Error estimates for Gaussian quadratures of analytic functions

For analytic functions the remainder term of Gaussian quadrature formula and its Kronrod extension can be represented as a contour integral with a complex kernel. We study these kernels on elliptic contours with foci at the points ±1 and the sum of semi-axes ϱ > 1 for the Chebyshev weight functio...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and applied mathematics Vol. 233; no. 3; pp. 802 - 807
Main Authors MILOVANOVIC, Gradimir V, SPALEVIC, Miodrag M, PRANIC, Miroslav S
Format Journal Article Conference Proceeding
LanguageEnglish
Published Kidlington Elsevier B.V 01.12.2009
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For analytic functions the remainder term of Gaussian quadrature formula and its Kronrod extension can be represented as a contour integral with a complex kernel. We study these kernels on elliptic contours with foci at the points ±1 and the sum of semi-axes ϱ > 1 for the Chebyshev weight functions of the first, second and third kind, and derive representation of their difference. Using this representation and following Kronrod’s method of obtaining a practical error estimate in numerical integration, we derive new error estimates for Gaussian quadratures.
AbstractList For analytic functions the remainder term of Gaussian quadrature formula and its Kronrod extension can be represented as a contour integral with a complex kernel. We study these kernels on elliptic contours with foci at the points +/-1 and the sum of semi-axes r > 1 for the Chebyshev weight functions of the first, second and third kind, and derive representation of their difference. Using this representation and following Kronrod's method of obtaining a practical error estimate in numerical integration, we derive new error estimates for Gaussian quadratures.
For analytic functions the remainder term of Gaussian quadrature formula and its Kronrod extension can be represented as a contour integral with a complex kernel. We study these kernels on elliptic contours with foci at the points ±1 and the sum of semi-axes ϱ > 1 for the Chebyshev weight functions of the first, second and third kind, and derive representation of their difference. Using this representation and following Kronrod’s method of obtaining a practical error estimate in numerical integration, we derive new error estimates for Gaussian quadratures.
Author Milovanović, Gradimir V.
Spalević, Miodrag M.
Pranić, Miroslav S.
Author_xml – sequence: 1
  givenname: Gradimir V
  surname: MILOVANOVIC
  fullname: MILOVANOVIC, Gradimir V
  organization: Department of Mathematics, University of Niš, Faculty of Electronic Engineering, P. O. Box 73, 18000 Niš, Serbia
– sequence: 2
  givenname: Miodrag M
  surname: SPALEVIC
  fullname: SPALEVIC, Miodrag M
  organization: Department of Mathematics, University of Belgrade, Faculty of Mechanical Engineering, Kraljice Marije 16, 11000 Belgrade, Serbia
– sequence: 3
  givenname: Miroslav S
  surname: PRANIC
  fullname: PRANIC, Miroslav S
  organization: Department of Mathematics and Informatics, University of Banja Luka, Faculty of Science, M. Stojanovića 2, 51000 Banja Luka, Bosnia and Herzegovina
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22157647$$DView record in Pascal Francis
BookMark eNp9kE9LxDAQxYMouK5-AG-96K11kqZNiyDI4j9Y8KLnECYTyNJN16QV9tubZcWjp2GY92bm_S7YaRgDMXbNoeLA27tNhWZbCYC-AlGB7E7YgneqL7lS3SlbQK1UCVKoc3aR0gYA2p7LBXt4inGMBaXJb81EqXC5ezFzSt6E4ms2NpppjnkwusIEM-wnj4WbA05-DOmSnTkzJLr6rUv2-fz0sXot1-8vb6vHdYkS-FQ6JaS0XPa8cdiRQdE53vRKoSULZHnboXCWehJN19XQcASJaHsDtpXS1Ut2e9y7i-PXnL_VW5-QhsEEGueka6l6CbLOQn4UYhxTiuT0LuZkca856AMpvdGZlD6Q0iB0JpU9N7_LTUIzuGgC-vRnFII3qpUq6-6POspJvz1FndBTQLI-Ek7ajv6fKz_6aoAx
CODEN JCAMDI
CitedBy_id crossref_primary_10_1007_s11075_012_9582_x
crossref_primary_10_1007_s13398_013_0129_3
crossref_primary_10_1002_mma_2929
Cites_doi 10.1007/BF01732979
10.1137/0727015
10.1137/0720087
ContentType Journal Article
Conference Proceeding
Copyright 2009 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2009 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID 6I.
