Optimal local skin temperatures for mean skin temperature estimation and thermal comfort prediction of seated person in thermally stratified environments

Thermally stratified environments are universal in “real world” buildings. However, the studies on the machine learning model and mean skin temperature (MST), which was based on the analysis of Local Skin Temperatures (LSTs), were insufficient in thermally stratified environments. To create thermall...

Full description

Saved in:
Bibliographic Details
Published inJournal of thermal biology Vol. 111; p. 103389
Main Authors Wu, Yuxin, Zhang, Zixuan, Liu, Hong, Cui, Haijiao, Cheng, Yong
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Thermally stratified environments are universal in “real world” buildings. However, the studies on the machine learning model and mean skin temperature (MST), which was based on the analysis of Local Skin Temperatures (LSTs), were insufficient in thermally stratified environments. To create thermally stratified environments in this study, the air temperatures at the lower body parts in a climatic box were controlled independently from the upper body parts exposed in climate chamber, with 12 air temperature combinations of 22, 25, 28, and 31°C. Sixteen human subjects were recruited to collect thermal perceptions and measure their LSTs. The variations of LSTs and the optimal LSTs to estimate MST and predict thermal state were analyzed. Based on the classifications of LSTs and area of local skin, a new method using chest (0.42), forearm (0.21), thigh (0.30), and foot (0.07) was proposed to estimate MST. Its errors decreased by at least 22.8% as compared to the existing methods. Then, the model based on Random Forest was used to filter the optimal LSTs for the predictions of Thermal Sensation Vote (TSV) and Local Thermal Comfort (LTC). Results showed at least three LSTs were needed to reach a robust model prediction accuracy and generalization ability. The optimal LSTs for the predictions of TSV and LTC were (Forearm, upper arm, foot) and (Forearm, chest, thigh), respectively. This study contributes to provide the basic information of optimal LSTs to improve the accuracies of the thermal comfort predictions and MST estimation in the thermally stratified environments. •LSTs and thermal responses were collected in thermally stratified environments.•A new four-points method was proposed to calculate mean skin temperature.•At least three LSTs were needed to reach a robust performance of model prediction.•Optimal LSTs was identified to predict thermal sensation and local thermal comfort.•Errors of prediction decreased by at least 22.8%–31.5% compared to previous methods.
AbstractList Thermally stratified environments are universal in “real world” buildings. However, the studies on the machine learning model and mean skin temperature (MST), which was based on the analysis of Local Skin Temperatures (LSTs), were insufficient in thermally stratified environments. To create thermally stratified environments in this study, the air temperatures at the lower body parts in a climatic box were controlled independently from the upper body parts exposed in climate chamber, with 12 air temperature combinations of 22, 25, 28, and 31°C. Sixteen human subjects were recruited to collect thermal perceptions and measure their LSTs. The variations of LSTs and the optimal LSTs to estimate MST and predict thermal state were analyzed. Based on the classifications of LSTs and area of local skin, a new method using chest (0.42), forearm (0.21), thigh (0.30), and foot (0.07) was proposed to estimate MST. Its errors decreased by at least 22.8% as compared to the existing methods. Then, the model based on Random Forest was used to filter the optimal LSTs for the predictions of Thermal Sensation Vote (TSV) and Local Thermal Comfort (LTC). Results showed at least three LSTs were needed to reach a robust model prediction accuracy and generalization ability. The optimal LSTs for the predictions of TSV and LTC were (Forearm, upper arm, foot) and (Forearm, chest, thigh), respectively. This study contributes to provide the basic information of optimal LSTs to improve the accuracies of the thermal comfort predictions and MST estimation in the thermally stratified environments. •LSTs and thermal responses were collected in thermally stratified environments.•A new four-points method was proposed to calculate mean skin temperature.•At least three LSTs were needed to reach a robust performance of model prediction.•Optimal LSTs was identified to predict thermal sensation and local thermal comfort.•Errors of prediction decreased by at least 22.8%–31.5% compared to previous methods.
Thermally stratified environments are universal in "real world" buildings. However, the studies on the machine learning model and mean skin temperature (MST), which was based on the analysis of Local Skin Temperatures (LSTs), were insufficient in thermally stratified environments. To create thermally stratified environments in this study, the air temperatures at the lower body parts in a climatic box were controlled independently from the upper body parts exposed in climate chamber, with 12 air temperature combinations of 22, 25, 28, and 31°C. Sixteen human subjects were recruited to collect thermal perceptions and measure their LSTs. The variations of LSTs and the optimal LSTs to estimate MST and predict thermal state were analyzed. Based on the classifications of LSTs and area of local skin, a new method using chest (0.42), forearm (0.21), thigh (0.30), and foot (0.07) was proposed to estimate MST. Its errors decreased by at least 22.8% as compared to the existing methods. Then, the model based on Random Forest was used to filter the optimal LSTs for the predictions of Thermal Sensation Vote (TSV) and Local Thermal Comfort (LTC). Results showed at least three LSTs were needed to reach a robust model prediction accuracy and generalization ability. The optimal LSTs for the predictions of TSV and LTC were (Forearm, upper arm, foot) and (Forearm, chest, thigh), respectively. This study contributes to provide the basic information of optimal LSTs to improve the accuracies of the thermal comfort predictions and MST estimation in the thermally stratified environments.Thermally stratified environments are universal in "real world" buildings. However, the studies on the machine learning model and mean skin temperature (MST), which was based on the analysis of Local Skin Temperatures (LSTs), were insufficient in thermally stratified environments. To create thermally stratified environments in this study, the air temperatures at the lower body parts in a climatic box were controlled independently from the upper body parts exposed in climate chamber, with 12 air temperature combinations of 22, 25, 28, and 31°C. Sixteen human subjects were recruited to collect thermal perceptions and measure their LSTs. The variations of LSTs and the optimal LSTs to estimate MST and predict thermal state were analyzed. Based on the classifications of LSTs and area of local skin, a new method using chest (0.42), forearm (0.21), thigh (0.30), and foot (0.07) was proposed to estimate MST. Its errors decreased by at least 22.8% as compared to the existing methods. Then, the model based on Random Forest was used to filter the optimal LSTs for the predictions of Thermal Sensation Vote (TSV) and Local Thermal Comfort (LTC). Results showed at least three LSTs were needed to reach a robust model prediction accuracy and generalization ability. The optimal LSTs for the predictions of TSV and LTC were (Forearm, upper arm, foot) and (Forearm, chest, thigh), respectively. This study contributes to provide the basic information of optimal LSTs to improve the accuracies of the thermal comfort predictions and MST estimation in the thermally stratified environments.
