Wood-derived biochar as thick electrodes for high-rate performance supercapacitors
Developing effective electrodes with commercial-level active mass-loading (> 10 mg cm −2 ) is vital for the practical application of supercapacitors. However, high active mass-loading usually requires thick active mass layer, which severely hinders the ion/electron transport and results in poor c...
Saved in:
Published in | Biochar (Online) Vol. 4; no. 1; pp. 1 - 19 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.12.2022
Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing effective electrodes with commercial-level active mass-loading (> 10 mg cm
−2
) is vital for the practical application of supercapacitors. However, high active mass-loading usually requires thick active mass layer, which severely hinders the ion/electron transport and results in poor capacitive performance. Herein, a self-standing biochar electrode with active mass-loading of ca. 40 mg cm
−2
and thickness of 800 µm has been developed from basswood. The basswood was treated with formamide to incorporate N/O in the carbon structure, followed by mild KOH activation to ameliorate the pore size and introduce more O species in the carbon matrix. The as-prepared carbon monoliths possess well conductive carbon skeleton, abundant N/O dopant and 3D porous structure, which are favorable for the ion/electron transport and promoting capacitance performance. The self-standing carbon electrode not only exhibits the maximum areal/mass/volumetric specific capacitance of 5037.5 mF cm
−2
/172.5 F g
−1
/63.0 F cm
−3
at 2 mA cm
−2
(0.05 A g
−1
), but also displays excellent rate performance with 76% capacitance retention at 500 mA cm
−2
(12.5 A g
−1
) in a symmetric supercapacitor, surpassing the state-of-art biomass-based thick carbon electrode. The assembled model can power typical electron devices including a fan, a digital watch and a logo made up of 34 light-emitting diodes for a proper period, revealing its practical application potential. This study not only puts forward a commercial-level high active mass-loading electrode from biomass for supercapacitor, but also bridges the gap between the experimental research and practical application.
Graphical abstract
Article Highlights
Basswood-derived free-standing thick carbon electrodes were developed for supercapacitors.
The capacitance performance was enhanced by pre-oxidation, solvothermal treatment and KOH activation.
Supercapacitors assembled from the optimized electrode exhibited good rate performance and stability. |
---|---|
AbstractList | Developing effective electrodes with commercial-level active mass-loading (> 10 mg cm
−2
) is vital for the practical application of supercapacitors. However, high active mass-loading usually requires thick active mass layer, which severely hinders the ion/electron transport and results in poor capacitive performance. Herein, a self-standing biochar electrode with active mass-loading of ca. 40 mg cm
−2
and thickness of 800 µm has been developed from basswood. The basswood was treated with formamide to incorporate N/O in the carbon structure, followed by mild KOH activation to ameliorate the pore size and introduce more O species in the carbon matrix. The as-prepared carbon monoliths possess well conductive carbon skeleton, abundant N/O dopant and 3D porous structure, which are favorable for the ion/electron transport and promoting capacitance performance. The self-standing carbon electrode not only exhibits the maximum areal/mass/volumetric specific capacitance of 5037.5 mF cm
−2
/172.5 F g
−1
/63.0 F cm
−3
at 2 mA cm
−2
(0.05 A g
−1
), but also displays excellent rate performance with 76% capacitance retention at 500 mA cm
−2
(12.5 A g
−1
) in a symmetric supercapacitor, surpassing the state-of-art biomass-based thick carbon electrode. The assembled model can power typical electron devices including a fan, a digital watch and a logo made up of 34 light-emitting diodes for a proper period, revealing its practical application potential. This study not only puts forward a commercial-level high active mass-loading electrode from biomass for supercapacitor, but also bridges the gap between the experimental research and practical application.
Graphical abstract
Article Highlights
Basswood-derived free-standing thick carbon electrodes were developed for supercapacitors.
The capacitance performance was enhanced by pre-oxidation, solvothermal treatment and KOH activation.
Supercapacitors assembled from the optimized electrode exhibited good rate performance and stability. Developing effective electrodes with commercial-level active mass-loading (> 10 mg cm −2 ) is vital for the practical application of supercapacitors. However, high active mass-loading usually requires thick active mass layer, which severely hinders the ion/electron transport and results in poor capacitive performance. Herein, a self-standing biochar electrode with active mass-loading of ca. 40 mg cm −2 and thickness of 800 µm has been developed from basswood. The basswood was treated with formamide to incorporate N/O in the carbon structure, followed by mild KOH activation to ameliorate the pore size and introduce more O species in the carbon matrix. The as-prepared carbon monoliths possess well conductive carbon skeleton, abundant N/O dopant and 3D porous structure, which are favorable for the ion/electron transport and promoting capacitance performance. The self-standing carbon electrode not only exhibits the maximum areal/mass/volumetric specific capacitance of 5037.5 mF cm −2 /172.5 F g −1 /63.0 F cm −3 at 2 mA cm −2 (0.05 A g −1 ), but also displays excellent rate performance with 76% capacitance retention at 500 mA cm −2 (12.5 A g −1 ) in a symmetric supercapacitor, surpassing the state-of-art biomass-based thick carbon electrode. The assembled model can power typical electron devices including a fan, a digital watch and a logo made up of 34 light-emitting diodes for a proper period, revealing its practical application potential. This study not only puts forward a commercial-level high active mass-loading electrode from biomass for supercapacitor, but also bridges the gap between the experimental research and practical application. Graphical abstract Article Highlights Basswood-derived free-standing thick carbon electrodes were developed for supercapacitors. The capacitance performance was enhanced by pre-oxidation, solvothermal treatment and KOH activation. Supercapacitors assembled from the optimized electrode exhibited good rate performance and stability. |
ArticleNumber | 50 |
Author | Zheng, Jiaojiao Chen, Wei Du, Cheng Yang, Weisen Feng, Li Jian, Shaoju Jiang, Shaohua Yan, Bing Wu, Yimin A. He, Shuijian |
Author_xml | – sequence: 1 givenname: Bing surname: Yan fullname: Yan, Bing organization: International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University – sequence: 2 givenname: Jiaojiao surname: Zheng fullname: Zheng, Jiaojiao organization: International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University – sequence: 3 givenname: Li surname: Feng fullname: Feng, Li organization: International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University – sequence: 4 givenname: Cheng surname: Du fullname: Du, Cheng organization: State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Department of Mechanical and Mechatronics Engineering Waterloo Institute of Nanotechnology, University of Waterloo – sequence: 5 givenname: Shaoju surname: Jian fullname: Jian, Shaoju organization: Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University – sequence: 6 givenname: Weisen surname: Yang fullname: Yang, Weisen organization: Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University – sequence: 7 givenname: Yimin A. surname: Wu fullname: Wu, Yimin A. email: yimin.wu@uwaterloo.ca organization: Department of Mechanical and Mechatronics Engineering Waterloo Institute of Nanotechnology, University of Waterloo – sequence: 8 givenname: Shaohua surname: Jiang fullname: Jiang, Shaohua organization: International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University – sequence: 9 givenname: Shuijian surname: He fullname: He, Shuijian email: shuijianhe@njfu.edu.cn organization: International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University – sequence: 10 givenname: Wei surname: Chen fullname: Chen, Wei email: weichen@ciac.ac.cn organization: State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, University of Science and Technology of China |
BookMark | eNp9kMtKBDEQRYMo-PwBV_0D0Uo63UkvRXwMDAiiuAzV6cpMxpnOkLSCf290dOPCVSqXOpfkHLP9MY7E2LmACwGgL7OSWtccpOQAQre822NHspGKa9Pq_d-50_KQneW8AgDZCNHW3RF7fIlx4AOl8E5D1YfolpgqzNW0DO61ojW5KcWBcuVjqpZhseQJJ6q2lEqwwdFRld_KzeEWXZhiyqfswOM609nPecKeb2-eru_5_OFudn01506BmLiX4EVHxmlvPEpJ0IJRYAaPvcK-rbUoqTCNVo0eFLSKlHfgBy8VNg7rEzbb9Q4RV3abwgbTh40Y7HcQ08JimoJbk63BeaUdGCrd0gsjsNcdavJEtfd96TK7Lpdizom8LX_BKcRxShjWVoD9Um13qm1Rbb9V266g8g_6-5R_oXoH5bI8LijZVXxLY9H1H_UJ5s2UsQ |
CitedBy_id | crossref_primary_10_1002_ente_202300398 crossref_primary_10_3390_w15020222 crossref_primary_10_3390_batteries10100360 crossref_primary_10_1016_j_est_2022_106594 crossref_primary_10_1016_j_jpcs_2024_112197 crossref_primary_10_1016_j_apsusc_2023_158130 crossref_primary_10_1039_D3NJ02116E crossref_primary_10_1007_s10934_023_01487_3 crossref_primary_10_1016_j_seppur_2025_131448 crossref_primary_10_1016_j_apsusc_2024_161390 crossref_primary_10_1016_j_biosx_2024_100507 crossref_primary_10_1016_j_colsurfa_2024_134263 crossref_primary_10_1016_j_est_2024_111300 crossref_primary_10_1016_j_est_2024_112631 crossref_primary_10_1155_2024_1343256 crossref_primary_10_1016_j_indcrop_2025_120616 crossref_primary_10_1016_j_jelechem_2022_117034 crossref_primary_10_1016_j_jpowsour_2024_235467 crossref_primary_10_1016_j_cej_2022_140453 crossref_primary_10_1016_j_cej_2022_140410 crossref_primary_10_1016_j_jelechem_2023_117433 crossref_primary_10_3390_membranes12100961 crossref_primary_10_1016_j_est_2023_108218 crossref_primary_10_1016_j_rser_2024_114399 crossref_primary_10_1002_sstr_202300329 crossref_primary_10_3390_nano12213822 crossref_primary_10_1016_j_jallcom_2023_169129 crossref_primary_10_1016_j_ijbiomac_2024_130254 crossref_primary_10_1016_j_est_2023_110322 crossref_primary_10_1016_j_est_2023_110167 crossref_primary_10_1002_advs_202402033 crossref_primary_10_1002_cssc_202300027 crossref_primary_10_1016_j_scitotenv_2023_164107 crossref_primary_10_1002_smll_202300336 crossref_primary_10_1016_j_colsurfa_2023_133090 crossref_primary_10_1016_j_indcrop_2024_119924 crossref_primary_10_1016_j_jcis_2023_02_024 crossref_primary_10_1016_j_jmrt_2023_09_115 crossref_primary_10_1016_j_mtadv_2023_100391 crossref_primary_10_1007_s41779_024_00999_8 crossref_primary_10_1007_s10853_023_08773_0 crossref_primary_10_1016_j_colsurfa_2024_133666 crossref_primary_10_1016_S1872_5805_23_60779_6 crossref_primary_10_1016_j_susmat_2023_e00726 crossref_primary_10_3390_gels10010082 crossref_primary_10_1016_j_apsusc_2023_156757 crossref_primary_10_1016_j_susmat_2024_e00824 crossref_primary_10_3390_molecules28041831 crossref_primary_10_1002_chem_202304157 crossref_primary_10_1016_j_biortech_2024_130865 crossref_primary_10_1016_j_colsurfa_2023_131018 crossref_primary_10_1016_j_indcrop_2023_117032 crossref_primary_10_1016_j_est_2024_114237 crossref_primary_10_1016_j_est_2024_114477 crossref_primary_10_1016_j_colsurfa_2024_134167 crossref_primary_10_1016_j_indcrop_2024_119616 crossref_primary_10_1021_acssuschemeng_4c01940 crossref_primary_10_1016_j_apsusc_2024_161012 crossref_primary_10_3390_chemosensors11070394 crossref_primary_10_1016_j_jclepro_2023_137569 crossref_primary_10_3390_catal13091247 crossref_primary_10_3390_ma16010350 crossref_primary_10_1007_s42773_023_00259_1 crossref_primary_10_1016_j_electacta_2024_145397 crossref_primary_10_15251_DJNB_2023_182_603 crossref_primary_10_1016_j_cej_2024_149615 crossref_primary_10_1016_j_diamond_2024_110871 crossref_primary_10_1016_j_jallcom_2023_168813 crossref_primary_10_3390_ijms241814156 crossref_primary_10_3390_molecules27227692 crossref_primary_10_1007_s12274_023_5753_4 crossref_primary_10_1016_j_electacta_2025_146024 crossref_primary_10_1016_j_jallcom_2022_168557 crossref_primary_10_1007_s42250_023_00669_5 crossref_primary_10_1007_s11581_023_05088_7 crossref_primary_10_1016_j_cej_2024_155087 crossref_primary_10_3390_nano12193391 crossref_primary_10_1016_j_est_2024_114846 crossref_primary_10_3390_ma15207162 crossref_primary_10_1016_j_est_2024_110688 crossref_primary_10_1016_j_carbon_2023_118090 crossref_primary_10_1016_j_indcrop_2023_117701 crossref_primary_10_1016_j_seppur_2024_129127 crossref_primary_10_1016_j_jcis_2023_09_179 crossref_primary_10_1007_s42773_024_00316_3 crossref_primary_10_1016_j_est_2024_115177 crossref_primary_10_1016_j_jcis_2023_01_054 crossref_primary_10_3390_polym15122741 crossref_primary_10_1039_D2QI01914K crossref_primary_10_1016_j_diamond_2023_110521 crossref_primary_10_3390_ma16010043 crossref_primary_10_1016_j_surfin_2024_105250 |
Cites_doi | 10.1002/adfm.202101077 10.1016/j.snb.2021.129922 10.1002/batt.202000253 10.1016/j.fuel.2021.122102 10.1016/j.ensm.2018.07.001 10.1002/smll.201503855 10.1016/j.electacta.2020.136452 10.1016/j.ensm.2022.05.020 10.1016/j.jobab.2022.05.003 10.1016/j.carbon.2019.01.056 10.1038/s41467-019-08644-w 10.1007/s42823-021-00252-3 10.1016/j.ensm.2018.01.007 10.1016/j.mtsust.2021.100096 10.1002/adma.202101275 10.1016/j.susmat.2021.e00341 10.1016/j.jobab.2021.02.002 10.1111/jace.15035 10.1016/j.cej.2021.128673 10.1002/smll.202104224 10.1007/s40820-020-0393-7 10.1002/adfm.202201544 10.1016/j.apsusc.2021.151888 10.1002/anie.201410234 10.1021/jp010086y 10.1021/acssuschemeng.0c01661 10.1007/s42114-020-00158-0 10.1021/acs.chemrev.0c01264 10.1016/j.jechem.2021.07.027 10.1016/j.mtener.2020.100610 10.1002/aenm.201300816 10.13360/j.issn.2096-1359.202012046 10.1002/adfm.201809196 10.1021/acsenergylett.1c01678 10.1002/adfm.201806207 10.1002/smll.202201307 10.1039/c3ee44164d 10.1016/j.carbon.2018.01.055 10.1007/s10311-021-01311-x 10.1007/s40820-019-0300-2 10.1039/c7gc03426a 10.1016/j.ensm.2021.03.011 10.1515/pac-2014-1117 10.1016/j.carbon.2020.01.044 10.1002/smll.202102532 10.1016/j.apsusc.2020.146020 10.1002/smll.202104375 10.1021/acsaem.0c00582 10.1016/j.jpowsour.2018.05.046 10.1016/j.cej.2020.124672 10.1039/c6ee03716j 10.1016/j.apsusc.2021.151771 10.15376/biores.13.4.7983-7997 10.1016/j.cej.2021.128767 10.1007/s12274-021-3839-4 10.1002/adfm.201902255 10.13360/j.issn.2096-1359.202001007 10.1016/j.biortech.2021.126084 10.1016/j.cej.2020.127112 10.1016/j.jobab.2021.03.003 10.1002/smll.201906584 10.1016/j.nanoen.2012.05.002 10.1016/j.cej.2014.06.045 10.1149/2.0451906jes 10.1016/j.apsusc.2021.150613 10.1016/j.cej.2021.129289 10.1002/ente.201900950 10.1007/s00226-022-01389-8 10.1002/aenm.202001239 10.1016/j.carbon.2019.10.045 10.1039/d0ta08265a 10.1002/aenm.201901457 10.1038/s41578-020-0195-z 10.1016/j.apenergy.2021.116734 10.1016/j.jobab.2020.04.001 10.1016/j.electacta.2019.05.074 10.1002/smll.2022b00954 10.13360/j.issn.2096-1359.202104011 10.1021/acsnano.1c10093 10.1002/smll.202106356 10.1016/j.jpowsour.2020.228934 10.1016/j.nanoen.2021.106630 10.1016/j.matt.2019.06.016 10.1016/j.cej.2021.132203 10.1039/d0ee02649b 10.1039/c9se00099b 10.1016/j.jpowsour.2019.03.100 10.1016/j.carbon.2021.03.016 10.1088/1757-899x/490/2/022051 10.1007/s40820-019-0364-z 10.1016/j.apmate.2021.11.005 10.1021/acsnano.1c09687 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 |
Copyright_xml | – notice: The Author(s) 2022 |
DBID | C6C AAYXX CITATION DOA |
DOI | 10.1007/s42773-022-00176-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2524-7867 |
EndPage | 19 |
ExternalDocumentID | oai_doaj_org_article_30cf47c08eab42f181ab79a7efee3ffb 10_1007_s42773_022_00176_9 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 22005147 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Natural Science Foundation of Fujian Province grantid: 2020J01419; 2020J05220 funderid: http://dx.doi.org/10.13039/501100003392 |
GroupedDBID | 0R~ AAHBH AAHNG AAJSJ AAKKN AAYZJ ABDBF ABECU ABEEZ ABFTV ABKCH ABMQK ABTEG ABTMW ACACY ACOKC ACULB ACZOJ ADKNI ADURQ ADYFF AFGXO AFQWF AGDGC AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AXYYD C24 C6C EBLON EBS EJD FNLPD GROUPED_DOAJ H13 M~E NQJWS OK1 RSV SNPRN SOHCF SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR AASML AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP CITATION |
ID | FETCH-LOGICAL-c401t-f20f19e8c7f8fa22e0608408dfab4ab6371a221857457d4064e4fc0fdf24a5ca3 |
IEDL.DBID | DOA |
ISSN | 2524-7972 |
IngestDate | Wed Aug 27 01:29:43 EDT 2025 Tue Jul 01 03:16:37 EDT 2025 Thu Apr 24 23:10:35 EDT 2025 Fri Feb 21 02:44:51 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | High mass-loading Supercapacitor Biochar Heteroatom doping Self-standing electrodes |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-f20f19e8c7f8fa22e0608408dfab4ab6371a221857457d4064e4fc0fdf24a5ca3 |
OpenAccessLink | https://doaj.org/article/30cf47c08eab42f181ab79a7efee3ffb |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_30cf47c08eab42f181ab79a7efee3ffb crossref_citationtrail_10_1007_s42773_022_00176_9 crossref_primary_10_1007_s42773_022_00176_9 springer_journals_10_1007_s42773_022_00176_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Biochar (Online) |
PublicationTitleAbbrev | Biochar |
PublicationYear | 2022 |
Publisher | Springer Nature Singapore Springer |
Publisher_xml | – name: Springer Nature Singapore – name: Springer |
References | Sun, Guo, Zhou, Li, Cai, Ge (CR53) 2021; 482 Wu, Chen, Kim, Ni, Zeng, Zhao, Tao, Ji, Lee, Zhu (CR72) 2016; 12 Zuliani, Tong, Jia, Kirk (CR92) 2018; 395 Kim, Zhu, Aoki, Habazaki (CR29) 2019; 314 Zhao, Dong, Sheng, Xiao, Jiang, Li, Jiang, Shi (CR86) 2020; 8 Liu, Wu, Guo, Lee, Sun, Li, Zhang, Wang, Hu, Zhu, Leung, Zhu (CR39) 2021; 19 Xu, Xi, Li, Hua, Peng, Hu, Zhou, Zhang, Wang, Wang, Ding, Wang, Ji, Yang, Xu, Chen, Li (CR77) 2021; 91 Kuang, Chen, Kirsch, Hu (CR30) 2019; 9 Thongsai, Hrimchum, Aussawasathien (CR57) 2021; 30 Du, Sun, Li, Cheng, Chen, Song, Kong, Xie, Chen (CR14) 2021; 178 Chen, Zhang, Li, Dai, Song, Yao, Gong, Kierzewski, Xie, Hu (CR4) 2017; 10 Daikopoulos, Georgiou, Bourlinos, Baikousi, Karakassides, Zboril, Steriotis, Deligiannakis (CR10) 2014; 256 Plaza-Rivera, Walker, Tran, Viggiano, Dornbusch, Wu, Connell, Lin (CR47) 2020; 3 Zhong, Jiang, Zheng, Peng, Liu, Xi, Chi, Zhang, Gu, Zhang, Shi, Zhang, Wu, Chen, Li, Dahbi, Alami, Amine, Lu (CR91) 2021; 6 Oh, Park, Jang, Shin, Lim, Park (CR45) 2019; 145 Liu, Zhou, Guo, Guo, Liu (CR37) 2019; 10 Thommes, Kaneko, Neimark, Olivier, Rodriguez-Reinoso, Rouquerol, Sing (CR56) 2015; 87 Govind Raj, Joy (CR19) 2017; 100 Qing, Liao, Liu, Tian, Xu, Wu (CR48) 2021; 6 Tian, Zhu, Dong, Zhao, Li, Guo, Lin, Zhang, Jia (CR58) 2020; 161 Xiao, Li, Zhang, He, Zhang, Liu, Jiang, Duan, Zhang (CR76) 2022 Han, Wang, Chen, Zou, Niu, Yang, Cao, Song, Chen, Xie (CR22) 2018; 13 Jjagwe, Olupot, Menya, Kalibbala (CR27) 2021; 6 Chen, Ling, Huang, Yang, Wang (CR7) 2021; 18 Zheng, Halim, Sun, Rosen, Barsoum (CR90) 2021; 38 Huang, Chu, Cai, Yang, Chen, Liu, Gopalsamy, Xu, Gao, Gao (CR26) 2019; 17 Liu, Zhao, Jin, Sun, Jiao, Wang (CR40) 2022; 18 Lu, Yang, Chen, Li, Jin, Wang, Wang (CR42) 2020; 16 Wang, Zhou, Xu, Bian, Dai (CR68) 2021; 6 Chen, Cao, Huang, Wu, Hu, Liu, Lin (CR6) 2021; 6 Ding, Trouillet, Dsoke (CR11) 2019; 166 Su, Ye, Li, Guo, Cao, Ni, Zhu (CR51) 2022; 50 Peng, Liu, Bao (CR46) 2019; 490 Wang, Zhang, Zhang, Yang, Duan, Xu, Yang, Jiang (CR66) 2021; 289 He, Zhang, Wang, Zhang, Yang, Shi, Wang, Wang (CR23) 2020; 515 Yu, Peng, Du, Zhang, Wan, Chen, Xiong, Xie, Wang (CR80) 2022; 575 Shang, Lin, Zhao (CR50) 2018; 13 Teng, Zhou, Wang, Che, Du, Hu, Li, Wang (CR55) 2021; 566 Wabo, Klepel (CR59) 2021; 31 Chen, Li, Li, Mei, Zheng, Shiju, Duan, Liu, Jiang (CR8) 2021; 15 González-Arias, Sánchez, Cara-Jiménez, Baena-Moreno, Zhang (CR18) 2021; 20 Chen, Kuang, Zhu, Burgert, Keplinger, Gong, Li, Berglund, Eichhorn, Hu (CR5) 2020; 5 Ding, Liu, Yan, Huang, Ryu, Lan, Yu, Zhong, Yang (CR12) 2020; 12 Xia, Zhang, Chong, Li, Chen, Sun (CR74) 2018; 20 Katsuyama, Haba, Kobayashi, Iwase, Kudo, Honma, Kaner (CR28) 2022; 32 Guo, Ma, Li, Guo, Luo, Yang, Liu, Thomas, Wang (CR20) 2020; 12 Zheng, Wang, Hou, Li, Tao (CR88) 2021; 63 Liu, Xie, Liu, Moon, Lu, Lin, Yuan, Shen, Zang, Lin, Tang, Wong (CR38) 2020; 393 Ghosh, Barg, Jeong, Ostrikov (CR17) 2020; 10 Li, Wang, Li, Ma, Zhang, Yan, Agnoli, Zhang, Sun (CR33) 2022; 15 Lin, Wang, Chen, Cai, Xiao, Muhmood, Hu (CR35) 2021; 18 Leng, Guo, Chen, Liu, Jiaqiang, Xue (CR32) 2022; 309 Boyce, Cumming, Huang, Zankowski, Grant, Brett, Shearing (CR2) 2021; 15 Ma, Yao, Liang, Yin, Xia, Zuo, Zeng (CR44) 2020; 352 Wang, Lin, Liu, Chen, Chen, Jiang, Liu, Huang, Liu (CR60) 2018; 28 Dubey, Zwahlen, Shynkarenko, Yakunin, Fuerst, Kovalenko, Kravchyk (CR15) 2020; 4 Liu, Duan, Dou, Yuan, Xu, Liu, Chen (CR41) 2022; 18 Wu, Zhang, Ju, Wang, Hui, Mayilvahanan, Takeuchi, Marschilok, West, Takeuchi, Yu (CR73) 2021; 33 Guo, Yu, Li, Qiu (CR21) 2021; 14 Zhang, Liang, Fang, Yang, Zhou (CR83) 2019; 11 Zhang, Tsuzuki, Ueno, Dokko, Watanabe (CR81) 2015; 54 Yan, Wang, Wei, Fan (CR78) 2014; 4 Yang, Huang, Luo, Yu, Sun, Lv, Sun (CR79) 2021; 404 Augustyn, Simon, Dunn (CR1) 2014; 7 Wang, Liu, Duan, Yang, Cheong, Lee, Ahn, Zhang, He, Han, Zhao, Kim, Jiang (CR65) 2021; 17 Zhang, Wu, Wu, Zhou, Xi, Deng, Wang, Quan, Li, Luo (CR82) 2019; 424 Zhang, Zhou, Qiu, Xia, Xia, Zhang, Fu (CR84) 2021; 339 Zheng, Zhang, Deng, Du, Shi (CR89) 2021; 6 Hou, Yang, Li, Wang, Jiang, Xu, Zhang, Huang, Yang, Li (CR24) 2021; 417 Wang, Cheong, He, Duan, He, Zhang, Zhao, Kim, Jiang (CR63) 2021; 414 Dong, Zhu, Li, Zhang, Song, Jia (CR13) 2020; 8 Tang, Pei, Wang, Li, Zeng, Ruan, Huang, Zhu, Xue, Yu, Zhi (CR54) 2018; 130 Ran, Yang, Xu, Li, Liu, Shao (CR49) 2021; 412 Xia, Li, Zhang, Zhang, Zheng, Zhang (CR75) 2020; 5 Wang, Chen, He, Zhang, Liu, Han, Duan, Jiang (CR69) 2022 Wang, Yan, Zheng, Feng, Chen, Zhang, Liao, Chen, Jiang, Du, He (CR62) 2021; 1 Wang, Lu, Li, Li, Ji, Feteira, Zhou, Wang, Zhang, Reaney (CR67) 2021; 121 Sun, Lu, Rufford, Gaddam, Duignan, Fan, Zhao (CR52) 2019; 3 Lachos-Perez, Cesar Torres-Mayanga, Abaide, Zabot, De Castilhos (CR31) 2022; 343 Zhao, He, You (CR87) 2022; 17 Wang, Han, Qi, Teng, Zhang, Li (CR70) 2022; 578 Lü, Lu, Li, Zhang, Shao, He (CR43) 2022; 429 Wang, Cheong, Lee, Ahn, Duan, Chen, Zhang, Kim, Jiang (CR64) 2021; 31 Eliad, Salitra, Soffer, Aurbach (CR16) 2001; 105 Wei, Yushin (CR71) 2012; 1 Lin, Liu, Tan, Zhang (CR34) 2020; 157 Liu, Xu, Wang, Qian, Zhao, Zeng, Huang (CR36) 2019; 8 Zhao, Sun, Chen, Liu, Zhang, Dongfang, Ruan, Zhang, Wang, Dong, Xia, Lu (CR85) 2019; 29 Huang, Zhao, Liu, Mou, Jiang, Liu, Li, Liu (CR25) 2019; 29 Chang, Hu (CR3) 2019; 1 Chen, Wang, Tian, Guo, Cai, Wu, Du, Liu, Hao, He, Duan, Jiang (CR9) 2022; 18 Wang, Hu, Hao, Peng, Shi, Peng, Sun (CR61) 2020; 3 H Lu (176_CR42) 2020; 16 C Wang (176_CR62) 2021; 1 L Yang (176_CR79) 2021; 404 V Augustyn (176_CR1) 2014; 7 L Zhong (176_CR91) 2021; 6 CF Ding (176_CR12) 2020; 12 J González-Arias (176_CR18) 2021; 20 X Zhao (176_CR87) 2022; 17 W Zheng (176_CR90) 2021; 38 W Teng (176_CR55) 2021; 566 C Kim (176_CR29) 2019; 314 CO Plaza-Rivera (176_CR47) 2020; 3 Z Ding (176_CR11) 2019; 166 W Guo (176_CR21) 2021; 14 W Tian (176_CR58) 2020; 161 N Thongsai (176_CR57) 2021; 30 HL Liu (176_CR38) 2020; 393 AM Boyce (176_CR2) 2021; 15 Y Kuang (176_CR30) 2019; 9 J Xiao (176_CR76) 2022 S Ghosh (176_CR17) 2020; 10 L Chen (176_CR6) 2021; 6 J Shang (176_CR50) 2018; 13 Z Xia (176_CR75) 2020; 5 M Thommes (176_CR56) 2015; 87 T Liu (176_CR37) 2019; 10 L Xu (176_CR77) 2021; 91 C Daikopoulos (176_CR10) 2014; 256 J Yan (176_CR78) 2014; 4 L Chen (176_CR9) 2022; 18 X Sun (176_CR52) 2019; 3 Y Dong (176_CR13) 2020; 8 F Lü (176_CR43) 2022; 429 W Zhang (176_CR83) 2019; 11 J Huang (176_CR25) 2019; 29 C Sun (176_CR53) 2021; 482 S Liu (176_CR40) 2022; 18 Y Wang (176_CR61) 2020; 3 S Zhang (176_CR82) 2019; 424 Z Li (176_CR33) 2022; 15 Y Liu (176_CR39) 2021; 19 R Wang (176_CR68) 2021; 6 S Zhang (176_CR81) 2015; 54 S Zheng (176_CR88) 2021; 63 S Zheng (176_CR89) 2021; 6 J Peng (176_CR46) 2019; 490 X Su (176_CR51) 2022; 50 L Chang (176_CR3) 2019; 1 M Wang (176_CR70) 2022; 578 YF Du (176_CR14) 2021; 178 K Govind Raj (176_CR19) 2017; 100 Z Tang (176_CR54) 2018; 130 F Wang (176_CR63) 2021; 414 R Dubey (176_CR15) 2020; 4 G Wang (176_CR67) 2021; 121 Y Ma (176_CR44) 2020; 352 Z Liu (176_CR41) 2022; 18 Y Wang (176_CR60) 2018; 28 SG Wabo (176_CR59) 2021; 31 D Lachos-Perez (176_CR31) 2022; 343 F Ran (176_CR49) 2021; 412 E Leng (176_CR32) 2022; 309 J Oh (176_CR45) 2019; 145 L Eliad (176_CR16) 2001; 105 J Xia (176_CR74) 2018; 20 Y Yu (176_CR80) 2022; 575 L Hou (176_CR24) 2021; 417 J Wu (176_CR73) 2021; 33 Y Zhang (176_CR84) 2021; 339 M Han (176_CR22) 2018; 13 JE Zuliani (176_CR92) 2018; 395 J Jjagwe (176_CR27) 2021; 6 F Wang (176_CR69) 2022 Y Katsuyama (176_CR28) 2022; 32 L Wei (176_CR71) 2012; 1 C Chen (176_CR5) 2020; 5 T Huang (176_CR26) 2019; 17 Y Qing (176_CR48) 2021; 6 S Wu (176_CR72) 2016; 12 Y Zhao (176_CR86) 2020; 8 F Wang (176_CR65) 2021; 17 Z Zhao (176_CR85) 2019; 29 B Guo (176_CR20) 2020; 12 F Wang (176_CR64) 2021; 31 J He (176_CR23) 2020; 515 F Wang (176_CR66) 2021; 289 K Liu (176_CR36) 2019; 8 CJ Chen (176_CR4) 2017; 10 S Lin (176_CR35) 2021; 18 R Chen (176_CR7) 2021; 18 X Lin (176_CR34) 2020; 157 Y Chen (176_CR8) 2021; 15 |
References_xml | – volume: 31 start-page: 2101077 issue: 31 year: 2021 ident: CR64 article-title: Pyrolysis of enzymolysis-treated wood: hierarchically assembled porous carbon electrode for advanced energy storage devices publication-title: Adv Funct Mater doi: 10.1002/adfm.202101077 – volume: 339 start-page: 129922 year: 2021 ident: CR84 article-title: Strongly emissive formamide-derived N-doped carbon dots embedded Eu(III)-based metal-organic frameworks as a ratiometric fluorescent probe for ultrasensitive and visual quantitative detection of Ag publication-title: Sens Actuators, B doi: 10.1016/j.snb.2021.129922 – volume: 4 start-page: 464 issue: 3 year: 2020 end-page: 468 ident: CR15 article-title: Laser patterning of high-mass-loading graphite anodes for high-performance Li-Ion Batteries publication-title: Batter Supercaps doi: 10.1002/batt.202000253 – volume: 309 start-page: 122102 year: 2022 ident: CR32 article-title: A comprehensive review on lignin pyrolysis: mechanism, modeling and the effects of inherent metals in biomass publication-title: Fuel doi: 10.1016/j.fuel.2021.122102 – volume: 17 start-page: 349 year: 2019 end-page: 357 ident: CR26 article-title: Tri-high designed graphene electrodes for long cycle-life supercapacitors with high mass loading publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2018.07.001 – volume: 12 start-page: 2376 issue: 17 year: 2016 end-page: 2384 ident: CR72 article-title: Creating pores on graphene platelets by low-temperature KOH activation for enhanced electrochemical performance publication-title: Small doi: 10.1002/smll.201503855 – volume: 352 start-page: 136452 year: 2020 ident: CR44 article-title: Ultra-thick wood biochar monoliths with hierarchically porous structure from cotton rose for electrochemical capacitor electrodes publication-title: Electrochim Acta doi: 10.1016/j.electacta.2020.136452 – volume: 50 start-page: 365 year: 2022 end-page: 372 ident: CR51 article-title: Heterogeneous stacking carbon films for optimized supercapacitor performance publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2022.05.020 – year: 2022 ident: CR76 article-title: Nanocellulose and its derived composite electrodes toward supercapacitors: fabrication, properties, and challenges publication-title: J Bioresour Bioprod doi: 10.1016/j.jobab.2022.05.003 – volume: 145 start-page: 481 year: 2019 end-page: 487 ident: CR45 article-title: Metal-free N-doped carbon blacks as excellent electrocatalysts for oxygen reduction reactions publication-title: Carbon doi: 10.1016/j.carbon.2019.01.056 – volume: 10 start-page: 675 issue: 1 year: 2019 ident: CR37 article-title: Block copolymer derived uniform mesopores enable ultrafast electron and ion transport at high mass loadings publication-title: Nat Commun doi: 10.1038/s41467-019-08644-w – volume: 31 start-page: 581 issue: 4 year: 2021 end-page: 592 ident: CR59 article-title: Nitrogen release and pore formation through KOH activation of nitrogen-doped carbon materials: an evaluation of the literature publication-title: Carbon Lett doi: 10.1007/s42823-021-00252-3 – volume: 13 start-page: 119 year: 2018 end-page: 126 ident: CR22 article-title: All-solid-state supercapacitors with superior compressive strength and volumetric capacitance publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2018.01.007 – volume: 17 start-page: 100096 year: 2022 ident: CR87 article-title: Laser engraving and punching of graphene films as flexible all-solid-state planar micro-supercapacitor electrodes publication-title: Mater Today Sustainability doi: 10.1016/j.mtsust.2021.100096 – volume: 33 start-page: e2101275 issue: 26 year: 2021 ident: CR73 article-title: From fundamental understanding to engineering design of high-performance thick electrodes for scalable energy-storage systems publication-title: Adv Mater doi: 10.1002/adma.202101275 – volume: 30 start-page: e00341 year: 2021 ident: CR57 article-title: Carbon fiber mat from palm-kernel-shell lignin/polyacrylonitrile as intrinsic-doping electrode in supercapacitor publication-title: Sustain Mater Technol doi: 10.1016/j.susmat.2021.e00341 – volume: 6 start-page: 142 issue: 2 year: 2021 end-page: 151 ident: CR89 article-title: Chitin derived nitrogen-doped porous carbons with ultrahigh specific surface area and tailored hierarchical porosity for high performance supercapacitors publication-title: J Bioresour Bioprod doi: 10.1016/j.jobab.2021.02.002 – volume: 100 start-page: 5151 issue: 11 year: 2017 end-page: 5161 ident: CR19 article-title: Role of localized graphitization on the electrical and magnetic properties of activated carbon publication-title: J Am Ceram Soc doi: 10.1111/jace.15035 – volume: 412 start-page: 128673 year: 2021 ident: CR49 article-title: Green activation of sustainable resources to synthesize nitrogen-doped oxygen-riched porous carbon nanosheets towards high-performance supercapacitor publication-title: Chem Eng J doi: 10.1016/j.cej.2021.128673 – volume: 18 start-page: e2104224 issue: 7 year: 2021 ident: CR35 article-title: 3D ordered porous nanostructure confers fast charge transfer rate and reduces the electrode polarization in thick electrode publication-title: Small doi: 10.1002/smll.202104224 – volume: 12 start-page: 63 issue: 1 year: 2020 ident: CR12 article-title: An ultra-microporous carbon material boosting integrated capacitance for cellulose-based supercapacitors publication-title: Nano-Micro Lett doi: 10.1007/s40820-020-0393-7 – volume: 32 start-page: 2201544 issue: 24 year: 2022 ident: CR28 article-title: Macro- and nano-porous 3D-hierarchical carbon lattices for extraordinarily high capacitance supercapacitors publication-title: Adv Funct Mater doi: 10.1002/adfm.202201544 – volume: 578 start-page: 151888 year: 2022 ident: CR70 article-title: Study on performance and charging dynamics of N/O codoped layered porous carbons derived from L-tyrosine for supercapacitors publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2021.151888 – volume: 54 start-page: 1302 issue: 4 year: 2015 end-page: 1306 ident: CR81 article-title: Upper limit of nitrogen content in carbon materials publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201410234 – volume: 105 start-page: 6880 issue: 29 year: 2001 end-page: 6887 ident: CR16 article-title: Ion sieving effects in the electrical double layer of porous carbon electrodes: estimating effective ion size in electrolytic solutions publication-title: J Phys Chem B doi: 10.1021/jp010086y – volume: 8 start-page: 8664 issue: 23 year: 2020 end-page: 8674 ident: CR86 article-title: Heteroatom-doped pillared porous carbon architectures with ultrafast electron and ion transport capabilities under high mass loadings for high-rate supercapacitors publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.0c01661 – volume: 3 start-page: 267 issue: 3 year: 2020 end-page: 284 ident: CR61 article-title: Hydrothermal synthesis and applications of advanced carbonaceous materials from biomass: a review publication-title: Adv Compos Hybrid Mater doi: 10.1007/s42114-020-00158-0 – volume: 121 start-page: 6124 issue: 10 year: 2021 end-page: 6172 ident: CR67 article-title: Electroceramics for high-energy density capacitors: current status and future perspectives publication-title: Chem Rev doi: 10.1021/acs.chemrev.0c01264 – volume: 63 start-page: 87 year: 2021 end-page: 112 ident: CR88 article-title: Recent progress and strategies toward high performance zinc-organic batteries publication-title: J Energy Chem doi: 10.1016/j.jechem.2021.07.027 – volume: 19 start-page: 100610 year: 2021 ident: CR39 article-title: Modulate FeCo nanoparticle in situ growth on carbon matrix for high-performance oxygen catalysts publication-title: Mater Today Energy doi: 10.1016/j.mtener.2020.100610 – volume: 4 start-page: 1300816 issue: 4 year: 2014 ident: CR78 article-title: Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities publication-title: Adv Energy Mater doi: 10.1002/aenm.201300816 – volume: 6 start-page: 1 issue: 05 year: 2021 end-page: 13 ident: CR48 article-title: Research progress of wood-derived energy storage materials publication-title: J for Eng doi: 10.13360/j.issn.2096-1359.202012046 – volume: 29 start-page: 1809196 issue: 16 year: 2019 ident: CR85 article-title: Sandwich, vertical-channeled thick electrodes with high rate and cycle performance publication-title: Adv Funct Mater doi: 10.1002/adfm.201809196 – volume: 6 start-page: 3624 issue: 10 year: 2021 end-page: 3633 ident: CR91 article-title: Wood carbon based single-atom catalyst for rechargeable Zn–air batteries publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.1c01678 – volume: 28 start-page: 1806207 issue: 52 year: 2018 ident: CR60 article-title: Wood-derived hierarchically porous electrodes for high-performance all-solid-state supercapacitors publication-title: Adv Funct Mater doi: 10.1002/adfm.201806207 – volume: 18 start-page: e2201307 year: 2022 ident: CR9 article-title: Wood-derived high-mass-loading MnO composite carbon electrode enabling high energy density and high-rate supercapacitor publication-title: Small doi: 10.1002/smll.202201307 – volume: 7 start-page: 1597 issue: 5 year: 2014 ident: CR1 article-title: Pseudocapacitive oxide materials for high-rate electrochemical energy storage publication-title: Energy Environ Sci doi: 10.1039/c3ee44164d – volume: 130 start-page: 532 year: 2018 end-page: 543 ident: CR54 article-title: Highly anisotropic, multichannel wood carbon with optimized heteroatom doping for supercapacitor and oxygen reduction reaction publication-title: Carbon doi: 10.1016/j.carbon.2018.01.055 – volume: 20 start-page: 211 issue: 1 year: 2021 end-page: 221 ident: CR18 article-title: Hydrothermal carbonization of biomass and waste: a review publication-title: Environ Chem Lett doi: 10.1007/s10311-021-01311-x – volume: 11 start-page: 69 issue: 1 year: 2019 ident: CR83 article-title: Ultra-high mass-loading cathode for aqueous zinc-ion battery based on graphene-wrapped aluminum vanadate nanobelts publication-title: Nano-Micro Lett doi: 10.1007/s40820-019-0300-2 – volume: 20 start-page: 694 issue: 3 year: 2018 end-page: 700 ident: CR74 article-title: Three-dimensional porous graphene-like sheets synthesized from biocarbon via low-temperature graphitization for a supercapacitor publication-title: Green Chem doi: 10.1039/c7gc03426a – volume: 38 start-page: 438 year: 2021 end-page: 446 ident: CR90 article-title: MXene-manganese oxides aqueous asymmetric supercapacitors with high mass loadings, high cell voltages and slow self-discharge publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2021.03.011 – volume: 87 start-page: 1051 issue: 9–10 year: 2015 end-page: 1069 ident: CR56 article-title: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) publication-title: Pure Appl Chem doi: 10.1515/pac-2014-1117 – volume: 161 start-page: 89 year: 2020 end-page: 96 ident: CR58 article-title: Micelle-induced assembly of graphene quantum dots into conductive porous carbon for high rate supercapacitor electrodes at high mass loadings publication-title: Carbon doi: 10.1016/j.carbon.2020.01.044 – volume: 17 start-page: 2102532 year: 2021 ident: CR65 article-title: Wood-derived, conductivity and hierarchical pore integrated thick electrode enabling high areal/volumetric energy density for hybrid capacitors publication-title: Small doi: 10.1002/smll.202102532 – volume: 515 start-page: 146020 year: 2020 ident: CR23 article-title: Biomass-derived porous carbons with tailored graphitization degree and pore size distribution for supercapacitors with ultra-high rate capability publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2020.146020 – volume: 18 start-page: 2104375 year: 2022 ident: CR40 article-title: Nitrogen-doped carbon networks with consecutive conductive pathways from a facile competitive carbonization-etching strategy for high-performance energy storage publication-title: Small doi: 10.1002/smll.202104375 – volume: 3 start-page: 6374 issue: 7 year: 2020 end-page: 6382 ident: CR47 article-title: Dry pressing neat active materials into ultrahigh mass loading sandwich cathodes enabled by holey graphene scaffold publication-title: ACS Appl Energy Mater doi: 10.1021/acsaem.0c00582 – volume: 395 start-page: 271 year: 2018 end-page: 279 ident: CR92 article-title: Contribution of surface oxygen groups to the measured capacitance of porous carbon supercapacitors publication-title: J Power Sources doi: 10.1016/j.jpowsour.2018.05.046 – volume: 393 start-page: 124672 year: 2020 ident: CR38 article-title: Laser-induced and KOH-activated 3D graphene: a flexible activated electrode fabricated via direct laser writing for in-plane micro-supercapacitors publication-title: Chem Eng J doi: 10.1016/j.cej.2020.124672 – volume: 10 start-page: 538 issue: 2 year: 2017 end-page: 545 ident: CR4 article-title: All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance publication-title: Energy Environ Sci doi: 10.1039/c6ee03716j – volume: 575 start-page: 151771 year: 2022 ident: CR80 article-title: Alkaline-carbonate-templated carbon: effect of template nature on morphology, oxygen species and supercapacitor performances publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2021.151771 – volume: 13 start-page: 7983 year: 2018 end-page: 7997 ident: CR50 article-title: Preparation and characterization of wood-based pre-oxidized precursors and activated carbon microspheres publication-title: BioResources doi: 10.15376/biores.13.4.7983-7997 – volume: 414 start-page: 128767 year: 2021 ident: CR63 article-title: Phosphorus-doped thick carbon electrode for high-energy density and long-life supercapacitors publication-title: Chem Eng J doi: 10.1016/j.cej.2021.128767 – volume: 15 start-page: 1715 issue: 3 year: 2022 end-page: 1724 ident: CR33 article-title: Single-atom Zn for boosting supercapacitor performance publication-title: Nano Res doi: 10.1007/s12274-021-3839-4 – volume: 29 start-page: 1902255 issue: 31 year: 2019 ident: CR25 article-title: Wood-derived materials for advanced electrochemical energy storage devices publication-title: Adv Funct Mater doi: 10.1002/adfm.201902255 – volume: 6 start-page: 29 issue: 01 year: 2021 end-page: 37 ident: CR68 article-title: Research progress on the preparation of lignin-derived carbon dots and graphene quantum dots publication-title: J for Eng doi: 10.13360/j.issn.2096-1359.202001007 – volume: 343 start-page: 126084 year: 2022 ident: CR31 article-title: Hydrothermal carbonization and liquefaction: differences, progress, challenges, and opportunities publication-title: Bioresour Technol doi: 10.1016/j.biortech.2021.126084 – volume: 404 start-page: 127112 year: 2021 ident: CR79 article-title: Atomically dispersed and nanoscaled Co species embedded in micro-/mesoporous carbon nanosheet/nanotube architecture with enhanced oxygen reduction and evolution bifunction for Zn-Air batteries publication-title: Chem Eng J doi: 10.1016/j.cej.2020.127112 – volume: 6 start-page: 292 issue: 4 year: 2021 end-page: 322 ident: CR27 article-title: Synthesis and application of granular activated carbon from biomass waste materials for water treatment: a review publication-title: J Bioresour Bioprod doi: 10.1016/j.jobab.2021.03.003 – volume: 16 start-page: e1906584 issue: 17 year: 2020 ident: CR42 article-title: Tailoring hierarchically porous nitrogen-, sulfur-codoped carbon for high-performance supercapacitors and oxygen reduction publication-title: Small doi: 10.1002/smll.201906584 – volume: 1 start-page: 552 issue: 4 year: 2012 end-page: 565 ident: CR71 article-title: Nanostructured activated carbons from natural precursors for electrical double layer capacitors publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.05.002 – volume: 256 start-page: 347 year: 2014 end-page: 355 ident: CR10 article-title: Arsenite remediation by an amine-rich graphitic carbon nitride synthesized by a novel low-temperature method publication-title: Chem Eng J doi: 10.1016/j.cej.2014.06.045 – volume: 166 start-page: A1004 issue: 6 year: 2019 end-page: A1014 ident: CR11 article-title: Are functional groups beneficial or harmful on the electrochemical performance of activated carbon electrodes? publication-title: J Electrochem Soc doi: 10.1149/2.0451906jes – volume: 566 start-page: 150613 year: 2021 ident: CR55 article-title: Biotemplating preparation of N, O-codoped hierarchically porous carbon for high-performance supercapacitors publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2021.150613 – volume: 417 start-page: 129289 year: 2021 ident: CR24 article-title: Dual-template endowing N, O co-doped hierarchically porous carbon from potassium citrate with high capacitance and rate capability for supercapacitors publication-title: Chem Eng J doi: 10.1016/j.cej.2021.129289 – volume: 8 start-page: 1900950 issue: 1 year: 2019 ident: CR36 article-title: Boron and nitrogen Co-doped trimodal-porous wood-derived carbon for boosting capacitive performance publication-title: Energy Technol doi: 10.1002/ente.201900950 – year: 2022 ident: CR69 article-title: Design of wood-derived anisotropic structural carbon electrode for high-performance supercapacitor publication-title: Wood Sci Technol doi: 10.1007/s00226-022-01389-8 – volume: 10 start-page: 2001239 issue: 32 year: 2020 ident: CR17 article-title: Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors publication-title: Adv Energy Mater doi: 10.1002/aenm.202001239 – volume: 157 start-page: 316 year: 2020 end-page: 323 ident: CR34 article-title: Advanced lignin-derived hard carbon for Na-ion batteries and a comparison with Li and K ion storage publication-title: Carbon doi: 10.1016/j.carbon.2019.10.045 – volume: 8 start-page: 21930 issue: 42 year: 2020 end-page: 21946 ident: CR13 article-title: Carbon materials for high mass-loading supercapacitors: filling the gap between new materials and practical applications publication-title: J Mater Chem A doi: 10.1039/d0ta08265a – volume: 9 start-page: 1901457 issue: 33 year: 2019 ident: CR30 article-title: Thick electrode batteries: principles, opportunities, and challenges publication-title: Adv Energy Mater doi: 10.1002/aenm.201901457 – volume: 5 start-page: 642 year: 2020 end-page: 666 ident: CR5 article-title: Structure-property-function relationships of natural and engineered wood publication-title: Nat Rev Mater doi: 10.1038/s41578-020-0195-z – volume: 289 start-page: 116734 year: 2021 ident: CR66 article-title: Electrode thickness design toward bulk energy storage devices with high areal/volumetric energy density publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.116734 – volume: 5 start-page: 79 issue: 2 year: 2020 end-page: 95 ident: CR75 article-title: Processing and valorization of cellulose, lignin and lignocellulose using ionic liquids publication-title: J Bioresour Bioprod doi: 10.1016/j.jobab.2020.04.001 – volume: 314 start-page: 173 year: 2019 end-page: 187 ident: CR29 article-title: Heteroatom-doped porous carbon with tunable pore structure and high specific surface area for high performance supercapacitors publication-title: Electrochim Acta doi: 10.1016/j.electacta.2019.05.074 – volume: 18 start-page: e2200954 year: 2022 ident: CR41 article-title: Ultrafast porous carbon activation promises high-energy density supercapacitors publication-title: Small doi: 10.1002/smll.2022b00954 – volume: 6 start-page: 1 issue: 4 year: 2021 end-page: 13 ident: CR6 article-title: Development of bamboo cellulose preparation and its functionalization publication-title: J for Eng doi: 10.13360/j.issn.2096-1359.202104011 – volume: 15 start-page: 20666 issue: 12 year: 2021 end-page: 20677 ident: CR8 article-title: Liquid transport and real-time dye purification via lotus petiole-inspired long-range-ordered anisotropic cellulose nanofibril aerogels publication-title: ACS Nano doi: 10.1021/acsnano.1c10093 – volume: 18 start-page: e2106356 issue: 9 year: 2021 ident: CR7 article-title: Interface engineering on cellulose-based flexible electrode enables high mass loading wearable supercapacitor with ultrahigh capacitance and energy density publication-title: Small doi: 10.1002/smll.202106356 – volume: 482 start-page: 228934 year: 2021 ident: CR53 article-title: Heteroatoms-doped porous carbon electrodes with three-dimensional self-supporting structure derived from cotton fabric for high-performance wearable supercapacitors publication-title: J Power Sources doi: 10.1016/j.jpowsour.2020.228934 – volume: 91 start-page: 106630 year: 2021 ident: CR77 article-title: 3D frame-like architecture of N-C-incorporated mixed metal phosphide boosting ultrahigh energy density pouch-type supercapacitors publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106630 – volume: 1 start-page: 596 issue: 3 year: 2019 end-page: 620 ident: CR3 article-title: Breakthroughs in designing commercial-level mass-loading graphene electrodes for electrochemical double-layer capacitors publication-title: Matter doi: 10.1016/j.matt.2019.06.016 – volume: 429 start-page: 132203 year: 2022 ident: CR43 article-title: Dozens-fold improvement of biochar redox properties by KOH activation publication-title: Chem Eng J doi: 10.1016/j.cej.2021.132203 – volume: 14 start-page: 576 issue: 2 year: 2021 end-page: 601 ident: CR21 article-title: Toward commercial-level mass-loading electrodes for supercapacitors: opportunities, challenges and perspectives publication-title: Energy Environ Sci doi: 10.1039/d0ee02649b – volume: 3 start-page: 1827 issue: 7 year: 2019 end-page: 1832 ident: CR52 article-title: A flexible graphene-carbon fiber composite electrode with high surface area-normalized capacitance publication-title: Sustainable Energy Fuels doi: 10.1039/c9se00099b – volume: 424 start-page: 1 year: 2019 end-page: 7 ident: CR82 article-title: High performance flexible supercapacitors based on porous wood carbon slices derived from Chinese fir wood scraps publication-title: J Power Sources doi: 10.1016/j.jpowsour.2019.03.100 – volume: 178 start-page: 243 year: 2021 end-page: 255 ident: CR14 article-title: Pre-oxidation of lignin precursors for hard carbon anode with boosted lithium-ion storage capacity publication-title: Carbon doi: 10.1016/j.carbon.2021.03.016 – volume: 490 start-page: 022051 year: 2019 ident: CR46 article-title: Pyrolysis behavior of basswood by TG publication-title: IOP Conf Ser: Mater Sci Eng doi: 10.1088/1757-899x/490/2/022051 – volume: 12 start-page: 20 issue: 1 year: 2020 ident: CR20 article-title: Hierarchical N-doped porous carbons for Zn-air batteries and supercapacitors publication-title: Nano-Micro Lett doi: 10.1007/s40820-019-0364-z – volume: 1 start-page: 100018 issue: 2 year: 2021 ident: CR62 article-title: Recent progress in template-assisted synthesis of porous carbons for supercapacitors publication-title: Adv Powder Mater doi: 10.1016/j.apmate.2021.11.005 – volume: 15 start-page: 18624 issue: 12 year: 2021 end-page: 18632 ident: CR2 article-title: Design of scalable, next-generation thick electrodes: opportunities and challenges publication-title: ACS Nano doi: 10.1021/acsnano.1c09687 – volume: 17 start-page: 100096 year: 2022 ident: 176_CR87 publication-title: Mater Today Sustainability doi: 10.1016/j.mtsust.2021.100096 – volume: 5 start-page: 642 year: 2020 ident: 176_CR5 publication-title: Nat Rev Mater doi: 10.1038/s41578-020-0195-z – volume: 343 start-page: 126084 year: 2022 ident: 176_CR31 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2021.126084 – volume: 12 start-page: 20 issue: 1 year: 2020 ident: 176_CR20 publication-title: Nano-Micro Lett doi: 10.1007/s40820-019-0364-z – volume: 8 start-page: 8664 issue: 23 year: 2020 ident: 176_CR86 publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.0c01661 – volume: 31 start-page: 2101077 issue: 31 year: 2021 ident: 176_CR64 publication-title: Adv Funct Mater doi: 10.1002/adfm.202101077 – volume: 1 start-page: 552 issue: 4 year: 2012 ident: 176_CR71 publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.05.002 – volume: 15 start-page: 20666 issue: 12 year: 2021 ident: 176_CR8 publication-title: ACS Nano doi: 10.1021/acsnano.1c10093 – volume: 145 start-page: 481 year: 2019 ident: 176_CR45 publication-title: Carbon doi: 10.1016/j.carbon.2019.01.056 – volume: 3 start-page: 6374 issue: 7 year: 2020 ident: 176_CR47 publication-title: ACS Appl Energy Mater doi: 10.1021/acsaem.0c00582 – volume: 7 start-page: 1597 issue: 5 year: 2014 ident: 176_CR1 publication-title: Energy Environ Sci doi: 10.1039/c3ee44164d – volume: 130 start-page: 532 year: 2018 ident: 176_CR54 publication-title: Carbon doi: 10.1016/j.carbon.2018.01.055 – volume: 20 start-page: 694 issue: 3 year: 2018 ident: 176_CR74 publication-title: Green Chem doi: 10.1039/c7gc03426a – volume: 11 start-page: 69 issue: 1 year: 2019 ident: 176_CR83 publication-title: Nano-Micro Lett doi: 10.1007/s40820-019-0300-2 – volume: 100 start-page: 5151 issue: 11 year: 2017 ident: 176_CR19 publication-title: J Am Ceram Soc doi: 10.1111/jace.15035 – volume: 314 start-page: 173 year: 2019 ident: 176_CR29 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2019.05.074 – volume: 13 start-page: 119 year: 2018 ident: 176_CR22 publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2018.01.007 – volume: 395 start-page: 271 year: 2018 ident: 176_CR92 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2018.05.046 – volume: 1 start-page: 100018 issue: 2 year: 2021 ident: 176_CR62 publication-title: Adv Powder Mater doi: 10.1016/j.apmate.2021.11.005 – volume: 424 start-page: 1 year: 2019 ident: 176_CR82 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2019.03.100 – volume: 482 start-page: 228934 year: 2021 ident: 176_CR53 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2020.228934 – volume: 429 start-page: 132203 year: 2022 ident: 176_CR43 publication-title: Chem Eng J doi: 10.1016/j.cej.2021.132203 – volume: 339 start-page: 129922 year: 2021 ident: 176_CR84 publication-title: Sens Actuators, B doi: 10.1016/j.snb.2021.129922 – volume: 30 start-page: e00341 year: 2021 ident: 176_CR57 publication-title: Sustain Mater Technol doi: 10.1016/j.susmat.2021.e00341 – volume: 32 start-page: 2201544 issue: 24 year: 2022 ident: 176_CR28 publication-title: Adv Funct Mater doi: 10.1002/adfm.202201544 – volume: 6 start-page: 292 issue: 4 year: 2021 ident: 176_CR27 publication-title: J Bioresour Bioprod doi: 10.1016/j.jobab.2021.03.003 – volume: 31 start-page: 581 issue: 4 year: 2021 ident: 176_CR59 publication-title: Carbon Lett doi: 10.1007/s42823-021-00252-3 – volume: 414 start-page: 128767 year: 2021 ident: 176_CR63 publication-title: Chem Eng J doi: 10.1016/j.cej.2021.128767 – volume: 18 start-page: e2200954 year: 2022 ident: 176_CR41 publication-title: Small doi: 10.1002/smll.2022b00954 – volume: 515 start-page: 146020 year: 2020 ident: 176_CR23 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2020.146020 – volume: 18 start-page: e2104224 issue: 7 year: 2021 ident: 176_CR35 publication-title: Small doi: 10.1002/smll.202104224 – volume: 8 start-page: 21930 issue: 42 year: 2020 ident: 176_CR13 publication-title: J Mater Chem A doi: 10.1039/d0ta08265a – volume: 6 start-page: 3624 issue: 10 year: 2021 ident: 176_CR91 publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.1c01678 – volume: 490 start-page: 022051 year: 2019 ident: 176_CR46 publication-title: IOP Conf Ser: Mater Sci Eng doi: 10.1088/1757-899x/490/2/022051 – volume: 33 start-page: e2101275 issue: 26 year: 2021 ident: 176_CR73 publication-title: Adv Mater doi: 10.1002/adma.202101275 – volume: 309 start-page: 122102 year: 2022 ident: 176_CR32 publication-title: Fuel doi: 10.1016/j.fuel.2021.122102 – volume: 28 start-page: 1806207 issue: 52 year: 2018 ident: 176_CR60 publication-title: Adv Funct Mater doi: 10.1002/adfm.201806207 – volume: 54 start-page: 1302 issue: 4 year: 2015 ident: 176_CR81 publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201410234 – volume: 29 start-page: 1809196 issue: 16 year: 2019 ident: 176_CR85 publication-title: Adv Funct Mater doi: 10.1002/adfm.201809196 – volume: 29 start-page: 1902255 issue: 31 year: 2019 ident: 176_CR25 publication-title: Adv Funct Mater doi: 10.1002/adfm.201902255 – volume: 10 start-page: 675 issue: 1 year: 2019 ident: 176_CR37 publication-title: Nat Commun doi: 10.1038/s41467-019-08644-w – volume: 15 start-page: 18624 issue: 12 year: 2021 ident: 176_CR2 publication-title: ACS Nano doi: 10.1021/acsnano.1c09687 – volume: 12 start-page: 63 issue: 1 year: 2020 ident: 176_CR12 publication-title: Nano-Micro Lett doi: 10.1007/s40820-020-0393-7 – volume: 404 start-page: 127112 year: 2021 ident: 176_CR79 publication-title: Chem Eng J doi: 10.1016/j.cej.2020.127112 – volume: 166 start-page: A1004 issue: 6 year: 2019 ident: 176_CR11 publication-title: J Electrochem Soc doi: 10.1149/2.0451906jes – volume: 17 start-page: 349 year: 2019 ident: 176_CR26 publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2018.07.001 – volume: 352 start-page: 136452 year: 2020 ident: 176_CR44 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2020.136452 – volume: 4 start-page: 1300816 issue: 4 year: 2014 ident: 176_CR78 publication-title: Adv Energy Mater doi: 10.1002/aenm.201300816 – year: 2022 ident: 176_CR69 publication-title: Wood Sci Technol doi: 10.1007/s00226-022-01389-8 – volume: 38 start-page: 438 year: 2021 ident: 176_CR90 publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2021.03.011 – volume: 15 start-page: 1715 issue: 3 year: 2022 ident: 176_CR33 publication-title: Nano Res doi: 10.1007/s12274-021-3839-4 – volume: 13 start-page: 7983 year: 2018 ident: 176_CR50 publication-title: BioResources doi: 10.15376/biores.13.4.7983-7997 – volume: 3 start-page: 1827 issue: 7 year: 2019 ident: 176_CR52 publication-title: Sustainable Energy Fuels doi: 10.1039/c9se00099b – volume: 289 start-page: 116734 year: 2021 ident: 176_CR66 publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.116734 – volume: 157 start-page: 316 year: 2020 ident: 176_CR34 publication-title: Carbon doi: 10.1016/j.carbon.2019.10.045 – volume: 12 start-page: 2376 issue: 17 year: 2016 ident: 176_CR72 publication-title: Small doi: 10.1002/smll.201503855 – volume: 63 start-page: 87 year: 2021 ident: 176_CR88 publication-title: J Energy Chem doi: 10.1016/j.jechem.2021.07.027 – volume: 161 start-page: 89 year: 2020 ident: 176_CR58 publication-title: Carbon doi: 10.1016/j.carbon.2020.01.044 – volume: 6 start-page: 1 issue: 4 year: 2021 ident: 176_CR6 publication-title: J for Eng doi: 10.13360/j.issn.2096-1359.202104011 – volume: 18 start-page: e2106356 issue: 9 year: 2021 ident: 176_CR7 publication-title: Small doi: 10.1002/smll.202106356 – volume: 393 start-page: 124672 year: 2020 ident: 176_CR38 publication-title: Chem Eng J doi: 10.1016/j.cej.2020.124672 – volume: 578 start-page: 151888 year: 2022 ident: 176_CR70 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2021.151888 – volume: 10 start-page: 538 issue: 2 year: 2017 ident: 176_CR4 publication-title: Energy Environ Sci doi: 10.1039/c6ee03716j – volume: 178 start-page: 243 year: 2021 ident: 176_CR14 publication-title: Carbon doi: 10.1016/j.carbon.2021.03.016 – volume: 10 start-page: 2001239 issue: 32 year: 2020 ident: 176_CR17 publication-title: Adv Energy Mater doi: 10.1002/aenm.202001239 – volume: 19 start-page: 100610 year: 2021 ident: 176_CR39 publication-title: Mater Today Energy doi: 10.1016/j.mtener.2020.100610 – volume: 87 start-page: 1051 issue: 9–10 year: 2015 ident: 176_CR56 publication-title: Pure Appl Chem doi: 10.1515/pac-2014-1117 – volume: 121 start-page: 6124 issue: 10 year: 2021 ident: 176_CR67 publication-title: Chem Rev doi: 10.1021/acs.chemrev.0c01264 – volume: 3 start-page: 267 issue: 3 year: 2020 ident: 176_CR61 publication-title: Adv Compos Hybrid Mater doi: 10.1007/s42114-020-00158-0 – volume: 575 start-page: 151771 year: 2022 ident: 176_CR80 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2021.151771 – volume: 412 start-page: 128673 year: 2021 ident: 176_CR49 publication-title: Chem Eng J doi: 10.1016/j.cej.2021.128673 – volume: 14 start-page: 576 issue: 2 year: 2021 ident: 176_CR21 publication-title: Energy Environ Sci doi: 10.1039/d0ee02649b – volume: 6 start-page: 1 issue: 05 year: 2021 ident: 176_CR48 publication-title: J for Eng doi: 10.13360/j.issn.2096-1359.202012046 – volume: 20 start-page: 211 issue: 1 year: 2021 ident: 176_CR18 publication-title: Environ Chem Lett doi: 10.1007/s10311-021-01311-x – volume: 9 start-page: 1901457 issue: 33 year: 2019 ident: 176_CR30 publication-title: Adv Energy Mater doi: 10.1002/aenm.201901457 – volume: 1 start-page: 596 issue: 3 year: 2019 ident: 176_CR3 publication-title: Matter doi: 10.1016/j.matt.2019.06.016 – volume: 417 start-page: 129289 year: 2021 ident: 176_CR24 publication-title: Chem Eng J doi: 10.1016/j.cej.2021.129289 – volume: 8 start-page: 1900950 issue: 1 year: 2019 ident: 176_CR36 publication-title: Energy Technol doi: 10.1002/ente.201900950 – volume: 566 start-page: 150613 year: 2021 ident: 176_CR55 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2021.150613 – volume: 105 start-page: 6880 issue: 29 year: 2001 ident: 176_CR16 publication-title: J Phys Chem B doi: 10.1021/jp010086y – volume: 18 start-page: 2104375 year: 2022 ident: 176_CR40 publication-title: Small doi: 10.1002/smll.202104375 – volume: 16 start-page: e1906584 issue: 17 year: 2020 ident: 176_CR42 publication-title: Small doi: 10.1002/smll.201906584 – volume: 18 start-page: e2201307 year: 2022 ident: 176_CR9 publication-title: Small doi: 10.1002/smll.202201307 – volume: 6 start-page: 29 issue: 01 year: 2021 ident: 176_CR68 publication-title: J for Eng doi: 10.13360/j.issn.2096-1359.202001007 – year: 2022 ident: 176_CR76 publication-title: J Bioresour Bioprod doi: 10.1016/j.jobab.2022.05.003 – volume: 4 start-page: 464 issue: 3 year: 2020 ident: 176_CR15 publication-title: Batter Supercaps doi: 10.1002/batt.202000253 – volume: 5 start-page: 79 issue: 2 year: 2020 ident: 176_CR75 publication-title: J Bioresour Bioprod doi: 10.1016/j.jobab.2020.04.001 – volume: 91 start-page: 106630 year: 2021 ident: 176_CR77 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106630 – volume: 6 start-page: 142 issue: 2 year: 2021 ident: 176_CR89 publication-title: J Bioresour Bioprod doi: 10.1016/j.jobab.2021.02.002 – volume: 256 start-page: 347 year: 2014 ident: 176_CR10 publication-title: Chem Eng J doi: 10.1016/j.cej.2014.06.045 – volume: 50 start-page: 365 year: 2022 ident: 176_CR51 publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2022.05.020 – volume: 17 start-page: 2102532 year: 2021 ident: 176_CR65 publication-title: Small doi: 10.1002/smll.202102532 |
SSID | ssj0002511639 ssib053820432 ssib046561560 |
Score | 2.5258205 |
Snippet | Developing effective electrodes with commercial-level active mass-loading (> 10 mg cm
−2
) is vital for the practical application of supercapacitors. However,... Article Highlights Basswood-derived free-standing thick carbon electrodes were developed for supercapacitors. The capacitance performance was enhanced by... |
SourceID | doaj crossref springer |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Agriculture Biochar Ceramics Composites Earth and Environmental Science Environment Environmental Engineering/Biotechnology Fossil Fuels (incl. Carbon Capture) Glass Heteroatom doping High mass-loading Natural Materials Original Research Renewable and Green Energy Self-standing electrodes Soil Science & Conservation Supercapacitor |
SummonAdditionalLinks | – databaseName: SpringerOpen dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT90wDI8YXLYD2gfTHowph922SG2SNs0R0BBC2g4ING5VktoIbXoPvT72988OeWVoCIljrbRRHTt2YvtnIT530ZBdDFoNHB-0MCQVfOsV2q42oXEWgSO633-0Jxf29LK5LEVh4zrbfR2SzDv1VOxm6Wscc9SKt9ZW-Rdiq6GzO8v10T3mOAOA1f84_aTRXP-pp5sXdqrb3GJMN9oq550u1TSPT_PAYmVg__-iptkYHb8W28WLlAd3y_5GbMD8rXh1cLUsSBrwTpz95Iz0gQTsDwwyXi-4vkqGUXKC-y9Z2t8MMEpyWyWjFitGjZA395UEcrylp0TmNF1zU54dcXH87fzoRJUGCirRsWmlUFdYe-iSww6D1lC1FR3ougFDtCG2xtVEZTQo27iBTLsFi6nCAbUNTQrmvdicL-bwQUgiewSHJpnWdrEJ1sZEvPUGsIVkZ6JeM6lPBV2cm1z87idc5MzYnhjbZ8b2fia-TO_c3GFrPDn6kHk_jWRc7ExYLK_6oma9qRJal6oO6A81kvsSovPBAQIYxDgTX9cr1xdlHZ-Yc_d5w_fES82Ck7NdPorN1fIW9slnWcVPWUT_AmGj3qI priority: 102 providerName: Springer Nature |
Title | Wood-derived biochar as thick electrodes for high-rate performance supercapacitors |
URI | https://link.springer.com/article/10.1007/s42773-022-00176-9 https://doaj.org/article/30cf47c08eab42f181ab79a7efee3ffb |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BaxUxEA61Jy-iqPi0lhx609DdZDbZHPXRUoT2IBZ7W5LsDBTltfhePfrbO5O3fX1FqBcvgQ1ZsvvtJDPZmflGqYM-O9aLyZpR_IOAYzEp-mgI-talLgCheHRPz_zJOXy56C62Sn1JTNiaHngN3KFrCkEoTY8pgyVWSCmHmAISoiPKsvuyzts6TLEkCQlYu2X486qWHFC7-fsihrWvZcZsZ8GEGOyUUVPz6oAfXNyb1sgu7k18oLUquf9fntOqkI6fq2eTJak_rd_ghdrBxUv19bvEoY8sVr9x1PnySrKqdFpqCWv_oaeiNyMuNRurWriKjXBF6Ov7_AG9vOGrwkq0XEopnlfq_Pjo2_zETGUTTOHD0sqQbaiN2JdAPSVrsfENH-P6kRjBlL0LLfcKBxR0YWSFDghUGhrJQupKcq_V7uJqgW-U5u5IGMgV56HPXQLIhdGMDsljgZlq72AZysQpLqUtfg4bNuQK5cBQDhXKIc7Uh80912tGjUdHfxa0NyOFDbt2sIwMk4wM_5KRmfp4962GaYkuH5nz7f-Y8516akWAauTLntpd_brB92y_rPK-ejK3IK2f71ex5fb0z9EtCOTqlg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDI9gHIAD4lM8PnPgBhFtkibNcTwxPWDbAW1ityhJ7WkCvU3rG38_dpf3-NQkjrXSRnXs2q7tn4V41WdDdjFpNXB-0MJQVAouKLR9a1LnLQJndPf23eLQfjzqjipMDvfC_JG_fztaegZnGrXiD6pT4bq4YSlS5vK9uZuvZYdhv9pfXH3SY-761Jv_LexKu2mwmO60VT54XXto_r3Nb3ZqgvP_K1c6maCdu-JO9R3l9uVh3xPXYHlf3N4-Pq_4GfBAfP7CdegDidV3GGQ-OeWuKplGyWXtX2UdejPAKMlZlYxVrBgrQp797B-Q4wVdFTKi5YRH8TwUhzvvD-YLVccmqELB0kqhbrAN0BePPSatoXENhXH9gCnblJ3xLVEZA8p2fiCDbsFiaXBAbVNXknkktpanS3gsJJEDgkdTjLN97pK1uRBvgwF0UOxMtGsmxVIxxXm0xbe4QUOeGBuJsXFibAwz8Xpzz9klosaVq98x7zcrGQ17IpCQxKpc0TQFrS9ND_SGGslpSdmH5AEBDGKeiTfrk4tVRccr9nzyf8tfipuLg73duPth_9NTcUuzEE31Ls_E1ur8Ap6T17LKLyZx_QH84N2z |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSAgOiKdYnj5wA6uJ7djxsSysyqtCiIreLD9mqgq0u9rd8vvxeLOhCFSJYywnVibjzIxnvm8Ye9FHVexikCJTflBDTiI44wTqvlWhsxqBMrqfjszhsX5_0p1cQPHXavddSnKLaSCWpvlmf5lxfwS-6fJkyj9KQb9ZI9xVdq1EKjVROzXTnUYRGVh7IQAou5uwoHI8hSEH29R2Y7KTWlhn5YCs-fcyf1ivSvL_Vwa1GqbZbXZr8Cj5wVYF7rArML_Lbh6crgZWDbjHvnyj6vRclO0nZB7PFoS14mHNqdj9Ox9a4WRY8-LCcmIwFsQgwZe_UQV8fV6uUjGt6Ywa9Nxnx7O3X6eHYmimIFIJoTYCZYOtgz5Z7DFICY1pSnDXZwxRh2iUbcsoMUPpzuZi5jVoTA1mlDp0KagHbG--mMNDxsuwQ7CokjK6j13QOqYiW6cADSQ9Ye1OSD4NTOPU8OKHHzmSq2B9EayvgvVuwl6O9yy3PBuXzn5Nsh9nEkd2HVisTv2w5bxqEmqbmh7KG0osrkyI1gULCKAQ44S92n05P2zc9SVrPvq_6c_Z9c9vZv7ju6MPj9kNSTpUi2CesL3N6hyeFldmE59Vbf0FlqDl-g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wood-derived+biochar+as+thick+electrodes+for+high-rate+performance+supercapacitors&rft.jtitle=Biochar+%28Online%29&rft.au=Yan%2C+Bing&rft.au=Zheng%2C+Jiaojiao&rft.au=Feng%2C+Li&rft.au=Du%2C+Cheng&rft.date=2022-12-01&rft.issn=2524-7972&rft.eissn=2524-7867&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1007%2Fs42773-022-00176-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42773_022_00176_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2524-7972&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2524-7972&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2524-7972&client=summon |