Biochar for the removal of contaminants from soil and water: a review
Biochar shows significant potential to serve as a globally applicable material to remediate water and soil owing to the extensive availability of feedstocks and conducive physio-chemical surface characteristics. This review aims to highlight biochar production technologies, characteristics of biocha...
Saved in:
Published in | Biochar (Online) Vol. 4; no. 1 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biochar shows significant potential to serve as a globally applicable material to remediate water and soil owing to the extensive availability of feedstocks and conducive physio-chemical surface characteristics. This review aims to highlight biochar production technologies, characteristics of biochar, and the latest advancements in immobilizing and eliminating heavy metal ions and organic pollutants in soil and water. Pyrolysis temperature, heat transfer rate, residence time, and type of feedstock are critical influential parameters. Biochar’s efficacy in managing contaminants relies on the pore size distribution, surface groups, and ion-exchange capacity. The molecular composition and physical architecture of biochar may be crucial when practically applied to water and soil. In general, biochar produced at relatively high pyrolysis temperatures can effectively manage organic pollutants via increasing surface area, hydrophobicity and microporosity. Biochar generated at lower temperatures is deemed to be more suitable for removing polar organic and inorganic pollutants through oxygen-containing functional groups, precipitation and electrostatic attraction. This review also presents the existing obstacles and future research direction related to biochar-based materials in immobilizing organic contaminants and heavy metal ions in effluents and soil.
Graphical Abstract
Highlights
The synthesis strategies and characteristics of biochar are introduced.
The removal of contaminants from soil and water is explicated emphatically.
The removal behaviors of heavy metal ions and organics are determined.
Mechanisms and influencing factors of pollutant removal by biochar are discussed.
Prospects of biochar-based materials for contaminant removal are proposed. |
---|---|
AbstractList | Biochar shows significant potential to serve as a globally applicable material to remediate water and soil owing to the extensive availability of feedstocks and conducive physio-chemical surface characteristics. This review aims to highlight biochar production technologies, characteristics of biochar, and the latest advancements in immobilizing and eliminating heavy metal ions and organic pollutants in soil and water. Pyrolysis temperature, heat transfer rate, residence time, and type of feedstock are critical influential parameters. Biochar’s efficacy in managing contaminants relies on the pore size distribution, surface groups, and ion-exchange capacity. The molecular composition and physical architecture of biochar may be crucial when practically applied to water and soil. In general, biochar produced at relatively high pyrolysis temperatures can effectively manage organic pollutants via increasing surface area, hydrophobicity and microporosity. Biochar generated at lower temperatures is deemed to be more suitable for removing polar organic and inorganic pollutants through oxygen-containing functional groups, precipitation and electrostatic attraction. This review also presents the existing obstacles and future research direction related to biochar-based materials in immobilizing organic contaminants and heavy metal ions in effluents and soil.
Graphical Abstract
Highlights
The synthesis strategies and characteristics of biochar are introduced.
The removal of contaminants from soil and water is explicated emphatically.
The removal behaviors of heavy metal ions and organics are determined.
Mechanisms and influencing factors of pollutant removal by biochar are discussed.
Prospects of biochar-based materials for contaminant removal are proposed. Biochar shows significant potential to serve as a globally applicable material to remediate water and soil owing to the extensive availability of feedstocks and conducive physio-chemical surface characteristics. This review aims to highlight biochar production technologies, characteristics of biochar, and the latest advancements in immobilizing and eliminating heavy metal ions and organic pollutants in soil and water. Pyrolysis temperature, heat transfer rate, residence time, and type of feedstock are critical influential parameters. Biochar’s efficacy in managing contaminants relies on the pore size distribution, surface groups, and ion-exchange capacity. The molecular composition and physical architecture of biochar may be crucial when practically applied to water and soil. In general, biochar produced at relatively high pyrolysis temperatures can effectively manage organic pollutants via increasing surface area, hydrophobicity and microporosity. Biochar generated at lower temperatures is deemed to be more suitable for removing polar organic and inorganic pollutants through oxygen-containing functional groups, precipitation and electrostatic attraction. This review also presents the existing obstacles and future research direction related to biochar-based materials in immobilizing organic contaminants and heavy metal ions in effluents and soil. Graphical Abstract |
ArticleNumber | 19 |
Author | Wang, Xiangke Qiu, Muqing Fu, Dong Wang, Shuqin Hu, Baowei Cai, Yawen Liu, Lijie Ling, Qian Yu, Shujun |
Author_xml | – sequence: 1 givenname: Muqing surname: Qiu fullname: Qiu, Muqing organization: School of Life Science, Shaoxing University – sequence: 2 givenname: Lijie surname: Liu fullname: Liu, Lijie organization: College of Environmental Science and Engineering, North China Electric Power University – sequence: 3 givenname: Qian surname: Ling fullname: Ling, Qian organization: School of Life Science, Shaoxing University – sequence: 4 givenname: Yawen surname: Cai fullname: Cai, Yawen organization: School of Life Science, Shaoxing University – sequence: 5 givenname: Shujun surname: Yu fullname: Yu, Shujun email: sjyu@ncepu.edu.cn organization: School of Life Science, Shaoxing University, College of Environmental Science and Engineering, North China Electric Power University – sequence: 6 givenname: Shuqin surname: Wang fullname: Wang, Shuqin organization: School of Life Science, Shaoxing University – sequence: 7 givenname: Dong surname: Fu fullname: Fu, Dong organization: Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University – sequence: 8 givenname: Baowei surname: Hu fullname: Hu, Baowei email: hbw@usx.edu.cn organization: School of Life Science, Shaoxing University – sequence: 9 givenname: Xiangke surname: Wang fullname: Wang, Xiangke email: xkwang@ncepu.edu.cn organization: School of Life Science, Shaoxing University, College of Environmental Science and Engineering, North China Electric Power University |
BookMark | eNp9kLtOAzEQRS0UJELID1D5Bwx-7XqXDqLwkCLRQG1NvDZxtGsj2yTi71kINBSpZop7rmbOOZqEGCxCl4xeMUrVdZZcKUEo54RSJmvCTtCUV1wS1dRq8re3ip-hec5bSimvGKtFO0XLOx_NBhJ2MeGysTjZIe6gx9FhE0OBwQcIJWOX4oBz9D2G0OE9FJtuMIzxnbf7C3TqoM92_jtn6PV--bJ4JKvnh6fF7YoYSVkh1rUgXOdqS2vHTSUYt26tGlgLp5TqeKd4DU42jJo1s1JVsjWgmOtM1bqqEzPUHHpNijkn67TxBYofD03ge82o_jaiD0b0aET_GNFsRPk_9D35AdLncUgcoDyGw5tNehs_UhhfPEZ9AaXPddM |
CitedBy_id | crossref_primary_10_3389_fpls_2023_1224583 crossref_primary_10_1007_s42773_025_00439_1 crossref_primary_10_1016_j_cej_2023_141584 crossref_primary_10_1016_j_chemosphere_2024_143202 crossref_primary_10_1016_j_rser_2023_113193 crossref_primary_10_1007_s11356_023_31281_2 crossref_primary_10_1016_j_jpcs_2022_110934 crossref_primary_10_1007_s42773_023_00238_6 crossref_primary_10_1080_25765299_2023_2207407 crossref_primary_10_1016_j_foodchem_2023_137946 crossref_primary_10_1002_slct_202402313 crossref_primary_10_5004_dwt_2023_30079 crossref_primary_10_1016_j_scitotenv_2023_169755 crossref_primary_10_1007_s42773_024_00387_2 crossref_primary_10_1016_j_jece_2024_114507 crossref_primary_10_1016_j_scitotenv_2023_168548 crossref_primary_10_1016_j_jenvman_2024_121802 crossref_primary_10_12944_CWE_19_1_7 crossref_primary_10_1007_s11356_024_31935_9 crossref_primary_10_1016_j_cej_2024_149470 crossref_primary_10_3390_su16124961 crossref_primary_10_1016_j_colsurfa_2024_133942 crossref_primary_10_58626_menba_1569118 crossref_primary_10_1016_j_jes_2023_06_027 crossref_primary_10_1016_j_mtcomm_2022_104020 crossref_primary_10_1016_j_scenv_2023_100040 crossref_primary_10_1016_j_sajce_2023_04_006 crossref_primary_10_3390_en16041829 crossref_primary_10_1007_s10311_023_01582_6 crossref_primary_10_1016_j_seppur_2022_122862 crossref_primary_10_3390_soilsystems7040110 crossref_primary_10_1016_j_enmm_2022_100720 crossref_primary_10_1002_adsu_202400722 crossref_primary_10_1016_j_eti_2024_103835 crossref_primary_10_1007_s11356_022_22858_4 crossref_primary_10_1016_j_ccr_2022_214825 crossref_primary_10_1016_j_scitotenv_2022_159346 crossref_primary_10_1016_j_scitotenv_2023_163088 crossref_primary_10_1007_s42773_023_00237_7 crossref_primary_10_1177_0958305X231219787 crossref_primary_10_1016_j_rineng_2024_102757 crossref_primary_10_1080_00032719_2024_2343366 crossref_primary_10_1007_s13399_024_05465_w crossref_primary_10_1016_j_eti_2023_103301 crossref_primary_10_3390_w15132480 crossref_primary_10_1016_j_ccr_2024_216120 crossref_primary_10_1016_j_ijbiomac_2022_06_136 crossref_primary_10_1016_j_chemosphere_2022_137434 crossref_primary_10_1016_j_cej_2022_138921 crossref_primary_10_1016_j_envres_2022_114248 crossref_primary_10_1016_j_envres_2024_120284 crossref_primary_10_1016_j_hybadv_2023_100091 crossref_primary_10_1016_j_ese_2024_100420 crossref_primary_10_1007_s12649_025_02959_0 crossref_primary_10_1016_j_seppur_2022_122644 crossref_primary_10_1016_j_seppur_2022_121671 crossref_primary_10_1016_j_aej_2022_07_055 crossref_primary_10_1016_j_chemosphere_2023_139819 crossref_primary_10_1016_j_cej_2022_137722 crossref_primary_10_1007_s42773_022_00188_5 crossref_primary_10_1007_s11356_023_30351_9 crossref_primary_10_1007_s42773_024_00345_y crossref_primary_10_1016_j_jhazmat_2022_130022 crossref_primary_10_1007_s10876_022_02379_3 crossref_primary_10_1021_acsapm_2c00642 crossref_primary_10_1016_j_seppur_2022_122632 