AAFTH
IQODW
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cam.2009.02.048
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
Pascal-Francis
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-1778
EndPage 807
ExternalDocumentID 10_1016_j_cam_2009_02_048
22157647
S0377042709001289
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
NHB
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
WUQ
XPP
YQT
ZMT
ZY4
~02
~G-
08R
ABPIF
IQODW
0SF
AAXKI
AAYXX
ADVLN
AFJKZ
AKRWK
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c401t-f7244d14915fc8eac28f15977cded0ed168c2fde9e25883051c04ccd9a0d644f3
IEDL.DBID ABVKL
ISSN 0377-0427
IngestDate Fri Oct 25 11:18:33 EDT 2024
Thu Sep 26 17:39:27 EDT 2024
Sun Oct 22 16:08:08 EDT 2023
Fri Feb 23 02:27:52 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords secondary
Remainder term for analytic functions
Chebyshev weight function
Gaussian quadrature formula
Error bound
Contour integral representation
primary
Numerical integration
Error estimation
Numerical approximation
primary 65D30
Numerical analysis
Cubature
Applied mathematics
secondary 41A55
Weight function
65D32
Quadrature formula
Integral representation
Analytical function
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MeetingName Special Issue: 9th OPSFA Conference
MergedId FETCHMERGED-LOGICAL-c401t-f7244d14915fc8eac28f15977cded0ed168c2fde9e25883051c04ccd9a0d644f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0377042709001289
PQID 34794043
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_34794043
crossref_primary_10_1016_j_cam_2009_02_048
pascalfrancis_primary_22157647
elsevier_sciencedirect_doi_10_1016_j_cam_2009_02_048
PublicationCentury 2000
PublicationDate 2009-12-01
PublicationDateYYYYMMDD 2009-12-01
PublicationDate_xml – month: 12
  year: 2009
  text: 2009-12-01
  day: 01
PublicationDecade 2000
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2009
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Hunter (b2) 1995; 35
Gautschi (b5) 2004
Gautschi, Tychopoulos, Varga (b4) 1990; 27
Monegato (b3) 1979; vol. 45
Gautschi, Varga (b1) 1983; 20
Gautschi (10.1016/j.cam.2009.02.048_b4) 1990; 27
Gautschi (10.1016/j.cam.2009.02.048_b5) 2004
Gautschi (10.1016/j.cam.2009.02.048_b1) 1983; 20
Hunter (10.1016/j.cam.2009.02.048_b2) 1995; 35
Monegato (10.1016/j.cam.2009.02.048_b3) 1979; vol. 45
References_xml – volume: vol. 45
  start-page: 231
  year: 1979
  end-page: 240
  ident: b3
  article-title: An overview of results and questions related to Kronrod schemes
  publication-title: Numerische Integration
  contributor:
    fullname: Monegato
– volume: 27
  start-page: 219
  year: 1990
  end-page: 224
  ident: b4
  article-title: A note on the contour integral representation of the remainder term for a Gauss–Chebyshev quadrature rule
  publication-title: SIAM J. Numer. Anal.
  contributor:
    fullname: Varga
– volume: 35
  start-page: 64
  year: 1995
  end-page: 82
  ident: b2
  article-title: Some error expansions for Gaussian quadrature
  publication-title: BIT
  contributor:
    fullname: Hunter
– volume: 20
  start-page: 1170
  year: 1983
  end-page: 1186
  ident: b1
  article-title: Error bounds for Gaussian quadrature of analytic functions
  publication-title: SIAM J. Numer. Anal.
  contributor:
    fullname: Varga
– year: 2004
  ident: b5
  article-title: Orthogonal polynomials: Computation and approximation
  publication-title: Numerical Mathematics and Scientific Computation
  contributor:
    fullname: Gautschi
– year: 2004
  ident: 10.1016/j.cam.2009.02.048_b5
  article-title: Orthogonal polynomials: Computation and approximation
  contributor:
    fullname: Gautschi
– volume: 35
  start-page: 64
  year: 1995
  ident: 10.1016/j.cam.2009.02.048_b2
  article-title: Some error expansions for Gaussian quadrature
  publication-title: BIT
  doi: 10.1007/BF01732979
  contributor:
    fullname: Hunter
– volume: 27
  start-page: 219
  year: 1990
  ident: 10.1016/j.cam.2009.02.048_b4
  article-title: A note on the contour integral representation of the remainder term for a Gauss–Chebyshev quadrature rule
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0727015
  contributor:
    fullname: Gautschi
– volume: 20
  start-page: 1170
  year: 1983
  ident: 10.1016/j.cam.2009.02.048_b1
  article-title: Error bounds for Gaussian quadrature of analytic functions
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0720087
  contributor:
    fullname: Gautschi
– volume: vol. 45
  start-page: 231
  year: 1979
  ident: 10.1016/j.cam.2009.02.048_b3
  article-title: An overview of results and questions related to Kronrod schemes
  contributor:
    fullname: Monegato
SSID ssj0006914
Score 2.0046575
Snippet For analytic functions the remainder term of Gaussian quadrature formula and its Kronrod extension can be represented as a contour integral with a complex...
