A modular series connected converter structure suitable for a high-voltage direct current transformerless offshore wind turbine
ABSTRACTA modular generator/converter system suitable for a 100 kV transformerless HVDC offshore wind turbine is analyzed in this paper. The large diameter generator combined with mechanical tolerances may result in substantial parameter deviations. Therefore, the impact of such parameter variations...
Saved in:
Published in | Wind energy (Chichester, England) Vol. 17; no. 12; pp. 1855 - 1874 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Blackwell Publishing Ltd
01.12.2014
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACTA modular generator/converter system suitable for a 100 kV transformerless HVDC offshore wind turbine is analyzed in this paper. The large diameter generator combined with mechanical tolerances may result in substantial parameter deviations. Therefore, the impact of such parameter variations is analyzed. A steady‐state model relating these variations to the imbalances between module DC voltages has been developed. Additionally, the impact of different control strategies was assessed through simulations in EMTDC/PSCAD. Finally, experimental verification of the system performed on a 45 kW laboratory prototype is presented. The theory is developed with the transformerless wind turbine concept in mind but is also applicable to other similar series connected converter topologies.Copyright © 2013 John Wiley & Sons, Ltd. |
---|---|
AbstractList | A modular generator/converter system suitable for a 100kV transformerless HVDC offshore wind turbine is analyzed in this paper. The large diameter generator combined with mechanical tolerances may result in substantial parameter deviations. Therefore, the impact of such parameter variations is analyzed. A steady-state model relating these variations to the imbalances between module DC voltages has been developed. Additionally, the impact of different control strategies was assessed through simulations in EMTDC/PSCAD. Finally, experimental verification of the system performed on a 45kW laboratory prototype is presented. The theory is developed with the transformerless wind turbine concept in mind but is also applicable to other similar series connected converter topologies.Copyright copyright 2013 John Wiley & Sons, Ltd. A modular generator/converter system suitable for a 100kV transformerless HVDC offshore wind turbine is analyzed in this paper. The large diameter generator combined with mechanical tolerances may result in substantial parameter deviations. Therefore, the impact of such parameter variations is analyzed. A steady-state model relating these variations to the imbalances between module DC voltages has been developed. Additionally, the impact of different control strategies was assessed through simulations in EMTDC/PSCAD. Finally, experimental verification of the system performed on a 45kW laboratory prototype is presented. The theory is developed with the transformerless wind turbine concept in mind but is also applicable to other similar series connected converter topologies.Copyright © 2013 John Wiley & Sons, Ltd. ABSTRACTA modular generator/converter system suitable for a 100 kV transformerless HVDC offshore wind turbine is analyzed in this paper. The large diameter generator combined with mechanical tolerances may result in substantial parameter deviations. Therefore, the impact of such parameter variations is analyzed. A steady‐state model relating these variations to the imbalances between module DC voltages has been developed. Additionally, the impact of different control strategies was assessed through simulations in EMTDC/PSCAD. Finally, experimental verification of the system performed on a 45 kW laboratory prototype is presented. The theory is developed with the transformerless wind turbine concept in mind but is also applicable to other similar series connected converter topologies.Copyright © 2013 John Wiley & Sons, Ltd. |
Author | Gjerde, S. Nilsen, R. Undeland, T. Ljøkelsøy, K. |
Author_xml | – sequence: 1 givenname: S. surname: Gjerde fullname: Gjerde, S. email: Correspondence: S. Gjerde, Ph.D.-student, Dep. of Electric Power Engineering, Norwegian University of Science and Technology., sverre.gjerde@ntnu.no organization: Norwegian University of Science and Technology, 7491 Trondheim, Norway – sequence: 2 givenname: K. surname: Ljøkelsøy fullname: Ljøkelsøy, K. organization: Sintef Energy Research, 7465 Trondheim, Norway – sequence: 3 givenname: R. surname: Nilsen fullname: Nilsen, R. organization: Wartsila Norway, 7041 Trondheim – sequence: 4 givenname: T. surname: Undeland fullname: Undeland, T. organization: Norwegian University of Science and Technology, 7491 Trondheim, Norway |
BookMark | eNpd0U1LHTEUBuBQLFSt9C8EuimU0XxNkllasSqo3Sh2FzKZM97YuYlNMt668q834y1duDov5DkvgbOHdkIMgNAnSg4pIexoA4dUKvIO7VLSdQ3VTOy85rYRTIgPaC_nB0IooVTvopdjvI7DPNmEMyQPGbsYArgCw5KeIBWoTyXNrswJcJ59sf0EeIwJW7zy96vmKU7F3gMefKqL2M0pQSi4JBtyZWtIE-SM4zjmVawdGx8GXNt6H-Ajej_aKcPBv7mPbr-f3pycN5c_zi5Oji8bJwgjTeucbsUgO62ZpUwrq6CzVNB-kL3VRLCRcSUt5444Nw5dT3hvgY9CcKWo5vvoy7b3McXfM-Ri1j47mCYbIM7ZUEVaIiVnC_38hj7EOYX6O0MlpUJzydqqvm7Vxk_wbB6TX9v0bCgxyxXMBsxyBXN3uoyqm632ucCf_9qmX0Yqrlpzd31WU3v180Z_M4r_BdShjg0 |
CitedBy_id | crossref_primary_10_1016_j_rser_2019_109270 |
ContentType | Journal Article |
Copyright | Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2013 John Wiley & Sons, Ltd. – notice: Copyright © 2014 John Wiley & Sons, Ltd. |
DBID | BSCLL 7ST C1K SOI 7TN F1W H96 L.G |
DOI | 10.1002/we.1670 |
DatabaseName | Istex Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | Environment Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-1824 |
EndPage | 1874 |
ExternalDocumentID | 3460680921 WE1670 ark_67375_WNG_675MXT8B_7 |
Genre | article |
GroupedDBID | 05W 0R~ 123 1OC 24P 31~ 3SF 3WU 4.4 50Y 52U 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AAONW AAZKR ABCUV ABIJN ABJCF ACBWZ ACCFJ ACGFS ACPOU ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADXAS ADZMN AEEZP AEIMD AENEX AEQDE AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ASPBG ATCPS ATUGU AUFTA AVUZU AVWKF AZFZN AZVAB BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BKSAR BMNLL BMXJE BNHUX BOGZA BRXPI BSCLL CCPQU CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDH EJD FEDTE G-S GODZA GROUPED_DOAJ HCIFZ HF~ HVGLF HZ~ I-F IAO ITC IX1 LATKE LAW LITHE LOXES LUTES LYRES M7S MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ NNB O66 O9- OIG OK1 P2P P2W P4E PATMY PCBAR PTHSS PYCSY QRW R.K ROL RX1 RYL SUPJJ UCJ W99 WBKPD WIH WIK WOHZO WUPDE WYISQ WYJ XPP XV2 ZZTAW 7ST C1K SOI 7TN F1W H96 L.G |
ID | FETCH-LOGICAL-c4020-5cc854d69882a1287a7e9a141bd6ba8042f2376a33c0ccfd9b03bae3f44377183 |
IEDL.DBID | DR2 |
ISSN | 1095-4244 |
IngestDate | Fri Aug 16 01:56:59 EDT 2024 Thu Oct 10 22:43:27 EDT 2024 Sat Aug 24 00:58:14 EDT 2024 Wed Oct 30 09:57:14 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4020-5cc854d69882a1287a7e9a141bd6ba8042f2376a33c0ccfd9b03bae3f44377183 |
Notes | ArticleID:WE1670 istex:FDC20F72BF7730FD92A172E678BC30778DFDF754 ark:/67375/WNG-675MXT8B-7 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1611483625 |
PQPubID | 1006436 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_1705066328 proquest_journals_1611483625 wiley_primary_10_1002_we_1670_WE1670 istex_primary_ark_67375_WNG_675MXT8B_7 |
PublicationCentury | 2000 |
PublicationDate | December 2014 |
PublicationDateYYYYMMDD | 2014-12-01 |
PublicationDate_xml | – month: 12 year: 2014 text: December 2014 |
PublicationDecade | 2010 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | Wind energy (Chichester, England) |
PublicationTitleAlternate | Wind Energ |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc |
References | Ng C, Parker M, Ran L, Tavner P, Bumby J, Spooner E. A multilevel modular converter for a large, light weight wind turbine generator. IEEE Transactions on Power Electronics 2008; 23: 1062-1074. DOI: 10.1109/TPEL.2008.921191. Holtsmark N, Bahirat H, Molinas M, Mork B, Hoidalen H. An all-DC offshore wind farm with series-connected turbines: an alternative to the classical parallel AC model? IEEE Transactions on Industrial electronics 2013; 60: 2420-2428. DOI: 10.1109/TIE.2012.2232255. Spooner E, Gordon P, Bumby J, French C. Lightweight ironless-stator PM generators for direct-drive wind turbines. IEE Proceedings - Electric Power Applications 2005; 152: 17-26. DOI: 10.1049/ip-epa:20041084. Parker M, Ran L, Finney S. Distributed control of a fault-tolerant modular multilevel inverter for direct-drive wind turbine grid interfacing. IEEE Transactions on Industrial Electronics 2013; 60: 509-522. DOI: 10.1109/TIE.2012.2186774. Yuan X, Chai J, Li Y. A transformer-less high-power converter for large permanent magnet wind generator systems. IEEE Transactions on Sustainable Energy 2012; 3: 318-329. DOI: 10.1109/TSTE.2012.2184806. Max L, Thiringer T, Carlson O. Fault handling for a wind farm with an internal DC collection grid. Wind Energy 2012; 15: 259-273. DOI: 10.1002/we.466. [Online]. Available: http://dx.doi.org/10.1002/we.466. (Accessed 21 June 2013). O'Donnell R, Schofield N, Smith A, Cullen J. Design concepts for high-voltage variable-capacitance DC generators. IEEE Transactions on Industry Applications 2009; 45: 1778-1784. DOI: 10.1109/TIA.2009.2027545. Max L, Thiringer T, Carlson O. Control of a wind farm with an internal direct current collection grid. Wind Energy 2012; 15: 547-561. DOI: 10.1002/we.486. [Online]. Available: http://dx.doi.org/10.1002/we.486. (Accessed 21 June 2013). Abad G, Lopez J, Rodriguez M, Marroyo L, Iwanski G. Doubly Fed Induction Machine: Modeling and Control for Wind Energy Generation Applications. Wiley-IEEE Press: Hoboken, New Jersey, 2011. Karlsson P, Svensson J. DC bus voltage control for a distributed power system. IEEE Transactions on Power Electronics 2003; 18: 1405-1412. DOI: 10.1109/TPEL.2003.818872. Mueller MA, McDonald AS. A lightweight low-speed permanent magnet electrical generator for direct-drive wind turbines. Wind Energy 2009; 12: 768-780. DOI: 10.1002/we.333. [Online]. Available: http://dx.doi.org/10.1002/we.333 (Accessed 21 June 2013). Emadi A, Khaligh A, Rivetta C, Williamson G. Constant power loads and negative impedance instability in automotive systems: definition, modeling, stability, and control of power electronic converters and motor drives. IEEE Transactions on Vehicular Technology 2006; 55: 1112-1125. DOI: 10.1109/TVT.2006.877483. Chinchilla M, Arnaltes S, Burgos J. Control of permanent-magnet generators pplied to variable-speed wind-energy systems connected to the grid. IEEE Transactions on Energy Conversion 2006; 21: 130-135. DOI: 10.1109/TEC.2005.853735. Popat M, Wu B, Liu F, Zargari N. Coordinated control of cascaded current-source converter based offshore wind farm. IEEE Transactions on Sustainable Energy 2012; 3: 557-565. DOI: 10.1109/TSTE.2012.2191986. Garces A, Molinas M. Coordinated control of series-connected offshore wind park based on matrix converters. Wind Energy 2012; 15: 827-845. DOI: 10.1002/we.507. [Online]. Available: http://dx.doi.org/10.1002/we.507. (Accessed 21 June 2013). Jamieson P. Upscaling of Wind Turbine Systems. John Wiley & Sons, Ltd: Chichester, UK, 2011; 75-104. [Online]. Available: http://dx.doi.org/10.1002/9781119975441.ch4. (Accessed 28 November 2012). Parker M, Ng C, Ran L. Fault-tolerant control for a modular generator - converter scheme for direct-drive wind turbines. IEEE Transactions on Industrial Electronics 2011; 58: 305-315. DOI: 10.1109/TIE.2010.2045318. Prasai A, Yim JS, Divan D, Bendre A, Sul SK. A new architecture for offshore wind farms. IEEE Transactions on Power Electronics 2008; 23: 1198-1204. DOI: 10.1109/TPEL.2008.921194. Gjerde S, Undeland TM. A modular series connected converter for a 10 MW, 36 kV, transformer-less offshore wind power generator drive. Energy Procedia 2012; 24: 68-75. DOI: 10.1109/ECCE.2012.6342815. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1876610212011289. (Accessed 26 November 2012), Selected papers from Deep Sea Offshore Wind R&D Conference, Trondheim, Norway, 19-20 January 2012. Arabian-Hoseynabadi H, Tavner PJ, Oraee H. Reliability comparison of direct-drive and geared-drive wind turbine concepts. Wind Energy 2010; 13: 62-73. DOI: 10.1002/we.357. [Online]. Available: http://dx.doi.org/10.1002/we.357. (Accessed 21 June 2013). Negra NB, Todorovic J, Ackermann T. Loss evaluation of HVAC and HVDC transmission solutions for large offshore wind farms. Electric Power Systems Research 2006; 76: 916-927. DOI: 10.1016/j.epsr.2005.11.004. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0378779605002609. (Accessed 15 November 2012). 2009; 45 2009; 12 2012; 3 2005; 152 2010; 13 2012 2011 2000 2010 2006; 76 2006; 21 2006; 55 2009 2008 2008; 23 2013; 60 2007 2006 2003; 18 2011; 58 2012; 15 2002 2012; 24 |
References_xml | – volume: 60 start-page: 509 year: 2013 end-page: 522 article-title: Distributed control of a fault‐tolerant modular multilevel inverter for direct‐drive wind turbine grid interfacing publication-title: IEEE Transactions on Industrial Electronics – year: 2011 – volume: 60 start-page: 2420 year: 2013 end-page: 2428 article-title: An all‐DC offshore wind farm with series‐connected turbines: an alternative to the classical parallel AC model? publication-title: IEEE Transactions on Industrial electronics – year: 2009 – start-page: 215 year: 2006 end-page: 219 – volume: 58 start-page: 305 year: 2011 end-page: 315 article-title: Fault‐tolerant control for a modular generator – converter scheme for direct‐drive wind turbines publication-title: IEEE Transactions on Industrial Electronics – start-page: 1 year: 2009 end-page: 7 – volume: 24 start-page: 68 year: 2012 end-page: 75 article-title: A modular series connected converter for a 10 MW, 36 kV, transformer‐less offshore wind power generator drive publication-title: Energy Procedia – start-page: 76 year: 2006 end-page: 82 – start-page: 1131 year: 2011 end-page: 1136 – start-page: 2104 year: 2010 end-page: 2110 – year: 2007 – volume: 13 start-page: 62 year: 2010 end-page: 73 article-title: Reliability comparison of direct‐drive and geared‐drive wind turbine concepts publication-title: Wind Energy – year: 2000 – start-page: 247 year: 2012 end-page: 252 – start-page: 1101 year: 2012 end-page: 1106 – volume: 76 start-page: 916 year: 2006 end-page: 927 article-title: Loss evaluation of HVAC and HVDC transmission solutions for large offshore wind farms publication-title: Electric Power Systems Research – year: 2010 – year: 2012 – volume: 3 start-page: 557 year: 2012 end-page: 565 article-title: Coordinated control of cascaded current‐source converter based offshore wind farm publication-title: IEEE Transactions on Sustainable Energy – start-page: 75 year: 2011 end-page: 104 – start-page: 1 year: 2011 end-page: 10 – start-page: 1 year: 2010 end-page: 6 – start-page: 2056 year: 2010 end-page: 2061 – volume: 23 start-page: 1198 year: 2008 end-page: 1204 article-title: A new architecture for offshore wind farms publication-title: IEEE Transactions on Power Electronics – volume: 12 start-page: 768 year: 2009 end-page: 780 article-title: A lightweight low‐speed permanent magnet electrical generator for direct‐drive wind turbines publication-title: Wind Energy – start-page: 65 year: 2006 end-page: 68 – year: 2002 – volume: 3 start-page: 318 year: 2012 end-page: 329 article-title: A transformer‐less high‐power converter for large permanent magnet wind generator systems publication-title: IEEE Transactions on Sustainable Energy – volume: 15 start-page: 259 year: 2012 end-page: 273 article-title: Fault handling for a wind farm with an internal DC collection grid publication-title: Wind Energy – volume: 23 start-page: 1062 year: 2008 end-page: 1074 article-title: A multilevel modular converter for a large, light weight wind turbine generator publication-title: IEEE Transactions on Power Electronics – start-page: 3167 year: 2010 end-page: 3172 – volume: 21 start-page: 130 year: 2006 end-page: 135 article-title: Control of permanent‐magnet generators pplied to variable‐speed wind‐energy systems connected to the grid publication-title: IEEE Transactions on Energy Conversion – start-page: 253 year: 2012 end-page: 260 – volume: 18 start-page: 1405 year: 2003 end-page: 1412 article-title: DC bus voltage control for a distributed power system publication-title: IEEE Transactions on Power Electronics – volume: 15 start-page: 827 year: 2012 end-page: 845 article-title: Coordinated control of series‐connected offshore wind park based on matrix converters publication-title: Wind Energy – volume: 55 start-page: 1112 year: 2006 end-page: 1125 article-title: Constant power loads and negative impedance instability in automotive systems: definition, modeling, stability, and control of power electronic converters and motor drives publication-title: IEEE Transactions on Vehicular Technology – start-page: 1 year: 2009 end-page: 10 – start-page: 2106 year: 2008 end-page: 2112 – volume: 15 start-page: 547 year: 2012 end-page: 561 article-title: Control of a wind farm with an internal direct current collection grid publication-title: Wind Energy – volume: 152 start-page: 17 year: 2005 end-page: 26 article-title: Lightweight ironless‐stator PM generators for direct‐drive wind turbines publication-title: IEE Proceedings ‐ Electric Power Applications – volume: 45 start-page: 1778 year: 2009 end-page: 1784 article-title: Design concepts for high‐voltage variable‐capacitance DC generators publication-title: IEEE Transactions on Industry Applications |
SSID | ssj0010118 |
Score | 2.096118 |