Thermally stratified environments are universal in “real world” buildings. However, the studies on the machine learning model and mean skin temperature (MST), which was based on the analysis of Local Skin Temperatures (LSTs), were insufficient in thermally stratified environments. To create thermally stratified environments in this study, the air temperatures at the lower body parts in a climatic box were controlled independently from the upper body parts exposed in climate chamber, with 12 air temperature combinations of 22, 25, 28, and 31°C. Sixteen human subjects were recruited to collect thermal perceptions and measure their LSTs. The variations of LSTs and the optimal LSTs to estimate MST and predict thermal state were analyzed. Based on the classifications of LSTs and area of local skin, a new method using chest (0.42), forearm (0.21), thigh (0.30), and foot (0.07) was proposed to estimate MST. Its errors decreased by at least 22.8% as compared to the existing methods. Then, the model based on Random Forest was used to filter the optimal LSTs for the predictions of Thermal Sensation Vote (TSV) and Local Thermal Comfort (LTC). Results showed at least three LSTs were needed to reach a robust model prediction accuracy and generalization ability. The optimal LSTs for the predictions of TSV and LTC were (Forearm, upper arm, foot) and (Forearm, chest, thigh), respectively. This study contributes to provide the basic information of optimal LSTs to improve the accuracies of the thermal comfort predictions and MST estimation in the thermally stratified environments.
ArticleNumber 103389
Author Zhang, Zixuan
Cheng, Yong
Wu, Yuxin
Liu, Hong
Cui, Haijiao
Author_xml – sequence: 1
  givenname: Yuxin
  surname: Wu
  fullname: Wu, Yuxin
  organization: School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
– sequence: 2
  givenname: Zixuan
  surname: Zhang
  fullname: Zhang, Zixuan
  organization: School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
– sequence: 3
  givenname: Hong
  surname: Liu
  fullname: Liu, Hong
  organization: Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, 400045, China
– sequence: 4
  givenname: Haijiao
  surname: Cui
  fullname: Cui, Haijiao
  organization: School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
– sequence: 5
  givenname: Yong
  surname: Cheng
  fullname: Cheng, Yong
  email: yongcheng6@cqu.edu.cn
  organization: Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, 400045, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36585070$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u3CAUhVGVqpmkfYWIZTeeXsDYRuqiVdQ_KVI27RphfK0ytcEFJlIeJW9bHCddtIvZgHTv-Y7gnAty5oNHQq4Y7Bmw5t1hf8g_MfYu7DlwXoZCdOoF2bGuVRUoxc_IDgQ0VS0beU4uUjoAMCkkvCLnopGdhBZ25OF2yW42E52CLWf65TzNOC8YTT5GTHQMkc5o_H8rimklswueGj_Q9TmrkQ1zYTJdIg7OPq7DSBOajAMtcCqD1WmTT_c05WLoRlfW6O9cDH5Gn9Nr8nI0U8I3T_cl-fH50_frr9XN7Zdv1x9vKlsDy9UI7TgKK2WrGsm73pqh6WULvKlZX_MaelObuq-tkmrsrR3s0FpQgByVAIvikrzdfJcYfh_Lp_TsksVpMh7DMWlRQusEgOxOSnkrlWoEE7xIr56kx37GQS-xZBXv9XPyRdBsAhtDShHHvxIGeq1YH_RzxXqtWG8VF_D9P6B1-bGGkqObTuMfNhxLpncOo07WobelrIg26yG4UxZ_AHmvyw8
CitedBy_id crossref_primary_10_1016_j_buildenv_2024_111689
crossref_primary_10_1016_j_buildenv_2025_112605
crossref_primary_10_1016_j_enbuild_2025_115566
crossref_primary_10_1016_j_buildenv_2023_110940
crossref_primary_10_1016_j_buildenv_2024_111820
crossref_primary_10_1016_j_enbuild_2024_114771
crossref_primary_10_1016_j_bios_2023_115545
crossref_primary_10_3390_buildings14123996
crossref_primary_10_1016_j_jobe_2024_108877
crossref_primary_10_1016_j_buildenv_2023_110009
crossref_primary_10_1016_j_buildenv_2023_110614
Cites_doi 10.3758/BF03193146
10.1016/j.buildenv.2019.03.032
10.1088/0957-0233/23/3/035005
10.1016/j.buildenv.2021.108025
10.1152/jappl.1969.26.5.616
10.3758/BRM.41.4.1149
10.1109/TKDE.2005.50
10.1016/j.buildenv.2016.12.005
10.1080/09613218.2015.1059653
10.1016/j.buildenv.2021.108445
10.1016/j.enbuild.2016.12.060
10.1016/j.buildenv.2019.106615
10.1111/ina.12523
10.1016/j.buildenv.2010.08.011
10.1618/jhes.14.9
10.1007/s004840050056
10.1080/00140139.2017.1414316
10.1016/j.apenergy.2021.118122
10.1007/s00421-009-1158-7
10.1016/j.enbuild.2019.109359
10.1016/j.enbuild.2019.109565
10.1016/j.buildenv.2019.106579
10.1016/j.buildenv.2019.106292
10.1016/j.enbuild.2018.05.056
10.1016/j.buildenv.2009.11.002
10.1016/j.enbuild.2017.01.066
10.1016/j.enbuild.2013.01.007
10.1016/j.buildenv.2019.106489
10.1016/j.enbuild.2019.109450
10.1016/j.applthermaleng.2022.119381
10.1111/ina.13007
10.1016/j.buildenv.2019.106329
10.1016/j.buildenv.2015.11.009
10.1016/j.enbuild.2018.07.025
10.1016/j.buildenv.2012.07.003
10.1080/00140138608968246
10.1016/j.buildenv.2013.12.007
10.1016/S0031-3203(96)00142-2
10.1016/j.scs.2018.10.022
10.1016/j.buildenv.2019.04.012
10.1016/j.buildenv.2019.106281
10.1016/j.jtherbio.2019.102448
10.1016/j.buildenv.2021.108026
10.1111/ina.12364
10.1016/j.enbuild.2019.109594
10.1111/ina.12512
10.1111/ina.12256
10.1016/j.buildenv.2015.12.015
10.1016/j.buildenv.2017.09.005
10.1016/j.jtherbio.2022.103276
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.jtherbio.2022.103389
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1879-0992
ExternalDocumentID 36585070
10_1016_j_jtherbio_2022_103389
S0306456522002030
Genre Journal Article
GroupedDBID ---
--K
--M
.GJ
.~1
0R~
186
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSJ
SSU
SSZ
T5K
UHS
UNMZH
VH1
WUQ
YQT
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c401t-f07ff3c55796528bcad6b5702641b4240ba4a4b4c959fbccdcd7c090e2e930ce3
IEDL.DBID .~1
ISSN 0306-4565
IngestDate Fri Jul 11 00:57:08 EDT 2025
Thu Jul 10 19:03:15 EDT 2025
Wed Feb 19 02:24:46 EST 2025
Tue Jul 01 01:02:00 EDT 2025
Thu Apr 24 23:00:05 EDT 2025
Fri Feb 23 02:40:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Thermal comfort
Vertical temperature difference
Thermal environment
Skin temperature
Machine learning
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-f07ff3c55796528bcad6b5702641b4240ba4a4b4c959fbccdcd7c090e2e930ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 36585070
PQID 2759963132
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3153830058
proquest_miscellaneous_2759963132
pubmed_primary_36585070
crossref_primary_10_1016_j_jtherbio_2022_103389
crossref_citationtrail_10_1016_j_jtherbio_2022_103389
elsevier_sciencedirect_doi_10_1016_j_jtherbio_2022_103389
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
2023-Jan
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of thermal biology
PublicationTitleAlternate J Therm Biol
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cheng, Wu, Gao, Liao, Cheng (bib6) 2022; 207
Hashiguchi, Kumamoto, Chishaki, Tochihara (bib19) 2011; 14
(bib23) 2012
Liu, Wu, Li, Cheng, Yao (bib33) 2017; 140
Zhang, Zhou, Zheng, Oladokun, Fang (bib72) 2020; 168
Faul, Erdfelder, Buchner, Lang (bib16) 2009; 41
Enomoto, Kumamoto, Tochihara (bib12) 2009
Lan, Lian (bib27) 2010; 45
(bib22) 2007
Fang, Feng, Liu, Lin, Mak, Niu, Tse, Xu (bib14) 2019; 44
Wu, Zhang, Liu, Cheng, Liao (bib60) 2022; 108
Liu, Liao, Yang, Du, Hu, Yang, Li (bib32) 2014; 73
Xiong, Lian, Zhang (bib61) 2017; 138
Xiong, Ma, Lian, de Dear (bib62) 2019; 156
Möhlenkamp, Schmidt, Wesseling, Wick, Gores, Müller (bib38) 2019; 29
Team (bib51) 2022
Yin, Huo, Wang, Ji, Wang, Ma, Li (bib66) 2021; 202
Zhang, Chen, Wang, Meng (bib71) 2016; 26
Liu, Schiavon, Kabanshi, Nazaroff (bib35) 2017; 27
Huang, Ling (bib20) 2005; 17
Cohen (bib10) 1988
Luo, Ji, Cao, Ouyang, Zhu (bib37) 2016; 98
Choi, Miki, Sagawa, Shiraki (bib9) 1997; 41
Schiavon, Rim, Pasut, Nazaroff (bib46) 2016; 96
Wu, Cao (bib54) 2022; 49
Liu, Schiavon, Das, Jin, Spanos (bib34) 2019; 162
Liu, Lian, Deng, Liu (bib36) 2011; 46
Wang, Zhang, Yang, Yin (bib52) 2022; 32
Parkinson, de Dear, Candido (bib41) 2016; 44
Salehi, Ghanbaran, Maerefat (bib44) 2020; 169
Li, Zhang, Zhao, Liang (bib31) 2018; 173
Wu, Liu, Li, Cheng, Mmereki, Kong (bib56) 2018; 61
Zhai, Miao, Yang, Zhao, Zhang, Arens (bib67) 2019; 165
Fanger (bib15) 1970
Olesen, Schøler, Fanger (bib40) 1979
Soebarto, Zhang, Schiavon (bib49) 2019; 155
Kursa, Rudnicki (bib26) 2010; 3
Wu, Zhang, Liu, Cheng (bib59) 2022
Choi, Loftness (bib7) 2012; 58
(bib1) 2020
(bib21) 2005
Fan, Liu, Wargocki (bib13) 2019; 29
Faul, Erdfelder, Lang, Buchner (bib17) 2007; 39
Mitchell, Wyndham (bib39) 1969; 26
Wu, Yuan, Li, Cheng, Liu (bib58) 2019; 86
Zhai, Zhao, Gao, Song, Yang, Zhang, Arens (bib68) 2020; 207
Li, Menassa, Kamat (bib30) 2018; 176
Lan, Xia, Tang, Wyon, Liu (bib28) 2019; 162
Wu, Hong, Li, Yong, Tan, Fang (bib55) 2017; 125
Yang, Li, Hou, Meier, Cheng, Choi, Wang, Wang, Wagner, Yan (bib64) 2020
Chaudhuri, Soh, Li, Xie (bib5) 2020; 170
Revel, Sabbatini, Arnesano (bib43) 2012; 23
Zhang, Lu, Niu, Lin (bib69) 2022; 307
Wang, Cao, Ji, Zhu (bib53) 2020
Dai, Zhang, Arens, Lian (bib11) 2017; 114
Tanaka, Yamazaki, Ohnaka, Tochihara, Yoshida (bib50) 1986; 29
Bradley (bib2) 1997; 30
Xiong, Yao (bib63) 2021; 202
Shan, Hu, Wu, Zhang, Ding, Xu (bib47) 2020; 207
Yang, Melikov, Kabanshi, Zhang, Bauman, Cao, Awbi, Wigö, Niu, Cheong (bib65) 2019
Hashiguchi, Feng, Tochihara (bib18) 2010; 109
Schellen, Loomans, de Wit, Olesen, Lichtenbelt (bib45) 2013; 62
Shao, S., Xu, C., 2023. Thermal potentials of direct-condensation convection-radiation panels with different connection modes and panel numbers. Appl. Therm. Eng. 219, 119381.
Zhang, Niu, Lin (bib70) 2022
Wu, Liu, Li, Kosonen, Kong, Zhou, Yao (bib57) 2019; 203
Mitchell (10.1016/j.jtherbio.2022.103389_bib39) 1969; 26
Zhang (10.1016/j.jtherbio.2022.103389_bib72) 2020; 168
Tanaka (10.1016/j.jtherbio.2022.103389_bib50) 1986; 29
Wu (10.1016/j.jtherbio.2022.103389_bib59) 2022
Choi (10.1016/j.jtherbio.2022.103389_bib7) 2012; 58
Cohen (10.1016/j.jtherbio.2022.103389_bib10) 1988
Shan (10.1016/j.jtherbio.2022.103389_bib47) 2020; 207
Dai (10.1016/j.jtherbio.2022.103389_bib11) 2017; 114
Kursa (10.1016/j.jtherbio.2022.103389_bib26) 2010; 3
Li (10.1016/j.jtherbio.2022.103389_bib31) 2018; 173
Hashiguchi (10.1016/j.jtherbio.2022.103389_bib18) 2010; 109
Salehi (10.1016/j.jtherbio.2022.103389_bib44) 2020; 169
Fan (10.1016/j.jtherbio.2022.103389_bib13) 2019; 29
(10.1016/j.jtherbio.2022.103389_bib23) 2012
Zhai (10.1016/j.jtherbio.2022.103389_bib67) 2019; 165
Liu (10.1016/j.jtherbio.2022.103389_bib33) 2017; 140
Parkinson (10.1016/j.jtherbio.2022.103389_bib41) 2016; 44
Schiavon (10.1016/j.jtherbio.2022.103389_bib46) 2016; 96
Fang (10.1016/j.jtherbio.2022.103389_bib14) 2019; 44
(10.1016/j.jtherbio.2022.103389_bib22) 2007
Wang (10.1016/j.jtherbio.2022.103389_bib52) 2022; 32
Schellen (10.1016/j.jtherbio.2022.103389_bib45) 2013; 62
Zhai (10.1016/j.jtherbio.2022.103389_bib68) 2020; 207
Wang (10.1016/j.jtherbio.2022.103389_bib53) 2020
Wu (10.1016/j.jtherbio.2022.103389_bib58) 2019; 86
Zhang (10.1016/j.jtherbio.2022.103389_bib70) 2022
Zhang (10.1016/j.jtherbio.2022.103389_bib69) 2022; 307
Fanger (10.1016/j.jtherbio.2022.103389_bib15) 1970
Möhlenkamp (10.1016/j.jtherbio.2022.103389_bib38) 2019; 29
Lan (10.1016/j.jtherbio.2022.103389_bib28) 2019; 162
Luo (10.1016/j.jtherbio.2022.103389_bib37) 2016; 98
Zhang (10.1016/j.jtherbio.2022.103389_bib71) 2016; 26
Chaudhuri (10.1016/j.jtherbio.2022.103389_bib5) 2020; 170
Cheng (10.1016/j.jtherbio.2022.103389_bib6) 2022; 207
Wu (10.1016/j.jtherbio.2022.103389_bib57) 2019; 203
Huang (10.1016/j.jtherbio.2022.103389_bib20) 2005; 17
Liu (10.1016/j.jtherbio.2022.103389_bib34) 2019; 162
Yang (10.1016/j.jtherbio.2022.103389_bib65) 2019
(10.1016/j.jtherbio.2022.103389_bib21) 2005
Yin (10.1016/j.jtherbio.2022.103389_bib66) 2021; 202
Hashiguchi (10.1016/j.jtherbio.2022.103389_bib19) 2011; 14
Xiong (10.1016/j.jtherbio.2022.103389_bib63) 2021; 202
Bradley (10.1016/j.jtherbio.2022.103389_bib2) 1997; 30
Enomoto (10.1016/j.jtherbio.2022.103389_bib12) 2009
Li (10.1016/j.jtherbio.2022.103389_bib30) 2018; 176
Choi (10.1016/j.jtherbio.2022.103389_bib9) 1997; 41
Xiong (10.1016/j.jtherbio.2022.103389_bib62) 2019; 156
Soebarto (10.1016/j.jtherbio.2022.103389_bib49) 2019; 155
Team (10.1016/j.jtherbio.2022.103389_bib51) 2022
Olesen (10.1016/j.jtherbio.2022.103389_bib40) 1979
Wu (10.1016/j.jtherbio.2022.103389_bib56) 2018; 61
Xiong (10.1016/j.jtherbio.2022.103389_bib61) 2017; 138
Faul (10.1016/j.jtherbio.2022.103389_bib17) 2007; 39
Wu (10.1016/j.jtherbio.2022.103389_bib60) 2022; 108
(10.1016/j.jtherbio.2022.103389_bib1) 2020
10.1016/j.jtherbio.2022.103389_bib48
Wu (10.1016/j.jtherbio.2022.103389_bib54) 2022; 49
Wu (10.1016/j.jtherbio.2022.103389_bib55) 2017; 125
Yang (10.1016/j.jtherbio.2022.103389_bib64) 2020
Liu (10.1016/j.jtherbio.2022.103389_bib32) 2014; 73
Liu (10.1016/j.jtherbio.2022.103389_bib36) 2011; 46
Lan (10.1016/j.jtherbio.2022.103389_bib27) 2010; 45
Faul (10.1016/j.jtherbio.2022.103389_bib16) 2009; 41
Revel (10.1016/j.jtherbio.2022.103389_bib43) 2012; 23
Liu (10.1016/j.jtherbio.2022.103389_bib35) 2017; 27
References_xml – volume: 96
  start-page: 228
  year: 2016
  end-page: 236
  ident: bib46
  article-title: Sensation of draft at uncovered ankles for women exposed to displacement ventilation and underfloor air distribution systems
  publication-title: Build. Environ.
– volume: 61
  start-page: 796
  year: 2018
  end-page: 805
  ident: bib56
  article-title: Behavioural, physiological and psychological responses of passengers to the thermal environment of boarding a flight in winter
  publication-title: Ergonomics
– volume: 162
  year: 2019
  ident: bib28
  article-title: Mean skin temperature estimated from 3 measuring points can predict sleeping thermal sensation
  publication-title: Build. Environ.
– volume: 165
  year: 2019
  ident: bib67
  article-title: Using personally controlled air movement to improve comfort after simulated summer commute
  publication-title: Build. Environ.
– volume: 86
  year: 2019
  ident: bib58
  article-title: The effect of indoor thermal history on human thermal responses in cold environments of early winter
  publication-title: J. Therm. Biol.
– volume: 156
  start-page: 117
  year: 2019
  end-page: 122
  ident: bib62
  article-title: Perceptual and physiological responses of elderly subjects to moderate temperatures
  publication-title: Build. Environ.
– start-page: 561
  year: 1979
  end-page: 579
  ident: bib40
  article-title: Discomfort caused by vertical air temperature differences
  publication-title: Indoor Climate: Effects on Human Comfort, Performance and Health in Residential, Commercial and Light-Industry Buildings
– volume: 173
  start-page: 613
  year: 2018
  end-page: 622
  ident: bib31
  article-title: Experimental research of online monitoring and evaluation method of human thermal sensation in different active states based on wristband device
  publication-title: Energy Build.
– volume: 203
  year: 2019
  ident: bib57
  article-title: Thermal adaptation of the elderly during summer in a hot humid area: psychological, behavioral, and physiological responses
  publication-title: Energy Build.
– volume: 168
  year: 2020
  ident: bib72
  article-title: Experimental investigation into the effects of different metabolic rates of body movement on thermal comfort
  publication-title: Build. Environ.
– volume: 3
  start-page: 1
  year: 2010
  end-page: 13
  ident: bib26
  article-title: Feature selection with the boruta package
  publication-title: J. Stat. Software
– volume: 32
  year: 2022
  ident: bib52
  article-title: Effects of body geometry, body composition, cardio‐pulmonary capacity, and fitness on young men's thermal preference
  publication-title: Indoor Air
– year: 1970
  ident: bib15
  article-title: Thermal Comfort: Analysis and Applications in Environmental Engineering
– volume: 207
  year: 2022
  ident: bib6
  article-title: Experimental study of thermal comfort in a field environment chamber with stratum ventilation system in winter
  publication-title: Build. Environ.
– year: 2020
  ident: bib53
  article-title: Study on clothing insulation distribution between half-bodies and its effects on thermal comfort in cold environments
  publication-title: Energy Build.
– volume: 307
  year: 2022
  ident: bib69
  article-title: Energy performance index of air distribution: thermal utilization effectiveness
  publication-title: Appl. Energy
– volume: 176
  start-page: 246
  year: 2018
  end-page: 261
  ident: bib30
  article-title: Non-intrusive interpretation of human thermal comfort through analysis of facial infrared thermography
  publication-title: Energy Build.
– year: 1988
  ident: bib10
  article-title: Statistical Power Analysis for the Behavioral Sciences
– volume: 17
  start-page: 299
  year: 2005
  end-page: 310
  ident: bib20
  article-title: Using AUC and accuracy in evaluating learning algorithms
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 45
  start-page: 1202
  year: 2010
  end-page: 1213
  ident: bib27
  article-title: Application of statistical power analysis – how to determine the right sample size in human health, comfort and productivity research
  publication-title: Build. Environ.
– volume: 73
  start-page: 232
  year: 2014
  end-page: 238
  ident: bib32
  article-title: The response of human thermal perception and skin temperature to step-change transient thermal environments
  publication-title: Build. Environ.
– volume: 29
  start-page: 131
  year: 1986
  end-page: 143
  ident: bib50
  article-title: Physiological reactions to different vertical (head-foot) air temperature differences
  publication-title: Ergonomics
– year: 2022
  ident: bib59
  article-title: Thermal Sensation and Percentage of Dissatisfied in Thermal Environments with Positive and Negative Vertical Air Temperature Differences
– volume: 39
  start-page: 175
  year: 2007
  end-page: 191
  ident: bib17
  article-title: G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences
  publication-title: Behav. Res. Methods
– volume: 46
  start-page: 478
  year: 2011
  end-page: 488
  ident: bib36
  article-title: Evaluation of calculation methods of mean skin temperature for use in thermal comfort study
  publication-title: Build. Environ.
– volume: 114
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib11
  article-title: Machine learning approaches to predict thermal demands using skin temperatures: steady-state conditions
  publication-title: Build. Environ.
– year: 2007
  ident: bib22
  article-title: ISO 9920: 2007 Ergonomics of the Thermal Environment — Estimation of Thermal Insulation and Water Vapour Resistance of a Clothing Ensemble
– year: 2022
  ident: bib70
  article-title: Occupancy-aided Ventilation for Airborne Infection Risk Control: Continuously or Intermittently Reduced Occupancies? Build Simul-China
– volume: 29
  start-page: 101
  year: 2019
  end-page: 111
  ident: bib38
  article-title: Thermal comfort in environments with different vertical air temperature gradients
  publication-title: Indoor Air
– volume: 44
  start-page: 676
  year: 2019
  end-page: 690
  ident: bib14
  article-title: Investigation into the differences among several outdoor thermal comfort indices against field survey in subtropics
  publication-title: Sustain. Cities Soc.
– volume: 49
  year: 2022
  ident: bib54
  article-title: Recognition and prediction of individual thermal comfort requirement based on local skin temperature
  publication-title: J. Build. Eng.
– volume: 29
  start-page: 215
  year: 2019
  end-page: 230
  ident: bib13
  article-title: Physiological and psychological reactions of sub‐tropically acclimatized subjects exposed to different indoor temperatures at a relative humidity of 70%
  publication-title: Indoor Air
– volume: 109
  start-page: 41
  year: 2010
  end-page: 48
  ident: bib18
  article-title: Gender differences in thermal comfort and mental performance at different vertical air temperatures
  publication-title: Eur. J. Appl. Physiol.
– volume: 27
  start-page: 852
  year: 2017
  end-page: 862
  ident: bib35
  article-title: Predicted percentage dissatisfied with ankle draft
  publication-title: Indoor Air
– year: 2019
  ident: bib65
  article-title: A review of advanced air distribution methods-theory, practice, limitations and solutions
  publication-title: Energy Build.
– volume: 62
  start-page: 116
  year: 2013
  end-page: 125
  ident: bib45
  article-title: Effects of different cooling principles on thermal sensation and physiological responses
  publication-title: Energy Build.
– volume: 170
  year: 2020
  ident: bib5
  article-title: Machine learning driven personal comfort prediction by wearable sensing of pulse rate and skin temperature
  publication-title: Build. Environ.
– volume: 169
  year: 2020
  ident: bib44
  article-title: Intelligent models to predict the indoor thermal sensation and thermal demand in steady state based on occupants' skin temperature
  publication-title: Build. Environ.
– volume: 98
  start-page: 30
  year: 2016
  end-page: 38
  ident: bib37
  article-title: Indoor climate and thermal physiological adaptation: evidences from migrants with different cold indoor exposures
  publication-title: Build. Environ.
– volume: 44
  start-page: 20
  year: 2016
  end-page: 33
  ident: bib41
  article-title: Thermal pleasure in built environments: alliesthesia in different thermoregulatory zones
  publication-title: Build. Res. Inf.
– volume: 26
  start-page: 820
  year: 2016
  end-page: 830
  ident: bib71
  article-title: Thermal comfort of people in the hot and humid area of China-impacts of season, climate, and thermal history
  publication-title: Indoor Air
– volume: 108
  year: 2022
  ident: bib60
  article-title: Thermal sensation, sick building syndrome symptoms, and physiological responses of occupants in environments with vertical air temperature differences
  publication-title: J. Therm. Biol.
– volume: 207
  year: 2020
  ident: bib47
  article-title: Towards non-intrusive and high accuracy prediction of personal thermal comfort using a few sensitive physiological parameters
  publication-title: Energy Build.
– volume: 125
  start-page: 373
  year: 2017
  end-page: 382
  ident: bib55
  article-title: Thermal comfort criteria for personal air supply in aircraft cabins in winter
  publication-title: Build. Environ.
– volume: 58
  start-page: 258
  year: 2012
  end-page: 269
  ident: bib7
  article-title: Investigation of human body skin temperatures as a bio-signal to indicate overall thermal sensations
  publication-title: Build. Environ.
– year: 2012
  ident: bib23
  article-title: ISO 9886:2004 Ergonomics — Evaluation of Thermal Strain by Physiological Measurements, Ergonomics of the Physical Environment
– volume: 207
  year: 2020
  ident: bib68
  article-title: Preferred temperatures with and without air movement during moderate exercise
  publication-title: Energy Build.
– volume: 41
  start-page: 68
  year: 1997
  end-page: 75
  ident: bib9
  article-title: Evaluation of mean skin temperature formulas by infrared thermography
  publication-title: Int. J. Biometeorol.
– start-page: 578
  year: 2009
  end-page: 582
  ident: bib12
  article-title: Effects of lower body warming on physiological and psychological responses of humans
  publication-title: Proceedings of the 13th International Conference on Environmental Ergonomics
– volume: 202
  year: 2021
  ident: bib63
  article-title: Study on an adaptive thermal comfort model with K-nearest-neighbors (KNN) algorithm
  publication-title: Build. Environ.
– year: 2020
  ident: bib1
  article-title: ASHRAE Standard 55-2020: Thermal Environmental Conditions for Human Occupancy
– volume: 30
  start-page: 1145
  year: 1997
  end-page: 1159
  ident: bib2
  article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms
  publication-title: Pattern Recogn.
– volume: 140
  start-page: 9
  year: 2017
  end-page: 18
  ident: bib33
  article-title: Seasonal variation of thermal sensations in residential buildings in the Hot Summer and Cold Winter zone of China
  publication-title: Energy Build.
– volume: 26
  start-page: 616
  year: 1969
  end-page: 622
  ident: bib39
  article-title: Comparison of weighting formulas for calculating mean skin temperature
  publication-title: J. Appl. Physiol.
– year: 2005
  ident: bib21
  article-title: EN ISO 7730:2005, Ergonomics of the Thermal Environment - Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria
– year: 2020
  ident: bib64
  article-title: Non-invasive (Non-contact) Measurements of Human Thermal Physiology Signals and Thermal Comfort/discomfort Poses-A Review
– reference: Shao, S., Xu, C., 2023. Thermal potentials of direct-condensation convection-radiation panels with different connection modes and panel numbers. Appl. Therm. Eng. 219, 119381.
– volume: 202
  year: 2021
  ident: bib66
  article-title: Numerical investigation on mechanisms and performance of column attachment ventilation for winter heating
  publication-title: Build. Environ.
– volume: 14
  start-page: 9
  year: 2011
  end-page: 17
  ident: bib19
  article-title: Effects of vertical air temperature gradients on physiological and psychological responses in the elderly
  publication-title: J. Hum. Environ. Syst.
– volume: 155
  start-page: 1
  year: 2019
  end-page: 14
  ident: bib49
  article-title: A thermal comfort environmental chamber study of older and younger people
  publication-title: Build. Environ.
– volume: 41
  start-page: 1149
  year: 2009
  ident: bib16
  article-title: Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses
  publication-title: Behav. Res. Methods
– volume: 23
  year: 2012
  ident: bib43
  article-title: Development and experimental evaluation of a thermography measurement system for real-time monitoring of comfort and heat rate exchange in the built environment
  publication-title: Meas. Sci. Technol.
– volume: 162
  year: 2019
  ident: bib34
  article-title: Personal thermal comfort models with wearable sensors
  publication-title: Build. Environ.
– year: 2022
  ident: bib51
  article-title: R: A Language and Environment for Statistical Computing
– volume: 138
  start-page: 687
  year: 2017
  end-page: 694
  ident: bib61
  article-title: Physiological response to typical temperature step-changes in winter of China
  publication-title: Energy Build.
– year: 2022
  ident: 10.1016/j.jtherbio.2022.103389_bib59
– year: 2020
  ident: 10.1016/j.jtherbio.2022.103389_bib1
– year: 2020
  ident: 10.1016/j.jtherbio.2022.103389_bib64
– volume: 39
  start-page: 175
  year: 2007
  ident: 10.1016/j.jtherbio.2022.103389_bib17
  article-title: G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences
  publication-title: Behav. Res. Methods
  doi: 10.3758/BF03193146
– volume: 155
  start-page: 1
  year: 2019
  ident: 10.1016/j.jtherbio.2022.103389_bib49
  article-title: A thermal comfort environmental chamber study of older and younger people
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.03.032
– volume: 23
  year: 2012
  ident: 10.1016/j.jtherbio.2022.103389_bib43
  article-title: Development and experimental evaluation of a thermography measurement system for real-time monitoring of comfort and heat rate exchange in the built environment
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/23/3/035005
– volume: 202
  year: 2021
  ident: 10.1016/j.jtherbio.2022.103389_bib66
  article-title: Numerical investigation on mechanisms and performance of column attachment ventilation for winter heating
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.108025
– volume: 26
  start-page: 616
  year: 1969
  ident: 10.1016/j.jtherbio.2022.103389_bib39
  article-title: Comparison of weighting formulas for calculating mean skin temperature
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1969.26.5.616
– volume: 41
  start-page: 1149
  year: 2009
  ident: 10.1016/j.jtherbio.2022.103389_bib16
  article-title: Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses
  publication-title: Behav. Res. Methods
  doi: 10.3758/BRM.41.4.1149
– volume: 17
  start-page: 299
  year: 2005
  ident: 10.1016/j.jtherbio.2022.103389_bib20
  article-title: Using AUC and accuracy in evaluating learning algorithms
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2005.50
– volume: 114
  start-page: 1
  year: 2017
  ident: 10.1016/j.jtherbio.2022.103389_bib11
  article-title: Machine learning approaches to predict thermal demands using skin temperatures: steady-state conditions
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2016.12.005
– volume: 44
  start-page: 20
  year: 2016
  ident: 10.1016/j.jtherbio.2022.103389_bib41
  article-title: Thermal pleasure in built environments: alliesthesia in different thermoregulatory zones
  publication-title: Build. Res. Inf.
  doi: 10.1080/09613218.2015.1059653
– year: 2022
  ident: 10.1016/j.jtherbio.2022.103389_bib70
– volume: 207
  year: 2022
  ident: 10.1016/j.jtherbio.2022.103389_bib6
  article-title: Experimental study of thermal comfort in a field environment chamber with stratum ventilation system in winter
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.108445
– volume: 138
  start-page: 687
  year: 2017
  ident: 10.1016/j.jtherbio.2022.103389_bib61
  article-title: Physiological response to typical temperature step-changes in winter of China
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.12.060
– volume: 170
  year: 2020
  ident: 10.1016/j.jtherbio.2022.103389_bib5
  article-title: Machine learning driven personal comfort prediction by wearable sensing of pulse rate and skin temperature
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.106615
– volume: 29
  start-page: 215
  year: 2019
  ident: 10.1016/j.jtherbio.2022.103389_bib13
  article-title: Physiological and psychological reactions of sub‐tropically acclimatized subjects exposed to different indoor temperatures at a relative humidity of 70%
  publication-title: Indoor Air
  doi: 10.1111/ina.12523
– volume: 46
  start-page: 478
  year: 2011
  ident: 10.1016/j.jtherbio.2022.103389_bib36
  article-title: Evaluation of calculation methods of mean skin temperature for use in thermal comfort study
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2010.08.011
– year: 1988
  ident: 10.1016/j.jtherbio.2022.103389_bib10
– volume: 14
  start-page: 9
  year: 2011
  ident: 10.1016/j.jtherbio.2022.103389_bib19
  article-title: Effects of vertical air temperature gradients on physiological and psychological responses in the elderly
  publication-title: J. Hum. Environ. Syst.
  doi: 10.1618/jhes.14.9
– volume: 41
  start-page: 68
  year: 1997
  ident: 10.1016/j.jtherbio.2022.103389_bib9
  article-title: Evaluation of mean skin temperature formulas by infrared thermography
  publication-title: Int. J. Biometeorol.
  doi: 10.1007/s004840050056
– volume: 3
  start-page: 1
  year: 2010
  ident: 10.1016/j.jtherbio.2022.103389_bib26
  article-title: Feature selection with the boruta package
  publication-title: J. Stat. Software
– volume: 61
  start-page: 796
  year: 2018
  ident: 10.1016/j.jtherbio.2022.103389_bib56
  article-title: Behavioural, physiological and psychological responses of passengers to the thermal environment of boarding a flight in winter
  publication-title: Ergonomics
  doi: 10.1080/00140139.2017.1414316
– volume: 307
  year: 2022
  ident: 10.1016/j.jtherbio.2022.103389_bib69
  article-title: Energy performance index of air distribution: thermal utilization effectiveness
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.118122
– volume: 109
  start-page: 41
  year: 2010
  ident: 10.1016/j.jtherbio.2022.103389_bib18
  article-title: Gender differences in thermal comfort and mental performance at different vertical air temperatures
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-009-1158-7
– year: 2019
  ident: 10.1016/j.jtherbio.2022.103389_bib65
  article-title: A review of advanced air distribution methods-theory, practice, limitations and solutions
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.109359
– year: 2005
  ident: 10.1016/j.jtherbio.2022.103389_bib21
– volume: 207
  year: 2020
  ident: 10.1016/j.jtherbio.2022.103389_bib68
  article-title: Preferred temperatures with and without air movement during moderate exercise
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.109565
– volume: 169
  year: 2020
  ident: 10.1016/j.jtherbio.2022.103389_bib44
  article-title: Intelligent models to predict the indoor thermal sensation and thermal demand in steady state based on occupants' skin temperature
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.106579
– volume: 162
  year: 2019
  ident: 10.1016/j.jtherbio.2022.103389_bib28
  article-title: Mean skin temperature estimated from 3 measuring points can predict sleeping thermal sensation
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.106292
– volume: 173
  start-page: 613
  year: 2018
  ident: 10.1016/j.jtherbio.2022.103389_bib31
  article-title: Experimental research of online monitoring and evaluation method of human thermal sensation in different active states based on wristband device
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.05.056
– volume: 45
  start-page: 1202
  year: 2010
  ident: 10.1016/j.jtherbio.2022.103389_bib27
  article-title: Application of statistical power analysis – how to determine the right sample size in human health, comfort and productivity research
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2009.11.002
– volume: 140
  start-page: 9
  year: 2017
  ident: 10.1016/j.jtherbio.2022.103389_bib33
  article-title: Seasonal variation of thermal sensations in residential buildings in the Hot Summer and Cold Winter zone of China
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.01.066
– volume: 62
  start-page: 116
  year: 2013
  ident: 10.1016/j.jtherbio.2022.103389_bib45
  article-title: Effects of different cooling principles on thermal sensation and physiological responses
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.01.007
– volume: 168
  year: 2020
  ident: 10.1016/j.jtherbio.2022.103389_bib72
  article-title: Experimental investigation into the effects of different metabolic rates of body movement on thermal comfort
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.106489
– start-page: 561
  year: 1979
  ident: 10.1016/j.jtherbio.2022.103389_bib40
  article-title: Discomfort caused by vertical air temperature differences
– volume: 203
  year: 2019
  ident: 10.1016/j.jtherbio.2022.103389_bib57
  article-title: Thermal adaptation of the elderly during summer in a hot humid area: psychological, behavioral, and physiological responses
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.109450
– ident: 10.1016/j.jtherbio.2022.103389_bib48
  doi: 10.1016/j.applthermaleng.2022.119381
– year: 2012
  ident: 10.1016/j.jtherbio.2022.103389_bib23
– start-page: 578
  year: 2009
  ident: 10.1016/j.jtherbio.2022.103389_bib12
  article-title: Effects of lower body warming on physiological and psychological responses of humans
– volume: 32
  year: 2022
  ident: 10.1016/j.jtherbio.2022.103389_bib52
  article-title: Effects of body geometry, body composition, cardio‐pulmonary capacity, and fitness on young men's thermal preference
  publication-title: Indoor Air
  doi: 10.1111/ina.13007
– volume: 165
  year: 2019
  ident: 10.1016/j.jtherbio.2022.103389_bib67
  article-title: Using personally controlled air movement to improve comfort after simulated summer commute
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.106329
– year: 1970
  ident: 10.1016/j.jtherbio.2022.103389_bib15
– volume: 96
  start-page: 228
  year: 2016
  ident: 10.1016/j.jtherbio.2022.103389_bib46
  article-title: Sensation of draft at uncovered ankles for women exposed to displacement ventilation and underfloor air distribution systems
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2015.11.009
– volume: 176
  start-page: 246
  year: 2018
  ident: 10.1016/j.jtherbio.2022.103389_bib30
  article-title: Non-intrusive interpretation of human thermal comfort through analysis of facial infrared thermography
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.07.025
– volume: 58
  start-page: 258
  year: 2012
  ident: 10.1016/j.jtherbio.2022.103389_bib7
  article-title: Investigation of human body skin temperatures as a bio-signal to indicate overall thermal sensations
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2012.07.003
– volume: 29
  start-page: 131
  year: 1986
  ident: 10.1016/j.jtherbio.2022.103389_bib50
  article-title: Physiological reactions to different vertical (head-foot) air temperature differences
  publication-title: Ergonomics
  doi: 10.1080/00140138608968246
– volume: 73
  start-page: 232
  year: 2014
  ident: 10.1016/j.jtherbio.2022.103389_bib32
  article-title: The response of human thermal perception and skin temperature to step-change transient thermal environments
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2013.12.007
– volume: 30
  start-page: 1145
  year: 1997
  ident: 10.1016/j.jtherbio.2022.103389_bib2
  article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms
  publication-title: Pattern Recogn.
  doi: 10.1016/S0031-3203(96)00142-2
– volume: 44
  start-page: 676
  year: 2019
  ident: 10.1016/j.jtherbio.2022.103389_bib14
  article-title: Investigation into the differences among several outdoor thermal comfort indices against field survey in subtropics
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2018.10.022
– volume: 156
  start-page: 117
  year: 2019
  ident: 10.1016/j.jtherbio.2022.103389_bib62
  article-title: Perceptual and physiological responses of elderly subjects to moderate temperatures
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.04.012
– volume: 162
  year: 2019
  ident: 10.1016/j.jtherbio.2022.103389_bib34
  article-title: Personal thermal comfort models with wearable sensors
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.106281
– volume: 86
  year: 2019
  ident: 10.1016/j.jtherbio.2022.103389_bib58
  article-title: The effect of indoor thermal history on human thermal responses in cold environments of early winter
  publication-title: J. Therm. Biol.
  doi: 10.1016/j.jtherbio.2019.102448
– volume: 49
  year: 2022
  ident: 10.1016/j.jtherbio.2022.103389_bib54
  article-title: Recognition and prediction of individual thermal comfort requirement based on local skin temperature
  publication-title: J. Build. Eng.
