Enhanced cellular uptake and cytotoxicity of vorinostat through encapsulation in TPGS-modified liposomes

[Display omitted] •TPGS modified liposomes were prepared using thin film hydration following the probe ultra-sonication method.•Surfaced-coated liposomal formulation enhanced the drug loading, encapsulation efficiency, solubility, and drug release profile.•TPGS coating on liposomes surface demonstra...

Full description

Saved in:
Bibliographic Details
Published inColloids and surfaces, B, Biointerfaces Vol. 199; p. 111523
Main Authors Farooq, Muhammad Asim, Xinyu, Huang, Jabeen, Amna, Ahsan, Anam, Seidu, Theodora Amanda, Kutoka, Perpetua Takunda, Wang, Bo
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •TPGS modified liposomes were prepared using thin film hydration following the probe ultra-sonication method.•Surfaced-coated liposomal formulation enhanced the drug loading, encapsulation efficiency, solubility, and drug release profile.•TPGS coating on liposomes surface demonstrated a more toxic effect against breast cancer cells.•Modified liposomes also enhanced the qualitative and quantitative cellular uptake against MCF-7 cancer cells. Vorinostat (VOR) is known as one of the histone deacetylase inhibitors (HDACi) for cancer treatment, and the FDA approves it for cutaneous T cell lymphoma therapy. Poor solubility, permeability, and less anti-cancer activity are the main challenges for the effective delivery of VOR against various cancers. So, our team assumed that the surface-coated liposomes might improve the physicochemical properties of biopharmaceutics classification system class IV drugs such as VOR. The present study aimed to enhance the cytotoxicity and improve cellular uptake using TPGS-coated liposomes in breast cancer cells. Liposomes were fabricated by the film hydration following the probe ultra-sonication method. OR-LIPO and TPGS-VOR-LIPO showed an average particle size of 211.97 ± 3.42 nm with PDI 0.2168 ± 0.006 and 176.99 ± 2.06 nm with PDI 0.175 ± 0.018, respectively. TPGS-coated liposomes had better stability and revealed more than 80 % encapsulation efficiency than conventional liposomes. Transmission electron microscopy confirmed the TPGS coating around liposomes. Moreover, TPGS-coated liposomes enhanced the solubility and showed sustained release of VOR over 48 h. DSC and PXRD analysis also reveal an amorphous state of VOR within the liposomal formulation. MTT assay result indicates that the superior cytotoxic effect of surface-modified liposomes contrasts with the conventional and free VOR solution, respectively. Fluorescence microscopy and flow cytometry results also presented an enhanced cellular uptake of TPGS-coated liposomes against breast cancer cells, respectively. The current investigation's final results declared that TPGS-coated liposomes are promising drug carriers for the effective delivery of hydrophobic drugs for cancer therapy.
AbstractList Vorinostat (VOR) is known as one of the histone deacetylase inhibitors (HDACi) for cancer treatment, and the FDA approves it for cutaneous T cell lymphoma therapy. Poor solubility, permeability, and less anti-cancer activity are the main challenges for the effective delivery of VOR against various cancers. So, our team assumed that the surface-coated liposomes might improve the physicochemical properties of biopharmaceutics classification system class IV drugs such as VOR. The present study aimed to enhance the cytotoxicity and improve cellular uptake using TPGS-coated liposomes in breast cancer cells. Liposomes were fabricated by the film hydration following the probe ultra-sonication method. OR-LIPO and TPGS-VOR-LIPO showed an average particle size of 211.97 ± 3.42 nm with PDI 0.2168 ± 0.006 and 176.99 ± 2.06 nm with PDI 0.175 ± 0.018, respectively. TPGS-coated liposomes had better stability and revealed more than 80 % encapsulation efficiency than conventional liposomes. Transmission electron microscopy confirmed the TPGS coating around liposomes. Moreover, TPGS-coated liposomes enhanced the solubility and showed sustained release of VOR over 48 h. DSC and PXRD analysis also reveal an amorphous state of VOR within the liposomal formulation. MTT assay result indicates that the superior cytotoxic effect of surface-modified liposomes contrasts with the conventional and free VOR solution, respectively. Fluorescence microscopy and flow cytometry results also presented an enhanced cellular uptake of TPGS-coated liposomes against breast cancer cells, respectively. The current investigation's final results declared that TPGS-coated liposomes are promising drug carriers for the effective delivery of hydrophobic drugs for cancer therapy.
[Display omitted] •TPGS modified liposomes were prepared using thin film hydration following the probe ultra-sonication method.•Surfaced-coated liposomal formulation enhanced the drug loading, encapsulation efficiency, solubility, and drug release profile.•TPGS coating on liposomes surface demonstrated a more toxic effect against breast cancer cells.•Modified liposomes also enhanced the qualitative and quantitative cellular uptake against MCF-7 cancer cells. Vorinostat (VOR) is known as one of the histone deacetylase inhibitors (HDACi) for cancer treatment, and the FDA approves it for cutaneous T cell lymphoma therapy. Poor solubility, permeability, and less anti-cancer activity are the main challenges for the effective delivery of VOR against various cancers. So, our team assumed that the surface-coated liposomes might improve the physicochemical properties of biopharmaceutics classification system class IV drugs such as VOR. The present study aimed to enhance the cytotoxicity and improve cellular uptake using TPGS-coated liposomes in breast cancer cells. Liposomes were fabricated by the film hydration following the probe ultra-sonication method. OR-LIPO and TPGS-VOR-LIPO showed an average particle size of 211.97 ± 3.42 nm with PDI 0.2168 ± 0.006 and 176.99 ± 2.06 nm with PDI 0.175 ± 0.018, respectively. TPGS-coated liposomes had better stability and revealed more than 80 % encapsulation efficiency than conventional liposomes. Transmission electron microscopy confirmed the TPGS coating around liposomes. Moreover, TPGS-coated liposomes enhanced the solubility and showed sustained release of VOR over 48 h. DSC and PXRD analysis also reveal an amorphous state of VOR within the liposomal formulation. MTT assay result indicates that the superior cytotoxic effect of surface-modified liposomes contrasts with the conventional and free VOR solution, respectively. Fluorescence microscopy and flow cytometry results also presented an enhanced cellular uptake of TPGS-coated liposomes against breast cancer cells, respectively. The current investigation's final results declared that TPGS-coated liposomes are promising drug carriers for the effective delivery of hydrophobic drugs for cancer therapy.
Vorinostat (VOR) is known as one of the histone deacetylase inhibitors (HDACi) for cancer treatment, and the FDA approves it for cutaneous T cell lymphoma therapy. Poor solubility, permeability, and less anti-cancer activity are the main challenges for the effective delivery of VOR against various cancers. So, our team assumed that the surface-coated liposomes might improve the physicochemical properties of biopharmaceutics classification system class IV drugs such as VOR. The present study aimed to enhance the cytotoxicity and improve cellular uptake using TPGS-coated liposomes in breast cancer cells. Liposomes were fabricated by the film hydration following the probe ultra-sonication method. OR-LIPO and TPGS-VOR-LIPO showed an average particle size of 211.97 ± 3.42 nm with PDI 0.2168 ± 0.006 and 176.99 ± 2.06 nm with PDI 0.175 ± 0.018, respectively. TPGS-coated liposomes had better stability and revealed more than 80 % encapsulation efficiency than conventional liposomes. Transmission electron microscopy confirmed the TPGS coating around liposomes. Moreover, TPGS-coated liposomes enhanced the solubility and showed sustained release of VOR over 48 h. DSC and PXRD analysis also reveal an amorphous state of VOR within the liposomal formulation. MTT assay result indicates that the superior cytotoxic effect of surface-modified liposomes contrasts with the conventional and free VOR solution, respectively. Fluorescence microscopy and flow cytometry results also presented an enhanced cellular uptake of TPGS-coated liposomes against breast cancer cells, respectively. The current investigation's final results declared that TPGS-coated liposomes are promising drug carriers for the effective delivery of hydrophobic drugs for cancer therapy.Vorinostat (VOR) is known as one of the histone deacetylase inhibitors (HDACi) for cancer treatment, and the FDA approves it for cutaneous T cell lymphoma therapy. Poor solubility, permeability, and less anti-cancer activity are the main challenges for the effective delivery of VOR against various cancers. So, our team assumed that the surface-coated liposomes might improve the physicochemical properties of biopharmaceutics classification system class IV drugs such as VOR. The present study aimed to enhance the cytotoxicity and improve cellular uptake using TPGS-coated liposomes in breast cancer cells. Liposomes were fabricated by the film hydration following the probe ultra-sonication method. OR-LIPO and TPGS-VOR-LIPO showed an average particle size of 211.97 ± 3.42 nm with PDI 0.2168 ± 0.006 and 176.99 ± 2.06 nm with PDI 0.175 ± 0.018, respectively. TPGS-coated liposomes had better stability and revealed more than 80 % encapsulation efficiency than conventional liposomes. Transmission electron microscopy confirmed the TPGS coating around liposomes. Moreover, TPGS-coated liposomes enhanced the solubility and showed sustained release of VOR over 48 h. DSC and PXRD analysis also reveal an amorphous state of VOR within the liposomal formulation. MTT assay result indicates that the superior cytotoxic effect of surface-modified liposomes contrasts with the conventional and free VOR solution, respectively. Fluorescence microscopy and flow cytometry results also presented an enhanced cellular uptake of TPGS-coated liposomes against breast cancer cells, respectively. The current investigation's final results declared that TPGS-coated liposomes are promising drug carriers for the effective delivery of hydrophobic drugs for cancer therapy.
ArticleNumber 111523
Author Kutoka, Perpetua Takunda
Wang, Bo
Farooq, Muhammad Asim
Xinyu, Huang
Ahsan, Anam
Seidu, Theodora Amanda
Jabeen, Amna
Author_xml – sequence: 1
  givenname: Muhammad Asim
  surname: Farooq
  fullname: Farooq, Muhammad Asim
  organization: Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
– sequence: 2
  givenname: Huang
  surname: Xinyu
  fullname: Xinyu, Huang
  organization: Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
– sequence: 3
  givenname: Amna
  surname: Jabeen
  fullname: Jabeen, Amna
  organization: Faculty of Pharmacy, Lahore College of Pharmaceutical Sciences, Lahore, Pakistan
– sequence: 4
  givenname: Anam
  surname: Ahsan
  fullname: Ahsan, Anam
  organization: College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, PR China
– sequence: 5
  givenname: Theodora Amanda
  surname: Seidu
  fullname: Seidu, Theodora Amanda
  organization: Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
– sequence: 6
  givenname: Perpetua Takunda
  surname: Kutoka
  fullname: Kutoka, Perpetua Takunda
  organization: Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
– sequence: 7
  givenname: Bo
  surname: Wang
  fullname: Wang, Bo
  email: bwangcpu@163.com
  organization: Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33360624$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFV6i8ZJPB_04kFqCqFKRKIFHWlmM7jIfEDrZTMW-Pw3Q2bGZ1patzztU93xW4CDE4AG4w2mKExbv91sQxL2notwSRusSYE_oCbHAracOokBdggzoiGykFvwRXOe8RQoRh-QpcUkoFEoRtwO4u7HQwzkLjxnEZdYLLXPQvB3Wou0OJJf7xxpcDjAN8ismHmIsusOxSXH7uoAtGz7kai48B-gAfv91_b6Zo_eBr6ujnmOPk8mvwctBjdm-e5zX48enu8fZz8_D1_svtx4fGMIRLM2DsMHXc2pZ3pCdcSsSRMZLYXnZM6EF0woqeISm5saiTglBqEMeDZq0T9Bq8PebOKf5eXC5q8nn9TQcXl6xqIqvvs5aflzJJGe5avkpvnqVLPzmr5uQnnQ7qVGQVvD8KTIo5Jzeo2tm_TkrSflQYqZWb2qsTN7VyU0du1S7-s58unDV-OBpd7fTJu6Sy8W4F6pMzRdnoz0X8BTuuto8
CitedBy_id crossref_primary_10_1016_j_ijpharm_2022_121717
crossref_primary_10_1002_slct_202303608
crossref_primary_10_1016_j_ejpb_2022_09_024
crossref_primary_10_1039_D4RA04116J
crossref_primary_10_3390_nano12213856
crossref_primary_10_1016_j_cjac_2023_100315
crossref_primary_10_3390_pharmaceutics15010181
crossref_primary_10_1002_btm2_10710
crossref_primary_10_1016_j_arabjc_2023_105131
crossref_primary_10_1021_acs_molpharmaceut_3c00830
crossref_primary_10_1016_j_ijpharm_2023_122845
crossref_primary_10_1007_s11095_022_03424_6
crossref_primary_10_1080_08982104_2025_2457453
crossref_primary_10_3390_pharmaceutics14091977
crossref_primary_10_1016_j_cclet_2022_07_034
crossref_primary_10_2174_0929867330666230608145125
crossref_primary_10_3390_ph17040412
crossref_primary_10_1016_j_ijbiomac_2022_09_021
crossref_primary_10_1186_s12967_023_04342_w
crossref_primary_10_3390_molecules29153681
crossref_primary_10_1016_j_ejmech_2023_115800
crossref_primary_10_1208_s12249_022_02214_y
crossref_primary_10_3390_pharmaceutics16091128
crossref_primary_10_1007_s13346_024_01647_1
crossref_primary_10_1016_j_xphs_2024_05_025
crossref_primary_10_2174_1567201820666230619112502
crossref_primary_10_1007_s13346_021_01106_1
crossref_primary_10_1080_09205063_2023_2201815
crossref_primary_10_3390_pharmaceutics14122601
crossref_primary_10_2174_1381612829666230911105922
crossref_primary_10_1007_s13762_023_04998_3
crossref_primary_10_1208_s12249_024_02988_3
crossref_primary_10_3389_fbioe_2021_653417
crossref_primary_10_1002_jssc_202200731
crossref_primary_10_1016_j_xphs_2024_04_005
crossref_primary_10_1080_10837450_2024_2414937
crossref_primary_10_1089_adt_2023_067
crossref_primary_10_1002_ppsc_202100276
crossref_primary_10_1007_s00432_022_04387_2
crossref_primary_10_2147_IJN_S340180
crossref_primary_10_1016_j_ijpharm_2023_123385
crossref_primary_10_3390_foods12213946
crossref_primary_10_1007_s10876_024_02608_x
crossref_primary_10_1016_j_colsurfb_2022_112524
crossref_primary_10_1208_s12249_023_02684_8
crossref_primary_10_1016_j_ejps_2021_106078
crossref_primary_10_3390_gels8080508
Cites_doi 10.1016/j.biomaterials.2012.06.079
10.1016/j.ijpharm.2017.12.047
10.1016/j.ejps.2016.09.029
10.1080/03639045.2018.1483383
10.1021/mp060121r
10.1007/s10549-011-1928-x
10.1016/j.biomaterials.2012.02.025
10.1007/s11095-018-2485-3
10.4161/auto.6.8.13365
10.1007/s40005-016-0260-1
10.1111/jphp.12590
10.18632/oncotarget.14742
10.2147/IJN.S82847
10.1016/j.ejps.2013.02.006
10.1016/j.ejps.2017.02.019
10.1007/s11434-016-1039-5
10.1016/j.ijpharm.2019.03.034
10.1039/C8PY00344K
10.1016/j.ijpharm.2018.02.014
10.1016/j.jconrel.2005.05.014
10.1016/j.jconrel.2011.01.024
10.1007/s11095-014-1300-z
10.1016/j.ejps.2016.08.057
10.1016/j.msec.2016.11.073
10.1016/j.ijpharm.2014.12.057
10.1080/10717544.2017.1406561
10.1016/j.ijpharm.2013.01.023
10.1016/j.bcp.2014.02.003
10.1002/jps.23265
10.1093/neuonc/nor187
10.1016/j.ijpharm.2011.09.045
10.1007/s12253-012-9499-7
10.1016/j.ijpharm.2018.10.033
10.3390/pharmaceutics10040283
10.1208/s12249-020-01699-9
10.1007/s40005-016-0300-x
10.1166/jbn.2013.1632
10.1038/s41565-017-0009-7
10.1021/acs.molpharmaceut.6b00712
10.1016/j.chemphyslip.2018.03.005
10.1016/j.ejps.2017.03.048
10.1016/j.pharep.2014.04.007
10.1016/j.molliq.2020.112690
10.1039/C9RA09468G
10.1016/j.ijpharm.2014.01.014
10.1080/01635581.2012.630167
10.1007/s11095-015-1635-0
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.colsurfb.2020.111523
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Chemistry
EISSN 1873-4367
ExternalDocumentID 33360624
10_1016_j_colsurfb_2020_111523
S0927776520308808
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABGSF
ABMAC
ABNEU
ABNUV
ABUDA
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AFXIZ
AFZHZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M24
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCE
SDF
SDG
SDP
SES
SEW
SMS
SPC
SSG
SSK
SSM
SSQ
SSU
SSZ
T5K
VH1
WH7
WUQ
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
BNPGV
CITATION
SSH
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c401t-f11e13e5dd8592b2577050cc72db7946af696d6b40775cd0976233c051fa48e63
IEDL.DBID .~1
ISSN 0927-7765
1873-4367
IngestDate Fri Jul 11 12:10:11 EDT 2025
Fri Jul 11 10:41:37 EDT 2025
Wed Feb 19 02:28:26 EST 2025
Tue Jul 01 03:27:12 EDT 2025
Thu Apr 24 23:06:18 EDT 2025
Fri Feb 23 02:45:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Liposomes
Cancer therapy
Vorinostat
Solubility
TPGS
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-f11e13e5dd8592b2577050cc72db7946af696d6b40775cd0976233c051fa48e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 33360624
PQID 2473419855
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2574333485
proquest_miscellaneous_2473419855
pubmed_primary_33360624
crossref_citationtrail_10_1016_j_colsurfb_2020_111523
crossref_primary_10_1016_j_colsurfb_2020_111523
elsevier_sciencedirect_doi_10_1016_j_colsurfb_2020_111523
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2021
2021-03-00
2021-Mar
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Colloids and surfaces, B, Biointerfaces
PublicationTitleAlternate Colloids Surf B Biointerfaces
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Patel, Shelat, Lalwani (bib0015) 2017; 108
Caddeo, Pucci, Gabriele, Carbone, Fernàndez-Busquets, Valenti, Manconi (bib0175) 2018; 538
Youk, Lee, Choi, Lee, Chung, Kim, Lee, Lim (bib0260) 2005; 107
Zhang, Wu, Chu, Tan, Zhuang, Bao, Wu (bib0210) 2015; 10
Zhang, He, Zhang, Liu (bib0235) 2018; 35
Ebeid, Meng, Thiel, Do, Geary, Morris, Pham, Wongrakpanich, Chhonker, Murry (bib0275) 2018; 13
Yang, Xin, Zhang, Yan, Wang, Sun, Lv (bib0155) 2016; 68
Constantinou, Neophytou, Vraka, Hyatt, Papas, Constantinou (bib0270) 2012; 64
Jin, Li, Jin, Huang, Wang, Zhou, Song (bib0245) 2018; 553
Ruttala, Ramasamy, Poudal, Choi, Choi, Kim, Kim (bib0230) 2017; 8
Kwak, Kim, Jeong, Kang (bib0090) 2015; 13
Cheng, Pan, Liu, Li, Li, Yu, Pan (bib0240) 2018; 540
Liu, Wang, Adu-Frimpong, Wei, Xie, Zhang, Xu (bib0190) 2019; 563
Li, Li, Liu, Li, Zhang, Zou, Zhang (bib0035) 2016; 13
Mohamed, Hashim, Yusif, Suddek, Shaaban, Badria (bib0205) 2017; 96
Liu, Sun, Zhang, Tian, Tang, Qi, He, Li, Jin (bib0135) 2013; 443
Li, Yan, Tang, Zhang, Chen, Liu, Mo (bib0185) 2019; 10
Pignatello, Musumeci, Basile, Carbone, Puglisi (bib0225) 2011; 3
De Luca, Lai, Corrias, Caboni, Bimpisidis, Maccioni, Fadda, Di Chiara (bib0060) 2015; 479
Jiang, Gan, Zhu, Dong, Liu, Gan (bib0130) 2012; 33
Meka, Jenkins, Dàvalos-Salas, Pujara, Wong, Kumeria, Popat (bib0125) 2018; 10
Tran, Ramasamy, Truong, Shin, Choi, Yong (bib0220) 2014; 31
Farooq, Xu, Aquib, Ahsan, Baig, Wang (bib0140) 2020; 303
Liu, Jin, Yan, Du (bib0010) 2017; 104
Drews, Tavernier, Demeester, Lehrach, De Smedt, Rejman, Adjaye (bib0150) 2012; 33
Vahed, Salehi, Davaran, Sharifi (bib0050) 2017; 71
Tan, Zou, Zhang, Yin, Gao, Tang (bib0075) 2017; 24
Kumar, Rai, Reddy, Raj, Jain, Deshpande, Mathew, Kutty, Udupa, Rao (bib0055) 2014; 66
Papadia, Markoutsa, Mourtas, Giannou, La Ferla, Nicotra, Antimisiaris (bib0020) 2017; 101
Xu, Paxton, Wu (bib0025) 2015; 32
Staufenbiel, Keck, Muller (bib0165) 2014
Saadatia, Dadashzadeh (bib0170) 2014; 464
Muthu, Kulkarni, Xiong, Feng (bib0180) 2011; 421
Zhai, Wu, Zhao, Yu, Li, Lu, Lee (bib0070) 2008; 28
Liu, Yang, Shun, Wu, Weng, Chen (bib0110) 2010; 6
Han, Baek, Kim, Hwang, Cho (bib0200) 2018; 213
Kelly, Richon, O’Connor, Curley, MacGregor-Curtelli, Tong, Klang, Schwartz, Richardson, Rosa (bib0115) 2003; 9
Neophytou, Constantinou, Papageorgis, Constantinou (bib0255) 2014; 89
Kim (bib0005) 2016; 46
Saxena, Hussain (bib0085) 2013; 9
Liu, Liu, Xiong, Xu, Yao, Zhu, Yao (bib0045) 2018; 9
Farooq, Li, Parveen, Wang (bib0145) 2020; 10
Kievit, Wang, Fang, Mok, Wang, Silber, Zhang (bib0030) 2011; 152
Chinnaiyan, Chowdhary, Potthast, Prabhu, Tsai, Sarcar (bib0100) 2012; 14
Hu, Liang, An, Wang, You (bib0195) 2018; 44
Pham, Cho (bib0080) 2017; 47
Mohamed, Zhao, Meshali, Remsberg, Borg, Foda, Takemoto, Sayre, Martinez, Davies (bib0120) 2012; 101
Collnot, Blades, Wempe, Kappl, Hüttermann, Hyatt, Edgar, Schaefer, Lehr (bib0250) 2007; 4
Guo, Luo, Tan, Otieno, Zhang (bib0065) 2013; 49
Ramaswamy, Fiskus, Cohen, Pellegrino, Hershman, Chuang (bib0105) 2012; 132
Neophytou, Constantinou (bib0265) 2015
Liu, Wu, He, Zhuo, Cheng (bib0040) 2016; 61
Yuanyuan, Jun, Songwei, Ben Oketch, Zhiping (bib0160) 2013; 49
Alharbi, Alshehri, Afzal, Alenezi, Bukhari (bib0215) 2020; 21
Jin, Tsao, Sun, Yu, Tzao (bib0095) 2012; 18
Saxena (10.1016/j.colsurfb.2020.111523_bib0085) 2013; 9
Yang (10.1016/j.colsurfb.2020.111523_bib0155) 2016; 68
Hu (10.1016/j.colsurfb.2020.111523_bib0195) 2018; 44
Li (10.1016/j.colsurfb.2020.111523_bib0185) 2019; 10
Mohamed (10.1016/j.colsurfb.2020.111523_bib0205) 2017; 96
Saadatia (10.1016/j.colsurfb.2020.111523_bib0170) 2014; 464
Han (10.1016/j.colsurfb.2020.111523_bib0200) 2018; 213
Farooq (10.1016/j.colsurfb.2020.111523_bib0145) 2020; 10
Ruttala (10.1016/j.colsurfb.2020.111523_bib0230) 2017; 8
Vahed (10.1016/j.colsurfb.2020.111523_bib0050) 2017; 71
Constantinou (10.1016/j.colsurfb.2020.111523_bib0270) 2012; 64
Muthu (10.1016/j.colsurfb.2020.111523_bib0180) 2011; 421
Cheng (10.1016/j.colsurfb.2020.111523_bib0240) 2018; 540
Collnot (10.1016/j.colsurfb.2020.111523_bib0250) 2007; 4
Kumar (10.1016/j.colsurfb.2020.111523_bib0055) 2014; 66
Ebeid (10.1016/j.colsurfb.2020.111523_bib0275) 2018; 13
Yuanyuan (10.1016/j.colsurfb.2020.111523_bib0160) 2013; 49
Zhai (10.1016/j.colsurfb.2020.111523_bib0070) 2008; 28
Jin (10.1016/j.colsurfb.2020.111523_bib0095) 2012; 18
Xu (10.1016/j.colsurfb.2020.111523_bib0025) 2015; 32
Kelly (10.1016/j.colsurfb.2020.111523_bib0115) 2003; 9
Zhang (10.1016/j.colsurfb.2020.111523_bib0210) 2015; 10
Jiang (10.1016/j.colsurfb.2020.111523_bib0130) 2012; 33
Liu (10.1016/j.colsurfb.2020.111523_bib0010) 2017; 104
Liu (10.1016/j.colsurfb.2020.111523_bib0190) 2019; 563
Pham (10.1016/j.colsurfb.2020.111523_bib0080) 2017; 47
Papadia (10.1016/j.colsurfb.2020.111523_bib0020) 2017; 101
Kim (10.1016/j.colsurfb.2020.111523_bib0005) 2016; 46
Chinnaiyan (10.1016/j.colsurfb.2020.111523_bib0100) 2012; 14
Kievit (10.1016/j.colsurfb.2020.111523_bib0030) 2011; 152
Kwak (10.1016/j.colsurfb.2020.111523_bib0090) 2015; 13
Li (10.1016/j.colsurfb.2020.111523_bib0035) 2016; 13
Neophytou (10.1016/j.colsurfb.2020.111523_bib0255) 2014; 89
Ramaswamy (10.1016/j.colsurfb.2020.111523_bib0105) 2012; 132
De Luca (10.1016/j.colsurfb.2020.111523_bib0060) 2015; 479
Pignatello (10.1016/j.colsurfb.2020.111523_bib0225) 2011; 3
Alharbi (10.1016/j.colsurfb.2020.111523_bib0215) 2020; 21
Tran (10.1016/j.colsurfb.2020.111523_bib0220) 2014; 31
Mohamed (10.1016/j.colsurfb.2020.111523_bib0120) 2012; 101
Guo (10.1016/j.colsurfb.2020.111523_bib0065) 2013; 49
Farooq (10.1016/j.colsurfb.2020.111523_bib0140) 2020; 303
Patel (10.1016/j.colsurfb.2020.111523_bib0015) 2017; 108
Liu (10.1016/j.colsurfb.2020.111523_bib0040) 2016; 61
Neophytou (10.1016/j.colsurfb.2020.111523_bib0265) 2015
Liu (10.1016/j.colsurfb.2020.111523_bib0045) 2018; 9
Drews (10.1016/j.colsurfb.2020.111523_bib0150) 2012; 33
Tan (10.1016/j.colsurfb.2020.111523_bib0075) 2017; 24
Caddeo (10.1016/j.colsurfb.2020.111523_bib0175) 2018; 538
Youk (10.1016/j.colsurfb.2020.111523_bib0260) 2005; 107
Liu (10.1016/j.colsurfb.2020.111523_bib0110) 2010; 6
Staufenbiel (10.1016/j.colsurfb.2020.111523_bib0165) 2014
Jin (10.1016/j.colsurfb.2020.111523_bib0245) 2018; 553
Liu (10.1016/j.colsurfb.2020.111523_bib0135) 2013; 443
Zhang (10.1016/j.colsurfb.2020.111523_bib0235) 2018; 35
Meka (10.1016/j.colsurfb.2020.111523_bib0125) 2018; 10
References_xml – volume: 108
  start-page: 50
  year: 2017
  end-page: 61
  ident: bib0015
  article-title: QbD based development of proliposome of lopinavir for improved oral bioavailability
  publication-title: Eur. J. Pharm. Sci.
– volume: 14
  start-page: 93
  year: 2012
  end-page: 100
  ident: bib0100
  article-title: Phase I trial of vorinostat combined with bevacizumab and CPT-11 in recurrent glioblastoma
  publication-title: Neuro. Oncol.
– volume: 13
  start-page: 3934
  year: 2016
  end-page: 3944
  ident: bib0035
  article-title: One-step self-assembling nanomicelles for pirarubicin delivery to overcome multidrug resistance in breast cancer
  publication-title: Mol. Pharm.
– volume: 44
  start-page: 1528
  year: 2018
  end-page: 1535
  ident: bib0195
  article-title: The characterization, pharmacokinetic, and tissue distribution studies of TPGS-modified artesunate liposome in rats
  publication-title: Drug Dev. Ind. Pharm.
– volume: 104
  start-page: 212
  year: 2017
  end-page: 220
  ident: bib0010
  article-title: Effect of oxymatrine HSPC liposomes on improving bioavailability, liver target distribution and hepatoprotective activity of oxymatrine
  publication-title: Eur. J. Pharm. Sci.
– volume: 443
  start-page: 318
  year: 2013
  end-page: 327
  ident: bib0135
  article-title: Clarithromycin-loaded liposomes offering high drug loading and less irritation
  publication-title: Int. J. Pharm.
– volume: 10
  year: 2019
  ident: bib0185
  article-title: Synthesis of TPGS/curcumin nanoparticles by thin-film hydration and evaluation of their anti-colon cancer efficacy in vitro and in vivo
  publication-title: Front. Pharmacol.
– volume: 8
  start-page: 14925
  year: 2017
  ident: bib0230
  article-title: Molecularly targeted co-delivery of a histone deacetylase inhibitor and paclitaxel by lipid-protein hybrid nanoparticles for synergistic combinational chemotherapy
  publication-title: Oncotarget
– volume: 10
  start-page: 283
  year: 2018
  ident: bib0125
  article-title: Enhanced solubility, permeability and anticancer activity of vorinostat using tailored mesoporous silica nanoparticles
  publication-title: Pharmaceutics
– volume: 421
  start-page: 332
  year: 2011
  end-page: 340
  ident: bib0180
  article-title: Vitamin E TPGS coated liposomes enhanced cellular uptake and cytotoxicity of docetaxel in brain cancer cells
  publication-title: Int. J. Pharm.
– volume: 10
  start-page: 133
  year: 2020
  end-page: 144
  ident: bib0145
  article-title: Globular protein stabilized nanoparticles for delivery of disulfiram: fabrication, characterization, in vitro toxicity, and cellular uptake
  publication-title: RSC Adv.
– volume: 101
  start-page: 140
  year: 2017
  end-page: 148
  ident: bib0020
  article-title: Multifunctional LUV liposomes decorated for BBB and amyloid targeting. A. In vitro proof-of-concept
  publication-title: Eur. J. Pharm. Sci.
– volume: 35
  start-page: 199
  year: 2018
  ident: bib0235
  article-title: Fabrication of TPGS-stabilized liposome-PLGA hybrid nanoparticle via a new modified nanoprecipitation approach: in vitro and in vivo evaluation
  publication-title: Pharm. Res.
– volume: 464
  start-page: 135
  year: 2014
  end-page: 144
  ident: bib0170
  article-title: Marked effects of combined TPGS and PVA emulsifiers in the fabrication of etoposide–loaded PLGA–PEG nanoparticles: in vitro and in vivo evaluation
  publication-title: Int. J. Pharm.
– volume: 24
  start-page: 1831
  year: 2017
  end-page: 1842
  ident: bib0075
  article-title: Recent developments in dalpha- tocopheryl polyethylene glycol-succinate-based nanomedicine for cancer therapy
  publication-title: Drug Deliv.
– start-page: 32
  year: 2014
  end-page: 41
  ident: bib0165
  article-title: The “Real Environment” Quantification of Surface Hydrophobicity of Differently Stabilized Nanocrystals As Key Parameter for Organ Distribution, Macromolecular Symposia
– volume: 553
  start-page: 21
  year: 2018
  end-page: 28
  ident: bib0245
  article-title: TPGS modified nanoliposomes as an effective ocular delivery system to treat glaucoma
  publication-title: Int. J. Pharm.
– volume: 107
  start-page: 43
  year: 2005
  end-page: 52
  ident: bib0260
  article-title: Enhanced anticancer efficacy of alpha-tocopheryl succinate by conjugation with polyethylene glycol
  publication-title: J. Control. Release
– volume: 101
  start-page: 3787
  year: 2012
  end-page: 3798
  ident: bib0120
  article-title: Vorinostat with sustained exposure and high solubility in poly(ethylene glycol)-b-poly(DL-lactic acid) micelle nanocarriers: characterization and effects on pharmacokinetics in rat serum and urine
  publication-title: J. Pharm. Sci.
– volume: 303
  year: 2020
  ident: bib0140
  article-title: Denatured food protein-coated nanosuspension: a promising approach for anticancer delivery of hydrophobic drug
  publication-title: J. Mol. Liq.
– volume: 13
  start-page: 72
  year: 2018
  end-page: 81
  ident: bib0275
  article-title: Synthetically lethal nanoparticles for treatment of endometrial cancer
  publication-title: Nat. Nanotechnol.
– volume: 61
  start-page: 552
  year: 2016
  end-page: 560
  ident: bib0040
  article-title: Multi-drug loaded vitamin E-TPGS nanoparticles for synergistic drug delivery to overcome drug resistance in tumor treatment
  publication-title: Sci. Bull. (Beijing)
– volume: 9
  start-page: 3578
  year: 2003
  end-page: 3588
  ident: bib0115
  article-title: Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously
  publication-title: Clin. Cancer Res.
– volume: 538
  start-page: 40
  year: 2018
  end-page: 47
  ident: bib0175
  article-title: Stability, biocompatibility and antioxidant activity of PEG-modified liposomes containing resveratrol
  publication-title: Int. J. Pharm.
– volume: 213
  start-page: 39
  year: 2018
  end-page: 47
  ident: bib0200
  article-title: Surface modification of paclitaxel-loaded liposomes using d-α-tocopheryl polyethylene glycol 1000 succinate: enhanced cellular uptake and cytotoxicity in multidrug resistant breast cancer cells
  publication-title: Chem. Phys. Lipids
– volume: 64
  start-page: 136
  year: 2012
  end-page: 152
  ident: bib0270
  article-title: Induction of DNA damage and caspase-independent programmed cell death by vitamin E
  publication-title: Nutr. Cancer
– volume: 71
  start-page: 1327
  year: 2017
  end-page: 1341
  ident: bib0050
  article-title: Liposome-based drug co-delivery systems in cancer cells
  publication-title: Mater. Sci. Eng. C
– volume: 18
  start-page: 713
  year: 2012
  end-page: 720
  ident: bib0095
  article-title: SAHA inhibits the growth of colon tumors by decreasing histone deacetylase and the expression of cyclin D1 and survivin
  publication-title: Pathol. Oncol. Res.
– volume: 89
  start-page: 31
  year: 2014
  end-page: 42
  ident: bib0255
  article-title: D-alpha-tocopheryl polyethylene glycol succinate (TPGS) induces cell cycle arrest and apoptosis selectively in Survivin–overexpressing breast cancer cells
  publication-title: Biochem. Pharmacol.
– volume: 6
  start-page: 1057
  year: 2010
  end-page: 1065
  ident: bib0110
  article-title: Autophagy potentiates the anti-cancer effects of the histone deacetylase inhibitors in hepatocellular carcinoma
  publication-title: Autophagy
– volume: 46
  start-page: 387
  year: 2016
  end-page: 392
  ident: bib0005
  article-title: Liposomal drug delivery system
  publication-title: J. Pharm. Investig.
– volume: 9
  start-page: 1827
  year: 2018
  end-page: 1839
  ident: bib0045
  article-title: Mechanisms of TPGS and its derivatives inhibiting P-glycoprotein efflux pump and application for reversing multidrug resistance in hepatocellular carcinoma
  publication-title: Polym. Chem.
– volume: 4
  start-page: 465
  year: 2007
  end-page: 474
  ident: bib0250
  article-title: Mechanism of inhibition of P-glycoprotien mediated efflux by vitamin E TPGS: influence on ATPase activity and membrane fluidity
  publication-title: Mol. Pharm.
– volume: 10
  start-page: 5219
  year: 2015
  end-page: 5235
  ident: bib0210
  article-title: D-α-Tocopherol polyethylene glycol succinate-based derivative nanoparticles as a novel carrier for paclitaxel delivery
  publication-title: Int. J. Nanomed. Nanosurg.
– volume: 33
  start-page: 4059
  year: 2012
  end-page: 4068
  ident: bib0150
  article-title: The cytotoxic and immunogenic hurdles associated with non–viral mRNA–mediated reprogramming of human fibroblasts
  publication-title: Biomaterials
– volume: 33
  start-page: 7621
  year: 2012
  end-page: 7630
  ident: bib0130
  article-title: Cationic core–shell liponanoparticles for ocular gene delivery
  publication-title: Biomaterials.
– volume: 21
  start-page: 167
  year: 2020
  ident: bib0215
  article-title: Formulation of chitosan polymeric vesicles of ciprofloxacin for ocular delivery: box-behnken optimization, in vitro characterization, HET-CAM irritation, and antimicrobial assessment
  publication-title: AAPS PharmSciTech
– volume: 66
  start-page: 788
  year: 2014
  end-page: 798
  ident: bib0055
  article-title: Silymarin liposomes improves oral bioavailability of silybin besides targeting hepatocytes, and immune cells
  publication-title: Pharmacol. Rep.
– volume: 152
  start-page: 76
  year: 2011
  end-page: 83
  ident: bib0030
  article-title: Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro
  publication-title: J. Control. Release
– volume: 563
  start-page: 53
  year: 2019
  end-page: 62
  ident: bib0190
  article-title: Preparation, in vitro and in vivo evaluation of isoliquiritigenin-loaded TPGS modified proliposomes
  publication-title: Int. J. Pharm.
– volume: 28
  start-page: 2801
  year: 2008
  end-page: 2805
  ident: bib0070
  article-title: A liposomal delivery vehicle for the anticancer agent gossypol
  publication-title: Anticancer Res.
– volume: 47
  start-page: 111
  year: 2017
  end-page: 121
  ident: bib0080
  article-title: Application of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) in transdermal and topical drug delivery systems (TDDS)
  publication-title: J. Pharm. Investig.
– volume: 479
  start-page: 129
  year: 2015
  end-page: 137
  ident: bib0060
  article-title: Lactoferrin– and antitransferrin–modified liposomes for brain targeting of the NK3 receptor agonist senktide: preparation and in vivo evaluation
  publication-title: Int. J. Pharm.
– volume: 49
  start-page: 175
  year: 2013
  end-page: 186
  ident: bib0065
  article-title: The applications of Vitamin E TPGS in drug delivery
  publication-title: Eur. J. Pharm. Sci.
– volume: 68
  start-page: 1109
  year: 2016
  end-page: 1118
  ident: bib0155
  article-title: TPGS-modified liposomes for the 645 delivery of ginsenoside compound K against non-small cell lung cancer: formulation design and its evaluation in vitro and in vivo
  publication-title: J. Pharma Pharmacol.
– volume: 540
  start-page: 162
  year: 2018
  end-page: 170
  ident: bib0240
  article-title: Functionalization of nanodiamond with vitamin E TPGS to facilitate oral absorption of curcumin
  publication-title: Int. J. Pharm.
– volume: 49
  start-page: 175
  year: 2013
  end-page: 186
  ident: bib0160
  article-title: The applications of Vitamin E TPGS in drug delivery
  publication-title: Eur. J. Pharm. Sci.
– volume: 96
  start-page: 232
  year: 2017
  end-page: 242
  ident: bib0205
  article-title: Enhanced in vitro cytotoxicity and anti-tumor activity of vorinostat-loaded pluronic micelles with prolonged release and reduced hepatic and renal toxicities
  publication-title: Eur. J. Pharm. Sci.
– volume: 32
  start-page: 2428
  year: 2015
  end-page: 2438
  ident: bib0025
  article-title: Enhanced pH-responsiveness, cellular trafficking, cytotoxicity and long-circulation of PEGylated liposomes with post-insertion technique using gemcitabine as a model drug
  publication-title: Pharm. Res.
– volume: 31
  start-page: 1978
  year: 2014
  end-page: 1988
  ident: bib0220
  article-title: Development of vorinostat-loaded solid lipid nanoparticles to enhance pharmacokinetics and efficacy against multidrug-resistant cancer cells
  publication-title: Pharm. Res.
– volume: 3
  start-page: 4
  year: 2011
  end-page: 14
  ident: bib0225
  article-title: Biomembrane models and drug-biomembrane interaction studies: involvement in drug design and development
  publication-title: J. Pharm. Biol. Sci.
– volume: 13
  start-page: 60
  year: 2015
  ident: bib0090
  article-title: Antitumor activity of vorinostat-incorporated nanoparticles against human cholangiocarcinoma cells
  publication-title: J. Bionanotech.
– volume: 132
  start-page: 1063
  year: 2012
  end-page: 1072
  ident: bib0105
  article-title: Phase I–II study of vorinostat plus paclitaxel and bevacizumab in metastatic breast cancer: evidence for vorinostat-induced tubulin acetylation and Hsp90 inhibition in vivo
  publication-title: Breast Cancer Res. Treat.
– start-page: 16
  year: 2015
  ident: bib0265
  article-title: Drug delivery innovations for enhancing the anticancer potential of vitamin e isoforms and their derivatives
  publication-title: Biomed Res. Int.
– volume: 9
  start-page: 1146
  year: 2013
  end-page: 1154
  ident: bib0085
  article-title: Polymeric mixed micelles for delivery of curcumin to multidrug resistant ovarian cancer
  publication-title: J. Biomed. Nanotechnol.
– volume: 3
  start-page: 4
  year: 2011
  ident: 10.1016/j.colsurfb.2020.111523_bib0225
  article-title: Biomembrane models and drug-biomembrane interaction studies: involvement in drug design and development
  publication-title: J. Pharm. Biol. Sci.
– volume: 33
  start-page: 7621
  year: 2012
  ident: 10.1016/j.colsurfb.2020.111523_bib0130
  article-title: Cationic core–shell liponanoparticles for ocular gene delivery
  publication-title: Biomaterials.
  doi: 10.1016/j.biomaterials.2012.06.079
– volume: 538
  start-page: 40
  issue: 1-2
  year: 2018
  ident: 10.1016/j.colsurfb.2020.111523_bib0175
  article-title: Stability, biocompatibility and antioxidant activity of PEG-modified liposomes containing resveratrol
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2017.12.047
– volume: 96
  start-page: 232
  year: 2017
  ident: 10.1016/j.colsurfb.2020.111523_bib0205
  article-title: Enhanced in vitro cytotoxicity and anti-tumor activity of vorinostat-loaded pluronic micelles with prolonged release and reduced hepatic and renal toxicities
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2016.09.029
– volume: 44
  start-page: 1528
  issue: 9
  year: 2018
  ident: 10.1016/j.colsurfb.2020.111523_bib0195
  article-title: The characterization, pharmacokinetic, and tissue distribution studies of TPGS-modified artesunate liposome in rats
  publication-title: Drug Dev. Ind. Pharm.
  doi: 10.1080/03639045.2018.1483383
– volume: 4
  start-page: 465
  year: 2007
  ident: 10.1016/j.colsurfb.2020.111523_bib0250
  article-title: Mechanism of inhibition of P-glycoprotien mediated efflux by vitamin E TPGS: influence on ATPase activity and membrane fluidity
  publication-title: Mol. Pharm.
  doi: 10.1021/mp060121r
– volume: 132
  start-page: 1063
  year: 2012
  ident: 10.1016/j.colsurfb.2020.111523_bib0105
  article-title: Phase I–II study of vorinostat plus paclitaxel and bevacizumab in metastatic breast cancer: evidence for vorinostat-induced tubulin acetylation and Hsp90 inhibition in vivo
  publication-title: Breast Cancer Res. Treat.
  doi: 10.1007/s10549-011-1928-x
– volume: 33
  start-page: 4059
  year: 2012
  ident: 10.1016/j.colsurfb.2020.111523_bib0150
  article-title: The cytotoxic and immunogenic hurdles associated with non–viral mRNA–mediated reprogramming of human fibroblasts
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.02.025
– volume: 35
  start-page: 199
  issue: 11
  year: 2018
  ident: 10.1016/j.colsurfb.2020.111523_bib0235
  article-title: Fabrication of TPGS-stabilized liposome-PLGA hybrid nanoparticle via a new modified nanoprecipitation approach: in vitro and in vivo evaluation
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-018-2485-3
– volume: 6
  start-page: 1057
  year: 2010
  ident: 10.1016/j.colsurfb.2020.111523_bib0110
  article-title: Autophagy potentiates the anti-cancer effects of the histone deacetylase inhibitors in hepatocellular carcinoma
  publication-title: Autophagy
  doi: 10.4161/auto.6.8.13365
– start-page: 16
  year: 2015
  ident: 10.1016/j.colsurfb.2020.111523_bib0265
  article-title: Drug delivery innovations for enhancing the anticancer potential of vitamin e isoforms and their derivatives
  publication-title: Biomed Res. Int.
– volume: 46
  start-page: 387
  issue: 4
  year: 2016
  ident: 10.1016/j.colsurfb.2020.111523_bib0005
  article-title: Liposomal drug delivery system
  publication-title: J. Pharm. Investig.
  doi: 10.1007/s40005-016-0260-1
– volume: 68
  start-page: 1109
  issue: 9
  year: 2016
  ident: 10.1016/j.colsurfb.2020.111523_bib0155
  article-title: TPGS-modified liposomes for the 645 delivery of ginsenoside compound K against non-small cell lung cancer: formulation design and its evaluation in vitro and in vivo
  publication-title: J. Pharma Pharmacol.
  doi: 10.1111/jphp.12590
– volume: 8
  start-page: 14925
  issue: 9
  year: 2017
  ident: 10.1016/j.colsurfb.2020.111523_bib0230
  article-title: Molecularly targeted co-delivery of a histone deacetylase inhibitor and paclitaxel by lipid-protein hybrid nanoparticles for synergistic combinational chemotherapy
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.14742
– volume: 10
  start-page: 5219
  year: 2015
  ident: 10.1016/j.colsurfb.2020.111523_bib0210
  article-title: D-α-Tocopherol polyethylene glycol succinate-based derivative nanoparticles as a novel carrier for paclitaxel delivery
  publication-title: Int. J. Nanomed. Nanosurg.
  doi: 10.2147/IJN.S82847
– volume: 49
  start-page: 175
  year: 2013
  ident: 10.1016/j.colsurfb.2020.111523_bib0065
  article-title: The applications of Vitamin E TPGS in drug delivery
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2013.02.006
– volume: 101
  start-page: 140
  year: 2017
  ident: 10.1016/j.colsurfb.2020.111523_bib0020
  article-title: Multifunctional LUV liposomes decorated for BBB and amyloid targeting. A. In vitro proof-of-concept
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2017.02.019
– volume: 61
  start-page: 552
  issue: 7
  year: 2016
  ident: 10.1016/j.colsurfb.2020.111523_bib0040
  article-title: Multi-drug loaded vitamin E-TPGS nanoparticles for synergistic drug delivery to overcome drug resistance in tumor treatment
  publication-title: Sci. Bull. (Beijing)
  doi: 10.1007/s11434-016-1039-5
– volume: 563
  start-page: 53
  year: 2019
  ident: 10.1016/j.colsurfb.2020.111523_bib0190
  article-title: Preparation, in vitro and in vivo evaluation of isoliquiritigenin-loaded TPGS modified proliposomes
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2019.03.034
– volume: 9
  start-page: 1827
  issue: 14
  year: 2018
  ident: 10.1016/j.colsurfb.2020.111523_bib0045
  article-title: Mechanisms of TPGS and its derivatives inhibiting P-glycoprotein efflux pump and application for reversing multidrug resistance in hepatocellular carcinoma
  publication-title: Polym. Chem.
  doi: 10.1039/C8PY00344K
– volume: 540
  start-page: 162
  issue: 1-2
  year: 2018
  ident: 10.1016/j.colsurfb.2020.111523_bib0240
  article-title: Functionalization of nanodiamond with vitamin E TPGS to facilitate oral absorption of curcumin
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2018.02.014
– volume: 107
  start-page: 43
  year: 2005
  ident: 10.1016/j.colsurfb.2020.111523_bib0260
  article-title: Enhanced anticancer efficacy of alpha-tocopheryl succinate by conjugation with polyethylene glycol
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2005.05.014
– volume: 152
  start-page: 76
  issue: 1
  year: 2011
  ident: 10.1016/j.colsurfb.2020.111523_bib0030
  article-title: Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2011.01.024
– volume: 49
  start-page: 175
  issue: 2
  year: 2013
  ident: 10.1016/j.colsurfb.2020.111523_bib0160
  article-title: The applications of Vitamin E TPGS in drug delivery
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2013.02.006
– volume: 31
  start-page: 1978
  issue: 8
  year: 2014
  ident: 10.1016/j.colsurfb.2020.111523_bib0220
  article-title: Development of vorinostat-loaded solid lipid nanoparticles to enhance pharmacokinetics and efficacy against multidrug-resistant cancer cells
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-014-1300-z
– volume: 108
  start-page: 50
  year: 2017
  ident: 10.1016/j.colsurfb.2020.111523_bib0015
  article-title: QbD based development of proliposome of lopinavir for improved oral bioavailability
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2016.08.057
– volume: 28
  start-page: 2801
  year: 2008
  ident: 10.1016/j.colsurfb.2020.111523_bib0070
  article-title: A liposomal delivery vehicle for the anticancer agent gossypol
  publication-title: Anticancer Res.
– volume: 71
  start-page: 1327
  year: 2017
  ident: 10.1016/j.colsurfb.2020.111523_bib0050
  article-title: Liposome-based drug co-delivery systems in cancer cells
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2016.11.073
– volume: 479
  start-page: 129
  year: 2015
  ident: 10.1016/j.colsurfb.2020.111523_bib0060
  article-title: Lactoferrin– and antitransferrin–modified liposomes for brain targeting of the NK3 receptor agonist senktide: preparation and in vivo evaluation
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2014.12.057
– volume: 24
  start-page: 1831
  year: 2017
  ident: 10.1016/j.colsurfb.2020.111523_bib0075
  article-title: Recent developments in dalpha- tocopheryl polyethylene glycol-succinate-based nanomedicine for cancer therapy
  publication-title: Drug Deliv.
  doi: 10.1080/10717544.2017.1406561
– volume: 443
  start-page: 318
  year: 2013
  ident: 10.1016/j.colsurfb.2020.111523_bib0135
  article-title: Clarithromycin-loaded liposomes offering high drug loading and less irritation
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2013.01.023
– volume: 89
  start-page: 31
  year: 2014
  ident: 10.1016/j.colsurfb.2020.111523_bib0255
  article-title: D-alpha-tocopheryl polyethylene glycol succinate (TPGS) induces cell cycle arrest and apoptosis selectively in Survivin–overexpressing breast cancer cells
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2014.02.003
– volume: 101
  start-page: 3787
  year: 2012
  ident: 10.1016/j.colsurfb.2020.111523_bib0120
  article-title: Vorinostat with sustained exposure and high solubility in poly(ethylene glycol)-b-poly(DL-lactic acid) micelle nanocarriers: characterization and effects on pharmacokinetics in rat serum and urine
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.23265
– volume: 14
  start-page: 93
  year: 2012
  ident: 10.1016/j.colsurfb.2020.111523_bib0100
  article-title: Phase I trial of vorinostat combined with bevacizumab and CPT-11 in recurrent glioblastoma
  publication-title: Neuro. Oncol.
  doi: 10.1093/neuonc/nor187
– volume: 421
  start-page: 332
  issue: 2
  year: 2011
  ident: 10.1016/j.colsurfb.2020.111523_bib0180
  article-title: Vitamin E TPGS coated liposomes enhanced cellular uptake and cytotoxicity of docetaxel in brain cancer cells
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2011.09.045
– volume: 18
  start-page: 713
  year: 2012
  ident: 10.1016/j.colsurfb.2020.111523_bib0095
  article-title: SAHA inhibits the growth of colon tumors by decreasing histone deacetylase and the expression of cyclin D1 and survivin
  publication-title: Pathol. Oncol. Res.
  doi: 10.1007/s12253-012-9499-7
– volume: 553
  start-page: 21
  issue: 1-2
  year: 2018
  ident: 10.1016/j.colsurfb.2020.111523_bib0245
  article-title: TPGS modified nanoliposomes as an effective ocular delivery system to treat glaucoma
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2018.10.033
– volume: 13
  start-page: 60
  issue: 1
  year: 2015
  ident: 10.1016/j.colsurfb.2020.111523_bib0090
  article-title: Antitumor activity of vorinostat-incorporated nanoparticles against human cholangiocarcinoma cells
  publication-title: J. Bionanotech.
– volume: 10
  start-page: 283
  issue: 4
  year: 2018
  ident: 10.1016/j.colsurfb.2020.111523_bib0125
  article-title: Enhanced solubility, permeability and anticancer activity of vorinostat using tailored mesoporous silica nanoparticles
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics10040283
– volume: 21
  start-page: 167
  year: 2020
  ident: 10.1016/j.colsurfb.2020.111523_bib0215
  article-title: Formulation of chitosan polymeric vesicles of ciprofloxacin for ocular delivery: box-behnken optimization, in vitro characterization, HET-CAM irritation, and antimicrobial assessment
  publication-title: AAPS PharmSciTech
  doi: 10.1208/s12249-020-01699-9
– volume: 10
  year: 2019
  ident: 10.1016/j.colsurfb.2020.111523_bib0185
  article-title: Synthesis of TPGS/curcumin nanoparticles by thin-film hydration and evaluation of their anti-colon cancer efficacy in vitro and in vivo
  publication-title: Front. Pharmacol.
– start-page: 32
  year: 2014
  ident: 10.1016/j.colsurfb.2020.111523_bib0165
– volume: 47
  start-page: 111
  year: 2017
  ident: 10.1016/j.colsurfb.2020.111523_bib0080
  article-title: Application of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) in transdermal and topical drug delivery systems (TDDS)
  publication-title: J. Pharm. Investig.
  doi: 10.1007/s40005-016-0300-x
– volume: 9
  start-page: 1146
  year: 2013
  ident: 10.1016/j.colsurfb.2020.111523_bib0085
  article-title: Polymeric mixed micelles for delivery of curcumin to multidrug resistant ovarian cancer
  publication-title: J. Biomed. Nanotechnol.
  doi: 10.1166/jbn.2013.1632
– volume: 13
  start-page: 72
  year: 2018
  ident: 10.1016/j.colsurfb.2020.111523_bib0275
  article-title: Synthetically lethal nanoparticles for treatment of endometrial cancer
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-017-0009-7
– volume: 13
  start-page: 3934
  issue: 11
  year: 2016
  ident: 10.1016/j.colsurfb.2020.111523_bib0035
  article-title: One-step self-assembling nanomicelles for pirarubicin delivery to overcome multidrug resistance in breast cancer
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.6b00712
– volume: 213
  start-page: 39
  year: 2018
  ident: 10.1016/j.colsurfb.2020.111523_bib0200
  article-title: Surface modification of paclitaxel-loaded liposomes using d-α-tocopheryl polyethylene glycol 1000 succinate: enhanced cellular uptake and cytotoxicity in multidrug resistant breast cancer cells
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/j.chemphyslip.2018.03.005
– volume: 104
  start-page: 212
  year: 2017
  ident: 10.1016/j.colsurfb.2020.111523_bib0010
  article-title: Effect of oxymatrine HSPC liposomes on improving bioavailability, liver target distribution and hepatoprotective activity of oxymatrine
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2017.03.048
– volume: 66
  start-page: 788
  year: 2014
  ident: 10.1016/j.colsurfb.2020.111523_bib0055
  article-title: Silymarin liposomes improves oral bioavailability of silybin besides targeting hepatocytes, and immune cells
  publication-title: Pharmacol. Rep.
  doi: 10.1016/j.pharep.2014.04.007
– volume: 303
  year: 2020
  ident: 10.1016/j.colsurfb.2020.111523_bib0140
  article-title: Denatured food protein-coated nanosuspension: a promising approach for anticancer delivery of hydrophobic drug
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2020.112690
– volume: 10
  start-page: 133
  issue: 1
  year: 2020
  ident: 10.1016/j.colsurfb.2020.111523_bib0145
  article-title: Globular protein stabilized nanoparticles for delivery of disulfiram: fabrication, characterization, in vitro toxicity, and cellular uptake
  publication-title: RSC Adv.
  doi: 10.1039/C9RA09468G
– volume: 9
  start-page: 3578
  year: 2003
  ident: 10.1016/j.colsurfb.2020.111523_bib0115
  article-title: Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously
  publication-title: Clin. Cancer Res.
– volume: 464
  start-page: 135
  year: 2014
  ident: 10.1016/j.colsurfb.2020.111523_bib0170
  article-title: Marked effects of combined TPGS and PVA emulsifiers in the fabrication of etoposide–loaded PLGA–PEG nanoparticles: in vitro and in vivo evaluation
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2014.01.014
– volume: 64
  start-page: 136
  year: 2012
  ident: 10.1016/j.colsurfb.2020.111523_bib0270
  article-title: Induction of DNA damage and caspase-independent programmed cell death by vitamin E
  publication-title: Nutr. Cancer
  doi: 10.1080/01635581.2012.630167
– volume: 32
  start-page: 2428
  issue: 7
  year: 2015
  ident: 10.1016/j.colsurfb.2020.111523_bib0025
  article-title: Enhanced pH-responsiveness, cellular trafficking, cytotoxicity and long-circulation of PEGylated liposomes with post-insertion technique using gemcitabine as a model drug
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-015-1635-0
SSID ssj0002417
Score 2.5191555
Snippet [Display omitted] •TPGS modified liposomes were prepared using thin film hydration following the probe ultra-sonication method.•Surfaced-coated liposomal...
Vorinostat (VOR) is known as one of the histone deacetylase inhibitors (HDACi) for cancer treatment, and the FDA approves it for cutaneous T cell lymphoma...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 111523
SubjectTerms antineoplastic activity
breast neoplasms
Cancer therapy
cytotoxicity
drugs
encapsulation
flow cytometry
fluorescence microscopy
histone deacetylase
hydrophobicity
Liposomes
particle size
permeability
Solubility
T-cell lymphoma
toxicity testing
TPGS
transmission electron microscopy
Vorinostat
Title Enhanced cellular uptake and cytotoxicity of vorinostat through encapsulation in TPGS-modified liposomes
URI https://dx.doi.org/10.1016/j.colsurfb.2020.111523
https://www.ncbi.nlm.nih.gov/pubmed/33360624
https://www.proquest.com/docview/2473419855
https://www.proquest.com/docview/2574333485
Volume 199
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcgAOCLY8yqMyEuIWNuv4ER9Xq5YFRIXUVurNcmJbTdlNVt1s1V747cw4SSmH0gNXaxxZHs_L-eYzIR-sQDPKbWJzj78ZizLJtfOJFWmQyK-uFDY4fz-U8xP-9VScbpHZ0AuDsMre93c-PXrrfmTc7-Z4VVXjo1QzpZQUDClX8tjwy7nCU_7p1x-YB0So2DINwglK3-oSPodvL9abi1BAncii9xAsuytA3ZWAxkB08JQ86TNIOu0W-Yxs-XpEdqY1VM_La_qRRkxnvCwfkYez4T23EXl8i3pwh5zt12fx5z_Fq3vEotLNqrU_PbU1jF23TdtcVSXk6LQJ9BJheg02H9H-YR8KO2Whwu6gdLSq6fGPz0fJsnFVgKyWLqpVs26Wfv2cnBzsH8_mSf_qQlJCrdUmYTLxk8wL53KhWQEmrVKRlqVirkA2ehuklk4WHMnzSpdCPsOyrATjDpbnXmYvyHbd1P4VodZpp5QLXunAnZa5LnyWc28lD6HI-C4Rw1absqckx5cxFmbAnp2bQUUGVWQ6Fe2S8c28VUfKce8MPWjS_HW8DESOe-e-H1RvQGWoFVv7ZrM2jCukw8uF-IeMgBwN251B5mV3bm7WDONQPzL--j9W94Y8YgizibC4t2S7vdj4d5AntcVeNIQ98mD65dv88DfPRROZ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFLdQObAdpq3sg30wT5p2i5o6sR0fqwooA6pJFImb5cS2CGuTiqYI_vu9l4-KHYADV8svsvz8vpzf-5mQn4ajGSUmMInD34xpFiTKusDw0AvkV5cSG5zPpmJyEf--5JdbZNz1wiCssvX9jU-vvXU7Mmh3c7DM88F5qJiUUnCGlCsJNvxuIzsV75Ht0fHJZLpxyBCk6q5pmB-gwING4Wv4_Hy1vvEplIqsdiCcRY_FqMdy0DoWHb4lb9okko6adb4jW67ok91RAQX04p7-ojWss74v75OdcfekW5-8fsA-uEuuDoqr-v8_xdt7hKPS9bIyfx01BYzdV2VV3uUZpOm09PQWkXol9h_R9m0fCptloMhu0HQ0L-jsz9F5sCht7iGxpfN8Wa7KhVu9JxeHB7PxJGgfXggyKLeqwA-Hbhg5bm3CFUvBqmXIwyyTzKZISG-8UMKKNEb-vMyGkNKwKMrAvr2JEyeiD6RXlIX7RKixykppvZPKx1aJRKUuSmJnROx9GsV7hHdbrbOWlRwfx5jrDn52rTsVaVSRblS0RwYbuWXDy_GshOo0qf87YRqCx7OyPzrVa1AZasUUrlyvNIslMuIlnD8xh0Oahh3PMOdjc242a4ZxKCFZ_PkFq_tOdiazs1N9ejw9-UJeMUTd1Ci5r6RX3azdN0ibqnS_NYt_LzUWSg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+cellular+uptake+and+cytotoxicity+of+vorinostat+through+encapsulation+in+TPGS-modified+liposomes&rft.jtitle=Colloids+and+surfaces%2C+B%2C+Biointerfaces&rft.au=Farooq%2C+Muhammad+Asim&rft.au=Xinyu%2C+Huang&rft.au=Jabeen%2C+Amna&rft.au=Ahsan%2C+Anam&rft.date=2021-03-01&rft.issn=0927-7765&rft.volume=199&rft.spage=111523&rft_id=info:doi/10.1016%2Fj.colsurfb.2020.111523&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_colsurfb_2020_111523
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7765&client=summon