crossref_primary_10_1016_j_inoche_2024_113196 crossref_primary_10_1016_j_seppur_2022_122631 crossref_primary_10_1016_j_jiec_2022_11_026 crossref_primary_10_1016_j_scitotenv_2024_177359 crossref_primary_10_1016_j_apsusc_2024_161277 crossref_primary_10_1103_PhysRevFluids_8_024502 crossref_primary_10_3390_ma16062185 crossref_primary_10_1016_j_biortech_2022_127819 crossref_primary_10_1016_j_inoche_2022_109588 crossref_primary_10_1016_j_cjche_2022_12_014 crossref_primary_10_1007_s11356_024_33270_5 crossref_primary_10_1016_j_jclepro_2022_132980 crossref_primary_10_1016_j_jwpe_2022_103281 crossref_primary_10_3389_fenvs_2023_1277240 crossref_primary_10_1080_10934529_2023_2243193 crossref_primary_10_1177_02636174241256854 crossref_primary_10_1016_j_fuel_2024_133448 crossref_primary_10_1016_j_jwpe_2023_104216 crossref_primary_10_1007_s10653_024_02092_2 crossref_primary_10_1016_j_apsusc_2024_162212 crossref_primary_10_1016_j_heliyon_2024_e25785 crossref_primary_10_1016_j_apcata_2022_118733 crossref_primary_10_1016_j_seppur_2025_131468 crossref_primary_10_1007_s13399_024_05507_3 crossref_primary_10_1016_j_molliq_2022_119745 crossref_primary_10_1016_j_jhazmat_2022_129244 crossref_primary_10_1016_j_apsusc_2022_154027 crossref_primary_10_1002_slct_202200840 crossref_primary_10_1016_j_biombioe_2025_107671 crossref_primary_10_3390_agronomy14051046 crossref_primary_10_1016_j_seppur_2023_123926 crossref_primary_10_3389_fenvs_2022_1035865 crossref_primary_10_1016_j_chemosphere_2023_139719 crossref_primary_10_1016_j_scitotenv_2024_174180 crossref_primary_10_1007_s44246_024_00176_3 crossref_primary_10_1016_j_ccr_2022_214694 crossref_primary_10_1016_j_jece_2024_115201 crossref_primary_10_1016_j_envres_2023_116217 crossref_primary_10_3390_land12122163 crossref_primary_10_1038_s41598_024_61270_5 crossref_primary_10_1016_j_geoderma_2023_116591 crossref_primary_10_1016_j_envres_2023_116690 crossref_primary_10_1080_26395940_2024_2387680 crossref_primary_10_3390_su16166891 crossref_primary_10_1016_j_seppur_2024_130861 crossref_primary_10_1007_s42773_024_00301_w crossref_primary_10_1007_s10661_023_12194_6 crossref_primary_10_1016_j_jclepro_2023_136737 crossref_primary_10_1016_j_jhazmat_2023_130744 crossref_primary_10_1016_j_jclepro_2025_144808 crossref_primary_10_1016_j_jhazmat_2023_130867 crossref_primary_10_1016_j_biortech_2024_131746 crossref_primary_10_1016_j_chemosphere_2024_141796 crossref_primary_10_5004_dwt_2022_29054 crossref_primary_10_1007_s42729_024_01937_0 crossref_primary_10_1016_j_mtchem_2022_101081 crossref_primary_10_1007_s11164_022_04789_4 crossref_primary_10_1007_s42773_022_00172_z crossref_primary_10_1016_j_jhazmat_2022_129352 crossref_primary_10_1016_j_scenv_2024_100140 crossref_primary_10_1016_j_biteb_2023_101470 crossref_primary_10_1016_j_ecoenv_2023_115285 crossref_primary_10_1515_ract_2024_0273 crossref_primary_10_1016_j_jenvrad_2022_106909 crossref_primary_10_3390_su16208838 crossref_primary_10_1016_j_envpol_2024_124309 crossref_primary_10_3390_su17051980 crossref_primary_10_1016_j_envpol_2022_120826 crossref_primary_10_1016_j_jhazmat_2023_130723 crossref_primary_10_1007_s11157_024_09711_5 crossref_primary_10_1016_j_chemosphere_2023_139088 crossref_primary_10_1039_D3TA03890D crossref_primary_10_3390_plants13141934 crossref_primary_10_3390_polym14142911 crossref_primary_10_1080_15320383_2022_2101613 crossref_primary_10_1016_j_jece_2024_114007 crossref_primary_10_1007_s40098_023_00788_3 crossref_primary_10_3390_ma17163899 crossref_primary_10_3390_bios12060377 crossref_primary_10_3390_polym16233434 crossref_primary_10_3390_su152215978 crossref_primary_10_1007_s42773_022_00173_y crossref_primary_10_1016_j_jclepro_2023_135857 crossref_primary_10_3390_plants12071524 crossref_primary_10_1016_j_seppur_2024_128519 crossref_primary_10_1007_s13399_022_03029_4 crossref_primary_10_3390_su14137824 crossref_primary_10_1016_j_bcab_2024_103077 crossref_primary_10_1007_s11356_023_29264_4 crossref_primary_10_1038_s41598_024_70932_3 crossref_primary_10_1016_j_envpol_2022_119546 crossref_primary_10_1177_00405175241311960 crossref_primary_10_1007_s42773_024_00348_9 crossref_primary_10_1007_s10311_023_01631_0 crossref_primary_10_1007_s42773_023_00293_z crossref_primary_10_1016_j_colsurfa_2022_130748 crossref_primary_10_1016_j_biortech_2023_129225 crossref_primary_10_1080_03601234_2024_2404324 crossref_primary_10_1038_s41598_024_66323_3 crossref_primary_10_1039_D4CS00338A crossref_primary_10_36320_ajb_v15_i2_12531 crossref_primary_10_1002_slct_202202976 crossref_primary_10_3390_ma16196413 crossref_primary_10_3390_pr11010053 crossref_primary_10_1007_s13399_022_03183_9 crossref_primary_10_1007_s11356_024_35412_1 crossref_primary_10_1007_s42773_023_00207_z crossref_primary_10_1016_j_molliq_2025_127192 crossref_primary_10_1016_j_chemosphere_2022_135590 crossref_primary_10_1016_j_matchemphys_2025_130376 crossref_primary_10_3389_fenvs_2023_1212355 crossref_primary_10_1016_j_mtsust_2023_100540 crossref_primary_10_1016_j_envres_2023_116998 crossref_primary_10_1002_jccs_202200218 crossref_primary_10_1007_s44246_022_00007_3 crossref_primary_10_2174_0115734080313745240802110504 crossref_primary_10_1038_s41598_024_70515_2 crossref_primary_10_1021_acs_iecr_2c00924 crossref_primary_10_1016_j_apradiso_2022_110606 crossref_primary_10_1016_j_inoche_2024_112838 crossref_primary_10_1021_acsomega_2c02508 crossref_primary_10_3390_en16104175 crossref_primary_10_1016_j_envpol_2022_120508 crossref_primary_10_1007_s42773_024_00421_3 crossref_primary_10_1016_j_chemosphere_2024_142584 crossref_primary_10_1016_j_apsusc_2022_155199 crossref_primary_10_1016_j_rineng_2024_102433 crossref_primary_10_32604_phyton_2025_058970 crossref_primary_10_1016_j_envint_2022_107459 crossref_primary_10_1039_D3RA06910A crossref_primary_10_1016_j_matchemphys_2022_127206 crossref_primary_10_1007_s42247_023_00603_y crossref_primary_10_1016_j_chemosphere_2022_135456 crossref_primary_10_1007_s42452_023_05543_0 crossref_primary_10_1007_s42773_022_00197_4 crossref_primary_10_1007_s44169_023_00043_z crossref_primary_10_1016_j_jwpe_2025_106937 crossref_primary_10_1016_j_biortech_2023_130105 crossref_primary_10_1016_j_heliyon_2022_e12388 crossref_primary_10_1016_j_scitotenv_2024_173501 crossref_primary_10_1016_j_jwpe_2024_106215 crossref_primary_10_1016_j_jenvman_2024_123558 crossref_primary_10_1021_acs_iecr_2c01431 crossref_primary_10_1016_j_enmm_2023_100788 crossref_primary_10_1016_j_jclepro_2022_135405 crossref_primary_10_1007_s42773_024_00304_7 crossref_primary_10_1016_j_biteb_2025_102034 crossref_primary_10_1016_j_envres_2024_118747 crossref_primary_10_1007_s42773_023_00298_8 crossref_primary_10_1016_j_seppur_2022_121187 crossref_primary_10_1016_j_inoche_2022_109705 crossref_primary_10_3390_su17052214 crossref_primary_10_1039_D3CE01058A crossref_primary_10_1007_s42773_022_00191_w crossref_primary_10_1007_s44246_023_00066_0 crossref_primary_10_1016_j_jenvman_2024_120280 crossref_primary_10_1016_j_scitotenv_2024_172899 crossref_primary_10_1016_j_jcis_2022_09_052 crossref_primary_10_1360_SSC_2024_0043 crossref_primary_10_1016_j_ecoenv_2025_117700 crossref_primary_10_1016_j_scitotenv_2024_170571 crossref_primary_10_1039_D4RA03421J crossref_primary_10_3390_polym14183889 crossref_primary_10_3390_land12081580 crossref_primary_10_1007_s44246_022_00012_6 crossref_primary_10_1039_D2EW00339B crossref_primary_10_1016_j_arabjc_2023_105303 crossref_primary_10_3390_nano15010026 crossref_primary_10_1016_j_jenvman_2024_123585 crossref_primary_10_1016_j_cej_2025_161178 crossref_primary_10_1007_s42773_024_00401_7 crossref_primary_10_1016_j_jclepro_2022_134456 crossref_primary_10_1016_j_jenvman_2024_121160 crossref_primary_10_3390_en18051027 crossref_primary_10_1007_s13201_022_01821_1 crossref_primary_10_1016_j_biortech_2022_128056 crossref_primary_10_1016_j_heliyon_2023_e17250 crossref_primary_10_1016_j_envres_2024_118645 crossref_primary_10_1016_j_cclet_2024_109960 crossref_primary_10_3389_fbioe_2022_1067869 crossref_primary_10_1002_slct_202400959 crossref_primary_10_3390_w16223224 crossref_primary_10_1016_j_seppur_2024_127264 crossref_primary_10_1007_s42773_025_00455_1 crossref_primary_10_1007_s11270_025_07876_5 crossref_primary_10_3390_separations10100533 crossref_primary_10_1016_j_rser_2025_115458 crossref_primary_10_3390_w17020207 crossref_primary_10_1007_s42729_024_01699_9 crossref_primary_10_1021_acsanm_2c04492 crossref_primary_10_1016_j_dwt_2024_100563 crossref_primary_10_1016_j_isci_2025_112113 crossref_primary_10_1021_acs_iecr_3c04314 crossref_primary_10_1016_j_microc_2024_112518 crossref_primary_10_1007_s42773_022_00181_y crossref_primary_10_1016_j_fuel_2023_130679 crossref_primary_10_3389_fenvs_2023_1114752 crossref_primary_10_1016_j_desal_2024_117725 crossref_primary_10_1016_j_scitotenv_2024_173679 crossref_primary_10_3103_S0361521923010123 crossref_primary_10_3390_nano13081298 crossref_primary_10_1016_j_jclepro_2022_133040 crossref_primary_10_1002_wer_10967 crossref_primary_10_1016_j_chemosphere_2022_135869 crossref_primary_10_1039_D2DT01270G crossref_primary_10_3390_ma17091946 crossref_primary_10_1016_j_jhazmat_2024_133881 crossref_primary_10_1016_j_jece_2022_109113 crossref_primary_10_3390_toxics12050356 crossref_primary_10_1016_j_chemosphere_2024_141745 crossref_primary_10_3390_land13101638 crossref_primary_10_1016_j_jclepro_2022_133277 crossref_primary_10_1016_j_jclepro_2023_139353 crossref_primary_10_1016_j_jhazmat_2022_129802 crossref_primary_10_3390_agronomy14050886 crossref_primary_10_1016_j_cej_2022_139486 crossref_primary_10_1007_s11356_024_35416_x crossref_primary_10_1016_j_arabjc_2022_104252 crossref_primary_10_3390_agriculture13030512 crossref_primary_10_3390_agronomy12071596 crossref_primary_10_1016_j_dib_2022_108410 crossref_primary_10_1016_j_jhazmat_2024_135738 crossref_primary_10_1007_s11356_024_34732_6 crossref_primary_10_1016_j_jece_2025_115555 crossref_primary_10_3390_nano12091443 crossref_primary_10_3390_f13122080 crossref_primary_10_1016_j_biteb_2022_101238 crossref_primary_10_1039_D3RE00540B crossref_primary_10_1038_s41598_023_50623_1 crossref_primary_10_1016_j_enmm_2024_100977 crossref_primary_10_1007_s10653_024_01939_y crossref_primary_10_1016_j_seppur_2024_126378 crossref_primary_10_1007_s11356_024_35318_y crossref_primary_10_1007_s11706_023_0661_9 crossref_primary_10_1016_j_heliyon_2024_e38159 crossref_primary_10_1016_j_gsd_2023_100945 crossref_primary_10_1088_2515_7620_ad79bf crossref_primary_10_1021_acsomega_2c03260 crossref_primary_10_1016_j_seppur_2022_121471 crossref_primary_10_1016_j_jenvman_2022_115530 crossref_primary_10_1080_15226514_2025_2457510 crossref_primary_10_1002_poc_4411 crossref_primary_10_1016_j_jenvman_2022_115771 crossref_primary_10_1016_j_jwpe_2022_103458 crossref_primary_10_1016_j_jenvman_2022_115403 crossref_primary_10_3390_molecules29225251 crossref_primary_10_1007_s42773_024_00308_3 crossref_primary_10_1007_s13399_024_05989_1 crossref_primary_10_1016_j_scitotenv_2023_168385 crossref_primary_10_3390_ma17112646 crossref_primary_10_3390_en16145403 crossref_primary_10_1039_D2CE00892K crossref_primary_10_3390_ma16237342 crossref_primary_10_1021_acsomega_2c02063 crossref_primary_10_1016_j_ces_2024_119796 crossref_primary_10_1007_s13399_024_06126_8 crossref_primary_10_1016_j_jece_2022_108903 crossref_primary_10_1016_j_cj_2024_09_010 crossref_primary_10_1016_j_jenvman_2024_123974 crossref_primary_10_1016_j_jcis_2022_08_193 crossref_primary_10_1007_s11356_023_28549_y crossref_primary_10_1016_j_jhazmat_2023_131491 crossref_primary_10_1016_j_enceco_2025_01_004 crossref_primary_10_1016_j_jwpe_2022_103001 crossref_primary_10_3390_min14070732 crossref_primary_10_3390_molecules27217418 crossref_primary_10_5004_dwt_2022_28617 crossref_primary_10_1002_gch2_202200154 crossref_primary_10_1016_j_jenvman_2022_116831 crossref_primary_10_1016_j_seppur_2022_121241 crossref_primary_10_1007_s11270_023_06079_0 crossref_primary_10_1016_j_jmst_2024_02_062 crossref_primary_10_1016_j_cej_2025_160928 crossref_primary_10_1007_s13201_022_01739_8 crossref_primary_10_1016_j_biortech_2023_129603 crossref_primary_10_1002_tqem_22353 crossref_primary_10_1016_j_jhazmat_2024_133502 crossref_primary_10_1016_j_jclepro_2023_136149 crossref_primary_10_1007_s44246_024_00174_5 crossref_primary_10_1007_s42773_023_00223_z crossref_primary_10_15541_jim20220432 crossref_primary_10_1016_j_rsurfi_2025_100438 crossref_primary_10_1007_s11756_023_01590_5 crossref_primary_10_1016_j_apsusc_2024_159466 crossref_primary_10_1016_j_jenvman_2024_121333 crossref_primary_10_1016_j_seppur_2024_129161 crossref_primary_10_1016_j_jece_2024_112812 crossref_primary_10_1016_j_eti_2024_103659 crossref_primary_10_1071_FP23257 crossref_primary_10_1016_j_jece_2023_110115 crossref_primary_10_1007_s42773_024_00397_0 crossref_primary_10_1016_j_biteb_2023_101705 crossref_primary_10_1016_j_eti_2023_103381 crossref_primary_10_3390_su142114539 crossref_primary_10_3390_su15010394 crossref_primary_10_1007_s10653_023_01606_8 crossref_primary_10_1007_s12221_023_00100_3 crossref_primary_10_1016_j_cscee_2023_100495 crossref_primary_10_1016_j_molliq_2022_119564 crossref_primary_10_1016_j_btre_2024_e00860 crossref_primary_10_1016_j_gsd_2023_101066 crossref_primary_10_1016_j_gsd_2024_101243 crossref_primary_10_1016_j_scitotenv_2023_163968 crossref_primary_10_1016_j_eti_2024_103671 crossref_primary_10_1016_j_heliyon_2022_e10305 crossref_primary_10_1039_D2QM00431C crossref_primary_10_3390_agronomy13102647 crossref_primary_10_3390_en17092099 crossref_primary_10_1007_s42773_023_00265_3 crossref_primary_10_1007_s13762_023_05161_8 crossref_primary_10_1016_j_chemosphere_2023_138321 crossref_primary_10_1016_j_seppur_2022_121179 crossref_primary_10_1016_j_jconhyd_2024_104412 crossref_primary_10_1016_j_aej_2022_11_019 crossref_primary_10_1016_j_colsuc_2023_100026 crossref_primary_10_1016_j_cej_2022_140749 crossref_primary_10_1016_j_envres_2023_116074 crossref_primary_10_1016_j_inoche_2022_109651 crossref_primary_10_1016_j_watcyc_2025_01_001 crossref_primary_10_1007_s42773_023_00255_5 crossref_primary_10_1016_j_eti_2024_103649 crossref_primary_10_3390_biomass4020012 crossref_primary_10_1007_s42773_024_00373_8 crossref_primary_10_1007_s10661_024_12680_5 crossref_primary_10_1007_s13762_024_06111_8 crossref_primary_10_1016_j_seppur_2023_123644 crossref_primary_10_1002_ldr_5000 |
Cites_doi | 10.1016/j.scitotenv.2021.151554 10.1016/j.scitotenv.2021.146617 10.1016/j.scitotenv.2020.141492 10.1016/j.jes.2021.05.044 10.1016/j.carbpol.2020.117003 10.1080/09593330.2020.1733101 10.1016/j.jenvman.2021.112047 10.1016/j.ces.2021.116739 10.1080/09593330.2021.1883743 10.1016/j.scitotenv.2021.148098 10.1016/j.jes.2017.08.004 10.1016/j.jenvman.2021.113104 10.1016/j.cej.2020.124611 10.1016/j.jhazmat.2020.124488 10.1016/j.scitotenv.2021.149662 10.1016/j.envpol.2021.117094 10.1016/j.biombioe.2017.06.024 10.1016/j.jes.2021.05.023 10.1007/s42773-021-00101-6 10.1016/j.jhazmat.2021.125930 10.1016/j.geoderma.2020.114497 10.1016/j.cej.2021.128502 10.1016/j.jhazmat.2021.125255 10.1016/j.scitotenv.2021.145305 10.1021/acssuschemeng.0c05070 10.1016/j.scitotenv.2020.144218 10.1016/j.jwpe.2021.101993 10.1016/j.jes.2021.06.014 10.1007/s11426-021-9987-1 10.1016/j.jclepro.2019.118841 10.1016/j.clay.2021.106146 10.1016/j.cej.2021.130585 10.1016/j.scitotenv.2019.134645 10.1016/j.scitotenv.2019.01.202 10.1016/j.wasman.2019.12.003 10.1016/j.jhazmat.2019.121595 10.1016/j.envpol.2021.116800 10.1016/j.jclepro.2019.119579 10.1016/j.jhazmat.2021.125822 10.1016/j.biortech.2020.124539 10.1016/j.eti.2020.101242 10.1016/j.jenvrad.2021.106798 10.1016/j.jhazmat.2020.123292 10.1016/j.envres.2020.110656 10.1016/j.jclepro.2021.128074 10.1016/j.chemosphere.2021.131666 10.1016/j.jhazmat.2021.125483 10.1016/j.chemosphere.2021.132313 10.1016/j.jhazmat.2020.124162 10.1016/j.cej.2020.124471 10.1016/j.envpol.2021.117303 10.1016/j.ecoenv.2019.109763 10.1016/j.jhazmat.2021.126655 10.1016/j.scitotenv.2021.152280 10.1016/j.biortech.2021.124947 10.1016/j.jece.2021.105104 10.1016/j.jhazmat.2021.125415 10.1016/j.scitotenv.2021.145447 10.1016/j.jclepro.2019.119390 10.1016/j.jclepro.2021.130023 10.1016/j.chemosphere.2020.125847 10.1016/j.biombioe.2020.105772 10.1016/j.jece.2019.103064 10.1016/j.jclepro.2020.125390 10.1007/s42773-020-00060-4 10.1016/j.chemosphere.2021.131470 10.1016/j.scitotenv.2019.06.287 10.1016/j.scitotenv.2020.142150 10.34133/2021/9794329 10.1016/j.cej.2019.04.097 10.1016/j.chemosphere.2019.125152 10.1016/j.chemosphere.2021.132184 10.1016/j.cej.2021.129405 10.1016/j.jhazmat.2021.125252 10.1016/j.scitotenv.2021.149295 10.1016/j.cej.2021.129946 10.1016/j.wasman.2020.02.035 10.1016/j.scitotenv.2019.134575 10.1016/j.chemosphere.2021.131918 10.1016/j.biortech.2021.124877 10.1016/j.jclepro.2020.123009 10.1016/j.envpol.2020.115986 10.1016/j.scitotenv.2020.136957 10.1016/j.jclepro.2021.128641 10.1016/j.scitotenv.2018.12.400 10.1016/j.envpol.2020.116197 10.1016/j.chemosphere.2020.128409 10.1016/j.envpol.2021.116448 10.1016/j.jclepro.2020.125686 10.1016/j.cej.2021.132143 10.1016/j.chemosphere.2021.129812 10.1016/j.jece.2021.105585 10.1016/j.jhazmat.2020.124226 10.1016/j.jclepro.2021.126005 10.1016/j.cej.2021.131489 10.1016/j.scitotenv.2021.148546 10.1016/j.envres.2021.111518 10.1016/j.jenvman.2021.112569 10.1007/s11356-019-04315-x 10.1002/adma.202106621 10.1016/j.jhazmat.2021.125385 10.1007/s42773-021-00098-y 10.1016/j.biortech.2020.124264 10.1016/j.jhazmat.2019.121349 10.1016/j.envpol.2021.118076 10.1016/j.jclepro.2019.04.282 10.1007/s11368-018-2000-9 10.1016/j.scitotenv.2020.138892 10.1016/j.chemosphere.2021.131009 10.1016/j.chemosphere.2018.07.133 10.1080/26395940.2021.1916407 10.1016/j.chemosphere.2021.132087 10.1016/j.chemosphere.2020.128805 10.1016/j.jclepro.2021.127548 10.1016/j.jmrt.2021.03.076 10.1007/s42773-020-00044-4 10.1016/j.jhazmat.2020.123859 10.1016/j.jhazmat.2020.124850 10.1016/j.chemosphere.2021.131016 10.1021/acs.langmuir.1c01468 10.1016/j.jhazmat.2019.121749 10.1016/j.cej.2021.129027 10.1007/s11270-021-05030-5 10.1016/j.chemosphere.2021.131531 10.1016/j.eti.2021.101388 10.1016/j.rser.2021.111133 10.1016/j.scitotenv.2020.143452 10.1016/j.chemosphere.2021.130990 10.1007/s42773-021-00117-y 10.1016/j.chemosphere.2021.130273 10.1016/j.ecoenv.2020.111294 10.1016/j.jaap.2021.105081 10.1016/j.cej.2020.127707 10.1016/j.chemosphere.2020.128031 10.3390/molecules25143167 10.1016/j.jhazmat.2021.126047 10.1016/j.scitotenv.2021.146240 10.1016/j.cej.2021.128829 10.1016/j.jhazmat.2021.126487 10.1016/j.chemosphere.2018.12.099 10.1016/j.cej.2020.126021 10.1016/j.jclepro.2020.124964 10.1016/j.jhazmat.2020.124777 10.1016/j.chemosphere.2021.129700 10.1016/j.scitotenv.2021.144955 10.1016/j.cej.2021.129183 10.1016/j.jece.2021.106238 10.1007/s42773-021-00108-z 10.1016/j.scitotenv.2021.148031 10.1016/j.jhazmat.2019.121692 10.1016/j.jhazmat.2020.124860 10.1016/j.jes.2021.07.015 10.1016/j.jhazmat.2021.126421 10.1016/j.scitotenv.2020.137299 10.3390/en14051297 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 |
Copyright_xml | – notice: The Author(s) 2022 |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s42773-022-00146-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2524-7867 |
ExternalDocumentID | 10_1007_s42773_022_00146_1 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 21906052; U2067215 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Basic Research Program of China (973 Program) grantid: 2017YFA0207002 funderid: http://dx.doi.org/10.13039/501100012166 |
GroupedDBID | 0R~ AAHBH AAHNG AAJSJ AAKKN AAYZJ ABDBF ABECU ABEEZ ABFTV ABKCH ABMQK ABTEG ABTMW ACACY ACOKC ACULB ACZOJ ADKNI ADURQ ADYFF AFGXO AFQWF AGDGC AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AXYYD C24 C6C EBLON EBS EJD FNLPD GROUPED_DOAJ H13 M~E NQJWS OK1 RSV SNPRN SOHCF SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR AASML AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP CITATION |
ID | FETCH-LOGICAL-c401t-ef9a3fdf6e06f2c5312efb78ab3f777d2d726af4810cb1e47549ca71fdc59f5d3 |
IEDL.DBID | C24 |
ISSN | 2524-7972 |
IngestDate | Tue Jul 01 03:16:37 EDT 2025 Thu Apr 24 23:07:08 EDT 2025 Fri Feb 21 02:47:06 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Water Soil Heavy metal ions Organic pollutants Biochar |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-ef9a3fdf6e06f2c5312efb78ab3f777d2d726af4810cb1e47549ca71fdc59f5d3 |
OpenAccessLink | https://link.springer.com/10.1007/s42773-022-00146-1 |
ParticipantIDs | crossref_citationtrail_10_1007_s42773_022_00146_1 crossref_primary_10_1007_s42773_022_00146_1 springer_journals_10_1007_s42773_022_00146_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Biochar (Online) |
PublicationTitleAbbrev | Biochar |
PublicationYear | 2022 |
Publisher | Springer Singapore |
Publisher_xml | – name: Springer Singapore |
References | Li, Hu, Shen, Cai, Ji, Tan, Liu, Zhao, Hu, Wang (CR59) 2021; 64 Wang, Zhu, Cheng, Andserson, Zhao, Wang, Ding (CR102) 2018; 63 Kamali, Appels, Kwon, Aminabhavi, Dewil (CR50) 2021; 420 Nazari, Rahimi, Khademi Jolgeh Nezhad (CR77) 2019; 7 Arif, Liu, Yousaf, Ahmed, Irshad, Ashraf, Zia-ur-Rehman, Rashid (CR6) 2021; 310 Gholami, Rahimi (CR34) 2021; 42 Ma, Du, Chen, Du, Ye, Zhang (CR74) 2022; 287 Zou, Hu, Shen, Yao, Tang, Zhang, Wang, Hu, Zhao, Wang (CR156) 2022; 115 Cheng, Zhang, Zhao, Chai, Hu, Han, Ai, Wang (CR19) 2021; 66 Zhang, Wang, Xue, Huang, Hao, Tang, Maletić, Rončević, Sun (CR139) 2021; 411 Cheng, Chen, Xu, Huang, Jiang, Yan (CR15) 2020; 25 Fu, Ma, Xu, Duan, Cheng, Zhao (CR32) 2021; 281 Yu, Xu, Xu, Zhao, Qiu, Cao (CR128) 2021; 417 Zhang, Zhang, Hu, He, Yan, Xue (CR138) 2021; 408 Boskovic, Bilkova, Sudoma, Bielska, Skulcova, Ribitsch, Soja, Hofman (CR11) 2021; 274 Ma, Wu, Li, Yang, He, Chen, Yang, Gao, Qi, Zhang (CR73) 2021; 407 Mandal, Kumar, Singh (CR75) 2021; 295 Zhang, Min, Tang, Rafiq, Sun (CR137) 2020; 2 Zhang, Li, Wu, Pang, Hao, Hu, Qiu, Chen (CR141) 2021; 320 Liu, Zhao, Liu, Bai, Lin, Wang (CR64) 2021; 277 Zhang, He, Guo, Han, Ji, He, Han, Sun (CR134) 2020; 375 Li, Yu, Liu, Yu (CR57) 2021; 420 Wu, Ifthikar, Oyekunle, Jawad, Chen, Chen, Sellaoui, Bouzid (CR111) 2021; 789 Chen, Dai, Fan, Xu, Cao (CR14) 2021; 405 CR48 Zeng, Zeng, Zhang, Shahab, Zhang, Lu, Nabi, Naseem, Ullah (CR132) 2021; 286 Bai, Zhu, Jin, Sun, Wang, Wen, Ma (CR9) 2021; 268 Li, Chen, Wang, Yang, Wen, Wang, Hu, Wang (CR58) 2021; 792 You, Suo, Yin, Wang, Zheng, Fang, Zhang, Li, Li (CR125) 2021; 417 Zou, Zhao, He, Zhong, Huang, Zheng, Zhang, Yang, Yu, Bashir, Gao (CR155) 2021; 413 Wang, Feng, Cai, Fang, Kong, Alsaedi, Hayat, Tan (CR104) 2020; 708 Qu, Dong, Wei, Meng, Hu, Hu, Wang, Han, Zhang (CR88) 2020; 250 Qiu, Tao, Wang, Li, Ding, Chu (CR86) 2021; 155 Cuong Nguyen, Thanh Huyen Nguyen, Hong Chuong Nguyen, Van Le, Yen Binh Vo, Cuc Phuong Tran, Duong La, Kumar, Khanh Nguyen, Chang, Jin Chung, Duc Nguyen (CR22) 2021; 282 Hao, Wang, Yan, Jiang (CR40) 2021; 401 Zhao, Zhao, Tsang, Liu, Zhu, Zhang, Zhang, Tang, Qiu (CR147) 2021; 404 Zhang, Wang, Zhang, Ma, Huang, Yu, Chen, Song, Qiu, Wang (CR140) 2021; 291 Islam, Kwak, Nzediegwu, Wang, Palansuriya, Kwon, Naeth, El-Din, Ok, Chang (CR47) 2021; 281 Liu, Rao, Zou, Teng, Yu (CR65) 2021; 767 Wu, Chen, Hu, Wang, Deng, Mi (CR112) 2021; 322 Silvani, Hjartardottir, Bielska, Skulcova, Cornelissen, Nizzetto, Hale (CR93) 2019; 662 Yu, Pang, Huang, Tang, Wang, Qiu, Chen, Yang, Song, Fu, Hu, Wang (CR127) 2021; 800 Li, Xiong, Wei, Qin, Lin (CR56) 2021; 3 Zhou, Zhu, Niu, Zeng, Lai, Liu, Huang, Qin, Liu, Li, Yi, Fu, Li, Zhang, Zhou, Liu (CR150) 2021; 416 Azeem, Ali, Arockiam Jeyasundar, Bashir, Hussain, Wahid, Ali, Abdelrahman, Li, Antoniadis, Rinklebe, Shaheen, Li, Zhang (CR7) 2021; 282 Song, Zhang, Li, Du, Yang (CR95) 2020; 391 Amusat, Kebede, Dube, Nindi (CR5) 2021; 41 Peter, Chabot, Loranger (CR82) 2021; 290 Su, Wen, Yang, Zhang, Xia, Zhou, Xiong, Zhou (CR96) 2021; 330 Zhao, Wang, Theng, Wu, Liu, Lee, Chen, Sun (CR148) 2021; 799 Zhao, Hu, Zhang, Wang, Wang, Huo (CR143) 2021; 287 Hemavathy, Kumar, Kanmani, Jahnavi (CR41) 2020; 249 Cheng, Liu, Xing, Qin, Zhang, Xia (CR18) 2021; 314 Liu, Li, Singh (CR67) 2021; 12 Zhang, Chen, Gray, Boyd (CR133) 2017; 105 Lee, Shin, Kwak, Kim, Son, Cho, Chon (CR54) 2021; 14 Ma, Qi, Yang, Wu, Li, Gao, Qi, Zhang (CR72) 2021; 292 Wang, Zhang, Cao, Ma, Huang, Yu, Ma, Song, Qiu, Wang (CR107) 2022; 331 Wang, Shi, Yu, Pang, Qiu, Song, Fu, Hu, Wang (CR108) 2022; 242 Zama, Reid, Arp, Sun, Yuan, Zhu (CR131) 2018; 18 Liu, Xie, Zhu, Zhu, Jiang, Wang, Gao (CR66) 2021; 22 Fu, Zhang, Xia, Lei, Wang (CR31) 2020; 187 Hou, Liang, Hu, Tao, Zhou, Cai (CR43) 2021; 329 Qian, Liang, Zhang, Huang, Diao (CR84) 2022; 113 Yang, Zhu, Dong, Fan, Wang (CR118) 2021; 37 Cai, Liu, Zhang, Tie, Lei, Wei, Peng, Du (CR12) 2021; 281 Wang, Chen, Zhu, Cen, Sun (CR103) 2019; 26 Wen, Xue, Yin, Wang (CR110) 2022; 286 Azeem, Ali, Arockiam Jeyasundar, Li, Abdelrahman, Latif, Li, Basta, Li, Shaheen, Rinklebe, Zhang (CR8) 2021; 277 Tian, Dong, Chen, Li, Xie, Li, Li, Jin, Xiao, Xiao (CR99) 2021; 425 Wang, Zhang, Zhang, Lu, Chen, Wang, Hu, Wang (CR109) 2022; 287 Zhu, Wang, Yang, Tufail, Chen, Wang, Shang (CR153) 2020; 276 Wu, Fu, Li, Liu, Wan (CR114) 2022 Wan, Qiu, Li, Sun, Gao, He, Wan (CR100) 2020; 402 Ahmed, Mehmood, Qaswar, Ali, Khan, Ying, Chen, Núñez-Delgado (CR3) 2021; 9 Fang, Gao, Bolan, Shaheen, Xu, Wu, Xu, Hu, Lin, Zhang, Li, Rinklebe, Wang (CR27) 2020; 390 Qiu, Xu, Xu, Liang, Yu, Cao (CR85) 2020; 389 Pan, Yang, Chen, Sarkar, Bolan, Shaheen, Wu, Che, Ma, Rinklebe, Wang (CR80) 2021; 763 Zhou, Ye, Zhao, Baig, Huang, Ma (CR151) 2022; 115 Ma, Yang, Wu, Li, Qi, He, Cui, Ding, Zhang (CR71) 2020; 718 Khalid, Shahid, Murtaza, Bibi, Naeem, Niazi (CR52) 2020; 711 Ahmed, Nunez-Delgado, Mehmood, Ali, Qaswar, Shakoor, Chen (CR4) 2021; 201 Zhao, Wang, Theng, Wu, Liu, Wang, Lee, Chen, Li, Zhang (CR145) 2021; 767 Liu, Zhang, Hu, Wang (CR68) 2022; 287 Hu, Ai, Jin, Hayat, Alsaedi, Zhuang, Wang (CR44) 2020; 2 Liu, Xu, Li (CR62) 2020; 747 Zhao, Shao, Yan, Liu, Liang, He, Wu, Liu, Pan, Huang, Wang, Liang, Tang (CR144) 2021; 416 Lonappan, Liu, Rouissi, Brar, Surampalli (CR69) 2020; 244 Zhao, Liang, Zhang, Cai, Li, Xie, Wang (CR142) 2019; 688 You, Jiang, Zhao, Suo, Zhang, Zheng, Sun, Zhang, Li, Li (CR124) 2020; 390 Nzediegwu, Naeth, Chang (CR79) 2021; 412 Cui, Li, Bian, Ippolito, Yan, Quan (CR21) 2021; 3 Ri, Tang, Liu, Lyu, Li (CR91) 2022; 113 Shakoor, Ye, Chen (CR92) 2021; 779 Zhu, Chen, Yang, Wang, Wang, Zhang, Chen (CR152) 2020; 247 Yu, Tang, Zhang, Wang, Qiu, Song, Fu, Hu, Wang (CR129) 2022; 811 Fang, Tan, Liu, Hu, Wang (CR28) 2021; 2021 Wang, Zhang, Xu, Li (CR105) 2021; 413 Yoon, Kim, Song, Oh, Jo, Yang, Lee, Kang, Kim, Choi (CR123) 2021; 21 Zhang, Shao, Zhang, Zhang, Chen (CR135) 2020; 390 Ahmed, Mehmood, Nunez-Delgado, Qaswar, Ali, Ying, Liu, Mahmood, Chen (CR2) 2021; 780 Gholami, Rahimi (CR35) 2021; 16 Dong, Yan, Zhou, Huang, Liang, Zhang, Guo, Guo, Qian, Kong, Chu, Diao (CR24) 2021; 416 Tang, Zhao, Lyu, Li (CR98) 2021; 413 Xu, Wan, Sun, Cao, Hou, Alessi, Ok, Tsang (CR116) 2021; 425 Yang, Wang, Shi, Li, Li, Mao, Liao, Zhang, Wu (CR119) 2021; 33 Qu, Wang, Tian, Jiang, Deng, Tao, Jiang, Wang, Zhang (CR89) 2021; 401 Rahman, Lamb, Rahman, Bahar, Sanderson, Abbasi, Bari, Naidu (CR90) 2021; 409 Guo, Liu, Zhang (CR38) 2020; 102 Zhao, Gao, Sun, Fang, Li, Dai (CR146) 2021; 9 Zubair, Adnan Ramzani, Rasool, Khan, Ur-Rahman, Akhtar, Turan, Tauqeer, Farhad, Khan, Iqbal, Iqbal (CR157) 2021; 284 Bao, Wang, Zhang, Li, Li, Wu (CR10) 2020; 385 Feng, Guo, Zhang, Sun, Zhao, Shang, Sun, Wu, Tan (CR29) 2021; 410 Gayathri, Gopinath, Kumar (CR33) 2021; 262 Gopinath, Divyapriya, Srivastava, Laiju, Nidheesh, Kumar (CR37) 2021; 194 Li, Shao, Huang, Sang, Zheng, Jiang, Gao (CR60) 2022; 286 Huang, Gao, Deng, Khan, Liu, Song, Qiu (CR46) 2020; 715 Yin, Tao, Chen, Bolan, Sarkar, Lin, Wang (CR121) 2021; 420 Chen, Wei, Yang, Liu (CR13) 2021; 416 Huang, Bao, Shan, Qin, Wang, Yu, Chen, Xu (CR45) 2018; 211 Wu, Wang, Wang, Zhang, Pan (CR113) 2021; 754 Yang, Liu, Hao, Xie, Wang, Tian, Waterhouse, Kruge, Telfer, Ma (CR120) 2021; 33 Jiang, Yan, Wang, Li, Rao, Ju, Jian, Guo, Che (CR49) 2022; 286 Singh, Khandelwal, Ganie, Tiwari, Darbha (CR94) 2021; 418 El-Naggar, Ahmed, Mosa, Niazi, Yousaf, Sharma, Sarkar, Cai, Chang (CR25) 2021; 419 Czech, Kończak, Rakowska, Oleszczuk (CR23) 2021; 288 Fernandes, Bernardino, Mahler, Santelli, Braz, Borges, da Cunha Veloso, Romeiro, Cincotto (CR30) 2021; 232 Qiu, Hu, Chen, Yang, Wang (CR87) 2021; 3 Patra, Nanda, Dalai, Meda (CR81) 2021; 285 Zhong, Li, Tan, Gao, Qiu, Wei, Hao, Xia, Zhang (CR149) 2021; 793 Wang, Zheng, Zhan, Huang, Liu, Li, Yang, Liao, Chen, Zhang, Wang (CR106) 2021; 207 Ying, Hong, Jiali, Qinqin, Yuhui, Youqun, Zhibin, Xiaohong, Yunhai (CR122) 2020; 142 Ahmed, Mehmood, Nunez-Delgado, Ali, Qaswar, Khan, Ying, Chen (CR1) 2021; 771 Godlewska, Oleszczuk (CR36) 2022; 429 Herath, Layne, Perez, Hassan, Pittman, Mlsna (CR42) 2021; 269 Wang, Wang (CR101) 2019; 227 Yu, Lee, Ong, Chen, Chang, Lin, Show, Ling (CR126) 2021; 272 Cheng, Ji, Liu, Mu, Zhu (CR16) 2021; 242 Zhang, Tang, Guan (CR136) 2020; 8 Lyu, Wang, Wang, Yin, Li, Deng (CR70) 2021; 209 Cui, Xu, Wang, Tan, Cui, Wang, Li, She, Zheng (CR20) 2020; 729 Liu, Fang, Yuan, Li, Wang, Dai (CR63) 2021; 9 Xu, Bai, Yan, Ma (CR115) 2020; 105 Lawal, Hassan, Ahmad Farid, Tengku Yasim-Anuar, Samsudin, Mohd Yusoff, Zakaria, Mokhtar, Shirai (CR53) 2021; 269 Yuan, Wang, Pan, Shen, Wu (CR130) 2019; 659 Tang, Wang, Zhang, Pang, Wang, Chen, Li, Song, Qiu, Yu (CR97) 2021; 319 Miao, Li (CR76) 2021; 759 Nie, Yang, Chen, Muller, Shaheen, Rinklebe, Song, Xu, Wu, Wang (CR78) 2021; 408 Zhu, Zhao, Zhao, Yang, Chen, Shang (CR154) 2020; 247 Han, Sun, Sun, Yang, Fang, Xing (CR39) 2021; 145 Li, Li (CR55) 2019; 220 Kashif Irshad, Chen, Noman, Ibrahim, Adeel, Shang (CR51) 2020; 242 Liang, Xi, Tan, Meng, Hu, Wang (CR61) 2021; 3 Esfandiar, Suri, McKenzie (CR26) 2021; 274 Xu, Xu, Yu, Yao, Tsang, Cao (CR117) 2021; 414 Premarathna, Rajapaksha, Sarkar, Kwon, Bhatnagar, Ok, Vithanage (CR83) 2019; 372 Cheng, Wang, Wu, Lee, Xing, Chen, Gao (CR17) 2021; 273 J Wang (146_CR107) 2022; 331 CX Yang (146_CR118) 2021; 37 B Czech (146_CR23) 2021; 288 Q Li (146_CR58) 2021; 792 L Liu (146_CR64) 2021; 277 N Esfandiar (146_CR26) 2021; 274 H Zhang (146_CR135) 2020; 390 C Zhao (146_CR145) 2021; 767 P Zhang (146_CR139) 2021; 411 C Wu (146_CR114) 2022 J Zhao (146_CR146) 2021; 9 M Zhong (146_CR149) 2021; 793 J Wen (146_CR110) 2022; 286 S Nazari (146_CR77) 2019; 7 J Qu (146_CR89) 2021; 401 N Boskovic (146_CR11) 2021; 274 S Wang (146_CR108) 2022; 242 S Zhang (146_CR140) 2021; 291 X You (146_CR125) 2021; 417 D Zhang (146_CR138) 2021; 408 L Gholami (146_CR34) 2021; 42 S Yu (146_CR127) 2021; 800 L Cheng (146_CR16) 2021; 242 Y Su (146_CR96) 2021; 330 F Wu (146_CR112) 2021; 322 J Song (146_CR95) 2020; 391 146_CR48 J Wang (146_CR101) 2019; 227 H Zhang (146_CR133) 2017; 105 Y Li (146_CR60) 2022; 286 Q Wang (146_CR105) 2021; 413 M Wang (146_CR102) 2018; 63 P Zhang (146_CR137) 2020; 2 C Fu (146_CR31) 2020; 187 R Gayathri (146_CR33) 2021; 262 X Zhou (146_CR150) 2021; 416 H Liu (146_CR62) 2020; 747 G Zhang (146_CR134) 2020; 375 A El-Naggar (146_CR25) 2021; 419 X Chen (146_CR14) 2021; 