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 802
SubjectTerms Approximations and expansions
Chebyshev weight function
Contour integral representation
Error bound
Exact sciences and technology
Functions of a complex variable
Gaussian quadrature formula
Mathematical analysis
Mathematics
Measure and integration
Numerical analysis
Numerical analysis. Scientific computation
Numerical approximation
Remainder term for analytic functions
Sciences and techniques of general use
Title Error estimates for Gaussian quadratures of analytic functions
URI https://dx.doi.org/10.1016/j.cam.2009.02.048
https://search.proquest.com/docview/34794043
Volume 233
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyNBEC58XFxEVt3FqBv7sCdhTHdnMjN9ETSoUdd48EHYS9PpByiYxExy9bdbNY-AKHvY0zDNND183V0PquorgN_KDZ1pOx6h84AOCqoo4oB06KpkTvJOUF5QcfJNP-k9xFeDzmAJunUtDKVVVrK_lOmFtK5GWhWarcnTU-uOt9OUOkVwVcSD1DKsSrR-8Xaunpw-Xv9ZCORElRTf-H1EE-rgZpHmZc1LxVopjzh1AfpaPa1PTI6ghbLbxSfBXWij8--wUZmR7KT8001Y8qMt-Haz4GDNt-H4bDodTxmxaLyQQcnQPGUXZp5T2SR7nRtX0innbByYIW4SnMdIzxVH8Qc8nJ_dd3tR1S0hsgjzLAopamqHDo-gtCyUpzILgtjlrPOOeyeSzMrgvPKyk2V4zYXlsbVOGe7QKArtn7AyGo_8DjDpXBBGDa3kIRbSKj9MTdsmQhjD08AbcFiDpCclKYaus8WeNSJKzS2V5lIjog2Iaxj1h53VKLT_Na35AfLFQhKNlDSJ0wYc1Hug8UpQnMOM_HieayqOJdKg3f9beQ_WZNUkgot9WJlN5_4XWh6zYROWj95Eszpf9Ly87vVx9HJwim_97uD27ztnY9xQ
link.rule.ids 310,311,315,783,787,792,793,3513,4509,23942,23943,24128,25152,27581,27936,27937,45597,45675,45691,45886
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB58HFREfGJ95uBJWJuk293NRRBR66NeVPAW0jyggm3ttld_uzP7UETx4HVJyPIlmfmGzHwDcKRcz5mW4xEGDxigoIsiDUiHoUrmJG8H5QUVJ3fvk85TfPPcfp6B87oWhtIqK9tf2vTCWldfmhWazVG_33zgrTSlThFcFe9BahbmY-LHeKhP3r_yPBJVCnzj6IiG10-bRZKXNa-VZqU84dQD6HfntDwyOUIWyl4XP8x24YsuV2GlIpHsrPzPNZjxg3VY6n4qsOYbcHoxHg_HjDQ0XolOMiSn7MpMcyqaZG9T40ox5ZwNAzOkTILzGHm54iBuwtPlxeN5J6p6JUQWQZ5EIUU_7TDcEZSUhdZUZkGQtpx13nHvRJJZGZxXXrazDC-5sDy21inDHVKi0NqCucFw4LeBSeeCMKpnJQ-xkFb5XmpaNhHCGJ4G3oDjGiQ9KiUxdJ0r9qIRUWptqTSXGhFtQFzDqL_tq0aT_de0g2-Qfy4kkaKkSZw24LDeA40Xgl45zMAPp7mm0liSDNr538qHsNB57N7pu-v7211YlFW7CC72YG4ynvp95CCT3kFxxj4AgkzY0g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Journal+of+computational+and+applied+mathematics&rft.atitle=Error+estimates+for+Gaussian+quadratures+of+analytic+functions&rft.au=MILOVANOVIC%2C+Gradimir+V&rft.au=SPALEVIC%2C+Miodrag+M&rft.au=PRANIC%2C+Miroslav+S&rft.date=2009-12-01&rft.pub=Elsevier&rft.issn=0377-0427&rft.eissn=1879-1778&rft.volume=233&rft.issue=3&rft.spage=802&rft.epage=807&rft_id=info:doi/10.1016%2Fj.cam.2009.02.048&rft.externalDBID=n%2Fa&rft.externalDocID=22157647
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon