A modular series connected converter structure suitable for a high-voltage direct current transformerless offshore wind turbine

ABSTRACTA modular generator/converter system suitable for a 100 kV transformerless HVDC offshore wind turbine is analyzed in this paper. The large diameter generator combined with mechanical tolerances may result in substantial parameter deviations. Therefore, the impact of such parameter variations...

Full description

Saved in:
Bibliographic Details
Published inWind energy (Chichester, England) Vol. 17; no. 12; pp. 1855 - 1874
Main Authors Gjerde, S., Ljøkelsøy, K., Nilsen, R., Undeland, T.
Format Journal Article
LanguageEnglish
Published Bognor Regis Blackwell Publishing Ltd 01.12.2014
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACTA modular generator/converter system suitable for a 100 kV transformerless HVDC offshore wind turbine is analyzed in this paper. The large diameter generator combined with mechanical tolerances may result in substantial parameter deviations. Therefore, the impact of such parameter variations is analyzed. A steady‐state model relating these variations to the imbalances between module DC voltages has been developed. Additionally, the impact of different control strategies was assessed through simulations in EMTDC/PSCAD. Finally, experimental verification of the system performed on a 45 kW laboratory prototype is presented. The theory is developed with the transformerless wind turbine concept in mind but is also applicable to other similar series connected converter topologies.Copyright © 2013 John Wiley & Sons, Ltd.
AbstractList A modular generator/converter system suitable for a 100kV transformerless HVDC offshore wind turbine is analyzed in this paper. The large diameter generator combined with mechanical tolerances may result in substantial parameter deviations. Therefore, the impact of such parameter variations is analyzed. A steady-state model relating these variations to the imbalances between module DC voltages has been developed. Additionally, the impact of different control strategies was assessed through simulations in EMTDC/PSCAD. Finally, experimental verification of the system performed on a 45kW laboratory prototype is presented. The theory is developed with the transformerless wind turbine concept in mind but is also applicable to other similar series connected converter topologies.Copyright copyright 2013 John Wiley & Sons, Ltd.
A modular generator/converter system suitable for a 100kV transformerless HVDC offshore wind turbine is analyzed in this paper. The large diameter generator combined with mechanical tolerances may result in substantial parameter deviations. Therefore, the impact of such parameter variations is analyzed. A steady-state model relating these variations to the imbalances between module DC voltages has been developed. Additionally, the impact of different control strategies was assessed through simulations in EMTDC/PSCAD. Finally, experimental verification of the system performed on a 45kW laboratory prototype is presented. The theory is developed with the transformerless wind turbine concept in mind but is also applicable to other similar series connected converter topologies.Copyright © 2013 John Wiley & Sons, Ltd.
ABSTRACTA modular generator/converter system suitable for a 100 kV transformerless HVDC offshore wind turbine is analyzed in this paper. The large diameter generator combined with mechanical tolerances may result in substantial parameter deviations. Therefore, the impact of such parameter variations is analyzed. A steady‐state model relating these variations to the imbalances between module DC voltages has been developed. Additionally, the impact of different control strategies was assessed through simulations in EMTDC/PSCAD. Finally, experimental verification of the system performed on a 45 kW laboratory prototype is presented. The theory is developed with the transformerless wind turbine concept in mind but is also applicable to other similar series connected converter topologies.Copyright © 2013 John Wiley & Sons, Ltd.
Author Gjerde, S.
Nilsen, R.
Undeland, T.
Ljøkelsøy, K.
Author_xml – sequence: 1
  givenname: S.
  surname: Gjerde
  fullname: Gjerde, S.
  email: Correspondence: S. Gjerde, Ph.D.-student, Dep. of Electric Power Engineering, Norwegian University of Science and Technology., sverre.gjerde@ntnu.no
  organization: Norwegian University of Science and Technology, 7491 Trondheim, Norway
– sequence: 2
  givenname: K.
  surname: Ljøkelsøy
  fullname: Ljøkelsøy, K.
  organization: Sintef Energy Research, 7465 Trondheim, Norway
– sequence: 3
  givenname: R.
  surname: Nilsen
  fullname: Nilsen, R.
  organization: Wartsila Norway, 7041 Trondheim
– sequence: 4
  givenname: T.
  surname: Undeland
  fullname: Undeland, T.
  organization: Norwegian University of Science and Technology, 7491 Trondheim, Norway
BookMark eNpd0U1LHTEUBuBQLFSt9C8EuimU0XxNkllasSqo3Sh2FzKZM97YuYlNMt668q834y1duDov5DkvgbOHdkIMgNAnSg4pIexoA4dUKvIO7VLSdQ3VTOy85rYRTIgPaC_nB0IooVTvopdjvI7DPNmEMyQPGbsYArgCw5KeIBWoTyXNrswJcJ59sf0EeIwJW7zy96vmKU7F3gMefKqL2M0pQSi4JBtyZWtIE-SM4zjmVawdGx8GXNt6H-Ajej_aKcPBv7mPbr-f3pycN5c_zi5Oji8bJwgjTeucbsUgO62ZpUwrq6CzVNB-kL3VRLCRcSUt5444Nw5dT3hvgY9CcKWo5vvoy7b3McXfM-Ri1j47mCYbIM7ZUEVaIiVnC_38hj7EOYX6O0MlpUJzydqqvm7Vxk_wbB6TX9v0bCgxyxXMBsxyBXN3uoyqm632ucCf_9qmX0Yqrlpzd31WU3v180Z_M4r_BdShjg0
CitedBy_id crossref_primary_10_1016_j_rser_2019_109270
ContentType Journal Article
Copyright Copyright © 2013 John Wiley & Sons, Ltd.
Copyright © 2014 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2013 John Wiley & Sons, Ltd.
– notice: Copyright © 2014 John Wiley & Sons, Ltd.
DBID BSCLL
7ST
C1K
SOI
7TN
F1W
H96
L.G
DOI 10.1002/we.1670
DatabaseName Istex
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle Environment Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1824
EndPage 1874
ExternalDocumentID 3460680921
WE1670
ark_67375_WNG_675MXT8B_7
Genre article
GroupedDBID 05W
0R~
123
1OC
24P
31~
3SF
3WU
4.4
50Y
52U
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AAONW
AAZKR
ABCUV
ABIJN
ABJCF
ACBWZ
ACCFJ
ACGFS
ACPOU
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADXAS
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ASPBG
ATCPS
ATUGU
AUFTA
AVUZU
AVWKF
AZFZN
AZVAB
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BKSAR
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
BSCLL
CCPQU
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDH
EJD
FEDTE
G-S
GODZA
GROUPED_DOAJ
HCIFZ
HF~
HVGLF
HZ~
I-F
IAO
ITC
IX1
LATKE
LAW
LITHE
LOXES
LUTES
LYRES
M7S
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
NNB
O66
O9-
OIG
OK1
P2P
P2W
P4E
PATMY
PCBAR
PTHSS
PYCSY
QRW
R.K
ROL
RX1
RYL
SUPJJ
UCJ
W99
WBKPD
WIH
WIK
WOHZO
WUPDE
WYISQ
WYJ
XPP
XV2
ZZTAW
7ST
C1K
SOI
7TN
F1W
H96
L.G
ID FETCH-LOGICAL-c4020-5cc854d69882a1287a7e9a141bd6ba8042f2376a33c0ccfd9b03bae3f44377183
IEDL.DBID DR2
ISSN 1095-4244
IngestDate Fri Aug 16 01:56:59 EDT 2024
Thu Oct 10 22:43:27 EDT 2024
Sat Aug 24 00:58:14 EDT 2024
Wed Oct 30 09:57:14 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4020-5cc854d69882a1287a7e9a141bd6ba8042f2376a33c0ccfd9b03bae3f44377183
Notes ArticleID:WE1670
istex:FDC20F72BF7730FD92A172E678BC30778DFDF754
ark:/67375/WNG-675MXT8B-7
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1611483625
PQPubID 1006436
PageCount 20
ParticipantIDs proquest_miscellaneous_1705066328
proquest_journals_1611483625
wiley_primary_10_1002_we_1670_WE1670
istex_primary_ark_67375_WNG_675MXT8B_7
PublicationCentury 2000
PublicationDate December 2014
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: December 2014
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Wind energy (Chichester, England)
PublicationTitleAlternate Wind Energ
PublicationYear 2014
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
References Ng C, Parker M, Ran L, Tavner P, Bumby J, Spooner E. A multilevel modular converter for a large, light weight wind turbine generator. IEEE Transactions on Power Electronics 2008; 23: 1062-1074. DOI: 10.1109/TPEL.2008.921191.
Holtsmark N, Bahirat H, Molinas M, Mork B, Hoidalen H. An all-DC offshore wind farm with series-connected turbines: an alternative to the classical parallel AC model? IEEE Transactions on Industrial electronics 2013; 60: 2420-2428. DOI: 10.1109/TIE.2012.2232255.
Spooner E, Gordon P, Bumby J, French C. Lightweight ironless-stator PM generators for direct-drive wind turbines. IEE Proceedings - Electric Power Applications 2005; 152: 17-26. DOI: 10.1049/ip-epa:20041084.
Parker M, Ran L, Finney S. Distributed control of a fault-tolerant modular multilevel inverter for direct-drive wind turbine grid interfacing. IEEE Transactions on Industrial Electronics 2013; 60: 509-522. DOI: 10.1109/TIE.2012.2186774.
Yuan X, Chai J, Li Y. A transformer-less high-power converter for large permanent magnet wind generator systems. IEEE Transactions on Sustainable Energy 2012; 3: 318-329. DOI: 10.1109/TSTE.2012.2184806.
Max L, Thiringer T, Carlson O. Fault handling for a wind farm with an internal DC collection grid. Wind Energy 2012; 15: 259-273. DOI: 10.1002/we.466. [Online]. Available: http://dx.doi.org/10.1002/we.466. (Accessed 21 June 2013).
O'Donnell R, Schofield N, Smith A, Cullen J. Design concepts for high-voltage variable-capacitance DC generators. IEEE Transactions on Industry Applications 2009; 45: 1778-1784. DOI: 10.1109/TIA.2009.2027545.
Max L, Thiringer T, Carlson O. Control of a wind farm with an internal direct current collection grid. Wind Energy 2012; 15: 547-561. DOI: 10.1002/we.486. [Online]. Available: http://dx.doi.org/10.1002/we.486. (Accessed 21 June 2013).
Abad G, Lopez J, Rodriguez M, Marroyo L, Iwanski G. Doubly Fed Induction Machine: Modeling and Control for Wind Energy Generation Applications. Wiley-IEEE Press: Hoboken, New Jersey, 2011.
Karlsson P, Svensson J. DC bus voltage control for a distributed power system. IEEE Transactions on Power Electronics 2003; 18: 1405-1412. DOI: 10.1109/TPEL.2003.818872.
Mueller MA, McDonald AS. A lightweight low-speed permanent magnet electrical generator for direct-drive wind turbines. Wind Energy 2009; 12: 768-780. DOI: 10.1002/we.333. [Online]. Available: http://dx.doi.org/10.1002/we.333 (Accessed 21 June 2013).
Emadi A, Khaligh A, Rivetta C, Williamson G. Constant power loads and negative impedance instability in automotive systems: definition, modeling, stability, and control of power electronic converters and motor drives. IEEE Transactions on Vehicular Technology 2006; 55: 1112-1125. DOI: 10.1109/TVT.2006.877483.
Chinchilla M, Arnaltes S, Burgos J. Control of permanent-magnet generators pplied to variable-speed wind-energy systems connected to the grid. IEEE Transactions on Energy Conversion 2006; 21: 130-135. DOI: 10.1109/TEC.2005.853735.
Popat M, Wu B, Liu F, Zargari N. Coordinated control of cascaded current-source converter based offshore wind farm. IEEE Transactions on Sustainable Energy 2012; 3: 557-565. DOI: 10.1109/TSTE.2012.2191986.
Garces A, Molinas M. Coordinated control of series-connected offshore wind park based on matrix converters. Wind Energy 2012; 15: 827-845. DOI: 10.1002/we.507. [Online]. Available: http://dx.doi.org/10.1002/we.507. (Accessed 21 June 2013).
Jamieson P. Upscaling of Wind Turbine Systems. John Wiley & Sons, Ltd: Chichester, UK, 2011; 75-104. [Online]. Available: http://dx.doi.org/10.1002/9781119975441.ch4. (Accessed 28 November 2012).
Parker M, Ng C, Ran L. Fault-tolerant control for a modular generator - converter scheme for direct-drive wind turbines. IEEE Transactions on Industrial Electronics 2011; 58: 305-315. DOI: 10.1109/TIE.2010.2045318.
Prasai A, Yim JS, Divan D, Bendre A, Sul SK. A new architecture for offshore wind farms. IEEE Transactions on Power Electronics 2008; 23: 1198-1204. DOI: 10.1109/TPEL.2008.921194.
Gjerde S, Undeland TM. A modular series connected converter for a 10 MW, 36 kV, transformer-less offshore wind power generator drive. Energy Procedia 2012; 24: 68-75. DOI: 10.1109/ECCE.2012.6342815. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1876610212011289. (Accessed 26 November 2012), Selected papers from Deep Sea Offshore Wind R&D Conference, Trondheim, Norway, 19-20 January 2012.
Arabian-Hoseynabadi H, Tavner PJ, Oraee H. Reliability comparison of direct-drive and geared-drive wind turbine concepts. Wind Energy 2010; 13: 62-73. DOI: 10.1002/we.357. [Online]. Available: http://dx.doi.org/10.1002/we.357. (Accessed 21 June 2013).
Negra NB, Todorovic J, Ackermann T. Loss evaluation of HVAC and HVDC transmission solutions for large offshore wind farms. Electric Power Systems Research 2006; 76: 916-927. DOI: 10.1016/j.epsr.2005.11.004. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0378779605002609. (Accessed 15 November 2012).
2009; 45
2009; 12
2012; 3
2005; 152
2010; 13
2012
2011
2000
2010
2006; 76
2006; 21
2006; 55
2009
2008
2008; 23
2013; 60
2007
2006
2003; 18
2011; 58
2012; 15
2002
2012; 24
References_xml – volume: 60
  start-page: 509
  year: 2013
  end-page: 522
  article-title: Distributed control of a fault‐tolerant modular multilevel inverter for direct‐drive wind turbine grid interfacing
  publication-title: IEEE Transactions on Industrial Electronics
– year: 2011
– volume: 60
  start-page: 2420
  year: 2013
  end-page: 2428
  article-title: An all‐DC offshore wind farm with series‐connected turbines: an alternative to the classical parallel AC model?
  publication-title: IEEE Transactions on Industrial electronics
– year: 2009
– start-page: 215
  year: 2006
  end-page: 219
– volume: 58
  start-page: 305
  year: 2011
  end-page: 315
  article-title: Fault‐tolerant control for a modular generator – converter scheme for direct‐drive wind turbines
  publication-title: IEEE Transactions on Industrial Electronics
– start-page: 1
  year: 2009
  end-page: 7
– volume: 24
  start-page: 68
  year: 2012
  end-page: 75
  article-title: A modular series connected converter for a 10 MW, 36 kV, transformer‐less offshore wind power generator drive
  publication-title: Energy Procedia
– start-page: 76
  year: 2006
  end-page: 82
– start-page: 1131
  year: 2011
  end-page: 1136
– start-page: 2104
  year: 2010
  end-page: 2110
– year: 2007
– volume: 13
  start-page: 62
  year: 2010
  end-page: 73
  article-title: Reliability comparison of direct‐drive and geared‐drive wind turbine concepts
  publication-title: Wind Energy
– year: 2000
– start-page: 247
  year: 2012
  end-page: 252
– start-page: 1101
  year: 2012
  end-page: 1106
– volume: 76
  start-page: 916
  year: 2006
  end-page: 927
  article-title: Loss evaluation of HVAC and HVDC transmission solutions for large offshore wind farms
  publication-title: Electric Power Systems Research
– year: 2010
– year: 2012
– volume: 3
  start-page: 557
  year: 2012
  end-page: 565
  article-title: Coordinated control of cascaded current‐source converter based offshore wind farm
  publication-title: IEEE Transactions on Sustainable Energy
– start-page: 75
  year: 2011
  end-page: 104
– start-page: 1
  year: 2011
  end-page: 10
– start-page: 1
  year: 2010
  end-page: 6
– start-page: 2056
  year: 2010
  end-page: 2061
– volume: 23
  start-page: 1198
  year: 2008
  end-page: 1204
  article-title: A new architecture for offshore wind farms
  publication-title: IEEE Transactions on Power Electronics
– volume: 12
  start-page: 768
  year: 2009
  end-page: 780
  article-title: A lightweight low‐speed permanent magnet electrical generator for direct‐drive wind turbines
  publication-title: Wind Energy
– start-page: 65
  year: 2006
  end-page: 68
– year: 2002
– volume: 3
  start-page: 318
  year: 2012
  end-page: 329
  article-title: A transformer‐less high‐power converter for large permanent magnet wind generator systems
  publication-title: IEEE Transactions on Sustainable Energy
– volume: 15
  start-page: 259
  year: 2012
  end-page: 273
  article-title: Fault handling for a wind farm with an internal DC collection grid
  publication-title: Wind Energy
– volume: 23
  start-page: 1062
  year: 2008
  end-page: 1074
  article-title: A multilevel modular converter for a large, light weight wind turbine generator
  publication-title: IEEE Transactions on Power Electronics
– start-page: 3167
  year: 2010
  end-page: 3172
– volume: 21
  start-page: 130
  year: 2006
  end-page: 135
  article-title: Control of permanent‐magnet generators pplied to variable‐speed wind‐energy systems connected to the grid
  publication-title: IEEE Transactions on Energy Conversion
– start-page: 253
  year: 2012
  end-page: 260
– volume: 18
  start-page: 1405
  year: 2003
  end-page: 1412
  article-title: DC bus voltage control for a distributed power system
  publication-title: IEEE Transactions on Power Electronics
– volume: 15
  start-page: 827
  year: 2012
  end-page: 845
  article-title: Coordinated control of series‐connected offshore wind park based on matrix converters
  publication-title: Wind Energy
– volume: 55
  start-page: 1112
  year: 2006
  end-page: 1125
  article-title: Constant power loads and negative impedance instability in automotive systems: definition, modeling, stability, and control of power electronic converters and motor drives
  publication-title: IEEE Transactions on Vehicular Technology
– start-page: 1
  year: 2009
  end-page: 10
– start-page: 2106
  year: 2008
  end-page: 2112
– volume: 15
  start-page: 547
  year: 2012
  end-page: 561
  article-title: Control of a wind farm with an internal direct current collection grid
  publication-title: Wind Energy
– volume: 152
  start-page: 17
  year: 2005
  end-page: 26
  article-title: Lightweight ironless‐stator PM generators for direct‐drive wind turbines
  publication-title: IEE Proceedings ‐ Electric Power Applications
– volume: 45
  start-page: 1778
  year: 2009
  end-page: 1784
  article-title: Design concepts for high‐voltage variable‐capacitance DC generators
  publication-title: IEEE Transactions on Industry Applications
SSID ssj0010118
Score 2.096118
Snippet ABSTRACTA modular generator/converter system suitable for a 100 kV transformerless HVDC offshore wind turbine is analyzed in this paper. The large diameter...
A modular generator/converter system suitable for a 100kV transformerless HVDC offshore wind turbine is analyzed in this paper. The large diameter generator...
SourceID proquest
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 1855
SubjectTerms DC grid
modular power electronic converter
offshore wind power
transformerless
transformerless, DC grid
Title A modular series connected converter structure suitable for a high-voltage direct current transformerless offshore wind turbine
URI https://api.istex.fr/ark:/67375/WNG-675MXT8B-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwe.1670
https://www.proquest.com/docview/1611483625
https://search.proquest.com/docview/1705066328
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFLUQK1i0vKpOgcpIqLsME9uJkyVQHqpUFgjEiI3lVwRCJBXJaBCr9g_4Rr6Ee-2Z6ZQV6iqRYjtWrn3vufHxMSG7opQacIJLuAMXKAzkKYWWOmGauZIxW1UuEGTP8tNL8WOYDeeO-or6ELMfbjgzgr_GCa5Nu_dXNHTs-2kuMVtPuUQy1_fzmXBUivspwzpnmSW4lStul8Wae5N6AEbxOz7-gyzn8WkIMMcfyfW0a5FXctcfdaZvn96oNv5X31fIhwnspPtxnKySBV-vkeU5McJ18mef3jcOWakUh6VvqUUSjAVISgM3HcmfNOrNjh48bUe3He67ogB7qaaoe_zy-xm8XQcuisZQSW2Uf6LdFB97XNxvaVNV7U0DrYxva0ehPUjQ_Qa5PD66ODxNJgc0JDaknZm1RSZcXgJM1xDopJa-1KlIjcuNLsAfVEi60ZzbgbVgdTPgRnteCcElBEX-iSzWTe0_E6oLB5UHxnBoESCrYU5w5i3gKZ9zxnvkWzCX-hVFOJR-uENOmszU1dkJ3GU_hxfFgZI9sjW1p5pMx1YBrIW0D2J11iM7s8cwkXB1RNe-GUEZOcgQf7GiR3aD8WbvitLOTI29QrOpqyO8fHlfsU2yBCBLRArMFlkEM_ltADKd-RrG7Cv_UPKl
link.rule.ids 315,783,787,1378,27936,27937,46306,46730,50826,50935
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtNAEB6h9AAcKihFpBS6SBU302R_vPYxRW1TaHNKaMRltX8WEhCjOlE4whvwjDxJZ7xuWm6cbMnetbSzM_PNzjdjgENZaos4IWQioAmUDuOUwmqbcctDybmvqtASZCf5eCY_zNW8Y1VSLUzqD7E5cCPNaO01KTgdSB_ddQ1dx3fDXGO4vqUom9eDrdGn2efZJodANZVtrrNUGZVzpZJZGnzUDUVASmv58x90eR-jtk7m9Alsd-iQjZI4n8KDuNiBx_d6Bj6D3yP2vQ5EHmW0e2LDPHFVPCJH1lLIiaPJUlvY1XVkzQqjf_ctMkSnzDJqT_z31x80Sku0JCx5NOZTlya2vIWxkXLwDaurqvlS4yxrDN0ZzodxdNyF2enJ9P046_6jkPk2OlTeF0qGvEQ0bdEfaatjaYdy6ELubIFqWxE3xgrhB96jcNxAOBtFJaXQ6LvEc-gt6kV8AcwWAQcPnBM4IyJLx4MUPHqEPTEXXPThbbui5kfqlWHs9VeijmllriZneKcu59Pi2Og-7N8uuem0pjGIPjE6Q5eq-vBm8xj3OyUx7CLWK3xHDxTBJF704bAV1eZbqQMzN-toSLrm6oQue__32gE8HE8vL8zF-eTjS3iEuEgm1so-9FBk8RVij6V73W2yGxiN2HA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFLVQKyFYVDzF0AJGqtiFzthOnCwH6FBeIxYdOmJj-RVVAiZVM6NhCX_AN_IlnBunw7BjlUixHcn3dW7u9Qljh6rSFjghZDLABSqHPKW02mbCilAJ4es6dA2y0-Jkpt7O8_nWr74SP8TmgxtZRuevycAvQn30lzR0HZ-PCo1sfRcYQ0C5d8efZp9nmxICHansSp1VntFprnRiliYf9VOBR2krv_8DLrchahdjJrfYXg8O-ThJ8za7Fhd32M0tysC77OeYf2sC9Y5yUp7Yck-tKh7AkXcd5NSiyRMr7Ooy8naF5N99jRzglFtO7MS_f_yCT1rCkfAU0LhPJE18eYViI5XgW97UdXveYJU1MneO9ZBGx3tsNjk-fXmS9b9RyHyXHObel7kKRQUwbRGOtNWxsiM1cqFwtoTV1tQaY6X0Q-8hGzeUzkZZKyU1Qpe8z3YWzSI-YNyWAZOHzkmsCGDpRFBSRA_UEwsp5IA963bUXCSqDGMvv1DnmM7N2fQ17vIP89PyhdEDdnC15aY3mtYAfCI5Q0TNB-zp5jHUnWoYdhGbFcboYU4oSZQDdtiJavOuRMAszDoakq45O6bLw_8b9oRd__hqYt6_mb7bZzeAilTqWTlgO5BYfATksXSPex37A-fj15k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+modular+series+connected+converter+structure+suitable+for+a+high-voltage+direct+current+transformerless+offshore+wind+turbine&rft.jtitle=Wind+energy+%28Chichester%2C+England%29&rft.au=Gjerde%2C+S&rft.au=Ljoekelsoey%2C+K&rft.au=Nilsen%2C+R&rft.au=Undeland%2C+T&rft.date=2014-12-01&rft.issn=1095-4244&rft.eissn=1099-1824&rft.volume=17&rft.issue=12&rft.spage=1855&rft.epage=1874&rft_id=info:doi/10.1002%2Fwe.1670&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1095-4244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1095-4244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1095-4244&client=summon