Error estimates for Gaussian quadratures of analytic functions
For analytic functions the remainder term of Gaussian quadrature formula and its Kronrod extension can be represented as a contour integral with a complex kernel. We study these kernels on elliptic contours with foci at the points ±1 and the sum of semi-axes ϱ > 1 for the Chebyshev weight functio...
Saved in:
Published in | Journal of computational and applied mathematics Vol. 233; no. 3; pp. 802 - 807 |
---|---|
Main Authors | , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Kidlington
Elsevier B.V
01.12.2009
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For analytic functions the remainder term of Gaussian quadrature formula and its Kronrod extension can be represented as a contour integral with a complex kernel. We study these kernels on elliptic contours with foci at the points ±1 and the sum of semi-axes
ϱ
>
1
for the Chebyshev weight functions of the first, second and third kind, and derive representation of their difference. Using this representation and following Kronrod’s method of obtaining a practical error estimate in numerical integration, we derive new error estimates for Gaussian quadratures. |
---|---|
AbstractList | For analytic functions the remainder term of Gaussian quadrature formula and its Kronrod extension can be represented as a contour integral with a complex kernel. We study these kernels on elliptic contours with foci at the points +/-1 and the sum of semi-axes r > 1 for the Chebyshev weight functions of the first, second and third kind, and derive representation of their difference. Using this representation and following Kronrod's method of obtaining a practical error estimate in numerical integration, we derive new error estimates for Gaussian quadratures. For analytic functions the remainder term of Gaussian quadrature formula and its Kronrod extension can be represented as a contour integral with a complex kernel. We study these kernels on elliptic contours with foci at the points ±1 and the sum of semi-axes ϱ > 1 for the Chebyshev weight functions of the first, second and third kind, and derive representation of their difference. Using this representation and following Kronrod’s method of obtaining a practical error estimate in numerical integration, we derive new error estimates for Gaussian quadratures. |
Author | Milovanović, Gradimir V. Spalević, Miodrag M. Pranić, Miroslav S. |
Author_xml | – sequence: 1 givenname: Gradimir V surname: MILOVANOVIC fullname: MILOVANOVIC, Gradimir V organization: Department of Mathematics, University of Niš, Faculty of Electronic Engineering, P. O. Box 73, 18000 Niš, Serbia – sequence: 2 givenname: Miodrag M surname: SPALEVIC fullname: SPALEVIC, Miodrag M organization: Department of Mathematics, University of Belgrade, Faculty of Mechanical Engineering, Kraljice Marije 16, 11000 Belgrade, Serbia – sequence: 3 givenname: Miroslav S surname: PRANIC fullname: PRANIC, Miroslav S organization: Department of Mathematics and Informatics, University of Banja Luka, Faculty of Science, M. Stojanovića 2, 51000 Banja Luka, Bosnia and Herzegovina |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22157647$$DView record in Pascal Francis |
BookMark | eNp9kE9LxDAQxYMouK5-AG-96K11kqZNiyDI4j9Y8KLnECYTyNJN16QV9tubZcWjp2GY92bm_S7YaRgDMXbNoeLA27tNhWZbCYC-AlGB7E7YgneqL7lS3SlbQK1UCVKoc3aR0gYA2p7LBXt4inGMBaXJb81EqXC5ezFzSt6E4ms2NpppjnkwusIEM-wnj4WbA05-DOmSnTkzJLr6rUv2-fz0sXot1-8vb6vHdYkS-FQ6JaS0XPa8cdiRQdE53vRKoSULZHnboXCWehJN19XQcASJaHsDtpXS1Ut2e9y7i-PXnL_VW5-QhsEEGueka6l6CbLOQn4UYhxTiuT0LuZkca856AMpvdGZlD6Q0iB0JpU9N7_LTUIzuGgC-vRnFII3qpUq6-6POspJvz1FndBTQLI-Ek7ajv6fKz_6aoAx |
CODEN | JCAMDI |
CitedBy_id | crossref_primary_10_1007_s11075_012_9582_x crossref_primary_10_1007_s13398_013_0129_3 crossref_primary_10_1002_mma_2929 |
Cites_doi | 10.1007/BF01732979 10.1137/0727015 10.1137/0720087 |
