Enhanced cellular uptake and cytotoxicity of vorinostat through encapsulation in TPGS-modified liposomes
[Display omitted] •TPGS modified liposomes were prepared using thin film hydration following the probe ultra-sonication method.•Surfaced-coated liposomal formulation enhanced the drug loading, encapsulation efficiency, solubility, and drug release profile.•TPGS coating on liposomes surface demonstra...
Saved in:
Published in | Colloids and surfaces, B, Biointerfaces Vol. 199; p. 111523 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•TPGS modified liposomes were prepared using thin film hydration following the probe ultra-sonication method.•Surfaced-coated liposomal formulation enhanced the drug loading, encapsulation efficiency, solubility, and drug release profile.•TPGS coating on liposomes surface demonstrated a more toxic effect against breast cancer cells.•Modified liposomes also enhanced the qualitative and quantitative cellular uptake against MCF-7 cancer cells.
Vorinostat (VOR) is known as one of the histone deacetylase inhibitors (HDACi) for cancer treatment, and the FDA approves it for cutaneous T cell lymphoma therapy. Poor solubility, permeability, and less anti-cancer activity are the main challenges for the effective delivery of VOR against various cancers. So, our team assumed that the surface-coated liposomes might improve the physicochemical properties of biopharmaceutics classification system class IV drugs such as VOR. The present study aimed to enhance the cytotoxicity and improve cellular uptake using TPGS-coated liposomes in breast cancer cells. Liposomes were fabricated by the film hydration following the probe ultra-sonication method. OR-LIPO and TPGS-VOR-LIPO showed an average particle size of 211.97 ± 3.42 nm with PDI 0.2168 ± 0.006 and 176.99 ± 2.06 nm with PDI 0.175 ± 0.018, respectively. TPGS-coated liposomes had better stability and revealed more than 80 % encapsulation efficiency than conventional liposomes. Transmission electron microscopy confirmed the TPGS coating around liposomes. Moreover, TPGS-coated liposomes enhanced the solubility and showed sustained release of VOR over 48 h. DSC and PXRD analysis also reveal an amorphous state of VOR within the liposomal formulation. MTT assay result indicates that the superior cytotoxic effect of surface-modified liposomes contrasts with the conventional and free VOR solution, respectively. Fluorescence microscopy and flow cytometry results also presented an enhanced cellular uptake of TPGS-coated liposomes against breast cancer cells, respectively. The current investigation's final results declared that TPGS-coated liposomes are promising drug carriers for the effective delivery of hydrophobic drugs for cancer therapy. |
---|---|
AbstractList | Vorinostat (VOR) is known as one of the histone deacetylase inhibitors (HDACi) for cancer treatment, and the FDA approves it for cutaneous T cell lymphoma therapy. Poor solubility, permeability, and less anti-cancer activity are the main challenges for the effective delivery of VOR against various cancers. So, our team assumed that the surface-coated liposomes might improve the physicochemical properties of biopharmaceutics classification system class IV drugs such as VOR. The present study aimed to enhance the cytotoxicity and improve cellular uptake using TPGS-coated liposomes in breast cancer cells. Liposomes were fabricated by the film hydration following the probe ultra-sonication method. OR-LIPO and TPGS-VOR-LIPO showed an average particle size of 211.97 ± 3.42 nm with PDI 0.2168 ± 0.006 and 176.99 ± 2.06 nm with PDI 0.175 ± 0.018, respectively. TPGS-coated liposomes had better stability and revealed more than 80 % encapsulation efficiency than conventional liposomes. Transmission electron microscopy confirmed the TPGS coating around liposomes. Moreover, TPGS-coated liposomes enhanced the solubility and showed sustained release of VOR over 48 h. DSC and PXRD analysis also reveal an amorphous state of VOR within the liposomal formulation. MTT assay result indicates that the superior cytotoxic effect of surface-modified liposomes contrasts with the conventional and free VOR solution, respectively. Fluorescence microscopy and flow cytometry results also presented an enhanced cellular uptake of TPGS-coated liposomes against breast cancer cells, respectively. The current investigation's final results declared that TPGS-coated liposomes are promising drug carriers for the effective delivery of hydrophobic drugs for cancer therapy. [Display omitted] •TPGS modified liposomes were prepared using thin film hydration following the probe ultra-sonication method.•Surfaced-coated liposomal formulation enhanced the drug loading, encapsulation efficiency, solubility, and drug release profile.•TPGS coating on liposomes surface demonstrated a more toxic effect against breast cancer cells.•Modified liposomes also enhanced the qualitative and quantitative cellular uptake against MCF-7 cancer cells. Vorinostat (VOR) is known as one of the histone deacetylase inhibitors (HDACi) for cancer treatment, and the FDA approves it for cutaneous T cell lymphoma therapy. Poor solubility, permeability, and less anti-cancer activity are the main challenges for the effective delivery of VOR against various cancers. So, our team assumed that the surface-coated liposomes might improve the physicochemical properties of biopharmaceutics classification system class IV drugs such as VOR. The present study aimed to enhance the cytotoxicity and improve cellular uptake using TPGS-coated liposomes in breast cancer cells. Liposomes were fabricated by the film hydration following the probe ultra-sonication method. OR-LIPO and TPGS-VOR-LIPO showed an average particle size of 211.97 ± 3.42 nm with PDI 0.2168 ± 0.006 and 176.99 ± 2.06 nm with PDI 0.175 ± 0.018, respectively. TPGS-coated liposomes had better stability and revealed more than 80 % encapsulation efficiency than conventional liposomes. Transmission electron microscopy confirmed the TPGS coating around liposomes. Moreover, TPGS-coated liposomes enhanced the solubility and showed sustained release of VOR over 48 h. DSC and PXRD analysis also reveal an amorphous state of VOR within the liposomal formulation. MTT assay result indicates that the superior cytotoxic effect of surface-modified liposomes contrasts with the conventional and free VOR solution, respectively. Fluorescence microscopy and flow cytometry results also presented an enhanced cellular uptake of TPGS-coated liposomes against breast cancer cells, respectively. The current investigation's final results declared that TPGS-coated liposomes are promising drug carriers for the effective delivery of hydrophobic drugs for cancer therapy. Vorinostat (VOR) is known as one of the histone deacetylase inhibitors (HDACi) for cancer treatment, and the FDA approves it for cutaneous T cell lymphoma therapy. Poor solubility, permeability, and less anti-cancer activity are the main challenges for the effective delivery of VOR against various cancers. So, our team assumed that the surface-coated liposomes might improve the physicochemical properties of biopharmaceutics classification system class IV drugs such as VOR. The present study aimed to enhance the cytotoxicity and improve cellular uptake using TPGS-coated liposomes in breast cancer cells. Liposomes were fabricated by the film hydration following the probe ultra-sonication method. OR-LIPO and TPGS-VOR-LIPO showed an average particle size of 211.97 ± 3.42 nm with PDI 0.2168 ± 0.006 and 176.99 ± 2.06 nm with PDI 0.175 ± 0.018, respectively. TPGS-coated liposomes had better stability and revealed more than 80 % encapsulation efficiency than conventional liposomes. Transmission electron microscopy confirmed the TPGS coating around liposomes. Moreover, TPGS-coated liposomes enhanced the solubility and showed sustained release of VOR over 48 h. DSC and PXRD analysis also reveal an amorphous state of VOR within the liposomal formulation. MTT assay result indicates that the superior cytotoxic effect of surface-modified liposomes contrasts with the conventional and free VOR solution, respectively. Fluorescence microscopy and flow cytometry results also presented an enhanced cellular uptake of TPGS-coated liposomes against breast cancer cells, respectively. The current investigation's final results declared that TPGS-coated liposomes are promising drug carriers for the effective delivery of hydrophobic drugs for cancer therapy.Vorinostat (VOR) is known as one of the histone deacetylase inhibitors (HDACi) for cancer treatment, and the FDA approves it for cutaneous T cell lymphoma therapy. Poor solubility, permeability, and less anti-cancer activity are the main challenges for the effective delivery of VOR against various cancers. So, our team assumed that the surface-coated liposomes might improve the physicochemical properties of biopharmaceutics classification system class IV drugs such as VOR. The present study aimed to enhance the cytotoxicity and improve cellular uptake using TPGS-coated liposomes in breast cancer cells. Liposomes were fabricated by the film hydration following the probe ultra-sonication method. OR-LIPO and TPGS-VOR-LIPO showed an average particle size of 211.97 ± 3.42 nm with PDI 0.2168 ± 0.006 and 176.99 ± 2.06 nm with PDI 0.175 ± 0.018, respectively. TPGS-coated liposomes had better stability and revealed more than 80 % encapsulation efficiency than conventional liposomes. Transmission electron microscopy confirmed the TPGS coating around liposomes. Moreover, TPGS-coated liposomes enhanced the solubility and showed sustained release of VOR over 48 h. DSC and PXRD analysis also reveal an amorphous state of VOR within the liposomal formulation. MTT assay result indicates that the superior cytotoxic effect of surface-modified liposomes contrasts with the conventional and free VOR solution, respectively. Fluorescence microscopy and flow cytometry results also presented an enhanced cellular uptake of TPGS-coated liposomes against breast cancer cells, respectively. The current investigation's final results declared that TPGS-coated liposomes are promising drug carriers for the effective delivery of hydrophobic drugs for cancer therapy. |
ArticleNumber | 111523 |
Author | Kutoka, Perpetua Takunda Wang, Bo Farooq, Muhammad Asim Xinyu, Huang Ahsan, Anam Seidu, Theodora Amanda Jabeen, Amna |
Author_xml | – sequence: 1 givenname: Muhammad Asim surname: Farooq fullname: Farooq, Muhammad Asim organization: Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China – sequence: 2 givenname: Huang surname: Xinyu fullname: Xinyu, Huang organization: Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China – sequence: 3 givenname: Amna surname: Jabeen fullname: Jabeen, Amna organization: Faculty of Pharmacy, Lahore College of Pharmaceutical Sciences, Lahore, Pakistan – sequence: 4 givenname: Anam surname: Ahsan fullname: Ahsan, Anam organization: College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, PR China – sequence: 5 givenname: Theodora Amanda surname: Seidu fullname: Seidu, Theodora Amanda organization: Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China – sequence: 6 givenname: Perpetua Takunda surname: Kutoka fullname: Kutoka, Perpetua Takunda organization: Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China – sequence: 7 givenname: Bo surname: Wang fullname: Wang, Bo email: bwangcpu@163.com organization: Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33360624$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKeFV6i8ZJPB_04kFqCqFKRKIFHWlmM7jIfEDrZTMW-Pw3Q2bGZ1patzztU93xW4CDE4AG4w2mKExbv91sQxL2notwSRusSYE_oCbHAracOokBdggzoiGykFvwRXOe8RQoRh-QpcUkoFEoRtwO4u7HQwzkLjxnEZdYLLXPQvB3Wou0OJJf7xxpcDjAN8ismHmIsusOxSXH7uoAtGz7kai48B-gAfv91_b6Zo_eBr6ujnmOPk8mvwctBjdm-e5zX48enu8fZz8_D1_svtx4fGMIRLM2DsMHXc2pZ3pCdcSsSRMZLYXnZM6EF0woqeISm5saiTglBqEMeDZq0T9Bq8PebOKf5eXC5q8nn9TQcXl6xqIqvvs5aflzJJGe5avkpvnqVLPzmr5uQnnQ7qVGQVvD8KTIo5Jzeo2tm_TkrSflQYqZWb2qsTN7VyU0du1S7-s58unDV-OBpd7fTJu6Sy8W4F6pMzRdnoz0X8BTuuto8 |
CitedBy_id | crossref_primary_10_1016_j_ijpharm_2022_121717 crossref_primary_10_1002_slct_202303608 crossref_primary_10_1016_j_ejpb_2022_09_024 crossref_primary_10_1039_D4RA04116J crossref_primary_10_3390_nano12213856 crossref_primary_10_1016_j_cjac_2023_100315 crossref_primary_10_3390_pharmaceutics15010181 crossref_primary_10_1002_btm2_10710 crossref_primary_10_1016_j_arabjc_2023_105131 crossref_primary_10_1021_acs_molpharmaceut_3c00830 crossref_primary_10_1016_j_ijpharm_2023_122845 crossref_primary_10_1007_s11095_022_03424_6 crossref_primary_10_1080_08982104_2025_2457453 crossref_primary_10_3390_pharmaceutics14091977 crossref_primary_10_1016_j_cclet_2022_07_034 crossref_primary_10_2174_0929867330666230608145125 crossref_primary_10_3390_ph17040412 crossref_primary_10_1016_j_ijbiomac_2022_09_021 crossref_primary_10_1186_s12967_023_04342_w crossref_primary_10_3390_molecules29153681 crossref_primary_10_1016_j_ejmech_2023_115800 crossref_primary_10_1208_s12249_022_02214_y crossref_primary_10_3390_pharmaceutics16091128 crossref_primary_10_1007_s13346_024_01647_1 crossref_primary_10_1016_j_xphs_2024_05_025 crossref_primary_10_2174_1567201820666230619112502 crossref_primary_10_1007_s13346_021_01106_1 crossref_primary_10_1080_09205063_2023_2201815 crossref_primary_10_3390_pharmaceutics14122601 crossref_primary_10_2174_1381612829666230911105922 crossref_primary_10_1007_s13762_023_04998_3 crossref_primary_10_1208_s12249_024_02988_3 crossref_primary_10_3389_fbioe_2021_653417 crossref_primary_10_1002_jssc_202200731 crossref_primary_10_1016_j_xphs_2024_04_005 crossref_primary_10_1080_10837450_2024_2414937 crossref_primary_10_1089_adt_2023_067 crossref_primary_10_1002_ppsc_202100276 crossref_primary_10_1007_s00432_022_04387_2 crossref_primary_10_2147_IJN_S340180 crossref_primary_10_1016_j_ijpharm_2023_123385 crossref_primary_10_3390_foods12213946 crossref_primary_10_1007_s10876_024_02608_x crossref_primary_10_1016_j_colsurfb_2022_112524 crossref_primary_10_1208_s12249_023_02684_8 crossref_primary_10_1016_j_ejps_2021_106078 crossref_primary_10_3390_gels8080508 |