405 SO Amusat (146_CR5) 2021; 41 W Ahmed (146_CR3) 2021; 9 M Fang (146_CR28) 2021; 2021 M Azeem (146_CR8) 2021; 277 G Yin (146_CR121) 2021; 420 S Cheng (146_CR15) 2020; 25 MB Shakoor (146_CR92) 2021; 779 T Chen (146_CR13) 2021; 416 T Nie (146_CR78) 2021; 408 C Nzediegwu (146_CR79) 2021; 412 L Silvani (146_CR93) 2019; 662 FX Dong (146_CR24) 2021; 416 D Zhu (146_CR152) 2020; 247 M Azeem (146_CR7) 2021; 282 J Tang (146_CR98) 2021; 413 Y Xu (146_CR115) 2020; 105 M Zubair (146_CR157) 2021; 284 W Ahmed (146_CR2) 2021; 780 HY Wang (146_CR103) 2019; 26 Z Xu (146_CR117) 2021; 414 S Zhu (146_CR154) 2020; 247 P Godlewska (146_CR36) 2022; 429 L Liu (146_CR63) 2021; 9 Y-G Lee (146_CR54) 2021; 14 S Wan (146_CR100) 2020; 402 W Ahmed (146_CR1) 2021; 771 H Pan (146_CR80) 2021; 763 Z Xu (146_CR116) 2021; 425 X Wang (146_CR104) 2020; 708 N Cheng (146_CR17) 2021; 273 B Li (146_CR55) 2019; 220 Z Fang (146_CR27) 2020; 390 L Gholami (146_CR35) 2021; 16 C Zhao (146_CR143) 2021; 287 Y Ma (146_CR72) 2021; 292 S Huang (146_CR45) 2018; 211 H Zou (146_CR155) 2021; 413 R Zhao (146_CR148) 2021; 799 JO Fernandes (146_CR30) 2021; 232 S Cheng (146_CR18) 2021; 314 RV Hemavathy (146_CR41) 2020; 249 Q Miao (146_CR76) 2021; 759 H Tang (146_CR97) 2021; 319 A Herath (146_CR42) 2021; 269 MS Islam (146_CR47) 2021; 281 S Jiang (146_CR49) 2022; 286 J Wu (146_CR113) 2021; 754 Y Li (146_CR56) 2021; 3 A Mandal (146_CR75) 2021; 295 P Lyu (146_CR70) 2021; 209 L Ma (146_CR74) 2022; 287 Y Qiu (146_CR85) 2020; 389 Y Yu (146_CR128) 2021; 417 H Zeng (146_CR132) 2021; 286 L Zhang (146_CR136) 2020; 8 T Cai (146_CR12) 2021; 281 X-J Liu (146_CR67) 2021; 12 J-Y Yoon (146_CR123) 2021; 21 AA Lawal (146_CR53) 2021; 269 X You (146_CR124) 2020; 390 L Liang (146_CR61) 2021; 3 KL Yu (146_CR126) 2021; 272 C Zhao (146_CR144) 2021; 416 A Gopinath (146_CR37) 2021; 194 S Zhu (146_CR153) 2020; 276 G Cheng (146_CR19) 2021; 66 R Tian (146_CR99) 2021; 425 J Qu (146_CR88) 2020; 250 KSD Premarathna (146_CR83) 2019; 372 Y Wang (146_CR106) 2021; 207 YT Zou (146_CR156) 2022; 115 H Yang (146_CR120) 2021; 33 S Liu (146_CR66) 2021; 22 L Han (146_CR39) 2021; 145 R Liu (146_CR68) 2022; 287 MA Rahman (146_CR90) 2021; 409 X Zhang (146_CR141) 2021; 320 N Zhao (146_CR147) 2021; 404 P Liu (146_CR65) 2021; 767 Q Cui (146_CR20) 2020; 729 H Fu (146_CR32) 2021; 281 N Singh (146_CR94) 2021; 418 D Feng (146_CR29) 2021; 410 W Qian (146_CR84) 2022; 113 C Ri (146_CR91) 2022; 113 H Bao (146_CR10) 2020; 385 BR Patra (146_CR81) 2021; 285 A Peter (146_CR82) 2021; 290 SJ Li (146_CR59) 2021; 64 X-X Guo (146_CR38) 2020; 102 EF Zama (146_CR131) 2018; 18 Y Li (146_CR57) 2021; 420 H Zhou (146_CR151) 2022; 115 M Kashif Irshad (146_CR51) 2020; 242 J Zhao (146_CR142) 2019; 688 F Yang (146_CR119) 2021; 33 L Cui (146_CR21) 2021; 3 M Kamali (146_CR50) 2021; 420 M Qiu (146_CR87) 2021; 3 Z Hao (146_CR40) 2021; 401 P Yuan (146_CR130) 2019; 659 S Bai (146_CR9) 2021; 268 X Cuong Nguyen (146_CR22) 2021; 282 D Ying (146_CR122) 2020; 142 B Wu (146_CR111) 2021; 789 Z Wang (146_CR109) 2022; 287 M Arif (146_CR6) 2021; 310 Y Huang (146_CR46) 2020; 715 Y Ma (146_CR71) 2020; 718 S Yu (146_CR129) 2022; 811 Y Ma (146_CR73) 2021; 407 S Khalid (146_CR52) 2020; 711 B Qiu (146_CR86) 2021; 155 W Ahmed (146_CR4) 2021; 201 Y Hou (146_CR43) 2021; 329 L Lonappan (146_CR69) 2020; 244 B Hu (146_CR44) 2020; 2 |
References_xml | – volume: 3 start-page: 511 year: 2021 end-page: 518 ident: CR21 article-title: Physicochemical disintegration of biochar: a potentially important process for long-term cadmium and lead sorption publication-title: Biochar – volume: 407 start-page: 124777 year: 2021 ident: CR73 article-title: A novel, efficient and sustainable magnetic sludge biochar modified by graphene oxide for environmental concentration imidacloprid removal publication-title: J Hazard Mater – volume: 12 start-page: 1434 year: 2021 end-page: 1445 ident: CR67 article-title: Manganese-modified lignin biochar as adsorbent for removal of methylene blue publication-title: J Mater Res Technol – volume: 319 start-page: 128641 year: 2021 ident: CR97 article-title: Recent advances in nanoscale zero-valent iron-based materials: characteristics, environmental remediation and challenges publication-title: J Clean Prod – volume: 314 start-page: 128074 year: 2021 ident: CR18 article-title: Lead and cadmium clean removal from wastewater by sustainable biochar derived from poplar saw dust publication-title: J Clean Prod – volume: 288 start-page: 125686 year: 2021 ident: CR23 article-title: Engineered biochars from organic wastes for the adsorption of diclofenac, naproxen and triclosan from water systems publication-title: J Clean Prod – volume: 391 start-page: 121692 year: 2020 ident: CR95 article-title: Preparation of montmorillonite modified biochar with various temperatures and their mechanism for Zn ion removal publication-title: J Hazard Mater – volume: 771 start-page: 144955 year: 2021 ident: CR1 article-title: Utilization of L. seeds to synthesize a novel MnFe2O4-biochar adsorbent for the removal of U(VI) from wastewater: insights and comparison between modified and raw biochar publication-title: Sci Total Environ – volume: 115 start-page: 190 year: 2022 end-page: 214 ident: CR156 article-title: Application of aluminosilicate clay mineral-based composites in photocatalysis publication-title: J Environ Sci – volume: 145 start-page: 111133 year: 2021 ident: CR39 article-title: Effect of Fe and Al ions on the production of biochar from agricultural biomass: properties, stability and adsorption efficiency of biochar publication-title: Renew Sustain Energy Rev – volume: 287 start-page: 132313 year: 2022 ident: CR109 article-title: Application of carbon dots and their composite materials for the detection and removal of radioactive ions: a review publication-title: Chemosphere – volume: 105 start-page: 511 year: 2020 end-page: 519 ident: CR115 article-title: Influence of sodium hydroxide addition on characteristics and environmental risk of heavy metals in biochars derived from swine manure publication-title: Waste Manag – volume: 425 start-page: 131489 year: 2021 ident: CR116 article-title: Unraveling iron speciation on Fe-biochar with distinct arsenic removal mechanisms and depth distributions of As and Fe publication-title: Chem Eng J – volume: 273 start-page: 116448 year: 2021 ident: CR17 article-title: Adsorption of emerging contaminants from water and wastewater by modified biochar: a review publication-title: Environ Pollut – volume: 729 start-page: 138892 year: 2020 ident: CR20 article-title: Phosphorus recovery by core-shell γ-Al O /Fe O biochar composite from aqueous phosphate solutions publication-title: Sci Total Environ – volume: 232 start-page: 67 year: 2021 ident: CR30 article-title: Biochar generated from agro-Industry sugarcane residue by low temperature pyrolysis utilized as an adsorption agent for the removal of thiamethoxam pesticide in wastewater publication-title: Water Air Soil Poll – volume: 247 start-page: 125847 year: 2020 ident: CR152 article-title: Synthesis and characterization of magnesium oxide nanoparticle-containing biochar composites for efficient phosphorus removal from aqueous solution publication-title: Chemosphere – volume: 763 start-page: 144218 year: 2021 ident: CR80 article-title: Pristine and iron-engineered animal- and plant-derived biochars enhanced bacterial abundance and immobilized arsenic and lead in a contaminated soil publication-title: Sci Total Environ – volume: 416 start-page: 125822 year: 2021 ident: CR13 article-title: Highly efficient As(III) removal in water using millimeter-sized porous granular MgO-biochar with high adsorption capacity publication-title: J Hazard Mater – volume: 413 start-page: 125252 year: 2021 ident: CR155 article-title: Ball milling biochar iron oxide composites for the removal of chromium (Cr(VI)) from water: performance and mechanisms publication-title: J Hazard Mater – volume: 401 start-page: 123859 year: 2021 ident: CR40 article-title: Novel magnetic loofah sponge biochar enhancing microbial responses for the remediation of polycyclic aromatic hydrocarbons-contaminated sediment publication-title: J Hazard Mater – volume: 789 start-page: 148031 year: 2021 ident: CR111 article-title: Interpret the elimination behaviors of lead and vanadium from the water by employing functionalized biochars in diverse environmental conditions publication-title: Sci Total Environ – volume: 413 start-page: 125385 year: 2021 ident: CR105 article-title: Pyrolysis of penicillin fermentation residue and sludge to produce biochar: antibiotic resistance genes destruction and biochar application in the adsorption of penicillin in water publication-title: J Hazard Mater – volume: 25 start-page: 3167 year: 2020 ident: CR15 article-title: Application research of biochar for the remediation of soil heavy metals contamination: a review publication-title: Molecules – volume: 286 start-page: 124964 year: 2021 ident: CR132 article-title: Efficient adsorption of Cr(VI) from aqueous environments by phosphoric acid activated eucalyptus biochar publication-title: J Clean Prod – volume: 402 start-page: 126021 year: 2020 ident: CR100 article-title: Accelerated antimony and copper removal by manganese oxide embedded in biochar with enlarged pore structure publication-title: Chem Eng J – volume: 329 start-page: 124877 year: 2021 ident: CR43 article-title: Facile preparation of multi-porous biochar from lotus biomass for methyl orange removal: kinetics, isotherms, and regeneration studies publication-title: Bioresour Technol – volume: 244 start-page: 118841 year: 2020 ident: CR69 article-title: Development of biochar-based green functional materials using organic acids for environmental applications publication-title: J Clean Prod – volume: 33 start-page: 55 year: 2021 end-page: 65 ident: CR119 article-title: Immobilization of heavy metals (Cd, Zn, and Pb) in different contaminated soils with swine manure biochar publication-title: Env Pollut Bioavail – volume: 250 start-page: 117003 year: 2020 ident: CR88 article-title: Microwave-assisted one pot synthesis of beta-cyclodextrin modified biochar for concurrent removal of Pb(II) and bisphenol a in water publication-title: Carbohydr Polym – volume: 247 start-page: 119579 year: 2020 ident: CR154 article-title: Goethite modified biochar as a multifunctional amendment for cationic Cd(II), anionic As(III), roxarsone, and phosphorus in soil and water publication-title: J Clean Prod – volume: 201 start-page: 111518 year: 2021 ident: CR4 article-title: Highly efficient uranium (VI) capture from aqueous solution by means of a hydroxyapatite-biochar nanocomposite: adsorption behavior and mechanism publication-title: Environ Res – volume: 718 start-page: 137299 year: 2020 ident: CR71 article-title: Carbon nanotube supported sludge biochar as an efficient adsorbent for low concentrations of sulfamethoxazole removal publication-title: Sci Total Environ – volume: 411 start-page: 128502 year: 2021 ident: CR139 article-title: Preparation of graphite-like biochars derived from straw and newspaper based on ball-milling and TEMPO-mediated oxidation and their supersorption performances to imidacloprid and sulfadiazine publication-title: Chem Eng J – volume: 417 start-page: 129183 year: 2021 ident: CR128 article-title: Synergistic role of bulk carbon and iron minerals inherent in the sludge-derived biochar for As(V) immobilization publication-title: Chem Eng J – volume: 416 start-page: 129027 year: 2021 ident: CR150 article-title: New notion of biochar: a review on the mechanism of biochar applications in advanced oxidation processes publication-title: Chem Eng J – volume: 64 start-page: 1323 year: 2021 end-page: 1331 ident: CR59 article-title: Rapid and selective uranium extraction from aqueous solution under visible light in the absence of solid photocatalyst publication-title: Sci China Chem – volume: 330 start-page: 124947 year: 2021 ident: CR96 article-title: The mechanism transformation of ramie biochar’s cadmium adsorption by aging publication-title: Bioresour Technol – volume: 418 start-page: 129405 year: 2021 ident: CR94 article-title: Eco-friendly magnetic biochar: an effective trap for nanoplastics of varying surface functionality and size in the aqueous environment publication-title: Chem Eng J – volume: 242 start-page: 116739 year: 2021 ident: CR16 article-title: Sorption mechanism of organic dyes on a novel self-nitrogen-doped porous graphite biochar: coupling DFT calculations with experiments publication-title: Chem Eng Sci – volume: 268 start-page: 128805 year: 2021 ident: CR9 article-title: Sorption mechanisms of antibiotic sulfamethazine (SMT) on magnetite-coated biochar: pH-dependence and redox transformation publication-title: Chemosphere – volume: 14 start-page: 1297 year: 2021 ident: CR54 article-title: Effects of NaOH activation on adsorptive removal of herbicides by biochars prepared from ground coffee residues publication-title: Energies – volume: 413 start-page: 125415 year: 2021 ident: CR98 article-title: Development of a novel pyrite/biochar composite (BM-FeS @BC) by ball milling for aqueous Cr(VI) removal and its mechanisms publication-title: J Hazard Mater – volume: 26 start-page: 8575 issue: 9 year: 2019 end-page: 8584 ident: CR103 article-title: Simultaneous adsorption and immobilization of As and Cd by birnessite-loaded biochar in water and soil publication-title: Environ Sci Pollut Res – volume: 242 start-page: 106798 year: 2022 ident: CR108 article-title: Effect of Shewanella oneidensis MR-1 on U(VI) sequestration by montmorillonite publication-title: J Environ Radioactiv – volume: 187 start-page: 109763 year: 2020 ident: CR31 article-title: The single/co-adsorption characteristics and microscopic adsorption mechanism of biochar-montmorillonite composite adsorbent for pharmaceutical emerging organic contaminant atenolol and lead ions publication-title: Ecotoxicol Environ Saf – volume: 287 start-page: 117303 year: 2021 ident: CR143 article-title: Preparation of biochar-interpenetrated iron-alginate hydrogel as a pH-independent sorbent for removal of Cr(VI) and Pb(II) publication-title: Environ Pollut – volume: 194 start-page: 110656 year: 2021 ident: CR37 article-title: Conversion of sewage sludge into biochar: a potential resource in water and wastewater treatment publication-title: Environ Res – volume: 113 start-page: 12 year: 2022 end-page: 25 ident: CR91 article-title: Enhanced microbial reduction of aqueous hexavalent chromium by Shewanella oneidensis MR-1 with biochar as electron shuttle publication-title: J Environ Sci – volume: 420 start-page: 126655 year: 2021 ident: CR57 article-title: Application of co-pyrolysis biochar for the adsorption and immobilization of heavy metals in contaminated environmental substrates publication-title: J Hazard Mater – volume: 220 start-page: 28 year: 2019 end-page: 39 ident: CR55 article-title: Effect of nitric acid pre-oxidation concentration on pore structure and nitrogen/oxygen active decoration sites of ethylenediamine-modified biochar for mercury(II) adsorption and the possible mechanism publication-title: Chemosphere – volume: 18 start-page: 2433 year: 2018 end-page: 2450 ident: CR131 article-title: Advances in research on the use of biochar in soil for remediation: a review publication-title: J Soil Sediment – volume: 286 start-page: 131470 year: 2022 ident: CR60 article-title: Enhanced remediation of heavy metals contaminated soils with EK-PRB using β-CD/hydrothermal biochar by waste cotton as reactive barrier publication-title: Chemosphere – volume: 779 start-page: 146240 year: 2021 ident: CR92 article-title: Engineered biochars for recovering phosphate and ammonium from wastewater: a review publication-title: Sci Total Environ – volume: 22 start-page: 101388 year: 2021 ident: CR66 article-title: Adsorption characteristics of modified rice straw biochar for Zn and in-situ remediation of Zn contaminated soil publication-title: Environ Technol Inno – volume: 412 start-page: 125255 year: 2021 ident: CR79 article-title: Lead(II) adsorption on microwave-pyrolyzed biochars and hydrochars depends on feedstock type and production temperature publication-title: J Hazard Mater – volume: 9 start-page: 105104 year: 2021 ident: CR3 article-title: Oxidized biochar obtained from rice straw as adsorbent to remove uranium (VI) from aqueous solutions publication-title: J Environ Chem Eng – volume: 662 start-page: 873 year: 2019 end-page: 880 ident: CR93 article-title: Can polyethylene passive samplers predict polychlorinated biphenyls (PCBs) uptake by earthworms and turnips in a biochar amended soil? publication-title: Sci Total Environ – volume: 274 start-page: 129700 year: 2021 ident: CR11 article-title: Conazole fungicides epoxiconazole and tebuconazole in biochar amended soils: degradation and bioaccumulation in earthworms publication-title: Chemosphere – volume: 390 start-page: 124611 year: 2020 ident: CR27 article-title: Conversion of biological solid waste to graphene-containing biochar for water remediation: a critical review publication-title: Chem Eng J – volume: 793 start-page: 148098 year: 2021 ident: CR149 article-title: Investigations of Cr(VI) removal by millet bran biochar modified with inorganic compounds: momentous role of additional lactate publication-title: Sci Total Environ – volume: 41 start-page: 101993 year: 2021 ident: CR5 article-title: Ball-milling synthesis of biochar and biochar-based nanocomposites and prospects for removal of emerging contaminants: a review publication-title: J Water Process Eng – volume: 287 start-page: 132087 year: 2022 ident: CR68 article-title: Improved Pb(II) removal in aqueous solution by sulfide@biochar and polysaccharose-FeS@ biochar composites: efficiencies and mechanisms publication-title: Chemosphere – volume: 16 start-page: 100468 year: 2021 ident: CR35 article-title: Efficiency of CH N S-modified biochar derived from potato peel on the adsorption and fractionation of cadmium, zinc and copper in contaminated acidic soil publication-title: Environ Nanotechnol Monit Manag – year: 2022 ident: CR114 article-title: Using biochar to strengthen the removal of antibiotic resistance genes: performance and mechanism publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.151554 – volume: 295 start-page: 113104 year: 2021 ident: CR75 article-title: Sorption mechanisms of pesticides removal from effluent matrix using biochar: conclusions from molecular modelling studies validated by single-, binary and ternary solute experiments publication-title: J Environ Manage – volume: 262 start-page: 128031 year: 2021 ident: CR33 article-title: Adsorptive separation of toxic metals from aquatic environment using agro waste biochar: application in electroplating industrial wastewater publication-title: Chemosphere – volume: 767 start-page: 145305 year: 2021 ident: CR145 article-title: Formation and mechanisms of nano-metal oxide-biochar composites for pollutants removal: a review publication-title: Sci Total Environ – volume: 9 start-page: 105585 year: 2021 ident: CR146 article-title: New use for biochar derived from bovine manure for tetracycline removal publication-title: J Environ Chem Eng – volume: 277 start-page: 130273 year: 2021 ident: CR64 article-title: Reduction and removal of As(V) in aqueous solution by biochar derived from nano zero-valent-iron (nZVI) and sewage sludge publication-title: Chemosphere – volume: 42 start-page: 3523 year: 2021 end-page: 3532 ident: CR34 article-title: Chemical fractionation of copper and zinc after addition of carrot pulp biochar and thiourea-modified biochar to a contaminated soil publication-title: Environ Technol – volume: 290 start-page: 112569 year: 2021 ident: CR82 article-title: Enhanced activation of ultrasonic pre-treated softwood biochar for efficient heavy metal removal from water publication-title: J Environ Manag – volume: 416 start-page: 125930 year: 2021 ident: CR24 article-title: Simultaneous adsorption of Cr(VI) and phenol by biochar-based iron oxide composites in water: performance, kinetics and mechanism publication-title: J Hazard Mater – volume: 792 start-page: 148546 year: 2021 ident: CR58 article-title: Removal of organic compounds by nanoscale zero-valent iron and its composites publication-title: Sci Total Environ – volume: 429 start-page: 132143 year: 2022 ident: CR36 article-title: Effect of biomass addition before sewage sludge pyrolysis on the persistence and bioavailability of polycyclic aromatic hydrocarbons in biochar-amended soil publication-title: Chem Eng J – volume: 282 start-page: 131016 year: 2021 ident: CR7 article-title: Effects of sheep bone biochar on soil quality, maize growth, and fractionation and phytoavailability of Cd and Zn in a mining-contaminated soil publication-title: Chemosphere – volume: 209 start-page: 106146 year: 2021 ident: CR70 article-title: Adsorption and interaction mechanism of uranium (VI) from aqueous solutions on phosphate-impregnation biochar cross-linked Mg Al layered double-hydroxide composite publication-title: Appl Clay Sci – volume: 401 start-page: 123292 year: 2021 ident: CR89 article-title: KOH-activated porous biochar with high specific surface area for adsorptive removal of chromium (VI) and naphthalene from water: affecting factors, mechanisms and reusability exploration publication-title: J Hazard Mater – volume: 331 start-page: 130023 year: 2022 ident: CR107 article-title: Water purification and environmental remediation applications of carbonaceous nanofiber-based materials publication-title: J Clean Prod – volume: 375 start-page: 114497 year: 2020 ident: CR134 article-title: Mechanism of biochar as a biostimulation strategy to remove polycyclic aromatic hydrocarbons from heavily contaminated soil in a coking plant publication-title: Geoderma – volume: 409 start-page: 124488 year: 2021 ident: CR90 article-title: Removal of arsenate from contaminated waters by novel zirconium and zirconium-iron modified biochar publication-title: J Hazard Mater – volume: 389 start-page: 124471 year: 2020 ident: CR85 article-title: Contribution of different iron species in the iron-biochar composites to sorption and degradation of two dyes with varying properties publication-title: Chem Eng J – volume: 269 start-page: 116197 year: 2021 ident: CR53 article-title: Adsorption mechanism and effectiveness of phenol and tannic acid removal by biochar produced from oil palm frond using steam pyrolysis publication-title: Environ Pollut – volume: 9 start-page: 106238 issue: 5 year: 2021 ident: CR63 article-title: Metolachlor-adsorption on the walnut shell biochar modified by the fulvic acid and citric acid in water publication-title: J Environ Chemi Eng – volume: 272 start-page: 115986 year: 2021 ident: CR126 article-title: Adsorptive removal of cationic methylene blue and anionic Congo red dyes using wet-torrefied microalgal biochar: equilibrium, kinetic and mechanism modeling publication-title: Environ Pollut – volume: 105 start-page: 136 year: 2017 end-page: 146 ident: CR133 article-title: Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy publication-title: Biomass Bioenerg – volume: 292 start-page: 126005 year: 2021 ident: CR72 article-title: Adsorptive removal of imidacloprid by potassium hydroxide activated magnetic sugarcane bagasse biochar: adsorption efficiency, mechanism and regeneration publication-title: J Clean Prod – volume: 425 start-page: 130585 year: 2021 ident: CR99 article-title: Electrochemical behaviors of biochar materials during pollutant removal in wastewater: a review publication-title: Chem Eng J – volume: 21 start-page: 101242 year: 2021 ident: CR123 article-title: Assessment of adsorptive behaviors and properties of grape pomace-derived biochar as adsorbent for removal of cymoxanil pesticide publication-title: Environ Technol Inno – volume: 408 start-page: 124850 year: 2021 ident: CR78 article-title: Effect of biochar aging and co-existence of diethyl phthalate on the mono-sorption of cadmium and zinc to biochar-treated soils publication-title: J Hazard Mater – volume: 142 start-page: 105772 year: 2020 ident: CR122 article-title: Removal of uranium using MnO /orange peel biochar composite prepared by activation and in-situ deposit in a single step publication-title: Biomass Bioenerg – volume: 33 start-page: 2106621 year: 2021 ident: CR120 article-title: Functionalized iron−nitrogen−carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater publication-title: Adv Mater – volume: 800 start-page: 149662 year: 2021 ident: CR127 article-title: Recent advances in metal-organic framework membranes for water treatment: a review publication-title: Sci Total Environ – volume: 410 start-page: 127707 year: 2021 ident: CR29 article-title: Functionalized construction of biochar with hierarchical pore structures and surface O-/N-containing groups for phenol adsorption publication-title: Chem Eng J – volume: 211 start-page: 120 year: 2018 end-page: 127 ident: CR45 article-title: Dynamic changes of polychlorinated biphenyls (PCBs) degradation and adsorption to biochar as affected by soil organic carbon content publication-title: Chemosphere – volume: 767 start-page: 145447 year: 2021 ident: CR65 article-title: Capacity and potential mechanisms of Cd(II) adsorption from aqueous solution by blue algae-derived biochars publication-title: Sci Total Environ – volume: 419 start-page: 126421 year: 2021 ident: CR25 article-title: Nickel in soil and water: sources, biogeochemistry, and remediation using biochar publication-title: J Hazard Mater – volume: 417 start-page: 126047 year: 2021 ident: CR125 article-title: Biochar decreased enantioselective uptake of chiral pesticide metalaxyl by lettuce and shifted bacterial community in agricultural soil publication-title: J Hazard Mater – volume: 715 start-page: 136957 year: 2020 ident: CR46 article-title: Efficient oxidation and adsorption of As(III) and As(V) in water using a Fenton-like reagent, (ferrihydrite)-loaded biochar publication-title: Sci Total Environ – volume: 408 start-page: 124860 year: 2021 ident: CR138 article-title: Cadmium removal by MgCl modified biochar derived from crayfish shell waste: Batch adsorption, response surface analysis and fixed bed filtration publication-title: J Hazard Mater – volume: 113 start-page: 231 year: 2022 end-page: 241 ident: CR84 article-title: A porous biochar supported nanoscale zero-valent iron material highly efficient for the simultaneous remediation of cadmium and lead contaminated soil publication-title: J Environ Sci – volume: 281 start-page: 125390 year: 2021 ident: CR12 article-title: Silicate-modified oiltea camellia shell-derived biochar: a novel and cost-effective sorbent for cadmium removal publication-title: J Clean Prod – volume: 711 start-page: 134645 year: 2020 ident: CR52 article-title: A critical review of different factors governing the fate of pesticides in soil under biochar application publication-title: Sci Total Environ – volume: 320 start-page: 124264 issue: Pt A year: 2021 ident: CR141 article-title: Enhanced adsorption of tetracycline by an iron and manganese oxides loaded biochar: kinetics, mechanism and column adsorption publication-title: Bioresour Technol – volume: 3 start-page: 535 year: 2021 end-page: 543 ident: CR56 article-title: Transformation and immobilization of hexavalent chromium in the co-presence of biochar and organic acids: effects of biochar dose and reaction time publication-title: Biochar – volume: 249 start-page: 119390 year: 2020 ident: CR41 article-title: Adsorptive separation of Cu(II) ions from aqueous medium using thermally/chemically treated Cassia fistula based biochar publication-title: J Clean Prod – volume: 281 start-page: 130990 year: 2021 ident: CR32 article-title: Hierarchically porous magnetic biochar as an efficient amendment for cadmium in water and soil: performance and mechanism publication-title: Chemosphere – volume: 286 start-page: 131666 year: 2022 ident: CR49 article-title: Recyclable nitrogen-doped biochar via low-temperature pyrolysis for enhanced lead(II) removal publication-title: Chemosphere – volume: 287 start-page: 132184 year: 2022 ident: CR74 article-title: Highly efficient removal of Cr(VI) from aqueous solution by pinecone biochar supported nanoscale zero-valent iron coupling with Shewanella oneidensis MR-1 publication-title: Chemosphere – volume: 420 start-page: 129946 year: 2021 ident: CR50 article-title: Biochar in water and wastewater treatment—a sustainability assessment publication-title: Chem Eng J – volume: 242 start-page: 125152 year: 2020 ident: CR51 article-title: Goethite-modified biochar restricts the mobility and transfer of cadmium in soil-rice system publication-title: Chemosphere – volume: 322 start-page: 124539 year: 2021 ident: CR112 article-title: Industrial alkali lignin-derived biochar as highly efficient and low-cost adsorption material for Pb(II) from aquatic environment publication-title: Bioresour Technol – volume: 227 start-page: 1002 year: 2019 end-page: 1022 ident: CR101 article-title: Preparation, modification and environmental application of biochar: a review publication-title: J Clean Prod – volume: 405 start-page: 124226 year: 2021 ident: CR14 article-title: Application of iron-biochar composite in topsoil for simultaneous remediation of chromium-contaminated soil and groundwater: immobilization mechanism and long-term stability publication-title: J Hazard Mater – volume: 372 start-page: 536 year: 2019 end-page: 550 ident: CR83 article-title: Biochar-based engineered composites for sorptive decontamination of water: a review publication-title: Chem Eng J – volume: 63 start-page: 156 year: 2018 end-page: 173 ident: CR102 article-title: Review on utilization of biochar for metal-contaminated soil and sediment remediation publication-title: J Environ Sci – volume: 310 start-page: 127548 year: 2021 ident: CR6 article-title: Synthesis, characteristics and mechanistic insight into the clays and clay minerals-biochar surface interactions for contaminants removal-a review publication-title: J Clean Prod – volume: 282 start-page: 131009 year: 2021 ident: CR22 article-title: Sustainable carbonaceous biochar adsorbents derived from agro-wastes and invasive plants for cation dye adsorption from water publication-title: Chemosphere – volume: 2 start-page: 47 issue: 1 year: 2020 end-page: 64 ident: CR44 article-title: Efficient elimination of organic and inorganic pollutants by biochar and biochar-based materials publication-title: Biochar – volume: 416 start-page: 128829 year: 2021 ident: CR144 article-title: Activation of peroxymonosulfate by biochar-based catalysts and applications in the degradation of organic contaminants: a review publication-title: Chem Eng J – volume: 2021 start-page: 9794329 year: 2021 ident: CR28 article-title: Recent progress on metal-enhanced photocatalysis: a review on the mechanism publication-title: Research – volume: 747 start-page: 141492 year: 2020 ident: CR62 