Facial skin temperature and overall thermal sensation of sub-tropically acclimated Chinese subjects in summer
This study explored the facial skin temperature and thermal sensation of sub-tropically acclimated subjects in summer. We conducted a summer experiment that simulated the common indoor temperatures in Changsha, China. Twenty healthy subjects experienced five exposure conditions: 24, 26, 28, 30 and 3...
Saved in:
Published in | Journal of thermal biology Vol. 112; p. 103422 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.02.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0306-4565 |
DOI | 10.1016/j.jtherbio.2022.103422 |
Cover
Loading…
Abstract | This study explored the facial skin temperature and thermal sensation of sub-tropically acclimated subjects in summer. We conducted a summer experiment that simulated the common indoor temperatures in Changsha, China. Twenty healthy subjects experienced five exposure conditions: 24, 26, 28, 30 and 32 °C with a relative humidity of 60%. During exposure (140min), the sitting participants documented their thermal sensation, comfort and acceptability of the environment. Their facial skin temperatures were continuously and automatically recorded by using iButtons. These facial parts include the forehead, nose, left and right ears, left and right cheeks and chin. The results found that the maximum facial skin temperature difference increased with air temperature reduction. The forehead skin temperature was the highest. Nose skin temperature is lowest when air temperature is not higher than 26 °C during summer. Correlation analysis confirmed that the nose is the potential facial part that is most suitable to evaluate thermal sensation. Based on the published winter experiment, we further explored their seasonal effects. The seasonal analysis showed that, compared with winter, thermal sensation is more sensitive to indoor temperature changes and facial skin temperatures were less susceptible to thermal sensation changes in summer. Facial skin temperatures were higher in summer under the same thermal conditions. It suggests that seasonal effects should be considered when facial skin temperature can be used as an important parameter for indoor environment control in the future through monitoring thermal sensation.
•Uneven degree of skin temperature distribution rises with reducing air temperature.•Nose is the most potential facial part for thermal sensation prediction.•Facial skin temperatures were higher in summer than that in winter.•Thermal sensation is more susceptible to air temperature changes in summer.•Facial skin temperatures were less sensitive to thermal sensation changes in summer. |
---|---|
AbstractList | This study explored the facial skin temperature and thermal sensation of sub-tropically acclimated subjects in summer. We conducted a summer experiment that simulated the common indoor temperatures in Changsha, China. Twenty healthy subjects experienced five exposure conditions: 24, 26, 28, 30 and 32 °C with a relative humidity of 60%. During exposure (140min), the sitting participants documented their thermal sensation, comfort and acceptability of the environment. Their facial skin temperatures were continuously and automatically recorded by using iButtons. These facial parts include the forehead, nose, left and right ears, left and right cheeks and chin. The results found that the maximum facial skin temperature difference increased with air temperature reduction. The forehead skin temperature was the highest. Nose skin temperature is lowest when air temperature is not higher than 26 °C during summer. Correlation analysis confirmed that the nose is the potential facial part that is most suitable to evaluate thermal sensation. Based on the published winter experiment, we further explored their seasonal effects. The seasonal analysis showed that, compared with winter, thermal sensation is more sensitive to indoor temperature changes and facial skin temperatures were less susceptible to thermal sensation changes in summer. Facial skin temperatures were higher in summer under the same thermal conditions. It suggests that seasonal effects should be considered when facial skin temperature can be used as an important parameter for indoor environment control in the future through monitoring thermal sensation.This study explored the facial skin temperature and thermal sensation of sub-tropically acclimated subjects in summer. We conducted a summer experiment that simulated the common indoor temperatures in Changsha, China. Twenty healthy subjects experienced five exposure conditions: 24, 26, 28, 30 and 32 °C with a relative humidity of 60%. During exposure (140min), the sitting participants documented their thermal sensation, comfort and acceptability of the environment. Their facial skin temperatures were continuously and automatically recorded by using iButtons. These facial parts include the forehead, nose, left and right ears, left and right cheeks and chin. The results found that the maximum facial skin temperature difference increased with air temperature reduction. The forehead skin temperature was the highest. Nose skin temperature is lowest when air temperature is not higher than 26 °C during summer. Correlation analysis confirmed that the nose is the potential facial part that is most suitable to evaluate thermal sensation. Based on the published winter experiment, we further explored their seasonal effects. The seasonal analysis showed that, compared with winter, thermal sensation is more sensitive to indoor temperature changes and facial skin temperatures were less susceptible to thermal sensation changes in summer. Facial skin temperatures were higher in summer under the same thermal conditions. It suggests that seasonal effects should be considered when facial skin temperature can be used as an important parameter for indoor environment control in the future through monitoring thermal sensation. This study explored the facial skin temperature and thermal sensation of sub-tropically acclimated subjects in summer. We conducted a summer experiment that simulated the common indoor temperatures in Changsha, China. Twenty healthy subjects experienced five exposure conditions: 24, 26, 28, 30 and 32 °C with a relative humidity of 60%. During exposure (140min), the sitting participants documented their thermal sensation, comfort and acceptability of the environment. Their facial skin temperatures were continuously and automatically recorded by using iButtons. These facial