Cites_doi | 10.1016/j.biomaterials.2012.06.079 10.1016/j.ijpharm.2017.12.047 10.1016/j.ejps.2016.09.029 10.1080/03639045.2018.1483383 10.1021/mp060121r 10.1007/s10549-011-1928-x 10.1016/j.biomaterials.2012.02.025 10.1007/s11095-018-2485-3 10.4161/auto.6.8.13365 10.1007/s40005-016-0260-1 10.1111/jphp.12590 10.18632/oncotarget.14742 10.2147/IJN.S82847 10.1016/j.ejps.2013.02.006 10.1016/j.ejps.2017.02.019 10.1007/s11434-016-1039-5 10.1016/j.ijpharm.2019.03.034 10.1039/C8PY00344K 10.1016/j.ijpharm.2018.02.014 10.1016/j.jconrel.2005.05.014 10.1016/j.jconrel.2011.01.024 10.1007/s11095-014-1300-z 10.1016/j.ejps.2016.08.057 10.1016/j.msec.2016.11.073 10.1016/j.ijpharm.2014.12.057 10.1080/10717544.2017.1406561 10.1016/j.ijpharm.2013.01.023 10.1016/j.bcp.2014.02.003 10.1002/jps.23265 10.1093/neuonc/nor187 10.1016/j.ijpharm.2011.09.045 10.1007/s12253-012-9499-7 10.1016/j.ijpharm.2018.10.033 10.3390/pharmaceutics10040283 10.1208/s12249-020-01699-9 10.1007/s40005-016-0300-x 10.1166/jbn.2013.1632 10.1038/s41565-017-0009-7 10.1021/acs.molpharmaceut.6b00712 10.1016/j.chemphyslip.2018.03.005 10.1016/j.ejps.2017.03.048 10.1016/j.pharep.2014.04.007 10.1016/j.molliq.2020.112690 10.1039/C9RA09468G 10.1016/j.ijpharm.2014.01.014 10.1080/01635581.2012.630167 10.1007/s11095-015-1635-0 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.colsurfb.2020.111523 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Chemistry |
EISSN | 1873-4367 |
ExternalDocumentID | 33360624 10_1016_j_colsurfb_2020_111523 S0927776520308808 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABGSF ABMAC ABNEU ABNUV ABUDA ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNCT ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AEZYN AFKWA AFRZQ AFTJW AFXIZ AFZHZ AGHFR AGRDE AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M24 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCE SDF SDG SDP SES SEW SMS SPC SSG SSK SSM SSQ SSU SSZ T5K VH1 WH7 WUQ ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AGCQF AGQPQ AGRNS AIIUN ANKPU BNPGV CITATION SSH NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c401t-f11e13e5dd8592b2577050cc72db7946af696d6b40775cd0976233c051fa48e63 |
IEDL.DBID | .~1 |
ISSN | 0927-7765 1873-4367 |
IngestDate | Fri Jul 11 12:10:11 EDT 2025 Fri Jul 11 10:41:37 EDT 2025 Wed Feb 19 02:28:26 EST 2025 Tue Jul 01 03:27:12 EDT 2025 Thu Apr 24 23:06:18 EDT 2025 Fri Feb 23 02:45:20 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Liposomes Cancer therapy Vorinostat Solubility TPGS |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-f11e13e5dd8592b2577050cc72db7946af696d6b40775cd0976233c051fa48e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 33360624 |
PQID | 2473419855 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2574333485 proquest_miscellaneous_2473419855 pubmed_primary_33360624 crossref_citationtrail_10_1016_j_colsurfb_2020_111523 crossref_primary_10_1016_j_colsurfb_2020_111523 elsevier_sciencedirect_doi_10_1016_j_colsurfb_2020_111523 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2021 2021-03-00 2021-Mar 20210301 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Colloids and surfaces, B, Biointerfaces |
PublicationTitleAlternate | Colloids Surf B Biointerfaces |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Patel, Shelat, Lalwani (bib0015) 2017; 108 Caddeo, Pucci, Gabriele, Carbone, Fernàndez-Busquets, Valenti, Manconi (bib0175) 2018; 538 Youk, Lee, Choi, Lee, Chung, Kim, Lee, Lim (bib0260) 2005; 107 Zhang, Wu, Chu, Tan, Zhuang, Bao, Wu (bib0210) 2015; 10 Zhang, He, Zhang, Liu (bib0235) 2018; 35 Ebeid, Meng, Thiel, Do, Geary, Morris, Pham, Wongrakpanich, Chhonker, Murry (bib0275) 2018; 13 Yang, Xin, Zhang, Yan, Wang, Sun, Lv (bib0155) 2016; 68 Constantinou, Neophytou, Vraka, Hyatt, Papas, Constantinou (bib0270) 2012; 64 Jin, Li, Jin, Huang, Wang, Zhou, Song (bib0245) 2018; 553 Ruttala, Ramasamy, Poudal, Choi, Choi, Kim, Kim (bib0230) 2017; 8 Kwak, Kim, Jeong, Kang (bib0090) 2015; 13 Cheng, Pan, Liu, Li, Li, Yu, Pan (bib0240) 2018; 540 Liu, Wang, Adu-Frimpong, Wei, Xie, Zhang, Xu (bib0190) 2019; 563 Li, Li, Liu, Li, Zhang, Zou, Zhang (bib0035) 2016; 13 Mohamed, Hashim, Yusif, Suddek, Shaaban, Badria (bib0205) 2017; 96 Liu, Sun, Zhang, Tian, Tang, Qi, He, Li, Jin (bib0135) 2013; 443 Li, Yan, Tang, Zhang, Chen, Liu, Mo (bib0185) 2019; 10 Pignatello, Musumeci, Basile, Carbone, Puglisi (bib0225) 2011; 3 De Luca, Lai, Corrias, Caboni, Bimpisidis, Maccioni, Fadda, Di Chiara (bib0060) 2015; 479 Jiang, Gan, Zhu, Dong, Liu, Gan (bib0130) 2012; 33 Meka, Jenkins, Dàvalos-Salas, Pujara, Wong, Kumeria, Popat (bib0125) 2018; 10 Tran, Ramasamy, Truong, Shin, Choi, Yong (bib0220) 2014; 31 Farooq, Xu, Aquib, Ahsan, Baig, Wang (bib0140) 2020; 303 Liu, Jin, Yan, Du (bib0010) 2017; 104 Drews, Tavernier, Demeester, Lehrach, De Smedt, Rejman, Adjaye (bib0150) 2012; 33 Vahed, Salehi, Davaran, Sharifi (bib0050) 2017; 71 Tan, Zou, Zhang, Yin, Gao, Tang (bib0075) 2017; 24 Kumar, Rai, Reddy, Raj, Jain, Deshpande, Mathew, Kutty, Udupa, Rao (bib0055) 2014; 66 Papadia, Markoutsa, Mourtas, Giannou, La Ferla, Nicotra, Antimisiaris (bib0020) 2017; 101 Xu, Paxton, Wu (bib0025) 2015; 32 Staufenbiel, Keck, Muller (bib0165) 2014 Saadatia, Dadashzadeh (bib0170) 2014; 464 Muthu, Kulkarni, Xiong, Feng (bib0180) 2011; 421 Zhai, Wu, Zhao, Yu, Li, Lu, Lee (bib0070) 2008; 28 Liu, Yang, Shun, Wu, Weng, Chen (bib0110) 2010; 6 Han, Baek, Kim, Hwang, Cho (bib0200) 2018; 213 Kelly, Richon, O’Connor, Curley, MacGregor-Curtelli, Tong, Klang, Schwartz, Richardson, Rosa (bib0115) 2003; 9 Neophytou, Constantinou, Papageorgis, Constantinou (bib0255) 2014; 89 Kim (bib0005) 2016; 46 Saxena, Hussain (bib0085) 2013; 9 Liu, Liu, Xiong, Xu, Yao, Zhu, Yao (bib0045) 2018; 9 Farooq, Li, Parveen, Wang (bib0145) 2020; 10 Kievit, Wang, Fang, Mok, Wang, Silber, Zhang (bib0030) 2011; 152 Chinnaiyan, Chowdhary, Potthast, Prabhu, Tsai, Sarcar (bib0100) 2012; 14 Hu, Liang, An, Wang, You (bib0195) 2018; 44 Pham, Cho (bib0080) 2017; 47 Mohamed, Zhao, Meshali, Remsberg, Borg, Foda, Takemoto, Sayre, Martinez, Davies (bib0120) 2012; 101 Collnot, Blades, Wempe, Kappl, Hüttermann, Hyatt, Edgar, Schaefer, Lehr (bib0250) 2007; 4 Guo, Luo, Tan, Otieno, Zhang (bib0065) 2013; 49 Ramaswamy, Fiskus, Cohen, Pellegrino, Hershman, Chuang (bib0105) 2012; 132 Neophytou, Constantinou (bib0265) 2015 Liu, Wu, He, Zhuo, Cheng (bib0040) 2016; 61 Yuanyuan, Jun, Songwei, Ben Oketch, Zhiping (bib0160) 2013; 49 Alharbi, Alshehri, Afzal, Alenezi, Bukhari (bib0215) 2020; 21 Jin, Tsao, Sun, Yu, Tzao (bib0095) 2012; 18 Saxena (10.1016/j.colsurfb.2020.111523_bib0085) 2013; 9 Yang (10.1016/j.colsurfb.2020.111523_bib0155) 2016; 68 Hu (10.1016/j.colsurfb.2020.111523_bib0195) 2018; 44 Li (10.1016/j.colsurfb.2020.111523_bib0185) 2019; 10 Mohamed (10.1016/j.colsurfb.2020.111523_bib0205) 2017; 96 Saadatia (10.1016/j.colsurfb.2020.111523_bib0170) 2014; 464 Han (10.1016/j.colsurfb.2020.111523_bib0200) 2018; 213 Farooq (10.1016/j.colsurfb.2020.111523_bib0145) 2020; 10 Ruttala (10.1016/j.colsurfb.2020.111523_bib0230) 2017; 8 Vahed (10.1016/j.colsurfb.2020.111523_bib0050) 2017; 71 Constantinou (10.1016/j.colsurfb.2020.111523_bib0270) 2012; 64 Muthu (10.1016/j.colsurfb.2020.111523_bib0180) 2011; 421 Cheng (10.1016/j.colsurfb.2020.111523_bib0240) 2018; 540 Collnot (10.1016/j.colsurfb.2020.111523_bib0250) 2007; 4 Kumar (10.1016/j.colsurfb.2020.111523_bib0055) 2014; 66 Ebeid (10.1016/j.colsurfb.2020.111523_bib0275) 2018; 13 Yuanyuan (10.1016/j.colsurfb.2020.111523_bib0160) 2013; 49 Zhai (10.1016/j.colsurfb.2020.111523_bib0070) 2008; 28 Jin (10.1016/j.colsurfb.2020.111523_bib0095) 2012; 18 Xu (10.1016/j.colsurfb.2020.111523_bib0025) 2015; 32 Kelly (10.1016/j.colsurfb.2020.111523_bib0115) 2003; 9 Zhang (10.1016/j.colsurfb.2020.111523_bib0210) 2015; 10 Jiang (10.1016/j.colsurfb.2020.111523_bib0130) 2012; 33 Liu (10.1016/j.colsurfb.2020.111523_bib0010) 2017; 104 Liu (10.1016/j.colsurfb.2020.111523_bib0190) 2019; 563 Pham (10.1016/j.colsurfb.2020.111523_bib0080) 2017; 47 Papadia (10.1016/j.colsurfb.2020.111523_bib0020) 2017; 101 Kim (10.1016/j.colsurfb.2020.111523_bib0005) 2016; 46 Chinnaiyan (10.1016/j.colsurfb.2020.111523_bib0100) 2012; 14 Kievit (10.1016/j.colsurfb.2020.111523_bib0030) 2011; 152 Kwak (10.1016/j.colsurfb.2020.111523_bib0090) 2015; 13 Li (10.1016/j.colsurfb.2020.111523_bib0035) 2016; 13 Neophytou (10.1016/j.colsurfb.2020.111523_bib0255) 2014; 89 Ramaswamy (10.1016/j.colsurfb.2020.111523_bib0105) 2012; 132 De Luca (10.1016/j.colsurfb.2020.111523_bib0060) 2015; 479 Pignatello (10.1016/j.colsurfb.2020.111523_bib0225) 2011; 3 Alharbi (10.1016/j.colsurfb.2020.111523_bib0215) 2020; 21 Tran (10.1016/j.colsurfb.2020.111523_bib0220) 2014; 31 Mohamed (10.1016/j.colsurfb.2020.111523_bib0120) 2012; 101 Guo (10.1016/j.colsurfb.2020.111523_bib0065) 2013; 49 Farooq (10.1016/j.colsurfb.2020.111523_bib0140) 2020; 303 Patel (10.1016/j.colsurfb.2020.111523_bib0015) 2017; 108 Liu (10.1016/j.colsurfb.2020.111523_bib0040) 2016; 61 Neophytou (10.1016/j.colsurfb.2020.111523_bib0265) 2015 Liu (10.1016/j.colsurfb.2020.111523_bib0045) 2018; 9 Drews (10.1016/j.colsurfb.2020.111523_bib0150) 2012; 33 Tan (10.1016/j.colsurfb.2020.111523_bib0075) 2017; 24 Caddeo (10.1016/j.colsurfb.2020.111523_bib0175) 2018; 538 Youk (10.1016/j.colsurfb.2020.111523_bib0260) 2005; 107 Liu (10.1016/j.colsurfb.2020.111523_bib0110) 2010; 6 Staufenbiel (10.1016/j.colsurfb.2020.111523_bib0165) 2014 Jin (10.1016/j.colsurfb.2020.111523_bib0245) 2018; 553 Liu (10.1016/j.colsurfb.2020.111523_bib0135) 2013; 443 Zhang (10.1016/j.colsurfb.2020.111523_bib0235) 2018; 35 Meka (10.1016/j.colsurfb.2020.111523_bib0125) 2018; 10 |
References_xml | – volume: 108 start-page: 50 year: 2017 end-page: 61 ident: bib0015 article-title: QbD based development of proliposome of lopinavir for improved oral bioavailability publication-title: Eur. J. Pharm. Sci. – volume: 14 start-page: 93 year: 2012 end-page: 100 ident: bib0100 article-title: Phase I trial of vorinostat combined with bevacizumab and CPT-11 in recurrent glioblastoma publication-title: Neuro. Oncol. – volume: 13 start-page: 3934 year: 2016 end-page: 3944 ident: bib0035 article-title: One-step self-assembling nanomicelles for pirarubicin delivery to overcome multidrug resistance in breast cancer publication-title: Mol. Pharm. – volume: 44 start-page: 1528 year: 2018 end-page: 1535 ident: bib0195 article-title: The characterization, pharmacokinetic, and tissue distribution studies of TPGS-modified artesunate liposome in rats publication-title: Drug Dev. Ind. Pharm. – volume: 104 start-page: 212 year: 2017 end-page: 220 ident: bib0010 article-title: Effect of oxymatrine HSPC liposomes on improving bioavailability, liver target distribution and hepatoprotective activity of oxymatrine publication-title: Eur. J. Pharm. Sci. – volume: 443 start-page: 318 year: 2013 end-page: 327 ident: bib0135 article-title: Clarithromycin-loaded liposomes offering high drug loading and less irritation publication-title: Int. J. Pharm. – volume: 10 year: 2019 ident: bib0185 article-title: Synthesis of TPGS/curcumin nanoparticles by thin-film hydration and evaluation of their anti-colon cancer efficacy in vitro and in vivo publication-title: Front. Pharmacol. – volume: 8 start-page: 14925 year: 2017 ident: bib0230 article-title: Molecularly targeted co-delivery of a histone deacetylase inhibitor and paclitaxel by lipid-protein hybrid nanoparticles for synergistic combinational chemotherapy publication-title: Oncotarget – volume: 10 start-page: 283 year: 2018 ident: bib0125 article-title: Enhanced solubility, permeability and anticancer activity of vorinostat using tailored mesoporous silica nanoparticles publication-title: Pharmaceutics – volume: 421 start-page: 332 year: 2011 end-page: 340 ident: bib0180 article-title: Vitamin E TPGS coated liposomes enhanced cellular uptake and cytotoxicity of docetaxel in brain cancer cells publication-title: Int. J. Pharm. – volume: 10 start-page: 133 year: 2020 end-page: 144 ident: bib0145 article-title: Globular protein stabilized nanoparticles for delivery of disulfiram: fabrication, characterization, in vitro toxicity, and cellular uptake publication-title: RSC Adv. – volume: 101 start-page: 140 year: 2017 end-page: 148 ident: bib0020 article-title: Multifunctional LUV liposomes decorated for BBB and amyloid targeting. A. In vitro proof-of-concept publication-title: Eur. J. Pharm. Sci. – volume: 35 start-page: 199 year: 2018 ident: bib0235 article-title: Fabrication of TPGS-stabilized liposome-PLGA hybrid nanoparticle via a new modified nanoprecipitation approach: in vitro and in vivo evaluation publication-title: Pharm. Res. – volume: 464 start-page: 135 year: 2014 end-page: 144 ident: bib0170 article-title: Marked effects of combined TPGS and PVA emulsifiers in the fabrication of etoposide–loaded PLGA–PEG nanoparticles: in vitro and in vivo evaluation publication-title: Int. J. Pharm. – volume: 24 start-page: 1831 year: 2017 end-page: 1842 ident: bib0075 article-title: Recent developments in dalpha- tocopheryl polyethylene glycol-succinate-based nanomedicine for cancer therapy publication-title: Drug Deliv. – start-page: 32 year: 2014 end-page: 41 ident: bib0165 article-title: The “Real Environment” Quantification of Surface