffb876592c96e42d2379488cf300a28b5943
IEDL.DBID DR2
ISSN 1552-4922
1552-4930
IngestDate Fri Jul 11 07:42:35 EDT 2025
Fri Jul 25 21:09:43 EDT 2025
Mon Jul 21 06:01:40 EDT 2025
Tue Jul 01 00:49:23 EDT 2025
Thu Apr 24 23:02:00 EDT 2025
Wed Jan 22 17:17:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords double emulsions sorting
microfluidic droplets
optimization of drop delay unit
Language English
License Attribution-NonCommercial
2024 The Authors. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4022-b3d19b64ca6d4f2ab6dfd238681acffb876592c96e42d2379488cf300a28b5943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8239-5568
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcyto.a.24842
PMID 38634684
PQID 3082211522
PQPubID 2045167
PageCount 8
ParticipantIDs proquest_miscellaneous_3041231646
proquest_journals_3082211522
pubmed_primary_38634684
crossref_citationtrail_10_1002_cyto_a_24842
crossref_primary_10_1002_cyto_a_24842
wiley_primary_10_1002_cyto_a_24842_CYTOA24842
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2024
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hoboken
PublicationTitle Cytometry. Part A
PublicationTitleAlternate Cytometry A
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 7
2023; 95
2015; 15
2021; 21
2013; 4
2020; 20
2003; 55A
2010; 161
2008; 11
2011; 16
2014; 111
2021; 93
2016; 16
2012; 12
2017; 114
2011; 7
2014; 86
2017; 53
2021; 11
2020; 97
2001; 7
2006; 24
2000
2013; 13
2019; 66
2018; 115
2015; 87
2019; 49
2019; 116
2010; 4
2012; 84
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 13
  start-page: 4563
  issue: 23
  year: 2013
  end-page: 4572
  article-title: Ultrahigh‐throughput sorting of microfluidic drops with flow cytometry
  publication-title: Lab Chip
– volume: 7
  start-page: 120
  issue: 2
  year: 2011
  end-page: 125
  article-title: Directed evolution of hydrolases for prevention of G‐type nerve agent intoxication
  publication-title: Nat Chem Biol
– volume: 15
  start-page: 4291
  issue: 22
  year: 2015
  end-page: 4301
  article-title: Deformation of double emulsions under conditions of flow cytometry hydrodynamic focusing
  publication-title: Lab on a Chip
– volume: 16
  start-page: 449
  issue: 7
  year: 2016
  end-page: 462
  article-title: Computational flow cytometry: helping to make sense of high‐dimensional immunology data
  publication-title: Nat Rev Immunol
– volume: 87
  start-page: 1101
  issue: 12
  year: 2015
  end-page: 1115
  article-title: Spatiotemporal microbial single‐cell analysis using a high‐throughput microfluidics cultivation platform
  publication-title: Cytometry A
– volume: 161
  start-page: 301
  issue: 1
  year: 2010
  end-page: 312
  article-title: Directed evolution of a thermophilic β‐glucosidase for cellulosic bioethanol production
  publication-title: Appl Biochem Biotechnol
– year: 2000
– volume: 55A
  start-page: 61
  issue: 2
  year: 2003
  end-page: 70
  article-title: Intracellular phospho‐protein staining techniques for flow cytometry: monitoring single cell signaling events
  publication-title: Cytometry A
– volume: 11
  start-page: 18
  issue: 4
  year: 2008
  end-page: 27
  article-title: Designer emulsions using microfluidics
  publication-title: Mater Today
– volume: 16
  start-page: 285
  issue: 3
  year: 2011
  end-page: 294
  article-title: A flow cytometry‐based screening system for directed evolution of proteases
  publication-title: SLAS Discov
– volume: 97
  start-page: 46
  issue: 1
  year: 2020
  end-page: 53
  article-title: An integrated microfluidic chip and its clinical application for circulating tumor cell isolation and single‐cell analysis
  publication-title: Cytometry A
– volume: 111
  start-page: 232
  issue: 2
  year: 2014
  end-page: 243
  article-title: A high‐throughput screen for antibiotic drug discovery
  publication-title: Biotechnol Bioeng
– volume: 49
  start-page: 1457
  issue: 10
  year: 2019
  end-page: 1973
  article-title: Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)
  publication-title: Eur J Immunol
– volume: 21
  start-page: 3793
  issue: 19
  year: 2021
  end-page: 3803
  article-title: Are droplets really suitable for single‐cell analysis? A case study on yeast in droplets
  publication-title: Lab Chip
– volume: 84
  start-page: 3599
  issue: 8
  year: 2012
  end-page: 3606
  article-title: Massively parallel single‐molecule and single‐cell emulsion reverse transcription polymerase chain reaction using agarose droplet microfluidics
  publication-title: Anal Chem
– volume: 20
  start-page: 2062
  issue: 12
  year: 2020
  end-page: 2074
  article-title: Double emulsion flow cytometry with high‐throughput single droplet isolation and nucleic acid recovery
  publication-title: Lab Chip
– volume: 4
  start-page: 496
  issue: 6
  year: 2010
  end-page: 510
  article-title: Cancer secretomics reveal pathophysiological pathways in cancer molecular oncology
  publication-title: Mol Oncol
– volume: 115
  start-page: 9551
  issue: 38
  year: 2018
  end-page: 9556
  article-title: Ultrahigh‐throughput functional profiling of microbiota communities
  publication-title: Proc Natl Acad Sci
– volume: 24
  start-page: 395
  issue: 9
  year: 2006
  end-page: 402
  article-title: Miniaturising the laboratory in emulsion droplets
  publication-title: Trends Biotechnol
– volume: 95
  start-page: 2039
  issue: 3
  year: 2023
  end-page: 2046
  article-title: Tuneable cell‐laden double‐emulsion droplets for enhanced signal detection
  publication-title: Anal Chem
– volume: 11
  start-page: 20944
  issue: 34
  year: 2021
  end-page: 20960
  article-title: Droplet flow cytometry for single‐cell analysis
  publication-title: RSC Adv
– volume: 7
  start-page: 373
  issue: 3
  year: 2001
  end-page: 376
  article-title: Cell identification and isolation on the basis of cytokine secretion: a novel tool for investigating immune responses
  publication-title: Nat Med
– volume: 13
  start-page: 4740
  issue: 24
  year: 2013
  end-page: 4744
  article-title: Probing cellular heterogeneity in cytokine‐secreting immune cells using droplet‐based microfluidics
  publication-title: Lab Chip
– volume: 86
  start-page: 2526
  issue: 5
  year: 2014
  end-page: 2533
  article-title: One in a million: flow cytometric sorting of single cell‐lysate assays in monodisperse Picolitre double emulsion droplets for directed evolution
  publication-title: Anal Chem
– volume: 114
  start-page: 2550
  issue: 10
  year: 2017
  end-page: 2555
  article-title: Microfluidic droplet platform for ultrahigh‐throughput single‐cell screening of biodiversity
  publication-title: Proc Natl Acad Sci
– volume: 12
  start-page: 3907
  issue: 20
  year: 2012
  end-page: 3913
  article-title: Highly sensitive and quantitative detection of rare pathogens through agarose droplet microfluidic emulsion PCR at the single‐cell level
  publication-title: Lab Chip
– volume: 116
  start-page: 1878
  issue: 8
  year: 2019
  end-page: 1886
  article-title: Enzyme‐mediated hydrogel encapsulation of single cells for high‐throughput screening and directed evolution of oxidoreductases
  publication-title: Biotechnol Bioeng
– volume: 66
  start-page: 218
  issue: 5
  year: 2019
  end-page: 224
  article-title: High‐throughput phenotyping of cell‐to‐cell interactions in gel microdroplet pico‐cultures
  publication-title: BioTechniques
– volume: 93
  start-page: 10955
  issue: 31
  year: 2021
  end-page: 10965
  article-title: Rapid, simple, and inexpensive spatial patterning of wettability in microfluidic devices for double emulsion generation
  publication-title: Anal Chem
– volume: 95
  start-page: 935
  issue: 2
  year: 2023
  end-page: 945
  article-title: Alleviating cell lysate‐induced inhibition to enable RT‐PCR from single cells in Picoliter‐volume double emulsion droplets
  publication-title: Anal Chem
– volume: 4
  start-page: 402
  issue: 4
  year: 2013
  end-page: 413
  article-title: Monodisperse water‐in‐oil‐in‐water (W/O/W) double emulsion droplets as uniform compartments for high‐throughput analysis via flow cytometry
  publication-title: Micromachines
– volume: 7
  issue: 1
  year: 2017
  article-title: Sequence specific sorting of DNA molecules with FACS using 3dPCR
  publication-title: Sci Rep
– volume: 53
  start-page: 8066
  issue: 57
  year: 2017
  end-page: 8069
  article-title: A membrane‐anchored Aptamer sensor for probing IFNγ secretion by single cells
  publication-title: Chem Commun
– ident: e_1_2_9_9_1
  doi: 10.1039/D1RA02636D
– ident: e_1_2_9_36_1
  doi: 10.1021/acs.analchem.2c03475
– ident: e_1_2_9_14_1
  doi: 10.1007/s12010-009-8794-6
– ident: e_1_2_9_20_1
  doi: 10.1038/85533
– ident: e_1_2_9_31_1
– ident: e_1_2_9_27_1
  doi: 10.1038/srep39385
– ident: e_1_2_9_8_1
  doi: 10.1039/C3LC50736J
– ident: e_1_2_9_28_1
  doi: 10.1039/D0LC00261E
– ident: e_1_2_9_25_1
  doi: 10.1016/j.tibtech.2006.06.009
– ident: e_1_2_9_5_1
  doi: 10.1002/eji.201970107
– ident: e_1_2_9_24_1
  doi: 10.2144/btn-2018-0124
– ident: e_1_2_9_32_1
– ident: e_1_2_9_16_1
  doi: 10.1039/C3LC50945A
– ident: e_1_2_9_3_1
  doi: 10.1002/cyto.a.23902
– ident: e_1_2_9_35_1
– ident: e_1_2_9_15_1
  doi: 10.1038/nchembio.510
– ident: e_1_2_9_26_1
  doi: 10.1016/S1369-7021(08)70053-1
– ident: e_1_2_9_10_1
  doi: 10.1021/ac403585p
– ident: e_1_2_9_6_1
  doi: 10.1038/nri.2016.56
– ident: e_1_2_9_17_1
  doi: 10.1039/C7CC03576D
– ident: e_1_2_9_19_1
  doi: 10.1021/ac2033084
– ident: e_1_2_9_2_1
  doi: 10.1002/cyto.a.10072
– ident: e_1_2_9_7_1
  doi: 10.1016/j.molonc.2010.09.001
– ident: e_1_2_9_21_1
  doi: 10.1073/pnas.1811250115
– ident: e_1_2_9_29_1
  doi: 10.1039/D1LC00469G
– ident: e_1_2_9_13_1
  doi: 10.1177/1087057110396361
– ident: e_1_2_9_23_1
  doi: 10.1002/bit.25019
– ident: e_1_2_9_4_1
  doi: 10.1002/cyto.a.22779
– ident: e_1_2_9_12_1
  doi: 10.1002/bit.27002
– ident: e_1_2_9_22_1
  doi: 10.1073/pnas.1621226114
– ident: e_1_2_9_34_1
  doi: 10.1039/C5LC00693G
– ident: e_1_2_9_18_1
  doi: 10.1039/C2LC40461C
– ident: e_1_2_9_30_1
  doi: 10.1021/acs.analchem.2c04697
– ident: e_1_2_9_33_1
  doi: 10.1021/acs.analchem.1c01861
– ident: e_1_2_9_11_1
  doi: 10.3390/mi4040402
SSID ssj0035032
Score 2.41995
Snippet Mounting evidence suggests that cell populations are extremely heterogeneous, with individual cells fulfilling different roles within the population. Flow...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 547
SubjectTerms Biomonitoring
Cellular structure
Double emulsions
double emulsions sorting
Droplets
Emulsions
Flow cytometry
Fluorescence
microfluidic droplets
Optical properties
optimization of drop delay unit
Populations
Reagents
Screening
Sheaths
Title High‐precision screening and sorting of double emulsion droplets
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcyto.a.24842
https://www.ncbi.nlm.nih.gov/pubmed/38634684
https://www.proquest.com/docview/3082211522
https://www.proquest.com/docview/3041231646
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VSpW4UCiPppQqSHBC2e46tjc5loqqqtSCUCuVk-UnB7ZJtZsc2lN_Ar-RX8KMkw0UVKRyi5xx4td4PtvjbwDelGLqueMiE7nLM0TgIjN-YjLrJpgqrNHxLszxiTw840fn4rzfcKO7MB0_xLDhRpoR52tScG0Wu79IQ-1VU4_0iPGC0xRM7lqEiT4P7FG5GMf4ZEQyhqVgrPd7x-y7v2e-bZH-gpm3UWs0OwfroJYF7rxNvo3axozs9R9cjv9fo8fwqEek6V43hJ7Aiq82YK2LUXn1FN6TJ8iPm--X8z4aT4oTDS5-0eSlunLpoiYegq9pHVJXt2bmU3_RzqKgm5N3erN4BmcHH073D7M-8EJmOXn3m9xNSiO51dLxwLSRLji07bKYaBuCwRlUlMyW0nOG6ajSRWFDPh5rVhhR8vw5rFZ15TchZTzgdwQdp3pui2lpjPYyhFxM7dRxmcC7ZeMr27OSU3CMmer4lJmiVlFaxVZJ4O0gfdmxcdwht73sR9Xr5EIRMQ8udxFwJvB6eI3aREckuvJ1SzIcTTlxriXwouv_4UdY_5zLgieQxV78ZwnU_pfTj3vxceue8i_hIUPk1PkEb8NqM2_9K0Q-jdmBB4x_2omj_CdUkgBZ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hIgSX8m4DBYIEJ5TtrmN7k2OpqBZoi4S2UjkZPzmwJNVucignfgK_kV_CjJMNFAQS4hY548SvednjbwCelGLqueMiE7nLM7TARWb8xGTWTbBUWKPjXZijYzk74a9OxWmf55TuwnT4EMOGG3FGlNfE4LQhvfsDNdSeN_VIjxgvOMrgy5TUO_pUbwf8qFyMY4YyghnDdjDWR75j_d2fa1_USb8Zmhft1qh4Dq7D-3WTu3iTj6O2MSP7-Rc0x__o0w3Y7I3SdK9bRTfhkq9uwZUuTeX5bXhOwSDfvnw9W_YJeVKUNej_otZLdeXSVU1QBB_SOqSubs3Cp_5Tu4iEbkkB6s3qDpwcvJjvz7I-90JmOQX4m9xNSiO51dLxwLSRLjhU77KYaBuCQSEqSmZL6TnDcuTqorAhH481K4woeX4XNqq68tuQMh7wO4JOVD23xbQ0RnsZQi6mduq4TODZevSV7YHJKT_GQnWQykzRqCit4qgk8HSgPusAOf5At7OeSNWz5UoRNg96vGhzJvB4eI0MRackuvJ1SzQctTnBriWw1S2A4UfY_5zLgieQxWn8awvU_rv5m734eO8f6R_B1dn86FAdvjx-fR-uMTSkuhDhHdholq1_gIZQYx7Gxf4dQBYDnQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6hIhCX8m4DBYIEJ5TtrjP2JsfSsiqvglArlZPlJweWZLWbHMqJn8Bv5JcwdrKBgkCCW-SMk_FjHrbH3wA8KvnUoUWe8dzmGXngPNNuojNjJ1TKjVbxLszrI3F4gi9O-Wm_4RbuwnT4EMOGW5CMqK-DgC-s3_0BGmrOmnqkRgwLJBV8EcW4CLP64N0AH5XzcUxQFlDGiA3G-sB3qr_7c-3zJuk3P_O82xrtzuwqyDXHXbjJx1Hb6JH5_AuY4_836Rps9i5putfNoetwwVU34FKXpPLsJjwNoSDfvnxdLPt0PClpGlr9ks1LVWXTVR2ACD6ktU9t3eq5S92ndh4J7TKEpzerW3Aye3a8f5j1mRcygyG8X-d2UmqBRgmLniktrLdk3EUxUcZ7TSqUl8yUwiGjcpLpojA-H48VKzQvMb8NG1VduW1IGXr6Dg_nqQ5NMS21Vk54n_OpmVoUCTxZd740PSx5yI4xlx2gMpOhV6SSsVcSeDxQLzo4jj_Q7azHUfZCuZIBmYfWu-RxJvBweE3iFM5IVOXqNtAg2fIAupbAVjf-w4-o_TmKAhPI4ij-lQO5__74zV58vPOP9A_g8tuDmXz1_OjlXbjCyIvq4oN3YKNZtu4eeUGNvh-n-ndVEQJV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-precision+screening+and+sorting+of+double+emulsion+droplets&rft.jtitle=Cytometry.+Part+A&rft.au=Zhuang%2C+Siyuan&rft.au=Semenec%2C+Lucie&rft.au=Nagy%2C+Stephanie+S&rft.au=Cain%2C+Amy+K&rft.date=2024-07-01&rft.issn=1552-4930&rft.eissn=1552-4930&rft.volume=105&rft.issue=7&rft.spage=547&rft_id=info:doi/10.1002%2Fcyto.a.24842&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4922&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4922&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4922&client=summon