ContentType | Journal Article Conference Proceeding |
Copyright | 2009 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2009 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | 6I. AAFTH IQODW AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.cam.2009.02.048 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access Pascal-Francis CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1879-1778 |
EndPage | 807 |
ExternalDocumentID | 10_1016_j_cam_2009_02_048 22157647 S0377042709001289 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABTAH ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A NCXOZ NHB O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 UPT WUQ XPP YQT ZMT ZY4 ~02 ~G- 08R ABPIF IQODW 0SF AAXKI AAYXX ADVLN AFJKZ AKRWK CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c401t-f7244d14915fc8eac28f15977cded0ed168c2fde9e25883051c04ccd9a0d644f3 |
IEDL.DBID | ABVKL |
ISSN | 0377-0427 |
IngestDate | Fri Oct 25 11:18:33 EDT 2024 Thu Sep 26 17:39:27 EDT 2024 Sun Oct 22 16:08:08 EDT 2023 Fri Feb 23 02:27:52 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | secondary Remainder term for analytic functions Chebyshev weight function Gaussian quadrature formula Error bound Contour integral representation primary Numerical integration Error estimation Numerical approximation primary 65D30 Numerical analysis Cubature Applied mathematics secondary 41A55 Weight function 65D32 Quadrature formula Integral representation Analytical function |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MeetingName | Special Issue: 9th OPSFA Conference |
MergedId | FETCHMERGED-LOGICAL-c401t-f7244d14915fc8eac28f15977cded0ed168c2fde9e25883051c04ccd9a0d644f3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0377042709001289 |
PQID | 34794043 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_34794043 crossref_primary_10_1016_j_cam_2009_02_048 pascalfrancis_primary_22157647 elsevier_sciencedirect_doi_10_1016_j_cam_2009_02_048 |
PublicationCentury | 2000 |
PublicationDate | 2009-12-01 |
PublicationDateYYYYMMDD | 2009-12-01 |
PublicationDate_xml | – month: 12 year: 2009 text: 2009-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Journal of computational and applied mathematics |
PublicationYear | 2009 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Hunter (b2) 1995; 35 Gautschi (b5) 2004 Gautschi, Tychopoulos, Varga (b4) 1990; 27 Monegato (b3) 1979; vol. 45 Gautschi, Varga (b1) 1983; 20 Gautschi (10.1016/j.cam.2009.02.048_b4) 1990; 27 Gautschi (10.1016/j.cam.2009.02.048_b5) 2004 Gautschi (10.1016/j.cam.2009.02.048_b1) 1983; 20 Hunter (10.1016/j.cam.2009.02.048_b2) 1995; 35 Monegato (10.1016/j.cam.2009.02.048_b3) 1979; vol. 45 |
References_xml | – volume: vol. 45 start-page: 231 year: 1979 end-page: 240 ident: b3 article-title: An overview of results and questions related to Kronrod schemes publication-title: Numerische Integration contributor: fullname: Monegato – volume: 27 start-page: 219 year: 1990 end-page: 224 ident: b4 article-title: A note on the contour integral representation of the remainder term for a Gauss–Chebyshev quadrature rule publication-title: SIAM J. Numer. Anal. contributor: fullname: Varga – volume: 35 start-page: 64 year: 1995 end-page: 82 ident: b2 article-title: Some error expansions for Gaussian quadrature publication-title: BIT contributor: fullname: Hunter – volume: 20 start-page: 1170 year: 1983 end-page: 1186 ident: b1 article-title: Error bounds for Gaussian quadrature of analytic functions publication-title: SIAM J. Numer. Anal. contributor: fullname: Varga – year: 2004 ident: b5 article-title: Orthogonal polynomials: Computation and approximation publication-title: Numerical Mathematics and Scientific Computation contributor: fullname: Gautschi – year: 2004 ident: 10.1016/j.cam.2009.02.048_b5 article-title: Orthogonal polynomials: Computation and approximation contributor: fullname: Gautschi – volume: 35 start-page: 64 year: 1995 ident: 10.1016/j.cam.2009.02.048_b2 article-title: Some error expansions for Gaussian quadrature publication-title: BIT doi: 10.1007/BF01732979 contributor: fullname: Hunter – volume: 27 start-page: 219 year: 1990 ident: 10.1016/j.cam.2009.02.048_b4 article-title: A note on the contour integral representation of the remainder term for a Gauss–Chebyshev quadrature rule publication-title: SIAM J. Numer. Anal. doi: 10.1137/0727015 contributor: fullname: Gautschi – volume: 20 start-page: 1170 year: 1983 ident: 10.1016/j.cam.2009.02.048_b1 article-title: Error bounds for Gaussian quadrature of analytic functions publication-title: SIAM J. Numer. Anal. doi: 10.1137/0720087 contributor: fullname: Gautschi – volume: vol. 45 start-page: 231 year: 1979 ident: 10.1016/j.cam.2009.02.048_b3 article-title: An overview of results and questions related to Kronrod schemes contributor: fullname: Monegato |
SSID | ssj0006914 |
Score | 2.0046575 |
Snippet | For analytic functions the remainder term of Gaussian quadrature formula and its Kronrod extension can be represented as a contour integral with a complex... |
SourceID | proquest crossref pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 802 |
SubjectTerms | Approximations and expansions Chebyshev weight function Contour integral representation Error bound Exact sciences and technology Functions of a complex variable Gaussian quadrature formula Mathematical analysis Mathematics Measure and integration Numerical analysis Numerical analysis. Scientific computation Numerical approximation Remainder term for analytic functions Sciences and techniques of general use |
Title | Error estimates for Gaussian quadratures of analytic functions |
URI | https://dx.doi.org/10.1016/j.cam.2009.02.048 https://search.proquest.com/docview/34794043 |
Volume | 233 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyNBEC58XFxEVt3FqBv7sCdhTHdnMjN9ETSoUdd48EHYS9PpByiYxExy9bdbNY-AKHvY0zDNND183V0PquorgN_KDZ1pOx6h84AOCqoo4oB06KpkTvJOUF5QcfJNP-k9xFeDzmAJunUtDKVVVrK_lOmFtK5GWhWarcnTU-uOt9OUOkVwVcSD1DKsSrR-8Xaunpw-Xv9ZCORElRTf-H1EE-rgZpHmZc1LxVopjzh1AfpaPa1PTI6ghbLbxSfBXWij8--wUZmR7KT8001Y8qMt-Haz4GDNt-H4bDodTxmxaLyQQcnQPGUXZp5T2SR7nRtX0innbByYIW4SnMdIzxVH8Qc8nJ_dd3tR1S0hsgjzLAopamqHDo-gtCyUpzILgtjlrPOOeyeSzMrgvPKyk2V4zYXlsbVOGe7QKArtn7AyGo_8DjDpXBBGDa3kIRbSKj9MTdsmQhjD08AbcFiDpCclKYaus8WeNSJKzS2V5lIjog2Iaxj1h53VKLT_Na35AfLFQhKNlDSJ0wYc1Hug8UpQnMOM_HieayqOJdKg3f9beQ_WZNUkgot9WJlN5_4XWh6zYROWj95Eszpf9Ly87vVx9HJwim_97uD27ztnY9xQ |
link.rule.ids | 310,311,315,783,787,792,793,3513,4509,23942,23943,24128,25152,27581,27936,27937,45597,45675,45691,45886 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB58HFREfGJ95uBJWJuk293NRRBR66NeVPAW0jyggm3ttld_uzP7UETx4HVJyPIlmfmGzHwDcKRcz5mW4xEGDxigoIsiDUiHoUrmJG8H5QUVJ3fvk85TfPPcfp6B87oWhtIqK9tf2vTCWldfmhWazVG_33zgrTSlThFcFe9BahbmY-LHeKhP3r_yPBJVCnzj6IiG10-bRZKXNa-VZqU84dQD6HfntDwyOUIWyl4XP8x24YsuV2GlIpHsrPzPNZjxg3VY6n4qsOYbcHoxHg_HjDQ0XolOMiSn7MpMcyqaZG9T40ox5ZwNAzOkTILzGHm54iBuwtPlxeN5J6p6JUQWQZ5EIUU_7TDcEZSUhdZUZkGQtpx13nHvRJJZGZxXXrazDC-5sDy21inDHVKi0NqCucFw4LeBSeeCMKpnJQ-xkFb5XmpaNhHCGJ4G3oDjGiQ9KiUxdJ0r9qIRUWptqTSXGhFtQFzDqL_tq0aT_de0g2-Qfy4kkaKkSZw24LDeA40Xgl45zMAPp7mm0liSDNr538qHsNB57N7pu-v7211YlFW7CC72YG4ynvp95CCT3kFxxj4AgkzY0g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Journal+of+computational+and+applied+mathematics&rft.atitle=Error+estimates+for+Gaussian+quadratures+of+analytic+functions&rft.au=MILOVANOVIC%2C+Gradimir+V&rft.au=SPALEVIC%2C+Miodrag+M&rft.au=PRANIC%2C+Miroslav+S&rft.date=2009-12-01&rft.pub=Elsevier&rft.issn=0377-0427&rft.eissn=1879-1778&rft.volume=233&rft.issue=3&rft.spage=802&rft.epage=807&rft_id=info:doi/10.1016%2Fj.cam.2009.02.048&rft.externalDBID=n%2Fa&rft.externalDocID=22157647 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon |