Wood-derived biochar as thick electrodes for high-rate performance supercapacitors

Developing effective electrodes with commercial-level active mass-loading (> 10 mg cm −2 ) is vital for the practical application of supercapacitors. However, high active mass-loading usually requires thick active mass layer, which severely hinders the ion/electron transport and results in poor c...

Full description

Saved in:
Bibliographic Details
Published inBiochar (Online) Vol. 4; no. 1; pp. 1 - 19
Main Authors Yan, Bing, Zheng, Jiaojiao, Feng, Li, Du, Cheng, Jian, Shaoju, Yang, Weisen, Wu, Yimin A., Jiang, Shaohua, He, Shuijian, Chen, Wei
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2022
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing effective electrodes with commercial-level active mass-loading (> 10 mg cm −2 ) is vital for the practical application of supercapacitors. However, high active mass-loading usually requires thick active mass layer, which severely hinders the ion/electron transport and results in poor capacitive performance. Herein, a self-standing biochar electrode with active mass-loading of ca. 40 mg cm −2 and thickness of 800 µm has been developed from basswood. The basswood was treated with formamide to incorporate N/O in the carbon structure, followed by mild KOH activation to ameliorate the pore size and introduce more O species in the carbon matrix. The as-prepared carbon monoliths possess well conductive carbon skeleton, abundant N/O dopant and 3D porous structure, which are favorable for the ion/electron transport and promoting capacitance performance. The self-standing carbon electrode not only exhibits the maximum areal/mass/volumetric specific capacitance of 5037.5 mF cm −2 /172.5 F g −1 /63.0 F cm −3 at 2 mA cm −2 (0.05 A g −1 ), but also displays excellent rate performance with 76% capacitance retention at 500 mA cm −2 (12.5 A g −1 ) in a symmetric supercapacitor, surpassing the state-of-art biomass-based thick carbon electrode. The assembled model can power typical electron devices including a fan, a digital watch and a logo made up of 34 light-emitting diodes for a proper period, revealing its practical application potential. This study not only puts forward a commercial-level high active mass-loading electrode from biomass for supercapacitor, but also bridges the gap between the experimental research and practical application. Graphical abstract Article Highlights Basswood-derived free-standing thick carbon electrodes were developed for supercapacitors. The capacitance performance was enhanced by pre-oxidation, solvothermal treatment and KOH activation. Supercapacitors assembled from the optimized electrode exhibited good rate performance and stability.
AbstractList Developing effective electrodes with commercial-level active mass-loading (> 10 mg cm −2 ) is vital for the practical application of supercapacitors. However, high active mass-loading usually requires thick active mass layer, which severely hinders the ion/electron transport and results in poor capacitive performance. Herein, a self-standing biochar electrode with active mass-loading of ca. 40 mg cm −2 and thickness of 800 µm has been developed from basswood. The basswood was treated with formamide to incorporate N/O in the carbon structure, followed by mild KOH activation to ameliorate the pore size and introduce more O species in the carbon matrix. The as-prepared carbon monoliths possess well conductive carbon skeleton, abundant N/O dopant and 3D porous structure, which are favorable for the ion/electron transport and promoting capacitance performance. The self-standing carbon electrode not only exhibits the maximum areal/mass/volumetric specific capacitance of 5037.5 mF cm −2 /172.5 F g −1 /63.0 F cm −3 at 2 mA cm −2 (0.05 A g −1 ), but also displays excellent rate performance with 76% capacitance retention at 500 mA cm −2 (12.5 A g −1 ) in a symmetric supercapacitor, surpassing the state-of-art biomass-based thick carbon electrode. The assembled model can power typical electron devices including a fan, a digital watch and a logo made up of 34 light-emitting diodes for a proper period, revealing its practical application potential. This study not only puts forward a commercial-level high active mass-loading electrode from biomass for supercapacitor, but also bridges the gap between the experimental research and practical application. Graphical abstract Article Highlights Basswood-derived free-standing thick carbon electrodes were developed for supercapacitors. The capacitance performance was enhanced by pre-oxidation, solvothermal treatment and KOH activation. Supercapacitors assembled from the optimized electrode exhibited good rate performance and stability.
Developing effective electrodes with commercial-level active mass-loading (> 10 mg cm −2 ) is vital for the practical application of supercapacitors. However, high active mass-loading usually requires thick active mass layer, which severely hinders the ion/electron transport and results in poor capacitive performance. Herein, a self-standing biochar electrode with active mass-loading of ca. 40 mg cm −2 and thickness of 800 µm has been developed from basswood. The basswood was treated with formamide to incorporate N/O in the carbon structure, followed by mild KOH activation to ameliorate the pore size and introduce more O species in the carbon matrix. The as-prepared carbon monoliths possess well conductive carbon skeleton, abundant N/O dopant and 3D porous structure, which are favorable for the ion/electron transport and promoting capacitance performance. The self-standing carbon electrode not only exhibits the maximum areal/mass/volumetric specific capacitance of 5037.5 mF cm −2 /172.5 F g −1 /63.0 F cm −3 at 2 mA cm −2 (0.05 A g −1 ), but also displays excellent rate performance with 76% capacitance retention at 500 mA cm −2 (12.5 A g −1 ) in a symmetric supercapacitor, surpassing the state-of-art biomass-based thick carbon electrode. The assembled model can power typical electron devices including a fan, a digital watch and a logo made up of 34 light-emitting diodes for a proper period, revealing its practical application potential. This study not only puts forward a commercial-level high active mass-loading electrode from biomass for supercapacitor, but also bridges the gap between the experimental research and practical application. Graphical abstract
Article Highlights Basswood-derived free-standing thick carbon electrodes were developed for supercapacitors. The capacitance performance was enhanced by pre-oxidation, solvothermal treatment and KOH activation. Supercapacitors assembled from the optimized electrode exhibited good rate performance and stability.
ArticleNumber 50
Author Zheng, Jiaojiao
Chen, Wei
Du, Cheng
Yang, Weisen
Feng, Li
Jian, Shaoju
Jiang, Shaohua
Yan, Bing
Wu, Yimin A.
He, Shuijian
Author_xml – sequence: 1
  givenname: Bing
  surname: Yan
  fullname: Yan, Bing
  organization: International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University
– sequence: 2
  givenname: Jiaojiao
  surname: Zheng
  fullname: Zheng, Jiaojiao
  organization: International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University
– sequence: 3
  givenname: Li
  surname: Feng
  fullname: Feng, Li
  organization: International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University
– sequence: 4
  givenname: Cheng
  surname: Du
  fullname: Du, Cheng
  organization: State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Department of Mechanical and Mechatronics Engineering Waterloo Institute of Nanotechnology, University of Waterloo
– sequence: 5
  givenname: Shaoju
  surname: Jian
  fullname: Jian, Shaoju
  organization: Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University
– sequence: 6
  givenname: Weisen
  surname: Yang
  fullname: Yang, Weisen
  organization: Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University
– sequence: 7
  givenname: Yimin A.
  surname: Wu
  fullname: Wu, Yimin A.
  email: yimin.wu@uwaterloo.ca
  organization: Department of Mechanical and Mechatronics Engineering Waterloo Institute of Nanotechnology, University of Waterloo
– sequence: 8
  givenname: Shaohua
  surname: Jiang
  fullname: Jiang, Shaohua
  organization: International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University
– sequence: 9
  givenname: Shuijian
  surname: He
  fullname: He, Shuijian
  email: shuijianhe@njfu.edu.cn
  organization: International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University
– sequence: 10
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  email: weichen@ciac.ac.cn
  organization: State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, University of Science and Technology of China
BookMark eNp9kMtKBDEQRYMo-PwBV_0D0Uo63UkvRXwMDAiiuAzV6cpMxpnOkLSCf290dOPCVSqXOpfkHLP9MY7E2LmACwGgL7OSWtccpOQAQre822NHspGKa9Pq_d-50_KQneW8AgDZCNHW3RF7fIlx4AOl8E5D1YfolpgqzNW0DO61ojW5KcWBcuVjqpZhseQJJ6q2lEqwwdFRld_KzeEWXZhiyqfswOM609nPecKeb2-eru_5_OFudn01506BmLiX4EVHxmlvPEpJ0IJRYAaPvcK-rbUoqTCNVo0eFLSKlHfgBy8VNg7rEzbb9Q4RV3abwgbTh40Y7HcQ08JimoJbk63BeaUdGCrd0gsjsNcdavJEtfd96TK7Lpdizom8LX_BKcRxShjWVoD9Um13qm1Rbb9V266g8g_6-5R_oXoH5bI8LijZVXxLY9H1H_UJ5s2UsQ
CitedBy_id crossref_primary_10_1002_ente_202300398
crossref_primary_10_3390_w15020222
crossref_primary_10_3390_batteries10100360
crossref_primary_10_1016_j_est_2022_106594
crossref_primary_10_1016_j_jpcs_2024_112197
crossref_primary_10_1016_j_apsusc_2023_158130
crossref_primary_10_1039_D3NJ02116E
crossref_primary_10_1007_s10934_023_01487_3
crossref_primary_10_1016_j_seppur_2025_131448
crossref_primary_10_1016_j_apsusc_2024_161390
crossref_primary_10_1016_j_biosx_2024_100507
crossref_primary_10_1016_j_colsurfa_2024_134263
crossref_primary_10_1016_j_est_2024_111300
crossref_primary_10_1016_j_est_2024_112631
crossref_primary_10_1155_2024_1343256
crossref_primary_10_1016_j_indcrop_2025_120616
crossref_primary_10_1016_j_jelechem_2022_117034
crossref_primary_10_1016_j_jpowsour_2024_235467
crossref_primary_10_1016_j_cej_2022_140453
crossref_primary_10_1016_j_cej_2022_140410
crossref_primary_10_1016_j_jelechem_2023_117433
crossref_primary_10_3390_membranes12100961
crossref_primary_10_1016_j_est_2023_108218
crossref_primary_10_1016_j_rser_2024_114399
crossref_primary_10_1002_sstr_202300329
crossref_primary_10_3390_nano12213822
crossref_primary_10_1016_j_jallcom_2023_169129
crossref_primary_10_1016_j_ijbiomac_2024_130254
crossref_primary_10_1016_j_est_2023_110322
crossref_primary_10_1016_j_est_2023_110167
crossref_primary_10_1002_advs_202402033
crossref_primary_10_1002_cssc_202300027
crossref_primary_10_1016_j_scitotenv_2023_164107
crossref_primary_10_1002_smll_202300336
crossref_primary_10_1016_j_colsurfa_2023_133090
crossref_primary_10_1016_j_indcrop_2024_119924
crossref_primary_10_1016_j_jcis_2023_02_024
crossref_primary_10_1016_j_jmrt_2023_09_115
crossref_primary_10_1016_j_mtadv_2023_100391
crossref_primary_10_1007_s41779_024_00999_8
crossref_primary_10_1007_s10853_023_08773_0
crossref_primary_10_1016_j_colsurfa_2024_133666
crossref_primary_10_1016_S1872_5805_23_60779_6
crossref_primary_10_1016_j_susmat_2023_e00726
crossref_primary_10_3390_gels10010082
crossref_primary_10_1016_j_apsusc_2023_156757
crossref_primary_10_1016_j_susmat_2024_e00824
crossref_primary_10_3390_molecules28041831
crossref_primary_10_1002_chem_202304157
crossref_primary_10_1016_j_biortech_2024_130865
crossref_primary_10_1016_j_colsurfa_2023_131018
crossref_primary_10_1016_j_indcrop_2023_117032
crossref_primary_10_1016_j_est_2024_114237
crossref_primary_10_1016_j_est_2024_114477
crossref_primary_10_1016_j_colsurfa_2024_134167
crossref_primary_10_1016_j_indcrop_2024_119616
crossref_primary_10_1021_acssuschemeng_4c01940
crossref_primary_10_1016_j_apsusc_2024_161012
crossref_primary_10_3390_chemosensors11070394
crossref_primary_10_1016_j_jclepro_2023_137569
crossref_primary_10_3390_catal13091247
crossref_primary_10_3390_ma16010350
crossref_primary_10_1007_s42773_023_00259_1
crossref_primary_10_1016_j_electacta_2024_145397
crossref_primary_10_15251_DJNB_2023_182_603
crossref_primary_10_1016_j_cej_2024_149615
crossref_primary_10_1016_j_diamond_2024_110871
crossref_primary_10_1016_j_jallcom_2023_168813
crossref_primary_10_3390_ijms241814156
crossref_primary_10_3390_molecules27227692
crossref_primary_10_1007_s12274_023_5753_4
crossref_primary_10_1016_j_electacta_2025_146024
crossref_primary_10_1016_j_jallcom_2022_168557
crossref_primary_10_1007_s42250_023_00669_5
crossref_primary_10_1007_s11581_023_05088_7
crossref_primary_10_1016_j_cej_2024_155087
crossref_primary_10_3390_nano12193391
crossref_primary_10_1016_j_est_2024_114846
crossref_primary_10_3390_ma15207162
crossref_primary_10_1016_j_est_2024_110688
crossref_primary_10_1016_j_carbon_2023_118090
crossref_primary_10_1016_j_indcrop_2023_117701
crossref_primary_10_1016_j_seppur_2024_129127
crossref_primary_10_1016_j_jcis_2023_09_179
crossref_primary_10_1007_s42773_024_00316_3
crossref_primary_10_1016_j_est_2024_115177
crossref_primary_10_1016_j_jcis_2023_01_054
crossref_primary_10_3390_polym15122741
crossref_primary_10_1039_D2QI01914K
crossref_primary_10_1016_j_diamond_2023_110521
crossref_primary_10_3390_ma16010043
crossref_primary_10_1016_j_surfin_2024_105250
Cites_doi 10.1002/adfm.202101077
10.1016/j.snb.2021.129922
10.1002/batt.202000253
10.1016/j.fuel.2021.122102
10.1016/j.ensm.2018.07.001
10.1002/smll.201503855
10.1016/j.electacta.2020.136452
10.1016/j.ensm.2022.05.020
10.1016/j.jobab.2022.05.003
10.1016/j.carbon.2019.01.056
10.1038/s41467-019-08644-w
10.1007/s42823-021-00252-3
10.1016/j.ensm.2018.01.007
10.1016/j.mtsust.2021.100096
10.1002/adma.202101275
10.1016/j.susmat.2021.e00341
10.1016/j.jobab.2021.02.002
10.1111/jace.15035
10.1016/j.cej.2021.128673
10.1002/smll.202104224
10.1007/s40820-020-0393-7
10.1002/adfm.202201544
10.1016/j.apsusc.2021.151888
10.1002/anie.201410234
10.1021/jp010086y
10.1021/acssuschemeng.0c01661
10.1007/s42114-020-00158-0
10.1021/acs.chemrev.0c01264
10.1016/j.jechem.2021.07.027
10.1016/j.mtener.2020.100610
10.1002/aenm.201300816
10.13360/j.issn.2096-1359.202012046
10.1002/adfm.201809196
10.1021/acsenergylett.1c01678
10.1002/adfm.201806207
10.1002/smll.202201307
10.1039/c3ee44164d
10.1016/j.carbon.2018.01.055
10.1007/s10311-021-01311-x
10.1007/s40820-019-0300-2
10.1039/c7gc03426a
10.1016/j.ensm.2021.03.011
10.1515/pac-2014-1117
10.1016/j.carbon.2020.01.044
10.1002/smll.202102532
10.1016/j.apsusc.2020.146020
10.1002/smll.202104375
10.1021/acsaem.0c00582
10.1016/j.jpowsour.2018.05.046
10.1016/j.cej.2020.124672
10.1039/c6ee03716j
10.1016/j.apsusc.2021.151771
10.15376/biores.13.4.7983-7997
10.1016/j.cej.2021.128767
10.1007/s12274-021-3839-4
10.1002/adfm.201902255
10.13360/j.issn.2096-1359.202001007
10.1016/j.biortech.2021.126084
10.1016/j.cej.2020.127112
10.1016/j.jobab.2021.03.003
10.1002/smll.201906584
10.1016/j.nanoen.2012.05.002
10.1016/j.cej.2014.06.045
10.1149/2.0451906jes
10.1016/j.apsusc.2021.150613
10.1016/j.cej.2021.129289
10.1002/ente.201900950
10.1007/s00226-022-01389-8
10.1002/aenm.202001239
10.1016/j.carbon.2019.10.045
10.1039/d0ta08265a
10.1002/aenm.201901457
10.1038/s41578-020-0195-z
10.1016/j.apenergy.2021.116734
10.1016/j.jobab.2020.04.001
10.1016/j.electacta.2019.05.074
10.1002/smll.2022b00954
10.13360/j.issn.2096-1359.202104011
10.1021/acsnano.1c10093
10.1002/smll.202106356
10.1016/j.jpowsour.2020.228934
10.1016/j.nanoen.2021.106630
10.1016/j.matt.2019.06.016
10.1016/j.cej.2021.132203
10.1039/d0ee02649b
10.1039/c9se00099b
10.1016/j.jpowsour.2019.03.100
10.1016/j.carbon.2021.03.016
10.1088/1757-899x/490/2/022051
10.1007/s40820-019-0364-z
10.1016/j.apmate.2021.11.005
10.1021/acsnano.1c09687
ContentType Journal Article
Copyright The Author(s) 2022
Copyright_xml – notice: The Author(s) 2022
DBID C6C
AAYXX
CITATION
DOA
DOI 10.1007/s42773-022-00176-9
DatabaseName Springer Nature OA Free Journals
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2524-7867
EndPage 19
ExternalDocumentID oai_doaj_org_article_30cf47c08eab42f181ab79a7efee3ffb
10_1007_s42773_022_00176_9
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 22005147
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Natural Science Foundation of Fujian Province
  grantid: 2020J01419; 2020J05220
  funderid: http://dx.doi.org/10.13039/501100003392
GroupedDBID 0R~
AAHBH
AAHNG
AAJSJ
AAKKN
AAYZJ
ABDBF
ABECU
ABEEZ
ABFTV
ABKCH
ABMQK
ABTEG
ABTMW
ACACY
ACOKC
ACULB
ACZOJ
ADKNI
ADURQ
ADYFF
AFGXO
AFQWF
AGDGC
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AXYYD
C24
C6C
EBLON
EBS
EJD
FNLPD
GROUPED_DOAJ
H13
M~E
NQJWS
OK1
RSV
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
AASML
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
ID FETCH-LOGICAL-c401t-f20f19e8c7f8fa22e0608408dfab4ab6371a221857457d4064e4fc0fdf24a5ca3
IEDL.DBID DOA
ISSN 2524-7972
IngestDate Wed Aug 27 01:29:43 EDT 2025
Tue Jul 01 03:16:37 EDT 2025
Thu Apr 24 23:10:35 EDT 2025
Fri Feb 21 02:44:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords High mass-loading
Supercapacitor
Biochar
Heteroatom doping
Self-standing electrodes
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-f20f19e8c7f8fa22e0608408dfab4ab6371a221857457d4064e4fc0fdf24a5ca3
OpenAccessLink https://doaj.org/article/30cf47c08eab42f181ab79a7efee3ffb
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_30cf47c08eab42f181ab79a7efee3ffb
crossref_citationtrail_10_1007_s42773_022_00176_9
crossref_primary_10_1007_s42773_022_00176_9
springer_journals_10_1007_s42773_022_00176_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Biochar (Online)
PublicationTitleAbbrev Biochar
PublicationYear 2022
Publisher Springer Nature Singapore
Springer
Publisher_xml – name: Springer Nature Singapore
– name: Springer
References Sun, Guo, Zhou, Li, Cai, Ge (CR53) 2021; 482
Wu, Chen, Kim, Ni, Zeng, Zhao, Tao, Ji, Lee, Zhu (CR72) 2016; 12
Zuliani, Tong, Jia, Kirk (CR92) 2018; 395
Kim, Zhu, Aoki, Habazaki (CR29) 2019; 314
Zhao, Dong, Sheng, Xiao, Jiang, Li, Jiang, Shi (CR86) 2020; 8
Liu, Wu, Guo, Lee, Sun, Li, Zhang, Wang, Hu, Zhu, Leung, Zhu (CR39) 2021; 19
Xu, Xi, Li, Hua, Peng, Hu, Zhou, Zhang, Wang, Wang, Ding, Wang, Ji, Yang, Xu, Chen, Li (CR77) 2021; 91
Kuang, Chen, Kirsch, Hu (CR30) 2019; 9
Thongsai, Hrimchum, Aussawasathien (CR57) 2021; 30
Du, Sun, Li, Cheng, Chen, Song, Kong, Xie, Chen (CR14) 2021; 178
Chen, Zhang, Li, Dai, Song, Yao, Gong, Kierzewski, Xie, Hu (CR4) 2017; 10
Daikopoulos, Georgiou, Bourlinos, Baikousi, Karakassides, Zboril, Steriotis, Deligiannakis (CR10) 2014; 256
Plaza-Rivera, Walker, Tran, Viggiano, Dornbusch, Wu, Connell, Lin (CR47) 2020; 3
Zhong, Jiang, Zheng, Peng, Liu, Xi, Chi, Zhang, Gu, Zhang, Shi, Zhang, Wu, Chen, Li, Dahbi, Alami, Amine, Lu (CR91) 2021; 6
Oh, Park, Jang, Shin, Lim, Park (CR45) 2019; 145
Liu, Zhou, Guo, Guo, Liu (CR37) 2019; 10
Thommes, Kaneko, Neimark, Olivier, Rodriguez-Reinoso, Rouquerol, Sing (CR56) 2015; 87
Govind Raj, Joy (CR19) 2017; 100
Qing, Liao, Liu, Tian, Xu, Wu (CR48) 2021; 6
Tian, Zhu, Dong, Zhao, Li, Guo, Lin, Zhang, Jia (CR58) 2020; 161
Xiao, Li, Zhang, He, Zhang, Liu, Jiang, Duan, Zhang (CR76) 2022
Han, Wang, Chen, Zou, Niu, Yang, Cao, Song, Chen, Xie (CR22) 2018; 13
Jjagwe, Olupot, Menya, Kalibbala (CR27) 2021; 6
Chen, Ling, Huang, Yang, Wang (CR7) 2021; 18
Zheng, Halim, Sun, Rosen, Barsoum (CR90) 2021; 38
Huang, Chu, Cai, Yang, Chen, Liu, Gopalsamy, Xu, Gao, Gao (CR26) 2019; 17
Liu, Zhao, Jin, Sun, Jiao, Wang (CR40) 2022; 18
Lu, Yang, Chen, Li, Jin, Wang, Wang (CR42) 2020; 16
Wang, Zhou, Xu, Bian, Dai (CR68) 2021; 6
Chen, Cao, Huang, Wu, Hu, Liu, Lin (CR6) 2021; 6
Ding, Trouillet, Dsoke (CR11) 2019; 166
Su, Ye, Li, Guo, Cao, Ni, Zhu (CR51) 2022; 50
Peng, Liu, Bao (CR46) 2019; 490
Wang, Zhang, Zhang, Yang, Duan, Xu, Yang, Jiang (CR66) 2021; 289
He, Zhang, Wang, Zhang, Yang, Shi, Wang, Wang (CR23) 2020; 515
Yu, Peng, Du, Zhang, Wan, Chen, Xiong, Xie, Wang (CR80) 2022; 575
Shang, Lin, Zhao (CR50) 2018; 13
Teng, Zhou, Wang, Che, Du, Hu, Li, Wang (CR55) 2021; 566
Wabo, Klepel (CR59) 2021; 31
Chen, Li, Li, Mei, Zheng, Shiju, Duan, Liu, Jiang (CR8) 2021; 15
González-Arias, Sánchez, Cara-Jiménez, Baena-Moreno, Zhang (CR18) 2021; 20
Chen, Kuang, Zhu, Burgert, Keplinger, Gong, Li, Berglund, Eichhorn, Hu (CR5) 2020; 5
Ding, Liu, Yan, Huang, Ryu, Lan, Yu, Zhong, Yang (CR12) 2020; 12
Xia, Zhang, Chong, Li, Chen, Sun (CR74) 2018; 20
Katsuyama, Haba, Kobayashi, Iwase, Kudo, Honma, Kaner (CR28) 2022; 32
Guo, Ma, Li, Guo, Luo, Yang, Liu, Thomas, Wang (CR20) 2020; 12
Zheng, Wang, Hou, Li, Tao (CR88) 2021; 63
Liu, Xie, Liu, Moon, Lu, Lin, Yuan, Shen, Zang, Lin, Tang, Wong (CR38) 2020; 393
Ghosh, Barg, Jeong, Ostrikov (CR17) 2020; 10
Li, Wang, Li, Ma, Zhang, Yan, Agnoli, Zhang, Sun (CR33) 2022; 15
Lin, Wang, Chen, Cai, Xiao, Muhmood, Hu (CR35) 2021; 18
Leng, Guo, Chen, Liu, Jiaqiang, Xue (CR32) 2022; 309
Boyce, Cumming, Huang, Zankowski, Grant, Brett, Shearing (CR2) 2021; 15
Ma, Yao, Liang, Yin, Xia, Zuo, Zeng (CR44) 2020; 352
Wang, Lin, Liu, Chen, Chen, Jiang, Liu, Huang, Liu (CR60) 2018; 28
Dubey, Zwahlen, Shynkarenko, Yakunin, Fuerst, Kovalenko, Kravchyk (CR15) 2020; 4
Liu, Duan, Dou, Yuan, Xu, Liu, Chen (CR41) 2022; 18
Wu, Zhang, Ju, Wang, Hui, Mayilvahanan, Takeuchi, Marschilok, West, Takeuchi, Yu (CR73) 2021; 33
Guo, Yu, Li, Qiu (CR21) 2021; 14
Zhang, Liang, Fang, Yang, Zhou (CR83) 2019; 11
Zhang, Tsuzuki, Ueno, Dokko, Watanabe (CR81) 2015; 54
Yan, Wang, Wei, Fan (CR78) 2014; 4
Yang, Huang, Luo, Yu, Sun, Lv, Sun (CR79) 2021; 404
Augustyn, Simon, Dunn (CR1) 2014; 7
Wang, Liu, Duan, Yang, Cheong, Lee, Ahn, Zhang, He, Han, Zhao, Kim, Jiang (CR65) 2021; 17
Zhang, Wu, Wu, Zhou, Xi, Deng, Wang, Quan, Li, Luo (CR82) 2019; 424
Zhang, Zhou, Qiu, Xia, Xia, Zhang, Fu (CR84) 2021; 339
Zheng, Zhang, Deng, Du, Shi (CR89) 2021; 6
Hou, Yang, Li, Wang, Jiang, Xu, Zhang, Huang, Yang, Li (CR24) 2021; 417
Wang, Cheong, He, Duan, He, Zhang, Zhao, Kim, Jiang (CR63) 2021; 414
Dong, Zhu, Li, Zhang, Song, Jia (CR13) 2020; 8
Tang, Pei, Wang, Li, Zeng, Ruan, Huang, Zhu, Xue, Yu, Zhi (CR54) 2018; 130
Ran, Yang, Xu, Li, Liu, Shao (CR49) 2021; 412
Xia, Li, Zhang, Zhang, Zheng, Zhang (CR75) 2020; 5
Wang, Chen, He, Zhang, Liu, Han, Duan, Jiang (CR69) 2022
Wang, Yan, Zheng, Feng, Chen, Zhang, Liao, Chen, Jiang, Du, He (CR62) 2021; 1
Wang, Lu, Li, Li, Ji, Feteira, Zhou, Wang, Zhang, Reaney (CR67) 2021; 121
Sun, Lu, Rufford, Gaddam, Duignan, Fan, Zhao (CR52) 2019; 3
Lachos-Perez, Cesar Torres-Mayanga, Abaide, Zabot, De Castilhos (CR31) 2022; 343
Zhao, He, You (CR87) 2022; 17
Wang, Han, Qi, Teng, Zhang, Li (CR70) 2022; 578
Lü, Lu, Li, Zhang, Shao, He (CR43) 2022; 429
Wang, Cheong, Lee, Ahn, Duan, Chen, Zhang, Kim, Jiang (CR64) 2021; 31
Eliad, Salitra, Soffer, Aurbach (CR16) 2001; 105
Wei, Yushin (CR71) 2012; 1
Lin, Liu, Tan, Zhang (CR34) 2020; 157
Liu, Xu, Wang, Qian, Zhao, Zeng, Huang (CR36) 2019; 8
Zhao, Sun, Chen, Liu, Zhang, Dongfang, Ruan, Zhang, Wang, Dong, Xia, Lu (CR85) 2019; 29
Huang, Zhao, Liu, Mou, Jiang, Liu, Li, Liu (CR25) 2019; 29
Chang, Hu (CR3) 2019; 1
Chen, Wang, Tian, Guo, Cai, Wu, Du, Liu, Hao, He, Duan, Jiang (CR9) 2022; 18
Wang, Hu, Hao, Peng, Shi, Peng, Sun (CR61) 2020; 3
H Lu (176_CR42) 2020; 16
C Wang (176_CR62) 2021; 1
L Yang (176_CR79) 2021; 404
V Augustyn (176_CR1) 2014; 7
L Zhong (176_CR91) 2021; 6
CF Ding (176_CR12) 2020; 12
J González-Arias (176_CR18) 2021; 20
X Zhao (176_CR87) 2022; 17
W Zheng (176_CR90) 2021; 38
W Teng (176_CR55) 2021; 566
C Kim (176_CR29) 2019; 314
CO Plaza-Rivera (176_CR47) 2020; 3
Z Ding (176_CR11) 2019; 166
W Guo (176_CR21) 2021; 14
W Tian (176_CR58) 2020; 161
N Thongsai (176_CR57) 2021; 30
HL Liu (176_CR38) 2020; 393
AM Boyce (176_CR2) 2021; 15
Y Kuang (176_CR30) 2019; 9
J Xiao (176_CR76) 2022
S Ghosh (176_CR17) 2020; 10
L Chen (176_CR6) 2021; 6
J Shang (176_CR50) 2018; 13
Z Xia (176_CR75) 2020; 5
M Thommes (176_CR56) 2015; 87
T Liu (176_CR37) 2019; 10
L Xu (176_CR77) 2021; 91
C Daikopoulos (176_CR10) 2014; 256
J Yan (176_CR78) 2014; 4
L Chen (176_CR9) 2022; 18
X Sun (176_CR52) 2019; 3
Y Dong (176_CR13) 2020; 8
F Lü (176_CR43) 2022; 429
W Zhang (176_CR83) 2019; 11
J Huang (176_CR25) 2019; 29
C Sun (176_CR53) 2021; 482
S Liu (176_CR40) 2022; 18
Y Wang (176_CR61) 2020; 3
S Zhang (176_CR82) 2019; 424
Z Li (176_CR33) 2022; 15
Y Liu (176_CR39) 2021; 19
R Wang (176_CR68) 2021; 6
S Zhang (176_CR81) 2015; 54
S Zheng (176_CR88) 2021; 63
S Zheng (176_CR89) 2021; 6
J Peng (176_CR46) 2019; 490
X Su (176_CR51) 2022; 50
L Chang (176_CR3) 2019; 1
M Wang (176_CR70) 2022; 578
YF Du (176_CR14) 2021; 178
K Govind Raj (176_CR19) 2017; 100
Z Tang (176_CR54) 2018; 130
F Wang (176_CR63) 2021; 414
R Dubey (176_CR15) 2020; 4
G Wang (176_CR67) 2021; 121
Y Ma (176_CR44) 2020; 352
Z Liu (176_CR41) 2022; 18
Y Wang (176_CR60) 2018; 28
SG Wabo (176_CR59) 2021; 31
D Lachos-Perez (176_CR31) 2022; 343
F Ran (176_CR49) 2021; 412
E Leng (176_CR32) 2022; 309
J Oh (176_CR45) 2019; 145
L Eliad (176_CR16) 2001; 105
J Xia (176_CR74) 2018; 20
Y Yu (176_CR80) 2022; 575
L Hou (176_CR24) 2021; 417
J Wu (176_CR73) 2021; 33
Y Zhang (176_CR84) 2021; 339
M Han (176_CR22) 2018; 13
JE Zuliani (176_CR92) 2018; 395
J Jjagwe (176_CR27) 2021; 6
F Wang (176_CR69) 2022
Y Katsuyama (176_CR28) 2022; 32
L Wei (176_CR71) 2012; 1
C Chen (176_CR5) 2020; 5
T Huang (176_CR26) 2019; 17
Y Qing (176_CR48) 2021; 6
S Wu (176_CR72) 2016; 12
Y Zhao (176_CR86) 2020; 8
F Wang (176_CR65) 2021; 17
Z Zhao (176_CR85) 2019; 29
B Guo (176_CR20) 2020; 12
F Wang (176_CR64) 2021; 31
J He (176_CR23) 2020; 515
F Wang (176_CR66) 2021; 289
K Liu (176_CR36) 2019; 8
CJ Chen (176_CR4) 2017; 10
S Lin (176_CR35) 2021; 18
R Chen (176_CR7) 2021; 18
X Lin (176_CR34) 2020; 157
Y Chen (176_CR8) 2021; 15
References_xml – volume: 31
  start-page: 2101077
  issue: 31
  year: 2021
  ident: CR64
  article-title: Pyrolysis of enzymolysis-treated wood: hierarchically assembled porous carbon electrode for advanced energy storage devices
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202101077
– volume: 339
  start-page: 129922
  year: 2021
  ident: CR84
  article-title: Strongly emissive formamide-derived N-doped carbon dots embedded Eu(III)-based metal-organic frameworks as a ratiometric fluorescent probe for ultrasensitive and visual quantitative detection of Ag
  publication-title: Sens Actuators, B
  doi: 10.1016/j.snb.2021.129922
– volume: 4
  start-page: 464
  issue: 3
  year: 2020
  end-page: 468
  ident: CR15
  article-title: Laser patterning of high-mass-loading graphite anodes for high-performance Li-Ion Batteries
  publication-title: Batter Supercaps
  doi: 10.1002/batt.202000253
– volume: 309
  start-page: 122102
  year: 2022
  ident: CR32
  article-title: A comprehensive review on lignin pyrolysis: mechanism, modeling and the effects of inherent metals in biomass
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.122102
– volume: 17
  start-page: 349
  year: 2019
  end-page: 357
  ident: CR26
  article-title: Tri-high designed graphene electrodes for long cycle-life supercapacitors with high mass loading
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2018.07.001
– volume: 12
  start-page: 2376
  issue: 17
  year: 2016
  end-page: 2384
  ident: CR72
  article-title: Creating pores on graphene platelets by low-temperature KOH activation for enhanced electrochemical performance
  publication-title: Small
  doi: 10.1002/smll.201503855
– volume: 352
  start-page: 136452
  year: 2020
  ident: CR44
  article-title: Ultra-thick wood biochar monoliths with hierarchically porous structure from cotton rose for electrochemical capacitor electrodes
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2020.136452
– volume: 50
  start-page: 365
  year: 2022
  end-page: 372
  ident: CR51
  article-title: Heterogeneous stacking carbon films for optimized supercapacitor performance
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2022.05.020
– year: 2022
  ident: CR76
  article-title: Nanocellulose and its derived composite electrodes toward supercapacitors: fabrication, properties, and challenges
  publication-title: J Bioresour Bioprod
  doi: 10.1016/j.jobab.2022.05.003
– volume: 145
  start-page: 481
  year: 2019
  end-page: 487
  ident: CR45
  article-title: Metal-free N-doped carbon blacks as excellent electrocatalysts for oxygen reduction reactions
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.01.056
– volume: 10
  start-page: 675
  issue: 1
  year: 2019
  ident: CR37
  article-title: Block copolymer derived uniform mesopores enable ultrafast electron and ion transport at high mass loadings
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-08644-w
– volume: 31
  start-page: 581
  issue: 4
  year: 2021
  end-page: 592
  ident: CR59
  article-title: Nitrogen release and pore formation through KOH activation of nitrogen-doped carbon materials: an evaluation of the literature
  publication-title: Carbon Lett
  doi: 10.1007/s42823-021-00252-3
– volume: 13
  start-page: 119
  year: 2018
  end-page: 126
  ident: CR22
  article-title: All-solid-state supercapacitors with superior compressive strength and volumetric capacitance
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2018.01.007
– volume: 17
  start-page: 100096
  year: 2022
  ident: CR87
  article-title: Laser engraving and punching of graphene films as flexible all-solid-state planar micro-supercapacitor electrodes
  publication-title: Mater Today Sustainability
  doi: 10.1016/j.mtsust.2021.100096
– volume: 33
  start-page: e2101275
  issue: 26
  year: 2021
  ident: CR73
  article-title: From fundamental understanding to engineering design of high-performance thick electrodes for scalable energy-storage systems
  publication-title: Adv Mater
  doi: 10.1002/adma.202101275
– volume: 30
  start-page: e00341
  year: 2021
  ident: CR57
  article-title: Carbon fiber mat from palm-kernel-shell lignin/polyacrylonitrile as intrinsic-doping electrode in supercapacitor
  publication-title: Sustain Mater Technol
  doi: 10.1016/j.susmat.2021.e00341
– volume: 6
  start-page: 142
  issue: 2
  year: 2021
  end-page: 151
  ident: CR89
  article-title: Chitin derived nitrogen-doped porous carbons with ultrahigh specific surface area and tailored hierarchical porosity for high performance supercapacitors
  publication-title: J Bioresour Bioprod
  doi: 10.1016/j.jobab.2021.02.002
– volume: 100
  start-page: 5151
  issue: 11
  year: 2017
  end-page: 5161
  ident: CR19
  article-title: Role of localized graphitization on the electrical and magnetic properties of activated carbon
  publication-title: J Am Ceram Soc
  doi: 10.1111/jace.15035
– volume: 412
  start-page: 128673
  year: 2021
  ident: CR49
  article-title: Green activation of sustainable resources to synthesize nitrogen-doped oxygen-riched porous carbon nanosheets towards high-performance supercapacitor
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.128673
– volume: 18
  start-page: e2104224
  issue: 7
  year: 2021
  ident: CR35
  article-title: 3D ordered porous nanostructure confers fast charge transfer rate and reduces the electrode polarization in thick electrode
  publication-title: Small
  doi: 10.1002/smll.202104224
– volume: 12
  start-page: 63
  issue: 1
  year: 2020
  ident: CR12
  article-title: An ultra-microporous carbon material boosting integrated capacitance for cellulose-based supercapacitors
  publication-title: Nano-Micro Lett
  doi: 10.1007/s40820-020-0393-7
– volume: 32
  start-page: 2201544
  issue: 24
  year: 2022
  ident: CR28
  article-title: Macro- and nano-porous 3D-hierarchical carbon lattices for extraordinarily high capacitance supercapacitors
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202201544
– volume: 578
  start-page: 151888
  year: 2022
  ident: CR70
  article-title: Study on performance and charging dynamics of N/O codoped layered porous carbons derived from L-tyrosine for supercapacitors
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2021.151888
– volume: 54
  start-page: 1302
  issue: 4
  year: 2015
  end-page: 1306
  ident: CR81
  article-title: Upper limit of nitrogen content in carbon materials
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.201410234
– volume: 105
  start-page: 6880
  issue: 29
  year: 2001
  end-page: 6887
  ident: CR16
  article-title: Ion sieving effects in the electrical double layer of porous carbon electrodes: estimating effective ion size in electrolytic solutions
  publication-title: J Phys Chem B
  doi: 10.1021/jp010086y
– volume: 8
  start-page: 8664
  issue: 23
  year: 2020
  end-page: 8674
  ident: CR86
  article-title: Heteroatom-doped pillared porous carbon architectures with ultrafast electron and ion transport capabilities under high mass loadings for high-rate supercapacitors
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.0c01661
– volume: 3
  start-page: 267
  issue: 3
  year: 2020
  end-page: 284
  ident: CR61
  article-title: Hydrothermal synthesis and applications of advanced carbonaceous materials from biomass: a review
  publication-title: Adv Compos Hybrid Mater
  doi: 10.1007/s42114-020-00158-0
– volume: 121
  start-page: 6124
  issue: 10
  year: 2021
  end-page: 6172
  ident: CR67
  article-title: Electroceramics for high-energy density capacitors: current status and future perspectives
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.0c01264
– volume: 63
  start-page: 87
  year: 2021
  end-page: 112
  ident: CR88
  article-title: Recent progress and strategies toward high performance zinc-organic batteries
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2021.07.027
– volume: 19
  start-page: 100610
  year: 2021
  ident: CR39
  article-title: Modulate FeCo nanoparticle in situ growth on carbon matrix for high-performance oxygen catalysts
  publication-title: Mater Today Energy
  doi: 10.1016/j.mtener.2020.100610
– volume: 4
  start-page: 1300816
  issue: 4
  year: 2014
  ident: CR78
  article-title: Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201300816
– volume: 6
  start-page: 1
  issue: 05
  year: 2021
  end-page: 13
  ident: CR48
  article-title: Research progress of wood-derived energy storage materials
  publication-title: J for Eng
  doi: 10.13360/j.issn.2096-1359.202012046
– volume: 29
  start-page: 1809196
  issue: 16
  year: 2019
  ident: CR85
  article-title: Sandwich, vertical-channeled thick electrodes with high rate and cycle performance
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201809196
– volume: 6
  start-page: 3624
  issue: 10
  year: 2021
  end-page: 3633
  ident: CR91
  article-title: Wood carbon based single-atom catalyst for rechargeable Zn–air batteries
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.1c01678
– volume: 28
  start-page: 1806207
  issue: 52
  year: 2018
  ident: CR60
  article-title: Wood-derived hierarchically porous electrodes for high-performance all-solid-state supercapacitors
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201806207
– volume: 18
  start-page: e2201307
  year: 2022
  ident: CR9
  article-title: Wood-derived high-mass-loading MnO composite carbon electrode enabling high energy density and high-rate supercapacitor
  publication-title: Small
  doi: 10.1002/smll.202201307
– volume: 7
  start-page: 1597
  issue: 5
  year: 2014
  ident: CR1
  article-title: Pseudocapacitive oxide materials for high-rate electrochemical energy storage
  publication-title: Energy Environ Sci
  doi: 10.1039/c3ee44164d
– volume: 130
  start-page: 532
  year: 2018
  end-page: 543
  ident: CR54
  article-title: Highly anisotropic, multichannel wood carbon with optimized heteroatom doping for supercapacitor and oxygen reduction reaction
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.01.055
– volume: 20
  start-page: 211
  issue: 1
  year: 2021
  end-page: 221
  ident: CR18
  article-title: Hydrothermal carbonization of biomass and waste: a review
  publication-title: Environ Chem Lett
  doi: 10.1007/s10311-021-01311-x
– volume: 11
  start-page: 69
  issue: 1
  year: 2019
  ident: CR83
  article-title: Ultra-high mass-loading cathode for aqueous zinc-ion battery based on graphene-wrapped aluminum vanadate nanobelts
  publication-title: Nano-Micro Lett
  doi: 10.1007/s40820-019-0300-2
– volume: 20
  start-page: 694
  issue: 3
  year: 2018
  end-page: 700
  ident: CR74
  article-title: Three-dimensional porous graphene-like sheets synthesized from biocarbon via low-temperature graphitization for a supercapacitor
  publication-title: Green Chem
  doi: 10.1039/c7gc03426a
– volume: 38
  start-page: 438
  year: 2021
  end-page: 446
  ident: CR90
  article-title: MXene-manganese oxides aqueous asymmetric supercapacitors with high mass loadings, high cell voltages and slow self-discharge
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2021.03.011
– volume: 87
  start-page: 1051
  issue: 9–10
  year: 2015
  end-page: 1069
  ident: CR56
  article-title: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)
  publication-title: Pure Appl Chem
  doi: 10.1515/pac-2014-1117
– volume: 161
  start-page: 89
  year: 2020
  end-page: 96
  ident: CR58
  article-title: Micelle-induced assembly of graphene quantum dots into conductive porous carbon for high rate supercapacitor electrodes at high mass loadings
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.01.044
– volume: 17
  start-page: 2102532
  year: 2021
  ident: CR65
  article-title: Wood-derived, conductivity and hierarchical pore integrated thick electrode enabling high areal/volumetric energy density for hybrid capacitors
  publication-title: Small
  doi: 10.1002/smll.202102532
– volume: 515
  start-page: 146020
  year: 2020
  ident: CR23
  article-title: Biomass-derived porous carbons with tailored graphitization degree and pore size distribution for supercapacitors with ultra-high rate capability
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2020.146020
– volume: 18
  start-page: 2104375
  year: 2022
  ident: CR40
  article-title: Nitrogen-doped carbon networks with consecutive conductive pathways from a facile competitive carbonization-etching strategy for high-performance energy storage
  publication-title: Small
  doi: 10.1002/smll.202104375
– volume: 3
  start-page: 6374
  issue: 7
  year: 2020
  end-page: 6382
  ident: CR47
  article-title: Dry pressing neat active materials into ultrahigh mass loading sandwich cathodes enabled by holey graphene scaffold
  publication-title: ACS Appl Energy Mater
  doi: 10.1021/acsaem.0c00582
– volume: 395
  start-page: 271
  year: 2018
  end-page: 279
  ident: CR92
  article-title: Contribution of surface oxygen groups to the measured capacitance of porous carbon supercapacitors
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2018.05.046
– volume: 393
  start-page: 124672
  year: 2020
  ident: CR38
  article-title: Laser-induced and KOH-activated 3D graphene: a flexible activated electrode fabricated via direct laser writing for in-plane micro-supercapacitors
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.124672
– volume: 10
  start-page: 538
  issue: 2
  year: 2017
  end-page: 545
  ident: CR4
  article-title: All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance
  publication-title: Energy Environ Sci
  doi: 10.1039/c6ee03716j
– volume: 575
  start-page: 151771
  year: 2022
  ident: CR80
  article-title: Alkaline-carbonate-templated carbon: effect of template nature on morphology, oxygen species and supercapacitor performances
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2021.151771
– volume: 13
  start-page: 7983
  year: 2018
  end-page: 7997
  ident: CR50
  article-title: Preparation and characterization of wood-based pre-oxidized precursors and activated carbon microspheres
  publication-title: BioResources
  doi: 10.15376/biores.13.4.7983-7997
– volume: 414
  start-page: 128767
  year: 2021
  ident: CR63
  article-title: Phosphorus-doped thick carbon electrode for high-energy density and long-life supercapacitors
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.128767
– volume: 15
  start-page: 1715
  issue: 3
  year: 2022
  end-page: 1724
  ident: CR33
  article-title: Single-atom Zn for boosting supercapacitor performance
  publication-title: Nano Res
  doi: 10.1007/s12274-021-3839-4
– volume: 29
  start-page: 1902255
  issue: 31
  year: 2019
  ident: CR25
  article-title: Wood-derived materials for advanced electrochemical energy storage devices
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201902255
– volume: 6
  start-page: 29
  issue: 01
  year: 2021
  end-page: 37
  ident: CR68
  article-title: Research progress on the preparation of lignin-derived carbon dots and graphene quantum dots
  publication-title: J for Eng
  doi: 10.13360/j.issn.2096-1359.202001007
– volume: 343
  start-page: 126084
  year: 2022
  ident: CR31
  article-title: Hydrothermal carbonization and liquefaction: differences, progress, challenges, and opportunities
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2021.126084
– volume: 404
  start-page: 127112
  year: 2021
  ident: CR79
  article-title: Atomically dispersed and nanoscaled Co species embedded in micro-/mesoporous carbon nanosheet/nanotube architecture with enhanced oxygen reduction and evolution bifunction for Zn-Air batteries
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.127112
– volume: 6
  start-page: 292
  issue: 4
  year: 2021
  end-page: 322
  ident: CR27
  article-title: Synthesis and application of granular activated carbon from biomass waste materials for water treatment: a review
  publication-title: J Bioresour Bioprod
  doi: 10.1016/j.jobab.2021.03.003
– volume: 16
  start-page: e1906584
  issue: 17
  year: 2020
  ident: CR42
  article-title: Tailoring hierarchically porous nitrogen-, sulfur-codoped carbon for high-performance supercapacitors and oxygen reduction
  publication-title: Small
  doi: 10.1002/smll.201906584
– volume: 1
  start-page: 552
  issue: 4
  year: 2012
  end-page: 565
  ident: CR71
  article-title: Nanostructured activated carbons from natural precursors for electrical double layer capacitors
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.05.002
– volume: 256
  start-page: 347
  year: 2014
  end-page: 355
  ident: CR10
  article-title: Arsenite remediation by an amine-rich graphitic carbon nitride synthesized by a novel low-temperature method
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2014.06.045
– volume: 166
  start-page: A1004
  issue: 6
  year: 2019
  end-page: A1014
  ident: CR11
  article-title: Are functional groups beneficial or harmful on the electrochemical performance of activated carbon electrodes?
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0451906jes
– volume: 566
  start-page: 150613
  year: 2021
  ident: CR55
  article-title: Biotemplating preparation of N, O-codoped hierarchically porous carbon for high-performance supercapacitors
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2021.150613
– volume: 417
  start-page: 129289
  year: 2021
  ident: CR24
  article-title: Dual-template endowing N, O co-doped hierarchically porous carbon from potassium citrate with high capacitance and rate capability for supercapacitors
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.129289
– volume: 8
  start-page: 1900950
  issue: 1
  year: 2019
  ident: CR36
  article-title: Boron and nitrogen Co-doped trimodal-porous wood-derived carbon for boosting capacitive performance
  publication-title: Energy Technol
  doi: 10.1002/ente.201900950
– year: 2022
  ident: CR69
  article-title: Design of wood-derived anisotropic structural carbon electrode for high-performance supercapacitor
  publication-title: Wood Sci Technol
  doi: 10.1007/s00226-022-01389-8
– volume: 10
  start-page: 2001239
  issue: 32
  year: 2020
  ident: CR17
  article-title: Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.202001239
– volume: 157
  start-page: 316
  year: 2020
  end-page: 323
  ident: CR34
  article-title: Advanced lignin-derived hard carbon for Na-ion batteries and a comparison with Li and K ion storage
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.10.045
– volume: 8
  start-page: 21930
  issue: 42
  year: 2020
  end-page: 21946
  ident: CR13
  article-title: Carbon materials for high mass-loading supercapacitors: filling the gap between new materials and practical applications
  publication-title: J Mater Chem A
  doi: 10.1039/d0ta08265a
– volume: 9
  start-page: 1901457
  issue: 33
  year: 2019
  ident: CR30
  article-title: Thick electrode batteries: principles, opportunities, and challenges
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201901457
– volume: 5
  start-page: 642
  year: 2020
  end-page: 666
  ident: CR5
  article-title: Structure-property-function relationships of natural and engineered wood
  publication-title: Nat Rev Mater
  doi: 10.1038/s41578-020-0195-z
– volume: 289
  start-page: 116734
  year: 2021
  ident: CR66
  article-title: Electrode thickness design toward bulk energy storage devices with high areal/volumetric energy density
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.116734
– volume: 5
  start-page: 79
  issue: 2
  year: 2020
  end-page: 95
  ident: CR75
  article-title: Processing and valorization of cellulose, lignin and lignocellulose using ionic liquids
  publication-title: J Bioresour Bioprod
  doi: 10.1016/j.jobab.2020.04.001
– volume: 314
  start-page: 173
  year: 2019
  end-page: 187
  ident: CR29
  article-title: Heteroatom-doped porous carbon with tunable pore structure and high specific surface area for high performance supercapacitors
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2019.05.074
– volume: 18
  start-page: e2200954
  year: 2022
  ident: CR41
  article-title: Ultrafast porous carbon activation promises high-energy density supercapacitors
  publication-title: Small
  doi: 10.1002/smll.2022b00954
– volume: 6
  start-page: 1
  issue: 4
  year: 2021
  end-page: 13
  ident: CR6
  article-title: Development of bamboo cellulose preparation and its functionalization
  publication-title: J for Eng
  doi: 10.13360/j.issn.2096-1359.202104011
– volume: 15
  start-page: 20666
  issue: 12
  year: 2021
  end-page: 20677
  ident: CR8
  article-title: Liquid transport and real-time dye purification via lotus petiole-inspired long-range-ordered anisotropic cellulose nanofibril aerogels
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c10093
– volume: 18
  start-page: e2106356
  issue: 9
  year: 2021
  ident: CR7
  article-title: Interface engineering on cellulose-based flexible electrode enables high mass loading wearable supercapacitor with ultrahigh capacitance and energy density
  publication-title: Small
  doi: 10.1002/smll.202106356
– volume: 482
  start-page: 228934
  year: 2021
  ident: CR53
  article-title: Heteroatoms-doped porous carbon electrodes with three-dimensional self-supporting structure derived from cotton fabric for high-performance wearable supercapacitors
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2020.228934
– volume: 91
  start-page: 106630
  year: 2021
  ident: CR77
  article-title: 3D frame-like architecture of N-C-incorporated mixed metal phosphide boosting ultrahigh energy density pouch-type supercapacitors
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106630
– volume: 1
  start-page: 596
  issue: 3
  year: 2019
  end-page: 620
  ident: CR3
  article-title: Breakthroughs in designing commercial-level mass-loading graphene electrodes for electrochemical double-layer capacitors
  publication-title: Matter
  doi: 10.1016/j.matt.2019.06.016
– volume: 429
  start-page: 132203
  year: 2022
  ident: CR43
  article-title: Dozens-fold improvement of biochar redox properties by KOH activation
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.132203
– volume: 14
  start-page: 576
  issue: 2
  year: 2021
  end-page: 601
  ident: CR21
  article-title: Toward commercial-level mass-loading electrodes for supercapacitors: opportunities, challenges and perspectives
  publication-title: Energy Environ Sci
  doi: 10.1039/d0ee02649b
– volume: 3
  start-page: 1827
  issue: 7
  year: 2019
  end-page: 1832
  ident: CR52
  article-title: A flexible graphene-carbon fiber composite electrode with high surface area-normalized capacitance
  publication-title: Sustainable Energy Fuels
  doi: 10.1039/c9se00099b
– volume: 424
  start-page: 1
  year: 2019
  end-page: 7
  ident: CR82
  article-title: High performance flexible supercapacitors based on porous wood carbon slices derived from Chinese fir wood scraps
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2019.03.100
– volume: 178
  start-page: 243
  year: 2021
  end-page: 255
  ident: CR14
  article-title: Pre-oxidation of lignin precursors for hard carbon anode with boosted lithium-ion storage capacity
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.03.016
– volume: 490
  start-page: 022051
  year: 2019
  ident: CR46
  article-title: Pyrolysis behavior of basswood by TG
  publication-title: IOP Conf Ser: Mater Sci Eng
  doi: 10.1088/1757-899x/490/2/022051
– volume: 12
  start-page: 20
  issue: 1
  year: 2020
  ident: CR20
  article-title: Hierarchical N-doped porous carbons for Zn-air batteries and supercapacitors
  publication-title: Nano-Micro Lett
  doi: 10.1007/s40820-019-0364-z
– volume: 1
  start-page: 100018
  issue: 2
  year: 2021
  ident: CR62
  article-title: Recent progress in template-assisted synthesis of porous carbons for supercapacitors
  publication-title: Adv Powder Mater
  doi: 10.1016/j.apmate.2021.11.005
– volume: 15
  start-page: 18624
  issue: 12
  year: 2021
  end-page: 18632
  ident: CR2
  article-title: Design of scalable, next-generation thick electrodes: opportunities and challenges
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c09687
– volume: 17
  start-page: 100096
  year: 2022
  ident: 176_CR87
  publication-title: Mater Today Sustainability
  doi: 10.1016/j.mtsust.2021.100096
– volume: 5
  start-page: 642
  year: 2020
  ident: 176_CR5
  publication-title: Nat Rev Mater
  doi: 10.1038/s41578-020-0195-z
– volume: 343
  start-page: 126084
  year: 2022
  ident: 176_CR31
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2021.126084
– volume: 12
  start-page: 20
  issue: 1
  year: 2020
  ident: 176_CR20
  publication-title: Nano-Micro Lett
  doi: 10.1007/s40820-019-0364-z
– volume: 8
  start-page: 8664
  issue: 23
  year: 2020
  ident: 176_CR86
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.0c01661
– volume: 31
  start-page: 2101077
  issue: 31
  year: 2021
  ident: 176_CR64
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202101077
– volume: 1
  start-page: 552
  issue: 4
  year: 2012
  ident: 176_CR71
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.05.002
– volume: 15
  start-page: 20666
  issue: 12
  year: 2021
  ident: 176_CR8
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c10093
– volume: 145
  start-page: 481
  year: 2019
  ident: 176_CR45
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.01.056
– volume: 3
  start-page: 6374
  issue: 7
  year: 2020
  ident: 176_CR47
  publication-title: ACS Appl Energy Mater
  doi: 10.1021/acsaem.0c00582
– volume: 7
  start-page: 1597
  issue: 5
  year: 2014
  ident: 176_CR1
  publication-title: Energy Environ Sci
  doi: 10.1039/c3ee44164d
– volume: 130
  start-page: 532
  year: 2018
  ident: 176_CR54
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.01.055
– volume: 20
  start-page: 694
  issue: 3
  year: 2018
  ident: 176_CR74
  publication-title: Green Chem
  doi: 10.1039/c7gc03426a
– volume: 11
  start-page: 69
  issue: 1
  year: 2019
  ident: 176_CR83
  publication-title: Nano-Micro Lett
  doi: 10.1007/s40820-019-0300-2
– volume: 100
  start-page: 5151
  issue: 11
  year: 2017
  ident: 176_CR19
  publication-title: J Am Ceram Soc
  doi: 10.1111/jace.15035
– volume: 314
  start-page: 173
  year: 2019
  ident: 176_CR29
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2019.05.074
– volume: 13
  start-page: 119
  year: 2018
  ident: 176_CR22
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2018.01.007
– volume: 395
  start-page: 271
  year: 2018
  ident: 176_CR92
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2018.05.046
– volume: 1
  start-page: 100018
  issue: 2
  year: 2021
  ident: 176_CR62
  publication-title: Adv Powder Mater
  doi: 10.1016/j.apmate.2021.11.005
– volume: 424
  start-page: 1
  year: 2019
  ident: 176_CR82
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2019.03.100
– volume: 482
  start-page: 228934
  year: 2021
  ident: 176_CR53
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2020.228934
– volume: 429
  start-page: 132203
  year: 2022
  ident: 176_CR43
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.132203
– volume: 339
  start-page: 129922
  year: 2021
  ident: 176_CR84
  publication-title: Sens Actuators, B
  doi: 10.1016/j.snb.2021.129922
– volume: 30
  start-page: e00341
  year: 2021
  ident: 176_CR57
  publication-title: Sustain Mater Technol
  doi: 10.1016/j.susmat.2021.e00341
– volume: 32
  start-page: 2201544
  issue: 24
  year: 2022
  ident: 176_CR28
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202201544
– volume: 6
  start-page: 292
  issue: 4
  year: 2021
  ident: 176_CR27
  publication-title: J Bioresour Bioprod
  doi: 10.1016/j.jobab.2021.03.003
– volume: 31
  start-page: 581
  issue: 4
  year: 2021
  ident: 176_CR59
  publication-title: Carbon Lett
  doi: 10.1007/s42823-021-00252-3
– volume: 414
  start-page: 128767
  year: 2021
  ident: 176_CR63
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.128767
– volume: 18
  start-page: e2200954
  year: 2022
  ident: 176_CR41
  publication-title: Small
  doi: 10.1002/smll.2022b00954
– volume: 515
  start-page: 146020
  year: 2020
  ident: 176_CR23
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2020.146020
– volume: 18
  start-page: e2104224
  issue: 7
  year: 2021
  ident: 176_CR35
  publication-title: Small
  doi: 10.1002/smll.202104224
– volume: 8
  start-page: 21930
  issue: 42
  year: 2020
  ident: 176_CR13
  publication-title: J Mater Chem A
  doi: 10.1039/d0ta08265a
– volume: 6
  start-page: 3624
  issue: 10
  year: 2021
  ident: 176_CR91
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.1c01678
– volume: 490
  start-page: 022051
  year: 2019
  ident: 176_CR46
  publication-title: IOP Conf Ser: Mater Sci Eng
  doi: 10.1088/1757-899x/490/2/022051
– volume: 33
  start-page: e2101275
  issue: 26
  year: 2021
  ident: 176_CR73
  publication-title: Adv Mater
  doi: 10.1002/adma.202101275
– volume: 309
  start-page: 122102
  year: 2022
  ident: 176_CR32
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.122102
– volume: 28
  start-page: 1806207
  issue: 52
  year: 2018
  ident: 176_CR60
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201806207
– volume: 54
  start-page: 1302
  issue: 4
  year: 2015
  ident: 176_CR81
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.201410234
– volume: 29
  start-page: 1809196
  issue: 16
  year: 2019
  ident: 176_CR85
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201809196
– volume: 29
  start-page: 1902255
  issue: 31
  year: 2019
  ident: 176_CR25
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201902255
– volume: 10
  start-page: 675
  issue: 1
  year: 2019
  ident: 176_CR37
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-08644-w
– volume: 15
  start-page: 18624
  issue: 12
  year: 2021
  ident: 176_CR2
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c09687
– volume: 12
  start-page: 63
  issue: 1
  year: 2020
  ident: 176_CR12
  publication-title: Nano-Micro Lett
  doi: 10.1007/s40820-020-0393-7
– volume: 404
  start-page: 127112
  year: 2021
  ident: 176_CR79
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.127112
– volume: 166
  start-page: A1004
  issue: 6
  year: 2019
  ident: 176_CR11
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0451906jes
– volume: 17
  start-page: 349
  year: 2019
  ident: 176_CR26
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2018.07.001
– volume: 352
  start-page: 136452
  year: 2020
  ident: 176_CR44
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2020.136452
– volume: 4
  start-page: 1300816
  issue: 4
  year: 2014
  ident: 176_CR78
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201300816
– year: 2022
  ident: 176_CR69
  publication-title: Wood Sci Technol
  doi: 10.1007/s00226-022-01389-8
– volume: 38
  start-page: 438
  year: 2021
  ident: 176_CR90
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2021.03.011
– volume: 15
  start-page: 1715
  issue: 3
  year: 2022
  ident: 176_CR33
  publication-title: Nano Res
  doi: 10.1007/s12274-021-3839-4
– volume: 13
  start-page: 7983
  year: 2018
  ident: 176_CR50
  publication-title: BioResources
  doi: 10.15376/biores.13.4.7983-7997
– volume: 3
  start-page: 1827
  issue: 7
  year: 2019
  ident: 176_CR52
  publication-title: Sustainable Energy Fuels
  doi: 10.1039/c9se00099b
– volume: 289
  start-page: 116734
  year: 2021
  ident: 176_CR66
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.116734
– volume: 157
  start-page: 316
  year: 2020
  ident: 176_CR34
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.10.045
– volume: 12
  start-page: 2376
  issue: 17
  year: 2016
  ident: 176_CR72
  publication-title: Small
  doi: 10.1002/smll.201503855
– volume: 63
  start-page: 87
  year: 2021
  ident: 176_CR88
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2021.07.027
– volume: 161
  start-page: 89
  year: 2020
  ident: 176_CR58
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.01.044
– volume: 6
  start-page: 1
  issue: 4
  year: 2021
  ident: 176_CR6
  publication-title: J for Eng
  doi: 10.13360/j.issn.2096-1359.202104011
– volume: 18
  start-page: e2106356
  issue: 9
  year: 2021
  ident: 176_CR7
  publication-title: Small
  doi: 10.1002/smll.202106356
– volume: 393
  start-page: 124672
  year: 2020
  ident: 176_CR38
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.124672
– volume: 578
  start-page: 151888
  year: 2022
  ident: 176_CR70
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2021.151888
– volume: 10
  start-page: 538
  issue: 2
  year: 2017
  ident: 176_CR4
  publication-title: Energy Environ Sci
  doi: 10.1039/c6ee03716j
– volume: 178
  start-page: 243
  year: 2021
  ident: 176_CR14
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.03.016
– volume: 10
  start-page: 2001239
  issue: 32
  year: 2020
  ident: 176_CR17
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.202001239
– volume: 19
  start-page: 100610
  year: 2021
  ident: 176_CR39
  publication-title: Mater Today Energy
  doi: 10.1016/j.mtener.2020.100610
– volume: 87
  start-page: 1051
  issue: 9–10
  year: 2015
  ident: 176_CR56
  publication-title: Pure Appl Chem
  doi: 10.1515/pac-2014-1117
– volume: 121
  start-page: 6124
  issue: 10
  year: 2021
  ident: 176_CR67
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.0c01264
– volume: 3
  start-page: 267
  issue: 3
  year: 2020
  ident: 176_CR61
  publication-title: Adv Compos Hybrid Mater
  doi: 10.1007/s42114-020-00158-0
– volume: 575
  start-page: 151771
  year: 2022
  ident: 176_CR80
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2021.151771
– volume: 412
  start-page: 128673
  year: 2021
  ident: 176_CR49
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.128673
– volume: 14
  start-page: 576
  issue: 2
  year: 2021
  ident: 176_CR21
  publication-title: Energy Environ Sci
  doi: 10.1039/d0ee02649b
– volume: 6
  start-page: 1
  issue: 05
  year: 2021
  ident: 176_CR48
  publication-title: J for Eng
  doi: 10.13360/j.issn.2096-1359.202012046
– volume: 20
  start-page: 211
  issue: 1
  year: 2021
  ident: 176_CR18
  publication-title: Environ Chem Lett
  doi: 10.1007/s10311-021-01311-x
– volume: 9
  start-page: 1901457
  issue: 33
  year: 2019
  ident: 176_CR30
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201901457
– volume: 1
  start-page: 596
  issue: 3
  year: 2019
  ident: 176_CR3
  publication-title: Matter
  doi: 10.1016/j.matt.2019.06.016
– volume: 417
  start-page: 129289
  year: 2021
  ident: 176_CR24
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.129289
– volume: 8
  start-page: 1900950
  issue: 1
  year: 2019
  ident: 176_CR36
  publication-title: Energy Technol
  doi: 10.1002/ente.201900950
– volume: 566
  start-page: 150613
  year: 2021
  ident: 176_CR55
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2021.150613
– volume: 105
  start-page: 6880
  issue: 29
  year: 2001
  ident: 176_CR16
  publication-title: J Phys Chem B
  doi: 10.1021/jp010086y
– volume: 18
  start-page: 2104375
  year: 2022
  ident: 176_CR40
  publication-title: Small
  doi: 10.1002/smll.202104375
– volume: 16
  start-page: e1906584
  issue: 17
  year: 2020
  ident: 176_CR42
  publication-title: Small
  doi: 10.1002/smll.201906584
– volume: 18
  start-page: e2201307
  year: 2022
  ident: 176_CR9
  publication-title: Small
  doi: 10.1002/smll.202201307
– volume: 6
  start-page: 29
  issue: 01
  year: 2021
  ident: 176_CR68
  publication-title: J for Eng
  doi: 10.13360/j.issn.2096-1359.202001007
– year: 2022
  ident: 176_CR76
  publication-title: J Bioresour Bioprod
  doi: 10.1016/j.jobab.2022.05.003
– volume: 4
  start-page: 464
  issue: 3
  year: 2020
  ident: 176_CR15
  publication-title: Batter Supercaps
  doi: 10.1002/batt.202000253
– volume: 5
  start-page: 79
  issue: 2
  year: 2020
  ident: 176_CR75
  publication-title: J Bioresour Bioprod
  doi: 10.1016/j.jobab.2020.04.001
– volume: 91
  start-page: 106630
  year: 2021
  ident: 176_CR77
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106630
– volume: 6
  start-page: 142
  issue: 2
  year: 2021
  ident: 176_CR89
  publication-title: J Bioresour Bioprod
  doi: 10.1016/j.jobab.2021.02.002
– volume: 256
  start-page: 347
  year: 2014
  ident: 176_CR10
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2014.06.045
– volume: 50
  start-page: 365
  year: 2022
  ident: 176_CR51
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2022.05.020
– volume: 17
  start-page: 2102532
  year: 2021
  ident: 176_CR65
  publication-title: Small
  doi: 10.1002/smll.202102532
SSID ssj0002511639
ssib053820432
ssib046561560
Score 2.5258205
Snippet Developing effective electrodes with commercial-level active mass-loading (> 10 mg cm −2 ) is vital for the practical application of supercapacitors. However,...
Article Highlights Basswood-derived free-standing thick carbon electrodes were developed for supercapacitors. The capacitance performance was enhanced by...
SourceID doaj
crossref
springer
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Agriculture
Biochar
Ceramics
Composites
Earth and Environmental Science
Environment
Environmental Engineering/Biotechnology
Fossil Fuels (incl. Carbon Capture)
Glass
Heteroatom doping
High mass-loading
Natural Materials
Original Research
Renewable and Green Energy
Self-standing electrodes
Soil Science & Conservation
Supercapacitor
SummonAdditionalLinks – databaseName: SpringerOpen
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT90wDI8YXLYD2gfTHowph922SG2SNs0R0BBC2g4ING5VktoIbXoPvT72988OeWVoCIljrbRRHTt2YvtnIT530ZBdDFoNHB-0MCQVfOsV2q42oXEWgSO633-0Jxf29LK5LEVh4zrbfR2SzDv1VOxm6Wscc9SKt9ZW-Rdiq6GzO8v10T3mOAOA1f84_aTRXP-pp5sXdqrb3GJMN9oq550u1TSPT_PAYmVg__-iptkYHb8W28WLlAd3y_5GbMD8rXh1cLUsSBrwTpz95Iz0gQTsDwwyXi-4vkqGUXKC-y9Z2t8MMEpyWyWjFitGjZA395UEcrylp0TmNF1zU54dcXH87fzoRJUGCirRsWmlUFdYe-iSww6D1lC1FR3ougFDtCG2xtVEZTQo27iBTLsFi6nCAbUNTQrmvdicL-bwQUgiewSHJpnWdrEJ1sZEvPUGsIVkZ6JeM6lPBV2cm1z87idc5MzYnhjbZ8b2fia-TO_c3GFrPDn6kHk_jWRc7ExYLK_6oma9qRJal6oO6A81kvsSovPBAQIYxDgTX9cr1xdlHZ-Yc_d5w_fES82Ck7NdPorN1fIW9slnWcVPWUT_AmGj3qI
  priority: 102
  providerName: Springer Nature
Title Wood-derived biochar as thick electrodes for high-rate performance supercapacitors
URI https://link.springer.com/article/10.1007/s42773-022-00176-9
https://doaj.org/article/30cf47c08eab42f181ab79a7efee3ffb
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BaxUxEA61Jy-iqPi0lhx609DdZDbZHPXRUoT2IBZ7W5LsDBTltfhePfrbO5O3fX1FqBcvgQ1ZsvvtJDPZmflGqYM-O9aLyZpR_IOAYzEp-mgI-talLgCheHRPz_zJOXy56C62Sn1JTNiaHngN3KFrCkEoTY8pgyVWSCmHmAISoiPKsvuyzts6TLEkCQlYu2X486qWHFC7-fsihrWvZcZsZ8GEGOyUUVPz6oAfXNyb1sgu7k18oLUquf9fntOqkI6fq2eTJak_rd_ghdrBxUv19bvEoY8sVr9x1PnySrKqdFpqCWv_oaeiNyMuNRurWriKjXBF6Ov7_AG9vOGrwkq0XEopnlfq_Pjo2_zETGUTTOHD0sqQbaiN2JdAPSVrsfENH-P6kRjBlL0LLfcKBxR0YWSFDghUGhrJQupKcq_V7uJqgW-U5u5IGMgV56HPXQLIhdGMDsljgZlq72AZysQpLqUtfg4bNuQK5cBQDhXKIc7Uh80912tGjUdHfxa0NyOFDbt2sIwMk4wM_5KRmfp4962GaYkuH5nz7f-Y8516akWAauTLntpd_brB92y_rPK-ejK3IK2f71ex5fb0z9EtCOTqlg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDI9gHIAD4lM8PnPgBhFtkibNcTwxPWDbAW1ityhJ7WkCvU3rG38_dpf3-NQkjrXSRnXs2q7tn4V41WdDdjFpNXB-0MJQVAouKLR9a1LnLQJndPf23eLQfjzqjipMDvfC_JG_fztaegZnGrXiD6pT4bq4YSlS5vK9uZuvZYdhv9pfXH3SY-761Jv_LexKu2mwmO60VT54XXto_r3Nb3ZqgvP_K1c6maCdu-JO9R3l9uVh3xPXYHlf3N4-Pq_4GfBAfP7CdegDidV3GGQ-OeWuKplGyWXtX2UdejPAKMlZlYxVrBgrQp797B-Q4wVdFTKi5YRH8TwUhzvvD-YLVccmqELB0kqhbrAN0BePPSatoXENhXH9gCnblJ3xLVEZA8p2fiCDbsFiaXBAbVNXknkktpanS3gsJJEDgkdTjLN97pK1uRBvgwF0UOxMtGsmxVIxxXm0xbe4QUOeGBuJsXFibAwz8Xpzz9klosaVq98x7zcrGQ17IpCQxKpc0TQFrS9ND_SGGslpSdmH5AEBDGKeiTfrk4tVRccr9nzyf8tfipuLg73duPth_9NTcUuzEE31Ls_E1ur8Ap6T17LKLyZx_QH84N2z
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSAgOiKdYnj5wA6uJ7djxsSysyqtCiIreLD9mqgq0u9rd8vvxeLOhCFSJYywnVibjzIxnvm8Ye9FHVexikCJTflBDTiI44wTqvlWhsxqBMrqfjszhsX5_0p1cQPHXavddSnKLaSCWpvlmf5lxfwS-6fJkyj9KQb9ZI9xVdq1EKjVROzXTnUYRGVh7IQAou5uwoHI8hSEH29R2Y7KTWlhn5YCs-fcyf1ivSvL_Vwa1GqbZbXZr8Cj5wVYF7rArML_Lbh6crgZWDbjHvnyj6vRclO0nZB7PFoS14mHNqdj9Ox9a4WRY8-LCcmIwFsQgwZe_UQV8fV6uUjGt6Ywa9Nxnx7O3X6eHYmimIFIJoTYCZYOtgz5Z7DFICY1pSnDXZwxRh2iUbcsoMUPpzuZi5jVoTA1mlDp0KagHbG--mMNDxsuwQ7CokjK6j13QOqYiW6cADSQ9Ye1OSD4NTOPU8OKHHzmSq2B9EayvgvVuwl6O9yy3PBuXzn5Nsh9nEkd2HVisTv2w5bxqEmqbmh7KG0osrkyI1gULCKAQ44S92n05P2zc9SVrPvq_6c_Z9c9vZv7ju6MPj9kNSTpUi2CesL3N6hyeFldmE59Vbf0FlqDl-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wood-derived+biochar+as+thick+electrodes+for+high-rate+performance+supercapacitors&rft.jtitle=Biochar+%28Online%29&rft.au=Yan%2C+Bing&rft.au=Zheng%2C+Jiaojiao&rft.au=Feng%2C+Li&rft.au=Du%2C+Cheng&rft.date=2022-12-01&rft.issn=2524-7972&rft.eissn=2524-7867&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1007%2Fs42773-022-00176-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42773_022_00176_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2524-7972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2524-7972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2524-7972&client=summon