parts include the forehead, nose, left and right ears, left and right cheeks and chin. The results found that the maximum facial skin temperature difference increased with air temperature reduction. The forehead skin temperature was the highest. Nose skin temperature is lowest when air temperature is not higher than 26 °C during summer. Correlation analysis confirmed that the nose is the potential facial part that is most suitable to evaluate thermal sensation. Based on the published winter experiment, we further explored their seasonal effects. The seasonal analysis showed that, compared with winter, thermal sensation is more sensitive to indoor temperature changes and facial skin temperatures were less susceptible to thermal sensation changes in summer. Facial skin temperatures were higher in summer under the same thermal conditions. It suggests that seasonal effects should be considered when facial skin temperature can be used as an important parameter for indoor environment control in the future through monitoring thermal sensation. This study explored the facial skin temperature and thermal sensation of sub-tropically acclimated subjects in summer. We conducted a summer experiment that simulated the common indoor temperatures in Changsha, China. Twenty healthy subjects experienced five exposure conditions: 24, 26, 28, 30 and 32 °C with a relative humidity of 60%. During exposure (140min), the sitting participants documented their thermal sensation, comfort and acceptability of the environment. Their facial skin temperatures were continuously and automatically recorded by using iButtons. These facial parts include the forehead, nose, left and right ears, left and right cheeks and chin. The results found that the maximum facial skin temperature difference increased with air temperature reduction. The forehead skin temperature was the highest. Nose skin temperature is lowest when air temperature is not higher than 26 °C during summer. Correlation analysis confirmed that the nose is the potential facial part that is most suitable to evaluate thermal sensation. Based on the published winter experiment, we further explored their seasonal effects. The seasonal analysis showed that, compared with winter, thermal sensation is more sensitive to indoor temperature changes and facial skin temperatures were less susceptible to thermal sensation changes in summer. Facial skin temperatures were higher in summer under the same thermal conditions. It suggests that seasonal effects should be considered when facial skin temperature can be used as an important parameter for indoor environment control in the future through monitoring thermal sensation. This study explored the facial skin temperature and thermal sensation of sub-tropically acclimated subjects in summer. We conducted a summer experiment that simulated the common indoor temperatures in Changsha, China. Twenty healthy subjects experienced five exposure conditions: 24, 26, 28, 30 and 32 °C with a relative humidity of 60%. During exposure (140min), the sitting participants documented their thermal sensation, comfort and acceptability of the environment. Their facial skin temperatures were continuously and automatically recorded by using iButtons. These facial parts include the forehead, nose, left and right ears, left and right cheeks and chin. The results found that the maximum facial skin temperature difference increased with air temperature reduction. The forehead skin temperature was the highest. Nose skin temperature is lowest when air temperature is not higher than 26 °C during summer. Correlation analysis confirmed that the nose is the potential facial part that is most suitable to evaluate thermal sensation. Based on the published winter experiment, we further explored their seasonal effects. The seasonal analysis showed that, compared with winter, thermal sensation is more sensitive to indoor temperature changes and facial skin temperatures were less susceptible to thermal sensation changes in summer. Facial skin temperatures were higher in summer under the same thermal conditions. It suggests that seasonal effects should be considered when facial skin temperature can be used as an important parameter for indoor environment control in the future through monitoring thermal sensation. •Uneven degree of skin temperature distribution rises with reducing air temperature.•Nose is the most potential facial part for thermal sensation prediction.•Facial skin temperatures were higher in summer than that in winter.•Thermal sensation is more susceptible to air temperature changes in summer.•Facial skin temperatures were less sensitive to thermal sensation changes in summer. |
ArticleNumber | 103422 |
Author | Liu, Weiwei Xu, Runpu Tian, Xiaoyu |
Author_xml | – sequence: 1 givenname: Xiaoyu surname: Tian fullname: Tian, Xiaoyu organization: School of Energy Science and Engineering, Central South University, Changsha, 410083, China – sequence: 2 givenname: Runpu surname: Xu fullname: Xu, Runpu organization: School of Energy Science and Engineering, Central South University, Changsha, 410083, China – sequence: 3 givenname: Weiwei surname: Liu fullname: Liu, Weiwei email: wliu@csu.edu.cn organization: School of Architecture and Art, Central South University, Changsha, 410083, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36796884$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFr3DAQhXVIaZJt_kLQsRdvZUkr29BDy9I0gUAv7VmM5RGRY0tbSQ7k31fuJjnksqdhhu89mPcuyZkPHgm5rtm2ZrX6Mm7H_ICxd2HLGeflKCTnZ-SCCaYquVO7c3KZ0shYvRM79pGcC9V0qm3lBZlvwDiYaHp0nmacDxghLxEp-IGGp7JNE13d5xVCnyC74GmwNC19lWM4OFOQZwrGTG6GjAPdPziPCVdiRJMTLdZpmWeMn8gHC1PCq5e5IX9ufvze31b3v37e7b_fV0ayOle2FRI61hmONUjBWoMA1grAViimBON9D1JZ6EDY8kdvGz503DBpedNwKzbk89H3EMPfBVPWs0sGpwk8hiVpwSVnsmGqPokWw1axmpdQN-T6BV36GQd9iOXh-Kxf0yyAOgImhpQi2jekZnqtSo_6tSq9VqWPVRXh13dC4_L_pHMEN52WfzvKsWT65DDqZBx6g4OLpQA9BHfK4h92a7c5 |
CitedBy_id | crossref_primary_10_1016_j_jobe_2024_108561 crossref_primary_10_1016_j_buildenv_2023_110949 crossref_primary_10_1016_j_buildenv_2023_110736 crossref_primary_10_3390_buildings14123861 crossref_primary_10_1016_j_buildenv_2023_110405 crossref_primary_10_1016_j_enbuild_2023_113771 crossref_primary_10_1016_j_enbuild_2025_115486 crossref_primary_10_1016_j_enbuild_2023_113773 crossref_primary_10_1016_j_enbuild_2023_113850 crossref_primary_10_1016_j_enbuild_2023_113345 crossref_primary_10_1016_j_buildenv_2023_110244 crossref_primary_10_1016_j_buildenv_2024_111772 crossref_primary_10_1016_j_enbuild_2024_115194 crossref_primary_10_1016_j_csite_2024_104439 |
Cites_doi | 10.1007/s00484-009-0291-7 10.1016/j.enbuild.2019.109648 10.1016/j.buildenv.2006.11.036 10.1016/j.buildenv.2020.107486 10.2114/jpa2.25.29 10.1111/ina.12755 10.1016/j.enbuild.2020.109783 10.3390/buildings7010010 10.1016/j.buildenv.2021.108011 10.1016/j.jtherbio.2022.103345 10.1016/j.buildenv.2009.01.003 10.1111/apha.12231 10.1007/s004840050056 10.1016/j.jtherbio.2021.102913 10.1016/j.enbuild.2017.07.009 10.1016/S0169-8141(96)00011-X 10.1210/jcem.83.6.4864 10.1016/j.pediatrneurol.2015.03.018 10.1002/1098-2302(200011)37:3<186::AID-DEV6>3.0.CO;2-G 10.14202/vetworld.2017.650-654 10.1016/j.buildenv.2019.106163 10.1016/j.buildenv.2021.108395 10.1016/j.cbpb.2004.09.006 10.1038/s41370-019-0154-1 10.1016/j.buildenv.2019.106223 10.1111/j.1365-2125.2004.02103.x 10.1007/BF01208489 10.1016/j.enbuild.2018.09.041 10.1016/j.buildenv.2014.10.001 10.1016/j.buildenv.2009.02.016 10.1016/j.buildenv.2009.02.014 10.1016/S0140-6736(01)06108-6 10.1111/ina.12523 10.2307/2529465 10.1177/1420326X14527975 10.1016/j.enbuild.2019.01.029 10.1016/j.enbuild.2017.01.066 10.2307/2291607 10.1152/ajpregu.00057.2015 10.1016/j.buildenv.2009.04.002 10.1007/s004210000262 10.1016/S0031-9384(00)00349-8 10.1016/j.enbuild.2019.109745 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jtherbio.2022.103422 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
ExternalDocumentID | 36796884 10_1016_j_jtherbio_2022_103422 S0306456522002364 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- --K --M .GJ .~1 0R~ 186 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXKI AAXUO ABFNM ABFRF ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACPRK ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADQTV ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEQOU AFJKZ AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KCYFY KOM LX3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBG SDF SDG SDP SES SEW SPCBC SSA SSJ SSU SSZ T5K UHS UNMZH VH1 WUQ YQT ~02 ~G- ~KM AATTM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c401t-f834a909c2e1a4308ceaaff3ae83606302bba46fa9a3f688bf72d92c04f2772f3 |
IEDL.DBID | .~1 |
ISSN | 0306-4565 |
IngestDate | Fri Aug 22 20:26:29 EDT 2025 Fri Jul 11 09:14:33 EDT 2025 Thu Apr 03 07:01:43 EDT 2025 Tue Jul 01 01:02:01 EDT 2025 Thu Apr 24 22:55:09 EDT 2025 Sat Jan 18 16:10:17 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Temperature distribution Seasonal effect Thermal sensitivity Thermal sensation Facial skin temperature |
Language | English |
License | Copyright © 2023 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-f834a909c2e1a4308ceaaff3ae83606302bba46fa9a3f688bf72d92c04f2772f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 36796884 |
PQID | 2778601210 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3242047061 proquest_miscellaneous_2778601210 pubmed_primary_36796884 crossref_primary_10_1016_j_jtherbio_2022_103422 crossref_citationtrail_10_1016_j_jtherbio_2022_103422 elsevier_sciencedirect_doi_10_1016_j_jtherbio_2022_103422 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2023 2023-02-00 2023-Feb 20230201 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of thermal biology |
PublicationTitleAlternate | J Therm Biol |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Humphreys, Nicol, Roaf (bib24) 2015 Van Ooijen, Van Marken Lichtenbelt, Van Steenhoven, Westerterp (bib58) 2004; 82 Ryu, Kim, Hong, de Dear (bib46) 2020; 208 Fanger (bib14) 1967; 73 Zhu, Liu, Wargocki (bib69) 2020; 30 Mäkinen, Pääkkönen, Palinkas, Rintamäki, Leppäluoto, Hassi (bib36) 2004; 139 GB50325-2013, n.d. Code for Control of Indoor Environmental Pollution in Civil Construction Engineering. Minist. Hous. Urban-Rural Dev. People's Repub. China.Beijing, China China Archit. Build. Press. Choi, Miki, Sagawa, Shiraki (bib8) 1997; 41 Schweiker, Schakib-Ekbatan, Fuchs, Becker (bib47) 2020; 212 Tian, Fang, Liu (bib53) 2021; 31 (bib20) 2012 Romanovsky (bib45) 2014; 210 Zhang, Zhao (bib67) 2008; 43 Umemiya (bib56) 2006; 25 Wu, Li, Wargocki, Peng, Li, Cui (bib62) 2019; 186 (bib5) 2004; 1–34 ISO 9886:2004, I., n.d. Ergonomics-Evaluation of Thermal Strain by Physiological Measurements. Aryal, Becerik-Gerber (bib2) 2019; 160 GB 51245-2017, n.d. Unified Standard for Energy Efficiency Design of Industrial Building. Minist. Hous. Urban-Rural Dev. People's Repub. China.China Archit. Build. Press. Huang, Shi, Fang, Gao, Zhuang, Zhai (bib23) 2020; 179 Inoue, Nakao, Ueda, Araki (bib25) 1995; 38 Rajaratnam, Arendt (bib42) 2001 Symons, Byiers, Hoch, Dimian, Barney, Feyma, Beisang (bib50) 2015; 53 Wuensch, Evans (bib63) 1996; 91 Liu, Wu, Li, Cheng, Yao (bib31) 2017; 140 Okamoto-Mizuno, Tsuzuki (bib37) 2010; 54 Zhang, Arens, Kim, Buchberger, Bauman, Huizenga (bib66) 2010; 45 Gavhed, Mäkinen, Holmér, Rintamäki (bib16) 2000; 83 Tian, Deng, Wargocki, Liu (bib52) 2021; 201 Kagan, Snidman, Peterson (bib28) 2000; 37 Wu, Cao (bib60) 2022; 49 Garba, Grossberg, Enard, Jano, Roberts, Marx, Buchanan (bib15) 2020; 4 Buonocore, De Vecchi, Scalco, Lamberts (bib6) 2020; 211 Tsuzuki, Mori, Sakoi, Kurokawa (bib55) 2015; 88 Yoneshiro, Matsushita, Nakae, Kameya, Sugie, Tanaka, Saito (bib65) 2016; 310 Parr, Hopkins (bib38) 2000; 71 Tham, Willem (bib51) 2010; 45 GB/T 18883-2002, n.d. Indoor Air Quality Standard. Ludwig, Formenti, Rossi, Trecroci, Gargano, Alberti (bib34) 2016 Arens, Zhang (bib1) 2006 Cosma, Simha (bib9) 2019; 160 Fanger (bib13) 1982 Pavlin, Pernigotto, Cappelletti, Bison, Vidoni, Gasparella (bib40) 2017; 7 Zhao, Zhu, Lu (bib68) 2009; 44 da Silva, Machado, Kunzler, Jimenez-Perez, Gil-Calvo, Priego-Quesada, Carpes (bib10) 2022; 110 Zhu (bib70) 2006 Carlson, Boyd, Webb (bib7) 2004 Rathwa, Vasava, Pathan, Madhira, Patel, Pande (bib43) 2017; 10 Genno, Matumoto, Fukushima (bib22) 1995; 31 Parsons (bib39) 2003 Yao, Li, Liu (bib64) 2009; 44 Genno, Ishikawa, Kanbara, Kikumoto, Fujiwara, Suzuki, Osumi (bib21) 1997; 19 Landis, Koch (bib30) 1977; 33 Qu, Wang, Liu (bib41) 2021; 206 Liu, Lian, Deng (bib32) 2015; 24 Wang, Wang, de Dear, Luo, Ghahramani, Lin (bib59) 2018; 181 Machado, Priego-Quesada, Jimenez-Perez, Gil-Calvo, Carpes, Perez-Soriano (bib35) 2021; 98 Reed (bib44) 2021 Simon, Gronfier, Schlienger, Brandenberger (bib49) 1998; 83 Fan, Liu, Wargocki (bib12) 2019; 29 (bib4) 2009 Wu, Cao (bib61) 2022; 49 Lai, Zhou, Chen (bib29) 2017; 151 Liu, Tian, Yang, Deng (bib33) 2021; 188 van Marken Lichtenbelt, Daanen, Wouters, Fronczek, Raymann, Severens, Van Someren (bib57) 2006; 88 Jacklitsch, Williams, Musolin, Coca, Kim, Turner (bib27) 2016 Tian, Yu, Liu (bib54) 2022 (bib3) 2013 Davis, Johnston (bib11) 1961; 16 Seltman (bib48) 2018 Huang (10.1016/j.jtherbio.2022.103422_bib23) 2020; 179 Zhu (10.1016/j.jtherbio.2022.103422_bib69) 2020; 30 (10.1016/j.jtherbio.2022.103422_bib5) 2004; 1–34 Aryal (10.1016/j.jtherbio.2022.103422_bib2) 2019; 160 Liu (10.1016/j.jtherbio.2022.103422_bib31) 2017; 140 Arens (10.1016/j.jtherbio.2022.103422_bib1) 2006 Buonocore (10.1016/j.jtherbio.2022.103422_bib6) 2020; 211 Gavhed (10.1016/j.jtherbio.2022.103422_bib16) 2000; 83 Symons (10.1016/j.jtherbio.2022.103422_bib50) 2015; 53 Zhu (10.1016/j.jtherbio.2022.103422_bib70) 2006 Fan (10.1016/j.jtherbio.2022.103422_bib12) 2019; 29 Inoue (10.1016/j.jtherbio.2022.103422_bib25) 1995; 38 Reed (10.1016/j.jtherbio.2022.103422_bib44) 2021 Carlson (10.1016/j.jtherbio.2022.103422_bib7) 2004 Wu (10.1016/j.jtherbio.2022.103422_bib60) 2022; 49 Ludwig (10.1016/j.jtherbio.2022.103422_bib34) Kagan (10.1016/j.jtherbio.2022.103422_bib28) 2000; 37 (10.1016/j.jtherbio.2022.103422_bib4) 2009 Genno (10.1016/j.jtherbio.2022.103422_bib21) 1997; 19 Lai (10.1016/j.jtherbio.2022.103422_bib29) 2017; 151 Yoneshiro (10.1016/j.jtherbio.2022.103422_bib65) 2016; 310 Machado (10.1016/j.jtherbio.2022.103422_bib35) 2021; 98 Rathwa (10.1016/j.jtherbio.2022.103422_bib43) 2017; 10 Pavlin (10.1016/j.jtherbio.2022.103422_bib40) 2017; 7 Humphreys (10.1016/j.jtherbio.2022.103422_bib24) 2015 Tian (10.1016/j.jtherbio.2022.103422_bib53) 2021; 31 Zhang (10.1016/j.jtherbio.2022.103422_bib67) 2008; 43 Cosma (10.1016/j.jtherbio.2022.103422_bib9) 2019; 160 (10.1016/j.jtherbio.2022.103422_bib20) 2012 Wu (10.1016/j.jtherbio.2022.103422_bib61) 2022; 49 Qu (10.1016/j.jtherbio.2022.103422_bib41) 2021; 206 Liu (10.1016/j.jtherbio.2022.103422_bib33) 2021; 188 Romanovsky (10.1016/j.jtherbio.2022.103422_bib45) 2014; 210 (10.1016/j.jtherbio.2022.103422_bib3) 2013 Tsuzuki (10.1016/j.jtherbio.2022.103422_bib55) 2015; 88 Wuensch (10.1016/j.jtherbio.2022.103422_bib63) 1996; 91 Tham (10.1016/j.jtherbio.2022.103422_bib51) 2010; 45 Simon (10.1016/j.jtherbio.2022.103422_bib49) 1998; 83 Wu (10.1016/j.jtherbio.2022.103422_bib62) 2019; 186 Choi (10.1016/j.jtherbio.2022.103422_bib8) 1997; 41 Genno (10.1016/j.jtherbio.2022.103422_bib22) 1995; 31 Tian (10.1016/j.jtherbio.2022.103422_bib54) 2022 Rajaratnam (10.1016/j.jtherbio.2022.103422_bib42) 2001 Zhao (10.1016/j.jtherbio.2022.103422_bib68) 2009; 44 Wang (10.1016/j.jtherbio.2022.103422_bib59) 2018; 181 Parsons (10.1016/j.jtherbio.2022.103422_bib39) 2003 Fanger (10.1016/j.jtherbio.2022.103422_bib13) 1982 10.1016/j.jtherbio.2022.103422_bib17 10.1016/j.jtherbio.2022.103422_bib18 Fanger (10.1016/j.jtherbio.2022.103422_bib14) 1967; 73 10.1016/j.jtherbio.2022.103422_bib19 van Marken Lichtenbelt (10.1016/j.jtherbio.2022.103422_bib57) 2006; 88 Ryu (10.1016/j.jtherbio.2022.103422_bib46) 2020; 208 Umemiya (10.1016/j.jtherbio.2022.103422_bib56) 2006; 25 Zhang (10.1016/j.jtherbio.2022.103422_bib66) 2010; 45 Mäkinen (10.1016/j.jtherbio.2022.103422_bib36) 2004; 139 Parr (10.1016/j.jtherbio.2022.103422_bib38) 2000; 71 Jacklitsch (10.1016/j.jtherbio.2022.103422_bib27) 2016 Yao (10.1016/j.jtherbio.2022.103422_bib64) 2009; 44 Okamoto-Mizuno (10.1016/j.jtherbio.2022.103422_bib37) 2010; 54 Schweiker (10.1016/j.jtherbio.2022.103422_bib47) 2020; 212 Seltman (10.1016/j.jtherbio.2022.103422_bib48) Van Ooijen (10.1016/j.jtherbio.2022.103422_bib58) 2004; 82 Liu (10.1016/j.jtherbio.2022.103422_bib32) 2015; 24 da Silva (10.1016/j.jtherbio.2022.103422_bib10) 2022; 110 Tian (10.1016/j.jtherbio.2022.103422_bib52) 2021; 201 Garba (10.1016/j.jtherbio.2022.103422_bib15) 2020; 4 Landis (10.1016/j.jtherbio.2022.103422_bib30) 1977; 33 Davis (10.1016/j.jtherbio.2022.103422_bib11) 1961; 16 10.1016/j.jtherbio.2022.103422_bib26 |
References_xml | – volume: 54 year: 2010 ident: bib37 article-title: Effects of season on sleep and skin temperature in the elderly publication-title: Int. J. Biometeorol. – year: 2003 ident: bib39 article-title: Human Thermal Environments – volume: 10 year: 2017 ident: bib43 article-title: Effect of season on physiological, biochemical, hormonal, and oxidative stress parameters of indigenous sheep publication-title: Vet. World – year: 2016 ident: bib34 article-title: Assessing facial skin temperature asymmetry with different methods – volume: 88 year: 2006 ident: bib57 article-title: Evaluation of wireless determination of skin temperature using iButtons publication-title: Physiol. Behav. – volume: 82 year: 2004 ident: bib58 article-title: Seasonal changes in metabolic and temperature responses to cold air in humans publication-title: Physiol. Behav. – volume: 4 year: 2020 ident: bib15 article-title: Testing the cognitive reserve index questionnaire in an alzheimer's disease population publication-title: J. Alzheimer’s Dis. Reports – volume: 71 year: 2000 ident: bib38 article-title: Brain temperature asymmetries and emotional perception in chimpanzees, Pan troglodytes publication-title: Physiol. Behav. – volume: 201 year: 2021 ident: bib52 article-title: Effects of increased activity level on physiological and subjective responses at different high temperatures publication-title: Build. Environ. – volume: 139 year: 2004 ident: bib36 article-title: Seasonal changes in thermal responses of urban residents to cold exposure publication-title: Comp. Biochem. Physiol. Mol. Integr. Physiol. – volume: 7 year: 2017 ident: bib40 article-title: Real-time monitoring of occupants' thermal comfort through infrared imaging: a preliminary study publication-title: Buildings – volume: 24 start-page: 489 year: 2015 end-page: 499 ident: bib32 article-title: Use of mean skin temperature in evaluation of individual thermal comfort for a person in a sleeping posture under steady thermal environment publication-title: Indoor Built Environ. – volume: 83 year: 1998 ident: bib49 article-title: Circadian and ultradian variations of leptin in normal man under continuous enteral nutrition: relationship to sleep and body temperature publication-title: J. Clin. Endocrinol. Metab. – year: 2012 ident: bib20 article-title: Design Code for Heating Ventilation and Air Conditioning of Civil Buildings. Minist. Hous. Urban-Rural Dev. People's Repub. China – volume: 44 start-page: 2202 year: 2009 end-page: 2207 ident: bib68 article-title: Productivity model in hot and humid environment based on heat tolerance time analysis publication-title: Build. Environ. – volume: 208 year: 2020 ident: bib46 article-title: Defining the thermal sensitivity (Griffiths constant) of building occupants in the Korean residential context publication-title: Energy Build. – year: 2001 ident: bib42 article-title: Health in a 24-h society publication-title: Lancet – year: 2006 ident: bib70 article-title: Research on Heat Tolerance of Extreme Thermal Environment in Hyperthermal Coal Mine – volume: 179 year: 2020 ident: bib23 article-title: Impact of short-term thermal experience on thermal sensation: a case study of Chongqing publication-title: China. Build. Environ. – volume: 310 start-page: R999 year: 2016 end-page: R1009 ident: bib65 article-title: Brown adipose tissue is involved in the seasonal variation of cold-induced thermogenesis in humans publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. – year: 2004 ident: bib7 article-title: The revision of the Declaration of Helsinki: past, present and future publication-title: Br. J. Clin. Pharmacol. – volume: 91 year: 1996 ident: bib63 article-title: Straightforward statistics for the behavioral sciences publication-title: J. Am. Stat. Assoc. – year: 1982 ident: bib13 article-title: Thermal Comfort – volume: 210 start-page: 498 year: 2014 end-page: 507 ident: bib45 article-title: Skin temperature: its role in thermoregulation publication-title: Acta Physiol. – volume: 33 start-page: 671 year: 1977 end-page: 679 ident: bib30 article-title: A one-way components of variance model for categorical data published by : international biometric society stable publication-title: Biometrics – year: 2021 ident: bib44 article-title: The Normal Menstrual Cycle and the Control of Ovulation – volume: 186 year: 2019 ident: bib62 article-title: Adaptive thermal comfort in naturally ventilated dormitory buildings in Changsha, China publication-title: Energy Build. – volume: 44 start-page: 2089 year: 2009 end-page: 2096 ident: bib64 article-title: A theoretical adaptive model of thermal comfort - adaptive Predicted Mean Vote (aPMV) publication-title: Build. Environ. – start-page: 1 year: 2016 end-page: 192 ident: bib27 article-title: Occupational exposure to heat and hot environments publication-title: US Dep. Heal. Hum. Serv. – year: 2009 ident: bib4 article-title: F09 SI: thermal comfort publication-title: ASHRAE Handb. Fundam. 2009 – volume: 41 year: 1997 ident: bib8 article-title: Evaluation of mean skin temperature formulas by infrared thermography publication-title: Int. J. Biometeorol. – volume: 29 start-page: 215 year: 2019 end-page: 230 ident: bib12 article-title: Physiological and psychological reactions of sub-tropically acclimatized subjects exposed to different indoor temperatures at a relative humidity of 70 publication-title: Indoor Air – reference: GB/T 18883-2002, n.d. Indoor Air Quality Standard. – reference: ISO 9886:2004, I., n.d. Ergonomics-Evaluation of Thermal Strain by Physiological Measurements. – year: 2013 ident: bib3 article-title: F10 SI: indoor environmental health publication-title: ASHRAE Handb. Fundam. 2013 – volume: 206 year: 2021 ident: bib41 article-title: Clothing adjustment in outdoor environment: a new clothing model based on temperature change publication-title: Build. Environ. – volume: 38 year: 1995 ident: bib25 article-title: Seasonal variation in physiological responses to mild cold air in young and older men publication-title: Int. J. Biometeorol. – volume: 188 year: 2021 ident: bib33 article-title: Evaluation of individual thermal sensation at raised indoor temperatures based on skin temperature publication-title: Build. Environ. – volume: 88 year: 2015 ident: bib55 article-title: Effects of seasonal illumination and thermal environments on sleep in elderly men publication-title: Build. Environ. – reference: GB 51245-2017, n.d. Unified Standard for Energy Efficiency Design of Industrial Building. Minist. Hous. Urban-Rural Dev. People's Repub. China.China Archit. Build. Press. – volume: 19 start-page: 161 year: 1997 end-page: 171 ident: bib21 article-title: Using facial skin temperature to objectively evaluate sensations publication-title: Int. J. Ind. Ergon. – volume: 45 start-page: 40 year: 2010 end-page: 44 ident: bib51 article-title: Room air temperature affects occupants' physiology, perceptions and mental alertness publication-title: Build. Environ. – volume: 49 year: 2022 ident: bib60 article-title: Recognition and prediction of individual thermal comfort requirement based on local skin temperature publication-title: J. Build. Eng. – volume: 151 year: 2017 ident: bib29 article-title: Measurements and predictions of the skin temperature of human subjects on outdoor environment publication-title: Energy Build. – year: 2018 ident: bib48 article-title: Experimental design and analysis – volume: 49 year: 2022 ident: bib61 article-title: Recognition and prediction of individual thermal comfort requirement based on local skin temperature publication-title: J. Build. Eng. – volume: 53 year: 2015 ident: bib50 article-title: Infrared thermal analysis and individual differences in skin temperature asymmetry in Rett syndrome publication-title: Pediatr. Neurol. – volume: 25 start-page: 29 year: 2006 end-page: 39 ident: bib56 article-title: Seasonal variations of physiological characteristics and thermal sensation under identical thermal conditions publication-title: J. Physiol. Anthropol. – volume: 31 start-page: 973 year: 1995 end-page: 981 ident: bib22 publication-title: Evaluation of Thermal Sensation by Using Facial Skin Temperature – volume: 98 year: 2021 ident: bib35 article-title: Influence of infrared camera model and evaluator reproducibility in the assessment of skin temperature responses to physical exercise publication-title: J. Therm. Biol. – start-page: 1 year: 2022 end-page: 17 ident: bib54 article-title: Facial Skin Temperature and its Relationship with Overall Thermal Sensation during Winter in Changsha – volume: 45 start-page: 29 year: 2010 end-page: 39 ident: bib66 article-title: Comfort, perceived air quality, and work performance in a low-power task-ambient conditioning system publication-title: Build. Environ. – volume: 16 year: 1961 ident: bib11 article-title: Seasonal acclimatization to cold in man publication-title: J. Appl. Physiol. – volume: 160 year: 2019 ident: bib2 article-title: A comparative study of predicting individual thermal sensation and satisfaction using wrist-worn temperature sensor, thermal camera and ambient temperature sensor publication-title: Build. Environ. – volume: 160 year: 2019 ident: bib9 article-title: Using the contrast within a single face heat map to assess personal thermal comfort publication-title: Build. Environ. – year: 2006 ident: bib1 article-title: The Skin's Role in Human Thermoregulation and Comfort – volume: 37 start-page: 186 year: 2000 end-page: 193 ident: bib28 article-title: Temperature asymmetry and behavior publication-title: Dev. Psychobiol. – volume: 1–34 year: 2004 ident: bib5 article-title: Thermal environmental conditions for human occupancy 55-2004 publication-title: Am. Soc. Heating, Refrig. Air-Conditioning Eng. Inc. 2004 – year: 2015 ident: bib24 article-title: Adaptive thermal comfort: foundations and analysis publication-title: Adaptive Thermal Comfort: Foundation. Anal. – volume: 211 year: 2020 ident: bib6 article-title: Thermal preference and comfort assessment in air-conditioned and naturally-ventilated university classrooms under hot and humid conditions in Brazil publication-title: Energy Build. – volume: 110 year: 2022 ident: bib10 article-title: Reproducibility of skin temperature analyses by novice and experienced evaluators using infrared thermography publication-title: J. Therm. Biol. – volume: 73 year: 1967 ident: bib14 article-title: Calculation of thermal comfort: introduction of a basic comfort equation publication-title: Build. Eng. – volume: 30 start-page: 285 year: 2020 end-page: 298 ident: bib69 article-title: Changes in EEG signals during the cognitive activity at varying air temperature and relative humidity publication-title: J. Expo. Sci. Environ. Epidemiol. – volume: 212 year: 2020 ident: bib47 article-title: A seasonal approach to alliesthesia. Is there a conflict with thermal adaptation? publication-title: Energy Build. – reference: GB50325-2013, n.d. Code for Control of Indoor Environmental Pollution in Civil Construction Engineering. Minist. Hous. Urban-Rural Dev. People's Repub. China.Beijing, China China Archit. Build. Press. – volume: 31 start-page: 608 year: 2021 end-page: 627 ident: bib53 article-title: Decreased humidity improves cognitive performance at extreme high indoor temperature publication-title: Indoor Air – volume: 83 start-page: 449 year: 2000 end-page: 456 ident: bib16 article-title: Face temperature and cardiorespiratory responses to wind in thermoneutral and cool subjects exposed to −10 °C publication-title: Eur. J. Appl. Physiol. – volume: 43 start-page: 44 year: 2008 end-page: 50 ident: bib67 article-title: Overall thermal sensation, acceptability and comfort publication-title: Build. Environ. – volume: 140 year: 2017 ident: bib31 article-title: Seasonal variation of thermal sensations in residential buildings in the Hot Summer and Cold Winter zone of China publication-title: Energy Build. – volume: 181 year: 2018 ident: bib59 article-title: The uncertainty of subjective thermal comfort measurement publication-title: Energy Build. – ident: 10.1016/j.jtherbio.2022.103422_bib26 – volume: 54 year: 2010 ident: 10.1016/j.jtherbio.2022.103422_bib37 article-title: Effects of season on sleep and skin temperature in the elderly publication-title: Int. J. Biometeorol. doi: 10.1007/s00484-009-0291-7 – volume: 208 year: 2020 ident: 10.1016/j.jtherbio.2022.103422_bib46 article-title: Defining the thermal sensitivity (Griffiths constant) of building occupants in the Korean residential context publication-title: Energy Build. doi: 10.1016/j.enbuild.2019.109648 – volume: 43 start-page: 44 year: 2008 ident: 10.1016/j.jtherbio.2022.103422_bib67 article-title: Overall thermal sensation, acceptability and comfort publication-title: Build. Environ. doi: 10.1016/j.buildenv.2006.11.036 – volume: 188 year: 2021 ident: 10.1016/j.jtherbio.2022.103422_bib33 article-title: Evaluation of individual thermal sensation at raised indoor temperatures based on skin temperature publication-title: Build. Environ. doi: 10.1016/j.buildenv.2020.107486 – volume: 25 start-page: 29 year: 2006 ident: 10.1016/j.jtherbio.2022.103422_bib56 article-title: Seasonal variations of physiological characteristics and thermal sensation under identical thermal conditions publication-title: J. Physiol. Anthropol. doi: 10.2114/jpa2.25.29 – volume: 82 year: 2004 ident: 10.1016/j.jtherbio.2022.103422_bib58 article-title: Seasonal changes in metabolic and temperature responses to cold air in humans publication-title: Physiol. Behav. – volume: 31 start-page: 608 year: 2021 ident: 10.1016/j.jtherbio.2022.103422_bib53 article-title: Decreased humidity improves cognitive performance at extreme high indoor temperature publication-title: Indoor Air doi: 10.1111/ina.12755 – volume: 211 year: 2020 ident: 10.1016/j.jtherbio.2022.103422_bib6 article-title: Thermal preference and comfort assessment in air-conditioned and naturally-ventilated university classrooms under hot and humid conditions in Brazil publication-title: Energy Build. doi: 10.1016/j.enbuild.2020.109783 – volume: 1–34 year: 2004 ident: 10.1016/j.jtherbio.2022.103422_bib5 article-title: Thermal environmental conditions for human occupancy 55-2004 publication-title: Am. Soc. Heating, Refrig. Air-Conditioning Eng. Inc. 2004 – ident: 10.1016/j.jtherbio.2022.103422_bib17 – year: 1982 ident: 10.1016/j.jtherbio.2022.103422_bib13 – volume: 7 year: 2017 ident: 10.1016/j.jtherbio.2022.103422_bib40 article-title: Real-time monitoring of occupants' thermal comfort through infrared imaging: a preliminary study publication-title: Buildings doi: 10.3390/buildings7010010 – volume: 31 start-page: 973 year: 1995 ident: 10.1016/j.jtherbio.2022.103422_bib22 publication-title: Evaluation of Thermal Sensation by Using Facial Skin Temperature – volume: 201 year: 2021 ident: 10.1016/j.jtherbio.2022.103422_bib52 article-title: Effects of increased activity level on physiological and subjective responses at different high temperatures publication-title: Build. Environ. doi: 10.1016/j.buildenv.2021.108011 – volume: 110 year: 2022 ident: 10.1016/j.jtherbio.2022.103422_bib10 article-title: Reproducibility of skin temperature analyses by novice and experienced evaluators using infrared thermography publication-title: J. Therm. Biol. doi: 10.1016/j.jtherbio.2022.103345 – volume: 44 start-page: 2202 year: 2009 ident: 10.1016/j.jtherbio.2022.103422_bib68 article-title: Productivity model in hot and humid environment based on heat tolerance time analysis publication-title: Build. Environ. doi: 10.1016/j.buildenv.2009.01.003 – ident: 10.1016/j.jtherbio.2022.103422_bib34 – year: 2013 ident: 10.1016/j.jtherbio.2022.103422_bib3 article-title: F10 SI: indoor environmental health publication-title: ASHRAE Handb. Fundam. 2013 – volume: 49 year: 2022 ident: 10.1016/j.jtherbio.2022.103422_bib60 article-title: Recognition and prediction of individual thermal comfort requirement based on local skin temperature publication-title: J. Build. Eng. – volume: 210 start-page: 498 year: 2014 ident: 10.1016/j.jtherbio.2022.103422_bib45 article-title: Skin temperature: its role in thermoregulation publication-title: Acta Physiol. doi: 10.1111/apha.12231 – volume: 41 year: 1997 ident: 10.1016/j.jtherbio.2022.103422_bib8 article-title: Evaluation of mean skin temperature formulas by infrared thermography publication-title: Int. J. Biometeorol. doi: 10.1007/s004840050056 – volume: 98 year: 2021 ident: 10.1016/j.jtherbio.2022.103422_bib35 article-title: Influence of infrared camera model and evaluator reproducibility in the assessment of skin temperature responses to physical exercise publication-title: J. Therm. Biol. doi: 10.1016/j.jtherbio.2021.102913 – volume: 151 year: 2017 ident: 10.1016/j.jtherbio.2022.103422_bib29 article-title: Measurements and predictions of the skin temperature of human subjects on outdoor environment publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.07.009 – volume: 88 year: 2006 ident: 10.1016/j.jtherbio.2022.103422_bib57 article-title: Evaluation of wireless determination of skin temperature using iButtons publication-title: Physiol. Behav. – year: 2021 ident: 10.1016/j.jtherbio.2022.103422_bib44 – volume: 19 start-page: 161 year: 1997 ident: 10.1016/j.jtherbio.2022.103422_bib21 article-title: Using facial skin temperature to objectively evaluate sensations publication-title: Int. J. Ind. Ergon. doi: 10.1016/S0169-8141(96)00011-X – volume: 83 year: 1998 ident: 10.1016/j.jtherbio.2022.103422_bib49 article-title: Circadian and ultradian variations of leptin in normal man under continuous enteral nutrition: relationship to sleep and body temperature publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jcem.83.6.4864 – ident: 10.1016/j.jtherbio.2022.103422_bib18 – volume: 53 year: 2015 ident: 10.1016/j.jtherbio.2022.103422_bib50 article-title: Infrared thermal analysis and individual differences in skin temperature asymmetry in Rett syndrome publication-title: Pediatr. Neurol. doi: 10.1016/j.pediatrneurol.2015.03.018 – year: 2015 ident: 10.1016/j.jtherbio.2022.103422_bib24 article-title: Adaptive thermal comfort: foundations and analysis publication-title: Adaptive Thermal Comfort: Foundation. Anal. – ident: 10.1016/j.jtherbio.2022.103422_bib48 – volume: 37 start-page: 186 year: 2000 ident: 10.1016/j.jtherbio.2022.103422_bib28 article-title: Temperature asymmetry and behavior publication-title: Dev. Psychobiol. doi: 10.1002/1098-2302(200011)37:3<186::AID-DEV6>3.0.CO;2-G – volume: 10 year: 2017 ident: 10.1016/j.jtherbio.2022.103422_bib43 article-title: Effect of season on physiological, biochemical, hormonal, and oxidative stress parameters of indigenous sheep publication-title: Vet. World doi: 10.14202/vetworld.2017.650-654 – volume: 160 year: 2019 ident: 10.1016/j.jtherbio.2022.103422_bib9 article-title: Using the contrast within a single face heat map to assess personal thermal comfort publication-title: Build. Environ. doi: 10.1016/j.buildenv.2019.106163 – volume: 179 year: 2020 ident: 10.1016/j.jtherbio.2022.103422_bib23 article-title: Impact of short-term thermal experience on thermal sensation: a case study of Chongqing publication-title: China. Build. Environ. – volume: 206 year: 2021 ident: 10.1016/j.jtherbio.2022.103422_bib41 article-title: Clothing adjustment in outdoor environment: a new clothing model based on temperature change publication-title: Build. Environ. doi: 10.1016/j.buildenv.2021.108395 – volume: 139 year: 2004 ident: 10.1016/j.jtherbio.2022.103422_bib36 article-title: Seasonal changes in thermal responses of urban residents to cold exposure publication-title: Comp. Biochem. Physiol. Mol. Integr. Physiol. doi: 10.1016/j.cbpb.2004.09.006 – volume: 30 start-page: 285 year: 2020 ident: 10.1016/j.jtherbio.2022.103422_bib69 article-title: Changes in EEG signals during the cognitive activity at varying air temperature and relative humidity publication-title: J. Expo. Sci. Environ. Epidemiol. doi: 10.1038/s41370-019-0154-1 – volume: 160 year: 2019 ident: 10.1016/j.jtherbio.2022.103422_bib2 article-title: A comparative study of predicting individual thermal sensation and satisfaction using wrist-worn temperature sensor, thermal camera and ambient temperature sensor publication-title: Build. Environ. doi: 10.1016/j.buildenv.2019.106223 – year: 2004 ident: 10.1016/j.jtherbio.2022.103422_bib7 article-title: The revision of the Declaration of Helsinki: past, present and future publication-title: Br. J. Clin. Pharmacol. doi: 10.1111/j.1365-2125.2004.02103.x – volume: 16 year: 1961 ident: 10.1016/j.jtherbio.2022.103422_bib11 article-title: Seasonal acclimatization to cold in man publication-title: J. Appl. Physiol. – year: 2012 ident: 10.1016/j.jtherbio.2022.103422_bib20 – year: 2009 ident: 10.1016/j.jtherbio.2022.103422_bib4 article-title: F09 SI: thermal comfort publication-title: ASHRAE Handb. Fundam. 2009 – volume: 38 year: 1995 ident: 10.1016/j.jtherbio.2022.103422_bib25 article-title: Seasonal variation in physiological responses to mild cold air in young and older men publication-title: Int. J. Biometeorol. doi: 10.1007/BF01208489 – volume: 181 year: 2018 ident: 10.1016/j.jtherbio.2022.103422_bib59 article-title: The uncertainty of subjective thermal comfort measurement publication-title: Energy Build. doi: 10.1016/j.enbuild.2018.09.041 – ident: 10.1016/j.jtherbio.2022.103422_bib19 – volume: 88 year: 2015 ident: 10.1016/j.jtherbio.2022.103422_bib55 article-title: Effects of seasonal illumination and thermal environments on sleep in elderly men publication-title: Build. Environ. doi: 10.1016/j.buildenv.2014.10.001 – volume: 45 start-page: 29 year: 2010 ident: 10.1016/j.jtherbio.2022.103422_bib66 article-title: Comfort, perceived air quality, and work performance in a low-power task-ambient conditioning system publication-title: Build. Environ. doi: 10.1016/j.buildenv.2009.02.016 – volume: 73 year: 1967 ident: 10.1016/j.jtherbio.2022.103422_bib14 article-title: Calculation of thermal comfort: introduction of a basic comfort equation publication-title: Build. Eng. – volume: 49 year: 2022 ident: 10.1016/j.jtherbio.2022.103422_bib61 article-title: Recognition and prediction of individual thermal comfort requirement based on local skin temperature publication-title: J. Build. Eng. – volume: 44 start-page: 2089 year: 2009 ident: 10.1016/j.jtherbio.2022.103422_bib64 article-title: A theoretical adaptive model of thermal comfort - adaptive Predicted Mean Vote (aPMV) publication-title: Build. Environ. doi: 10.1016/j.buildenv.2009.02.014 – year: 2001 ident: 10.1016/j.jtherbio.2022.103422_bib42 article-title: Health in a 24-h society publication-title: Lancet doi: 10.1016/S0140-6736(01)06108-6 – year: 2006 ident: 10.1016/j.jtherbio.2022.103422_bib1 – volume: 29 start-page: 215 year: 2019 ident: 10.1016/j.jtherbio.2022.103422_bib12 article-title: Physiological and psychological reactions of sub-tropically acclimatized subjects exposed to different indoor temperatures at a relative humidity of 70 publication-title: Indoor Air doi: 10.1111/ina.12523 – volume: 33 start-page: 671 year: 1977 ident: 10.1016/j.jtherbio.2022.103422_bib30 article-title: A one-way components of variance model for categorical data published by : international biometric society stable publication-title: Biometrics doi: 10.2307/2529465 – volume: 24 start-page: 489 year: 2015 ident: 10.1016/j.jtherbio.2022.103422_bib32 article-title: Use of mean skin temperature in evaluation of individual thermal comfort for a person in a sleeping posture under steady thermal environment publication-title: Indoor Built Environ. doi: 10.1177/1420326X14527975 – year: 2006 ident: 10.1016/j.jtherbio.2022.103422_bib70 – volume: 186 year: 2019 ident: 10.1016/j.jtherbio.2022.103422_bib62 article-title: Adaptive thermal comfort in naturally ventilated dormitory buildings in Changsha, China publication-title: Energy Build. doi: 10.1016/j.enbuild.2019.01.029 – year: 2003 ident: 10.1016/j.jtherbio.2022.103422_bib39 – volume: 140 year: 2017 ident: 10.1016/j.jtherbio.2022.103422_bib31 article-title: Seasonal variation of thermal sensations in residential buildings in the Hot Summer and Cold Winter zone of China publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.01.066 – volume: 4 year: 2020 ident: 10.1016/j.jtherbio.2022.103422_bib15 article-title: Testing the cognitive reserve index questionnaire in an alzheimer's disease population publication-title: J. Alzheimer’s Dis. Reports – volume: 91 year: 1996 ident: 10.1016/j.jtherbio.2022.103422_bib63 article-title: Straightforward statistics for the behavioral sciences publication-title: J. Am. Stat. Assoc. doi: 10.2307/2291607 – start-page: 1 year: 2016 ident: 10.1016/j.jtherbio.2022.103422_bib27 article-title: Occupational exposure to heat and hot environments publication-title: US Dep. Heal. Hum. Serv. – volume: 310 start-page: R999 year: 2016 ident: 10.1016/j.jtherbio.2022.103422_bib65 article-title: Brown adipose tissue is involved in the seasonal variation of cold-induced thermogenesis in humans publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00057.2015 – volume: 45 start-page: 40 year: 2010 ident: 10.1016/j.jtherbio.2022.103422_bib51 article-title: Room air temperature affects occupants' physiology, perceptions and mental alertness publication-title: Build. Environ. doi: 10.1016/j.buildenv.2009.04.002 – volume: 83 start-page: 449 year: 2000 ident: 10.1016/j.jtherbio.2022.103422_bib16 article-title: Face temperature and cardiorespiratory responses to wind in thermoneutral and cool subjects exposed to −10 °C publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s004210000262 – volume: 71 year: 2000 ident: 10.1016/j.jtherbio.2022.103422_bib38 article-title: Brain temperature asymmetries and emotional perception in chimpanzees, Pan troglodytes publication-title: Physiol. Behav. doi: 10.1016/S0031-9384(00)00349-8 – volume: 212 year: 2020 ident: 10.1016/j.jtherbio.2022.103422_bib47 article-title: A seasonal approach to alliesthesia. Is there a conflict with thermal adaptation? publication-title: Energy Build. doi: 10.1016/j.enbuild.2019.109745 – start-page: 1 year: 2022 ident: 10.1016/j.jtherbio.2022.103422_bib54 |
SSID | ssj0015350 |
Score | 2.408192 |
Snippet | This study explored the facial skin temperature and thermal sensation of sub-tropically acclimated subjects in summer. We conducted a summer experiment that... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 103422 |
SubjectTerms | air temperature China East Asian People Face Facial skin temperature Humans nose relative humidity Seasonal effect Seasons sensation Skin Temperature summer Temperature distribution Thermal sensation Thermal sensitivity Thermosensing winter |
Title | Facial skin temperature and overall thermal sensation of sub-tropically acclimated Chinese subjects in summer |
URI | https://dx.doi.org/10.1016/j.jtherbio.2022.103422 https://www.ncbi.nlm.nih.gov/pubmed/36796884 https://www.proquest.com/docview/2778601210 https://www.proquest.com/docview/3242047061 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5FEbyIb-ujRPC6NibpbnIUsVRFLyp4C0k2gdV1W7rtoRd_u5l9FD0UD16XyTLkm02-ZOebQehCGOp5Skg4m0gZccshCSCJI64TK1kaS0dA7_z4FI9e-f3b4K2DblotDKRVNmt_vaZXq3XzpN_MZn-SZf1nYLvARyity6CDgp0nEOWXX8s0j_BBV11awTgC6x8q4ffA_cLEmAxEgJSC_pxTumqDWkVAq41ouI22GgaJr2snd1DHFbtoo-4pudhDn0MNt-C4_MgKDIWnmqrJWBcphnxNnecYHPoEo3CIraDBY4_LuYlm0_EEYMsXWFubZ4HPuhRDk21XOrCAa5sSh1dDBLvpPnod3r7cjKKmp0Jkw0lqFnnBuJZEWuquNGdEWKe190w7UHPEjFBjNI-9lpr5WAjjE5pKagn3NBBxzw7QWjEu3BHCjhhNDDNWcsNjdmUcTUXgTwNDuXXCd9GgnUhlm4Lj0PciV21m2btqAVAAgKoB6KL-ctykLrnx5wjZ4qR-BY8K-8KfY89bYFX4suB3iS7ceF4qCqX1oOQdWW0DdJTwJJCiLjqso2LpM4MrOiH48T-8O0Gb0N--ThM_RWuz6dydBRY0M70qzHto_fruYfT0DVi1CAg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6xRWj3gmDZR1keXolrVGM7qX1EaKvy6gWQuFm2Y0uBkFZNe-Dfr6dJquVQcdhrNBONPGP7sz3zDcCZtCyInNJ4NlEqEU5gEsAwS4QZOsXzTHmK9c53k2z8KK6f0qctuOxqYTCtsl37mzV9tVq3XwbtaA5mRTG4R7SLeISxhgb9E2wjO1Xag-2Lq5vxZP2YkPJVo1aUT1Dhn0Lh5wj_4tjYAusAGcMSdMHYpj1qEwZd7UWjPdhtQSS5aOzchy1ffYWdpq3k2wG8jgxehJP6pagIck-1xMnEVDnBlE1TlgQNekWheI5deYdMA6mXNlnMpzP0XPlGjHNlESGtzwn22fa1Rwm8ualJ_DUGsZ9_g8fRn4fLcdK2VUhcPEwtkiC5MIoqx_y5EZxK540JgRuPBR0Zp8xaI7JglOEhk9KGIcsVc1QEFrF44N-hV00r_xOIp9ZQy61TwoqMn1vPchkhVGqZcF6GPqTdQGrXco5j64tSd8llz7pzgEYH6MYBfRis9WYN68aHGqrzk34XPzpuDR_q_u4cq-PkwhcTU_npstYM2fWQ9Y5ulkFESsUw4qI-_GiiYm0zx1s6KcXhf1h3Cp_HD3e3-vZqcvMLvmC7-yZr_Ah6i_nSH0dQtLAnbdD_BVdrCrk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facial+skin+temperature+and+overall+thermal+sensation+of+sub-tropically+acclimated+Chinese+subjects+in+summer&rft.jtitle=Journal+of+thermal+biology&rft.au=Tian%2C+Xiaoyu&rft.au=Xu%2C+Runpu&rft.au=Liu%2C+Weiwei&rft.date=2023-02-01&rft.issn=0306-4565&rft.volume=112+p.103422-&rft_id=info:doi/10.1016%2Fj.jtherbio.2022.103422&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4565&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4565&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4565&client=summon |