Snippet | ABSTRACTA modular generator/converter system suitable for a 100 kV transformerless HVDC offshore wind turbine is analyzed in this paper. The large diameter... A modular generator/converter system suitable for a 100kV transformerless HVDC offshore wind turbine is analyzed in this paper. The large diameter generator... |
SourceID | proquest wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 1855 |
SubjectTerms | DC grid modular power electronic converter offshore wind power transformerless transformerless, DC grid |
Title | A modular series connected converter structure suitable for a high-voltage direct current transformerless offshore wind turbine |
URI | https://api.istex.fr/ark:/67375/WNG-675MXT8B-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwe.1670 https://www.proquest.com/docview/1611483625 https://search.proquest.com/docview/1705066328 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFLUQK1i0vKpOgcpIqLsME9uJkyVQHqpUFgjEiI3lVwRCJBXJaBCr9g_4Rr6Ee-2Z6ZQV6iqRYjtWrn3vufHxMSG7opQacIJLuAMXKAzkKYWWOmGauZIxW1UuEGTP8tNL8WOYDeeO-or6ELMfbjgzgr_GCa5Nu_dXNHTs-2kuMVtPuUQy1_fzmXBUivspwzpnmSW4lStul8Wae5N6AEbxOz7-gyzn8WkIMMcfyfW0a5FXctcfdaZvn96oNv5X31fIhwnspPtxnKySBV-vkeU5McJ18mef3jcOWakUh6VvqUUSjAVISgM3HcmfNOrNjh48bUe3He67ogB7qaaoe_zy-xm8XQcuisZQSW2Uf6LdFB97XNxvaVNV7U0DrYxva0ehPUjQ_Qa5PD66ODxNJgc0JDaknZm1RSZcXgJM1xDopJa-1KlIjcuNLsAfVEi60ZzbgbVgdTPgRnteCcElBEX-iSzWTe0_E6oLB5UHxnBoESCrYU5w5i3gKZ9zxnvkWzCX-hVFOJR-uENOmszU1dkJ3GU_hxfFgZI9sjW1p5pMx1YBrIW0D2J11iM7s8cwkXB1RNe-GUEZOcgQf7GiR3aD8WbvitLOTI29QrOpqyO8fHlfsU2yBCBLRArMFlkEM_ltADKd-RrG7Cv_UPKl |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730,50826,50935 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtNAEB6h9AAcKihFpBS6SBU302R_vPYxRW1TaHNKaMRltX8WEhCjOlE4whvwjDxJZ7xuWm6cbMnetbSzM_PNzjdjgENZaos4IWQioAmUDuOUwmqbcctDybmvqtASZCf5eCY_zNW8Y1VSLUzqD7E5cCPNaO01KTgdSB_ddQ1dx3fDXGO4vqUom9eDrdGn2efZJodANZVtrrNUGZVzpZJZGnzUDUVASmv58x90eR-jtk7m9Alsd-iQjZI4n8KDuNiBx_d6Bj6D3yP2vQ5EHmW0e2LDPHFVPCJH1lLIiaPJUlvY1XVkzQqjf_ctMkSnzDJqT_z31x80Sku0JCx5NOZTlya2vIWxkXLwDaurqvlS4yxrDN0ZzodxdNyF2enJ9P046_6jkPk2OlTeF0qGvEQ0bdEfaatjaYdy6ELubIFqWxE3xgrhB96jcNxAOBtFJaXQ6LvEc-gt6kV8AcwWAQcPnBM4IyJLx4MUPHqEPTEXXPThbbui5kfqlWHs9VeijmllriZneKcu59Pi2Og-7N8uuem0pjGIPjE6Q5eq-vBm8xj3OyUx7CLWK3xHDxTBJF704bAV1eZbqQMzN-toSLrm6oQue__32gE8HE8vL8zF-eTjS3iEuEgm1so-9FBk8RVij6V73W2yGxiN2HA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFLVQKyFYVDzF0AJGqtiFzthOnCwH6FBeIxYdOmJj-RVVAiZVM6NhCX_AN_IlnBunw7BjlUixHcn3dW7u9Qljh6rSFjghZDLABSqHPKW02mbCilAJ4es6dA2y0-Jkpt7O8_nWr74SP8TmgxtZRuevycAvQn30lzR0HZ-PCo1sfRcYQ0C5d8efZp9nmxICHansSp1VntFprnRiliYf9VOBR2krv_8DLrchahdjJrfYXg8O-ThJ8za7Fhd32M0tysC77OeYf2sC9Y5yUp7Yck-tKh7AkXcd5NSiyRMr7Ooy8naF5N99jRzglFtO7MS_f_yCT1rCkfAU0LhPJE18eYViI5XgW97UdXveYJU1MneO9ZBGx3tsNjk-fXmS9b9RyHyXHObel7kKRQUwbRGOtNWxsiM1cqFwtoTV1tQaY6X0Q-8hGzeUzkZZKyU1Qpe8z3YWzSI-YNyWAZOHzkmsCGDpRFBSRA_UEwsp5IA963bUXCSqDGMvv1DnmM7N2fQ17vIP89PyhdEDdnC15aY3mtYAfCI5Q0TNB-zp5jHUnWoYdhGbFcboYU4oSZQDdtiJavOuRMAszDoakq45O6bLw_8b9oRd__hqYt6_mb7bZzeAilTqWTlgO5BYfATksXSPex37A-fj15k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+modular+series+connected+converter+structure+suitable+for+a+high-voltage+direct+current+transformerless+offshore+wind+turbine&rft.jtitle=Wind+energy+%28Chichester%2C+England%29&rft.au=Gjerde%2C+S&rft.au=Ljoekelsoey%2C+K&rft.au=Nilsen%2C+R&rft.au=Undeland%2C+T&rft.date=2014-12-01&rft.issn=1095-4244&rft.eissn=1099-1824&rft.volume=17&rft.issue=12&rft.spage=1855&rft.epage=1874&rft_id=info:doi/10.1002%2Fwe.1670&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1095-4244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1095-4244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1095-4244&client=summon |