Hydrophobicity of Differently Stabilized Nanocrystals As Key Parameter for Organ Distribution, Macromolecular Symposia – volume: 553 start-page: 21 year: 2018 end-page: 28 ident: bib0245 article-title: TPGS modified nanoliposomes as an effective ocular delivery system to treat glaucoma publication-title: Int. J. Pharm. – volume: 107 start-page: 43 year: 2005 end-page: 52 ident: bib0260 article-title: Enhanced anticancer efficacy of alpha-tocopheryl succinate by conjugation with polyethylene glycol publication-title: J. Control. Release – volume: 101 start-page: 3787 year: 2012 end-page: 3798 ident: bib0120 article-title: Vorinostat with sustained exposure and high solubility in poly(ethylene glycol)-b-poly(DL-lactic acid) micelle nanocarriers: characterization and effects on pharmacokinetics in rat serum and urine publication-title: J. Pharm. Sci. – volume: 303 year: 2020 ident: bib0140 article-title: Denatured food protein-coated nanosuspension: a promising approach for anticancer delivery of hydrophobic drug publication-title: J. Mol. Liq. – volume: 13 start-page: 72 year: 2018 end-page: 81 ident: bib0275 article-title: Synthetically lethal nanoparticles for treatment of endometrial cancer publication-title: Nat. Nanotechnol. – volume: 61 start-page: 552 year: 2016 end-page: 560 ident: bib0040 article-title: Multi-drug loaded vitamin E-TPGS nanoparticles for synergistic drug delivery to overcome drug resistance in tumor treatment publication-title: Sci. Bull. (Beijing) – volume: 9 start-page: 3578 year: 2003 end-page: 3588 ident: bib0115 article-title: Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously publication-title: Clin. Cancer Res. – volume: 538 start-page: 40 year: 2018 end-page: 47 ident: bib0175 article-title: Stability, biocompatibility and antioxidant activity of PEG-modified liposomes containing resveratrol publication-title: Int. J. Pharm. – volume: 213 start-page: 39 year: 2018 end-page: 47 ident: bib0200 article-title: Surface modification of paclitaxel-loaded liposomes using d-α-tocopheryl polyethylene glycol 1000 succinate: enhanced cellular uptake and cytotoxicity in multidrug resistant breast cancer cells publication-title: Chem. Phys. Lipids – volume: 64 start-page: 136 year: 2012 end-page: 152 ident: bib0270 article-title: Induction of DNA damage and caspase-independent programmed cell death by vitamin E publication-title: Nutr. Cancer – volume: 71 start-page: 1327 year: 2017 end-page: 1341 ident: bib0050 article-title: Liposome-based drug co-delivery systems in cancer cells publication-title: Mater. Sci. Eng. C – volume: 18 start-page: 713 year: 2012 end-page: 720 ident: bib0095 article-title: SAHA inhibits the growth of colon tumors by decreasing histone deacetylase and the expression of cyclin D1 and survivin publication-title: Pathol. Oncol. Res. – volume: 89 start-page: 31 year: 2014 end-page: 42 ident: bib0255 article-title: D-alpha-tocopheryl polyethylene glycol succinate (TPGS) induces cell cycle arrest and apoptosis selectively in Survivin–overexpressing breast cancer cells publication-title: Biochem. Pharmacol. – volume: 6 start-page: 1057 year: 2010 end-page: 1065 ident: bib0110 article-title: Autophagy potentiates the anti-cancer effects of the histone deacetylase inhibitors in hepatocellular carcinoma publication-title: Autophagy – volume: 46 start-page: 387 year: 2016 end-page: 392 ident: bib0005 article-title: Liposomal drug delivery system publication-title: J. Pharm. Investig. – volume: 9 start-page: 1827 year: 2018 end-page: 1839 ident: bib0045 article-title: Mechanisms of TPGS and its derivatives inhibiting P-glycoprotein efflux pump and application for reversing multidrug resistance in hepatocellular carcinoma publication-title: Polym. Chem. – volume: 4 start-page: 465 year: 2007 end-page: 474 ident: bib0250 article-title: Mechanism of inhibition of P-glycoprotien mediated efflux by vitamin E TPGS: influence on ATPase activity and membrane fluidity publication-title: Mol. Pharm. – volume: 10 start-page: 5219 year: 2015 end-page: 5235 ident: bib0210 article-title: D-α-Tocopherol polyethylene glycol succinate-based derivative nanoparticles as a novel carrier for paclitaxel delivery publication-title: Int. J. Nanomed. Nanosurg. – volume: 33 start-page: 4059 year: 2012 end-page: 4068 ident: bib0150 article-title: The cytotoxic and immunogenic hurdles associated with non–viral mRNA–mediated reprogramming of human fibroblasts publication-title: Biomaterials – volume: 33 start-page: 7621 year: 2012 end-page: 7630 ident: bib0130 article-title: Cationic core–shell liponanoparticles for ocular gene delivery publication-title: Biomaterials. – volume: 21 start-page: 167 year: 2020 ident: bib0215 article-title: Formulation of chitosan polymeric vesicles of ciprofloxacin for ocular delivery: box-behnken optimization, in vitro characterization, HET-CAM irritation, and antimicrobial assessment publication-title: AAPS PharmSciTech – volume: 66 start-page: 788 year: 2014 end-page: 798 ident: bib0055 article-title: Silymarin liposomes improves oral bioavailability of silybin besides targeting hepatocytes, and immune cells publication-title: Pharmacol. Rep. – volume: 152 start-page: 76 year: 2011 end-page: 83 ident: bib0030 article-title: Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro publication-title: J. Control. Release – volume: 563 start-page: 53 year: 2019 end-page: 62 ident: bib0190 article-title: Preparation, in vitro and in vivo evaluation of isoliquiritigenin-loaded TPGS modified proliposomes publication-title: Int. J. Pharm. – volume: 28 start-page: 2801 year: 2008 end-page: 2805 ident: bib0070 article-title: A liposomal delivery vehicle for the anticancer agent gossypol publication-title: Anticancer Res. – volume: 47 start-page: 111 year: 2017 end-page: 121 ident: bib0080 article-title: Application of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) in transdermal and topical drug delivery systems (TDDS) publication-title: J. Pharm. Investig. – volume: 479 start-page: 129 year: 2015 end-page: 137 ident: bib0060 article-title: Lactoferrin– and antitransferrin–modified liposomes for brain targeting of the NK3 receptor agonist senktide: preparation and in vivo evaluation publication-title: Int. J. Pharm. – volume: 49 start-page: 175 year: 2013 end-page: 186 ident: bib0065 article-title: The applications of Vitamin E TPGS in drug delivery publication-title: Eur. J. Pharm. Sci. – volume: 68 start-page: 1109 year: 2016 end-page: 1118 ident: bib0155 article-title: TPGS-modified liposomes for the 645 delivery of ginsenoside compound K against non-small cell lung cancer: formulation design and its evaluation in vitro and in vivo publication-title: J. Pharma Pharmacol. – volume: 540 start-page: 162 year: 2018 end-page: 170 ident: bib0240 article-title: Functionalization of nanodiamond with vitamin E TPGS to facilitate oral absorption of curcumin publication-title: Int. J. Pharm. – volume: 49 start-page: 175 year: 2013 end-page: 186 ident: bib0160 article-title: The applications of Vitamin E TPGS in drug delivery publication-title: Eur. J. Pharm. Sci. – volume: 96 start-page: 232 year: 2017 end-page: 242 ident: bib0205 article-title: Enhanced in vitro cytotoxicity and anti-tumor activity of vorinostat-loaded pluronic micelles with prolonged release and reduced hepatic and renal toxicities publication-title: Eur. J. Pharm. Sci. – volume: 32 start-page: 2428 year: 2015 end-page: 2438 ident: bib0025 article-title: Enhanced pH-responsiveness, cellular trafficking, cytotoxicity and long-circulation of PEGylated liposomes with post-insertion technique using gemcitabine as a model drug publication-title: Pharm. Res. – volume: 31 start-page: 1978 year: 2014 end-page: 1988 ident: bib0220 article-title: Development of vorinostat-loaded solid lipid nanoparticles to enhance pharmacokinetics and efficacy against multidrug-resistant cancer cells publication-title: Pharm. Res. – volume: 3 start-page: 4 year: 2011 end-page: 14 ident: bib0225 article-title: Biomembrane models and drug-biomembrane interaction studies: involvement in drug design and development publication-title: J. Pharm. Biol. Sci. – volume: 13 start-page: 60 year: 2015 ident: bib0090 article-title: Antitumor activity of vorinostat-incorporated nanoparticles against human cholangiocarcinoma cells publication-title: J. Bionanotech. – volume: 132 start-page: 1063 year: 2012 end-page: 1072 ident: bib0105 article-title: Phase I–II study of vorinostat plus paclitaxel and bevacizumab in metastatic breast cancer: evidence for vorinostat-induced tubulin acetylation and Hsp90 inhibition in vivo publication-title: Breast Cancer Res. Treat. – start-page: 16 year: 2015 ident: bib0265 article-title: Drug delivery innovations for enhancing the anticancer potential of vitamin e isoforms and their derivatives publication-title: Biomed Res. Int. – volume: 9 start-page: 1146 year: 2013 end-page: 1154 ident: bib0085 article-title: Polymeric mixed micelles for delivery of curcumin to multidrug resistant ovarian cancer publication-title: J. Biomed. Nanotechnol. – volume: 3 start-page: 4 year: 2011 ident: 10.1016/j.colsurfb.2020.111523_bib0225 article-title: Biomembrane models and drug-biomembrane interaction studies: involvement in drug design and development publication-title: J. Pharm. Biol. Sci. – volume: 33 start-page: 7621 year: 2012 ident: 10.1016/j.colsurfb.2020.111523_bib0130 article-title: Cationic core–shell liponanoparticles for ocular gene delivery publication-title: Biomaterials. doi: 10.1016/j.biomaterials.2012.06.079 – volume: 538 start-page: 40 issue: 1-2 year: 2018 ident: 10.1016/j.colsurfb.2020.111523_bib0175 article-title: Stability, biocompatibility and antioxidant activity of PEG-modified liposomes containing resveratrol publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2017.12.047 – volume: 96 start-page: 232 year: 2017 ident: 10.1016/j.colsurfb.2020.111523_bib0205 article-title: Enhanced in vitro cytotoxicity and anti-tumor activity of vorinostat-loaded pluronic micelles with prolonged release and reduced hepatic and renal toxicities publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2016.09.029 – volume: 44 start-page: 1528 issue: 9 year: 2018 ident: 10.1016/j.colsurfb.2020.111523_bib0195 article-title: The characterization, pharmacokinetic, and tissue distribution studies of TPGS-modified artesunate liposome in rats publication-title: Drug Dev. Ind. Pharm. doi: 10.1080/03639045.2018.1483383 – volume: 4 start-page: 465 year: 2007 ident: 10.1016/j.colsurfb.2020.111523_bib0250 article-title: Mechanism of inhibition of P-glycoprotien mediated efflux by vitamin E TPGS: influence on ATPase activity and membrane fluidity publication-title: Mol. Pharm. doi: 10.1021/mp060121r – volume: 132 start-page: 1063 year: 2012 ident: 10.1016/j.colsurfb.2020.111523_bib0105 article-title: Phase I–II study of vorinostat plus paclitaxel and bevacizumab in metastatic breast cancer: evidence for vorinostat-induced tubulin acetylation and Hsp90 inhibition in vivo publication-title: Breast Cancer Res. Treat. doi: 10.1007/s10549-011-1928-x – volume: 33 start-page: 4059 year: 2012 ident: 10.1016/j.colsurfb.2020.111523_bib0150 article-title: The cytotoxic and immunogenic hurdles associated with non–viral mRNA–mediated reprogramming of human fibroblasts publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.02.025 – volume: 35 start-page: 199 issue: 11 year: 2018 ident: 10.1016/j.colsurfb.2020.111523_bib0235 article-title: Fabrication of TPGS-stabilized liposome-PLGA hybrid nanoparticle via a new modified nanoprecipitation approach: in vitro and in vivo evaluation publication-title: Pharm. Res. doi: 10.1007/s11095-018-2485-3 – volume: 6 start-page: 1057 year: 2010 ident: 10.1016/j.colsurfb.2020.111523_bib0110 article-title: Autophagy potentiates the anti-cancer effects of the histone deacetylase inhibitors in hepatocellular carcinoma publication-title: Autophagy doi: 10.4161/auto.6.8.13365 – start-page: 16 year: 2015 ident: 10.1016/j.colsurfb.2020.111523_bib0265 article-title: Drug delivery innovations for enhancing the anticancer potential of vitamin e isoforms and their derivatives publication-title: Biomed Res. Int. – volume: 46 start-page: 387 issue: 4 year: 2016 ident: 10.1016/j.colsurfb.2020.111523_bib0005 article-title: Liposomal drug delivery system publication-title: J. Pharm. Investig. doi: 10.1007/s40005-016-0260-1 – volume: 68 start-page: 1109 issue: 9 year: 2016 ident: 10.1016/j.colsurfb.2020.111523_bib0155 article-title: TPGS-modified liposomes for the 645 delivery of ginsenoside compound K against non-small cell lung cancer: formulation design and its evaluation in vitro and in vivo publication-title: J. Pharma Pharmacol. doi: 10.1111/jphp.12590 – volume: 8 start-page: 14925 issue: 9 year: 2017 ident: 10.1016/j.colsurfb.2020.111523_bib0230 article-title: Molecularly targeted co-delivery of a histone deacetylase inhibitor and paclitaxel by lipid-protein hybrid nanoparticles for synergistic combinational chemotherapy publication-title: Oncotarget doi: 10.18632/oncotarget.14742 – volume: 10 start-page: 5219 year: 2015 ident: 10.1016/j.colsurfb.2020.111523_bib0210 article-title: D-α-Tocopherol polyethylene glycol succinate-based derivative nanoparticles as a novel carrier for paclitaxel delivery publication-title: Int. J. Nanomed. Nanosurg. doi: 10.2147/IJN.S82847 – volume: 49 start-page: 175 year: 2013 ident: 10.1016/j.colsurfb.2020.111523_bib0065 article-title: The applications of Vitamin E TPGS in drug delivery publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2013.02.006 – volume: 101 start-page: 140 year: 2017 ident: 10.1016/j.colsurfb.2020.111523_bib0020 article-title: Multifunctional LUV liposomes decorated for BBB and amyloid targeting. A. In vitro proof-of-concept publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2017.02.019 – volume: 61 start-page: 552 issue: 7 year: 2016 ident: 10.1016/j.colsurfb.2020.111523_bib0040 article-title: Multi-drug loaded vitamin E-TPGS nanoparticles for synergistic drug delivery to overcome drug resistance in tumor treatment publication-title: Sci. Bull. (Beijing) doi: 10.1007/s11434-016-1039-5 – volume: 563 start-page: 53 year: 2019 ident: 10.1016/j.colsurfb.2020.111523_bib0190 article-title: Preparation, in vitro and in vivo evaluation of isoliquiritigenin-loaded TPGS modified proliposomes publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2019.03.034 – volume: 9 start-page: 1827 issue: 14 year: 2018 ident: 10.1016/j.colsurfb.2020.111523_bib0045 article-title: Mechanisms of TPGS and its derivatives inhibiting P-glycoprotein efflux pump and application for reversing multidrug resistance in hepatocellular carcinoma publication-title: Polym. Chem. doi: 10.1039/C8PY00344K – volume: 540 start-page: 162 issue: 1-2 year: 2018 ident: 10.1016/j.colsurfb.2020.111523_bib0240 article-title: Functionalization of nanodiamond with vitamin E TPGS to facilitate oral absorption of curcumin publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2018.02.014 – volume: 107 start-page: 43 year: 2005 ident: 10.1016/j.colsurfb.2020.111523_bib0260 article-title: Enhanced anticancer efficacy of alpha-tocopheryl succinate by conjugation with polyethylene glycol publication-title: J. Control. Release doi: 10.1016/j.jconrel.2005.05.014 – volume: 152 start-page: 76 issue: 1 year: 2011 ident: 10.1016/j.colsurfb.2020.111523_bib0030 article-title: Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro publication-title: J. Control. Release doi: 10.1016/j.jconrel.2011.01.024 – volume: 49 start-page: 175 issue: 2 year: 2013 ident: 10.1016/j.colsurfb.2020.111523_bib0160 article-title: The applications of Vitamin E TPGS in drug delivery publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2013.02.006 – volume: 31 start-page: 1978 issue: 8 year: 2014 ident: 10.1016/j.colsurfb.2020.111523_bib0220 article-title: Development of vorinostat-loaded solid lipid nanoparticles to enhance pharmacokinetics and efficacy against multidrug-resistant cancer cells publication-title: Pharm. Res. doi: 10.1007/s11095-014-1300-z – volume: 108 start-page: 50 year: 2017 ident: 10.1016/j.colsurfb.2020.111523_bib0015 article-title: QbD based development of proliposome of lopinavir for improved oral bioavailability publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2016.08.057 – volume: 28 start-page: 2801 year: 2008 ident: 10.1016/j.colsurfb.2020.111523_bib0070 article-title: A liposomal delivery vehicle for the anticancer agent gossypol publication-title: Anticancer Res. – volume: 71 start-page: 1327 year: 2017 ident: 10.1016/j.colsurfb.2020.111523_bib0050 article-title: Liposome-based drug co-delivery systems in cancer cells publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2016.11.073 – volume: 479 start-page: 129 year: 2015 ident: 10.1016/j.colsurfb.2020.111523_bib0060 article-title: Lactoferrin– and antitransferrin–modified liposomes for brain targeting of the NK3 receptor agonist senktide: preparation and in vivo evaluation publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2014.12.057 – volume: 24 start-page: 1831 year: 2017 ident: 10.1016/j.colsurfb.2020.111523_bib0075 article-title: Recent developments in dalpha- tocopheryl polyethylene glycol-succinate-based nanomedicine for cancer therapy publication-title: Drug Deliv. doi: 10.1080/10717544.2017.1406561 – volume: 443 start-page: 318 year: 2013 ident: 10.1016/j.colsurfb.2020.111523_bib0135 article-title: Clarithromycin-loaded liposomes offering high drug loading and less irritation publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2013.01.023 – volume: 89 start-page: 31 year: 2014 ident: 10.1016/j.colsurfb.2020.111523_bib0255 article-title: D-alpha-tocopheryl polyethylene glycol succinate (TPGS) induces cell cycle arrest and apoptosis selectively in Survivin–overexpressing breast cancer cells publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2014.02.003 – volume: 101 start-page: 3787 year: 2012 ident: 10.1016/j.colsurfb.2020.111523_bib0120 article-title: Vorinostat with sustained exposure and high solubility in poly(ethylene glycol)-b-poly(DL-lactic acid) micelle nanocarriers: characterization and effects on pharmacokinetics in rat serum and urine publication-title: J. Pharm. Sci. doi: 10.1002/jps.23265 – volume: 14 start-page: 93 year: 2012 ident: 10.1016/j.colsurfb.2020.111523_bib0100 article-title: Phase I trial of vorinostat combined with bevacizumab and CPT-11 in recurrent glioblastoma publication-title: Neuro. Oncol. doi: 10.1093/neuonc/nor187 – volume: 421 start-page: 332 issue: 2 year: 2011 ident: 10.1016/j.colsurfb.2020.111523_bib0180 article-title: Vitamin E TPGS coated liposomes enhanced cellular uptake and cytotoxicity of docetaxel in brain cancer cells publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2011.09.045 – volume: 18 start-page: 713 year: 2012 ident: 10.1016/j.colsurfb.2020.111523_bib0095 article-title: SAHA inhibits the growth of colon tumors by decreasing histone deacetylase and the expression of cyclin D1 and survivin publication-title: Pathol. Oncol. Res. doi: 10.1007/s12253-012-9499-7 – volume: 553 start-page: 21 issue: 1-2 year: 2018 ident: 10.1016/j.colsurfb.2020.111523_bib0245 article-title: TPGS modified nanoliposomes as an effective ocular delivery system to treat glaucoma publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2018.10.033 – volume: 13 start-page: 60 issue: 1 year: 2015 ident: 10.1016/j.colsurfb.2020.111523_bib0090 article-title: Antitumor activity of vorinostat-incorporated nanoparticles against human cholangiocarcinoma cells publication-title: J. Bionanotech. – volume: 10 start-page: 283 issue: 4 year: 2018 ident: 10.1016/j.colsurfb.2020.111523_bib0125 article-title: Enhanced solubility, permeability and anticancer activity of vorinostat using tailored mesoporous silica nanoparticles publication-title: Pharmaceutics doi: 10.3390/pharmaceutics10040283 – volume: 21 start-page: 167 year: 2020 ident: 10.1016/j.colsurfb.2020.111523_bib0215 article-title: Formulation of chitosan polymeric vesicles of ciprofloxacin for ocular delivery: box-behnken optimization, in vitro characterization, HET-CAM irritation, and antimicrobial assessment publication-title: AAPS PharmSciTech doi: 10.1208/s12249-020-01699-9 – volume: 10 year: 2019 ident: 10.1016/j.colsurfb.2020.111523_bib0185 article-title: Synthesis of TPGS/curcumin nanoparticles by thin-film hydration and evaluation of their anti-colon cancer efficacy in vitro and in vivo publication-title: Front. Pharmacol. – start-page: 32 year: 2014 ident: 10.1016/j.colsurfb.2020.111523_bib0165 – volume: 47 start-page: 111 year: 2017 ident: 10.1016/j.colsurfb.2020.111523_bib0080 article-title: Application of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) in transdermal and topical drug delivery systems (TDDS) publication-title: J. Pharm. Investig. doi: 10.1007/s40005-016-0300-x – volume: 9 start-page: 1146 year: 2013 ident: 10.1016/j.colsurfb.2020.111523_bib0085 article-title: Polymeric mixed micelles for delivery of curcumin to multidrug resistant ovarian cancer publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2013.1632 – volume: 13 start-page: 72 year: 2018 ident: 10.1016/j.colsurfb.2020.111523_bib0275 article-title: Synthetically lethal nanoparticles for treatment of endometrial cancer publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-017-0009-7 – volume: 13 start-page: 3934 issue: 11 year: 2016 ident: 10.1016/j.colsurfb.2020.111523_bib0035 article-title: One-step self-assembling nanomicelles for pirarubicin delivery to overcome multidrug resistance in breast cancer publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.6b00712 – volume: 213 start-page: 39 year: 2018 ident: 10.1016/j.colsurfb.2020.111523_bib0200 article-title: Surface modification of paclitaxel-loaded liposomes using d-α-tocopheryl polyethylene glycol 1000 succinate: enhanced cellular uptake and cytotoxicity in multidrug resistant breast cancer cells publication-title: Chem. Phys. Lipids doi: 10.1016/j.chemphyslip.2018.03.005 – volume: 104 start-page: 212 year: 2017 ident: 10.1016/j.colsurfb.2020.111523_bib0010 article-title: Effect of oxymatrine HSPC liposomes on improving bioavailability, liver target distribution and hepatoprotective activity of oxymatrine publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2017.03.048 – volume: 66 start-page: 788 year: 2014 ident: 10.1016/j.colsurfb.2020.111523_bib0055 article-title: Silymarin liposomes improves oral bioavailability of silybin besides targeting hepatocytes, and immune cells publication-title: Pharmacol. Rep. doi: 10.1016/j.pharep.2014.04.007 – volume: 303 year: 2020 ident: 10.1016/j.colsurfb.2020.111523_bib0140 article-title: Denatured food protein-coated nanosuspension: a promising approach for anticancer delivery of hydrophobic drug publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.112690 – volume: 10 start-page: 133 issue: 1 year: 2020 ident: 10.1016/j.colsurfb.2020.111523_bib0145 article-title: Globular protein stabilized nanoparticles for delivery of disulfiram: fabrication, characterization, in vitro toxicity, and cellular uptake publication-title: RSC Adv. doi: 10.1039/C9RA09468G – volume: 9 start-page: 3578 year: 2003 ident: 10.1016/j.colsurfb.2020.111523_bib0115 article-title: Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously publication-title: Clin. Cancer Res. – volume: 464 start-page: 135 year: 2014 ident: 10.1016/j.colsurfb.2020.111523_bib0170 article-title: Marked effects of combined TPGS and PVA emulsifiers in the fabrication of etoposide–loaded PLGA–PEG nanoparticles: in vitro and in vivo evaluation publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2014.01.014 – volume: 64 start-page: 136 year: 2012 ident: 10.1016/j.colsurfb.2020.111523_bib0270 article-title: Induction of DNA damage and caspase-independent programmed cell death by vitamin E publication-title: Nutr. Cancer doi: 10.1080/01635581.2012.630167 – volume: 32 start-page: 2428 issue: 7 year: 2015 ident: 10.1016/j.colsurfb.2020.111523_bib0025 article-title: Enhanced pH-responsiveness, cellular trafficking, cytotoxicity and long-circulation of PEGylated liposomes with post-insertion technique using gemcitabine as a model drug publication-title: Pharm. Res. doi: 10.1007/s11095-015-1635-0 |
SSID | ssj0002417 |
Score | 2.5191555 |
Snippet | [Display omitted]
•TPGS modified liposomes were prepared using thin film hydration following the probe ultra-sonication method.•Surfaced-coated liposomal... Vorinostat (VOR) is known as one of the histone deacetylase inhibitors (HDACi) for cancer treatment, and the FDA approves it for cutaneous T cell lymphoma... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 111523 |
SubjectTerms | antineoplastic activity breast neoplasms Cancer therapy cytotoxicity drugs encapsulation flow cytometry fluorescence microscopy histone deacetylase hydrophobicity Liposomes particle size permeability Solubility T-cell lymphoma toxicity testing TPGS transmission electron microscopy Vorinostat |
Title | Enhanced cellular uptake and cytotoxicity of vorinostat through encapsulation in TPGS-modified liposomes |
URI | https://dx.doi.org/10.1016/j.colsurfb.2020.111523 https://www.ncbi.nlm.nih.gov/pubmed/33360624 https://www.proquest.com/docview/2473419855 https://www.proquest.com/docview/2574333485 |
Volume | 199 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcgAOCLY8yqMyEuIWNuv4ER9Xq5YFRIXUVurNcmJbTdlNVt1s1V747cw4SSmH0gNXaxxZHs_L-eYzIR-sQDPKbWJzj78ZizLJtfOJFWmQyK-uFDY4fz-U8xP-9VScbpHZ0AuDsMre93c-PXrrfmTc7-Z4VVXjo1QzpZQUDClX8tjwy7nCU_7p1x-YB0So2DINwglK3-oSPodvL9abi1BAncii9xAsuytA3ZWAxkB08JQ86TNIOu0W-Yxs-XpEdqY1VM_La_qRRkxnvCwfkYez4T23EXl8i3pwh5zt12fx5z_Fq3vEotLNqrU_PbU1jF23TdtcVSXk6LQJ9BJheg02H9H-YR8KO2Whwu6gdLSq6fGPz0fJsnFVgKyWLqpVs26Wfv2cnBzsH8_mSf_qQlJCrdUmYTLxk8wL53KhWQEmrVKRlqVirkA2ehuklk4WHMnzSpdCPsOyrATjDpbnXmYvyHbd1P4VodZpp5QLXunAnZa5LnyWc28lD6HI-C4Rw1absqckx5cxFmbAnp2bQUUGVWQ6Fe2S8c28VUfKce8MPWjS_HW8DESOe-e-H1RvQGWoFVv7ZrM2jCukw8uF-IeMgBwN251B5mV3bm7WDONQPzL--j9W94Y8YgizibC4t2S7vdj4d5AntcVeNIQ98mD65dv88DfPRROZ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFLdQObAdpq3sg30wT5p2i5o6sR0fqwooA6pJFImb5cS2CGuTiqYI_vu9l4-KHYADV8svsvz8vpzf-5mQn4ajGSUmMInD34xpFiTKusDw0AvkV5cSG5zPpmJyEf--5JdbZNz1wiCssvX9jU-vvXU7Mmh3c7DM88F5qJiUUnCGlCsJNvxuIzsV75Ht0fHJZLpxyBCk6q5pmB-gwING4Wv4_Hy1vvEplIqsdiCcRY_FqMdy0DoWHb4lb9okko6adb4jW67ok91RAQX04p7-ojWss74v75OdcfekW5-8fsA-uEuuDoqr-v8_xdt7hKPS9bIyfx01BYzdV2VV3uUZpOm09PQWkXol9h_R9m0fCptloMhu0HQ0L-jsz9F5sCht7iGxpfN8Wa7KhVu9JxeHB7PxJGgfXggyKLeqwA-Hbhg5bm3CFUvBqmXIwyyTzKZISG-8UMKKNEb-vMyGkNKwKMrAvr2JEyeiD6RXlIX7RKixykppvZPKx1aJRKUuSmJnROx9GsV7hHdbrbOWlRwfx5jrDn52rTsVaVSRblS0RwYbuWXDy_GshOo0qf87YRqCx7OyPzrVa1AZasUUrlyvNIslMuIlnD8xh0Oahh3PMOdjc242a4ZxKCFZ_PkFq_tOdiazs1N9ejw9-UJeMUTd1Ci5r6RX3azdN0ibqnS_NYt_LzUWSg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+cellular+uptake+and+cytotoxicity+of+vorinostat+through+encapsulation+in+TPGS-modified+liposomes&rft.jtitle=Colloids+and+surfaces%2C+B%2C+Biointerfaces&rft.au=Farooq%2C+Muhammad+Asim&rft.au=Xinyu%2C+Huang&rft.au=Jabeen%2C+Amna&rft.au=Ahsan%2C+Anam&rft.date=2021-03-01&rft.issn=0927-7765&rft.volume=199&rft.spage=111523&rft_id=info:doi/10.1016%2Fj.colsurfb.2020.111523&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_colsurfb_2020_111523 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7765&client=summon |