– volume: 202
  year: 2021
  ident: 10.1016/j.jtherbio.2022.103389_bib63
  article-title: Study on an adaptive thermal comfort model with K-nearest-neighbors (KNN) algorithm
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.108026
– volume: 27
  start-page: 852
  year: 2017
  ident: 10.1016/j.jtherbio.2022.103389_bib35
  article-title: Predicted percentage dissatisfied with ankle draft
  publication-title: Indoor Air
  doi: 10.1111/ina.12364
– volume: 207
  year: 2020
  ident: 10.1016/j.jtherbio.2022.103389_bib47
  article-title: Towards non-intrusive and high accuracy prediction of personal thermal comfort using a few sensitive physiological parameters
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.109594
– year: 2007
  ident: 10.1016/j.jtherbio.2022.103389_bib22
– volume: 29
  start-page: 101
  year: 2019
  ident: 10.1016/j.jtherbio.2022.103389_bib38
  article-title: Thermal comfort in environments with different vertical air temperature gradients
  publication-title: Indoor Air
  doi: 10.1111/ina.12512
– volume: 26
  start-page: 820
  year: 2016
  ident: 10.1016/j.jtherbio.2022.103389_bib71
  article-title: Thermal comfort of people in the hot and humid area of China-impacts of season, climate, and thermal history
  publication-title: Indoor Air
  doi: 10.1111/ina.12256
– year: 2020
  ident: 10.1016/j.jtherbio.2022.103389_bib53
  article-title: Study on clothing insulation distribution between half-bodies and its effects on thermal comfort in cold environments
  publication-title: Energy Build.
– volume: 98
  start-page: 30
  year: 2016
  ident: 10.1016/j.jtherbio.2022.103389_bib37
  article-title: Indoor climate and thermal physiological adaptation: evidences from migrants with different cold indoor exposures
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2015.12.015
– volume: 125
  start-page: 373
  year: 2017
  ident: 10.1016/j.jtherbio.2022.103389_bib55
  article-title: Thermal comfort criteria for personal air supply in aircraft cabins in winter
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.09.005
– volume: 108
  year: 2022
  ident: 10.1016/j.jtherbio.2022.103389_bib60
  article-title: Thermal sensation, sick building syndrome symptoms, and physiological responses of occupants in environments with vertical air temperature differences
  publication-title: J. Therm. Biol.
  doi: 10.1016/j.jtherbio.2022.103276
– year: 2022
  ident: 10.1016/j.jtherbio.2022.103389_bib51
SSID ssj0015350
Score 2.3817708
Snippet Thermally stratified environments are universal in “real world” buildings. However, the studies on the machine learning model and mean skin temperature (MST),...
Thermally stratified environments are universal in "real world" buildings. However, the studies on the machine learning model and mean skin temperature (MST),...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103389
SubjectTerms air
air temperature
arms (limbs)
Body Temperature Regulation
chest
climate
Forearm
Humans
Machine learning
prediction
sensation
Skin Temperature
Temperature
Thermal comfort
Thermal environment
Thermosensing
Vertical temperature difference
Title Optimal local skin temperatures for mean skin temperature estimation and thermal comfort prediction of seated person in thermally stratified environments
URI https://dx.doi.org/10.1016/j.jtherbio.2022.103389
https://www.ncbi.nlm.nih.gov/pubmed/36585070
https://www.proquest.com/docview/2759963132
https://www.proquest.com/docview/3153830058
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-QwDI4QaKW9oIV9DS8Faa_d6eQxbY4IgYZdAQcWiVuUOKk0LNMZMcOBy_4P_i12045YAeLAsY1dRbZjf2lim7EfEAwMAHQmjCszxLcic05CZoZ6UBqBo5KSk0_PhqNL9etKX62wwy4Xhq5Vtr4_-fTGW7dv-q00-7PxuH9BaJfwiBDNcRrt25UqyMp__lte88AF3XRpJeKMqJ9kCV8j9kPB-DElAQpB-eeS2r2_HKBeA6BNIDr-xNZbBMkP0iQ32EqsN9mH1FPy_jN7OEcnMEGCJkrx-d9xzan-VFs8ec4RpfJJdPWzIU4FN1ImI3d14DRr-hCKBnkWfHZLhzrN8LTi1HgiBj5rEDunLyXym3ueSvFWCG750zy6L-zy-OjP4Shr-y9kgLuuRVblRVVJ0JSuqkXpwYWh1wXu2tTAK4QC3imnvAKjTeUBAoQCcpNHEY3MIcqvbLWe1vE748WwCgNUu3FeqjJ3pgyIDLVSDqCSIvSY7oRuoS1OTj0ybmx3C-3adsqypCyblNVj_SXfLJXneJPDdDq1_xmaxRjyJu9-ZwQWVyEdrbg6Tu_mVhRU5obKYL5OIym4UHeAsse-JQtazlkiEERknm-9Y3bb7CM-yfR_aIetLm7v4i4ipoXfa5bEHls7OPk9OnsE_n4agA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELZQEKIX1FJaUvpwpV5X2fiRXR8RKgoFwgGQuFn22CuFxyYi4cBP6b9lZr0bUbWIQ69rjzXy2DOf155vGPsBwcAQQGfCuDJDfCsy5yRkZqSHpRHYKik5-XQyGl-qX1f6ao0ddLkw9Kyy9f3Jpzfeuv0yaGdzMJ9OB-eEdgmPCNFcp-G5fZ3YqXSPre8fHY8nq8sELZtCrdQ_I4FnicLXCP9wbvyU8gCFoBR0SRXf_x2jXsKgTSw6fMu2WhDJ95Oe79harLfZRior-fie_T5DP3CHHZpAxRc305oTBVXLn7zgCFT5XXT1X02cODdSMiN3deCkNQ2Es4MySz6_p3udpnlWcao9EQOfN6Cd00ip--0jT2y8FeJb_jyVboddHv68OBhnbQmGDPDgtcyqvKgqCZoyVrUoPbgw8rrAg5saeoVowDvllFdgtKk8QIBQQG7yKKKROUT5gfXqWR13GS9GVRii5Y3zUpW5M2VAcKiVcgCVFKHPdDfpFlp-ciqTcWu7h2jXtjOWJWPZZKw-G6zk5omh41UJ09nU_rHWLIaRV2W_d4vA4kak2xVXx9nDwoqCmG6ICfPlPpLiCxUIKPvsY1pBK50lYkEE5_mn_9DuG9scX5ye2JOjyfEee4MtMv0u-sx6y_uH-AUB1NJ_bTfIE4-NHTE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+local+skin+temperatures+for+mean+skin+temperature+estimation+and+thermal+comfort+prediction+of+seated+person+in+thermally+stratified+environments&rft.jtitle=Journal+of+thermal+biology&rft.au=Wu%2C+Yuxin&rft.au=Zhang%2C+Zixuan&rft.au=Liu%2C+Hong&rft.au=Cui%2C+Haijiao&rft.date=2023-01-01&rft.issn=0306-4565&rft.volume=111&rft.spage=103389&rft_id=info:doi/10.1016%2Fj.jtherbio.2022.103389&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4565&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4565&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4565&client=summon