article-title: The characteristics of pharmaceutical sludge-derived biochar and its application for the adsorption of tetracycline publication-title: Sci Total Environ – volume: 390 start-page: 121749 year: 2020 ident: CR124 article-title: Biochar reduced Chinese chive ( ) uptake and dissipation of thiamethoxam in an agricultural soil publication-title: J Hazard Mater – volume: 155 start-page: 105081 year: 2021 ident: CR86 article-title: Biochar as a low-cost adsorbent for aqueous heavy metal removal: a review publication-title: J Anal Appl Pyrol – volume: 277 start-page: 116800 year: 2021 ident: CR8 article-title: Bone-derived biochar improved soil quality and reduced Cd and Zn phytoavailability in a multi-metal contaminated mining soil publication-title: Environ Pollut – volume: 281 start-page: 117094 year: 2021 ident: CR47 article-title: Biochar heavy metal removal in aqueous solution depends on feedstock type and pyrolysis purging gas publication-title: Environ Pollut – volume: 115 start-page: 227 year: 2022 end-page: 239 ident: CR151 article-title: Sodium citrate and biochar synergistic improvement of nanoscale zero-valent iron composite for the removal of chromium (VI) in aqueous solutions publication-title: J Environ Sci – volume: 207 start-page: 111294 year: 2021 ident: CR106 article-title: Highly effiective stabilization of Cd and Cu in two different soils and improvement of soil properties by multiple-modified biochar publication-title: Ecotoxicol Environ Saf – volume: 390 start-page: 121349 year: 2020 ident: CR135 article-title: Effect of phosphorus-modified biochars on immobilization of Cu (II), Cd (II), and As (V) in paddy soil publication-title: J Hazard Mater – volume: 404 start-page: 124162 year: 2021 ident: CR147 article-title: Microscopic mechanism about the selective adsorption of Cr(VI) from salt solution on O-rich and N-rich biochars publication-title: J Hazard Mater – volume: 3 start-page: 255 issue: 3 year: 2021 end-page: 281 ident: CR61 article-title: Review of organic and inorganic pollutants removal by biochar and biochar-based composites publication-title: Biochar – volume: 276 start-page: 123009 year: 2020 ident: CR153 article-title: Green sustainable and highly efficient hematite nanoparticles modified biochar-clay granular composite for Cr(VI) removal and related mechanism publication-title: J Clean Prod – volume: 759 start-page: 143452 year: 2021 ident: CR76 article-title: Potassium phosphate/magnesium oxide modified biochars: interfacial chemical behaviours and Pb binding performance publication-title: Sci Total Environ – ident: CR48 – volume: 102 start-page: 884 year: 2020 end-page: 899 ident: CR38 article-title: The role of biochar in organic waste composting and soil improvement: a review publication-title: Waste Manag – volume: 285 start-page: 131531 year: 2021 ident: CR81 article-title: Taguchi-based process optimization for activation of agro-food waste biochar and performance test for dye adsorption publication-title: Chemosphere – volume: 286 start-page: 131918 year: 2022 ident: CR110 article-title: Insights into aqueous reduction of Cr(VI) by biochar and its iron-modified counterpart in the presence of organic acids publication-title: Chemosphere – volume: 37 start-page: 9253 issue: 30 year: 2021 end-page: 9263 ident: CR118 article-title: Preparation and characterization of phosphoric acid-modified biochar nanomaterials with highly efficient adsorption and photodegradation ability publication-title: Langmuir – volume: 3 start-page: 117 year: 2021 end-page: 123 ident: CR87 article-title: Challenges of organic pollutant photocatalysis by biochar-based catalysts publication-title: Biochar – volume: 7 start-page: 103064 issue: 3 year: 2019 ident: CR77 article-title: Effectiveness of native and citric acid-enriched biochar of Chickpea straw in Cd and Pb sorption in an acidic soil publication-title: J Environ Chemi Eng – volume: 291 start-page: 118076 year: 2021 ident: CR140 article-title: Applications of water-stable metal-organic frameworks in the removal of water pollutants: a review publication-title: Environ Pollut – volume: 780 start-page: 146617 year: 2021 ident: CR2 article-title: Fabrication, characterization and U(VI) sorption properties of a novel biochar derived from Tribulus terrestris via two different approaches publication-title: Sci Total Environ – volume: 385 start-page: 121595 year: 2020 ident: CR10 article-title: Effects of biochar and organic substrates on biodegradation of polycyclic aromatic hydrocarbons and microbial community structure in PAHs-contaminated soils publication-title: J Hazard Mater – volume: 66 start-page: 1996 year: 2021 end-page: 2001 ident: CR19 article-title: Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity publication-title: Sci Bull – volume: 811 start-page: 152280 year: 2022 ident: CR129 article-title: MXenes as emerging nanomaterials in water purification and environmental remediation publication-title: Sci Total Environ – volume: 708 start-page: 134575 year: 2020 ident: CR104 article-title: Porous biochar modified with polyethyleneimine (PEI) for effective enrichment of U(VI) in aqueous solution publication-title: Sci Total Environ – volume: 420 start-page: 126487 year: 2021 ident: CR121 article-title: Quantitative analysis on the mechanism of Cd removal by MgCl -modified biochar in aqueous solutions publication-title: J Hazard Mater – volume: 659 start-page: 473 year: 2019 end-page: 490 ident: CR130 article-title: Review of biochar for the management of contaminated soil: preparation, application and prospect publication-title: Sci Total Environ – volume: 8 start-page: 16451 issue: 44 year: 2020 end-page: 16462 ident: CR136 article-title: Excellent adsorption–desorption of ammonium by a poly(acrylic acid)-grafted chitosan and biochar composite for sustainable agricultural development publication-title: ACS Sustain Chem Eng – volume: 284 start-page: 112047 year: 2021 ident: CR157 article-title: Efficacy of chitosan-coated textile waste biochar applied to Cd-polluted soil for reducing Cd mobility in soil and its distribution in moringa ( L.) publication-title: J Environ Manage – volume: 274 start-page: 129812 year: 2021 ident: CR26 article-title: Simultaneous removal of multiple polycyclic aromatic hydrocarbons (PAHs) from urban stormwater using low-cost agricultural/industrial byproducts as sorbents publication-title: Chemosphere – volume: 414 start-page: 125483 year: 2021 ident: CR117 article-title: Evolution of redox activity of biochar during interaction with soil minerals: effect on the electron donating and mediating capacities for Cr(VI) reduction publication-title: J Hazard Mater – volume: 2 start-page: 329 issue: 3 year: 2020 end-page: 341 ident: CR137 article-title: Sorption and degradation of imidacloprid and clothianidin in Chinese paddy soil and red soil amended with biochars publication-title: Biochar – volume: 269 start-page: 128409 year: 2021 ident: CR42 article-title: KOH-activated high surface area Douglas Fir biochar for adsorbing aqueous Cr(VI), Pb(II) and Cd(II) publication-title: Chemosphere – volume: 688 start-page: 1205 year: 2019 end-page: 1215 ident: CR142 article-title: Coating magnetic biochar with humic acid for high efficient removal of fluoroquinolone antibiotics in water publication-title: Sci Total Environ – volume: 754 start-page: 142150 year: 2021 ident: CR113 article-title: A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: enhanced the ion exchange and precipitation capacity publication-title: Sci Total Environ – volume: 799 start-page: 149295 year: 2021 ident: CR148 article-title: Fabrication and environmental applications of metal-containing solid waste/biochar composites: a review publication-title: Sci Total Environ – volume: 780 start-page: 146617 year: 2021 ident: 146_CR2 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.146617 – volume: 747 start-page: 141492 year: 2020 ident: 146_CR62 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.141492 – volume: 115 start-page: 227 year: 2022 ident: 146_CR151 publication-title: J Environ Sci doi: 10.1016/j.jes.2021.05.044 – volume: 250 start-page: 117003 year: 2020 ident: 146_CR88 publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2020.117003 – volume: 42 start-page: 3523 year: 2021 ident: 146_CR34 publication-title: Environ Technol doi: 10.1080/09593330.2020.1733101 – volume: 284 start-page: 112047 year: 2021 ident: 146_CR157 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2021.112047 – volume: 242 start-page: 116739 year: 2021 ident: 146_CR16 publication-title: Chem Eng Sci doi: 10.1016/j.ces.2021.116739 – ident: 146_CR48 doi: 10.1080/09593330.2021.1883743 – volume: 793 start-page: 148098 year: 2021 ident: 146_CR149 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.148098 – volume: 63 start-page: 156 year: 2018 ident: 146_CR102 publication-title: J Environ Sci doi: 10.1016/j.jes.2017.08.004 – volume: 295 start-page: 113104 year: 2021 ident: 146_CR75 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2021.113104 – volume: 390 start-page: 124611 year: 2020 ident: 146_CR27 publication-title: Chem Eng J doi: 10.1016/j.cej.2020.124611 – volume: 409 start-page: 124488 year: 2021 ident: 146_CR90 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.124488 – volume: 800 start-page: 149662 year: 2021 ident: 146_CR127 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.149662 – volume: 281 start-page: 117094 year: 2021 ident: 146_CR47 publication-title: Environ Pollut doi: 10.1016/j.envpol.2021.117094 – volume: 105 start-page: 136 year: 2017 ident: 146_CR133 publication-title: Biomass Bioenerg doi: 10.1016/j.biombioe.2017.06.024 – volume: 113 start-page: 12 year: 2022 ident: 146_CR91 publication-title: J Environ Sci doi: 10.1016/j.jes.2021.05.023 – volume: 3 start-page: 255 issue: 3 year: 2021 ident: 146_CR61 publication-title: Biochar doi: 10.1007/s42773-021-00101-6 – volume: 416 start-page: 125930 year: 2021 ident: 146_CR24 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2021.125930 – volume: 375 start-page: 114497 year: 2020 ident: 146_CR134 publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114497 – volume: 411 start-page: 128502 year: 2021 ident: 146_CR139 publication-title: Chem Eng J doi: 10.1016/j.cej.2021.128502 – volume: 412 start-page: 125255 year: 2021 ident: 146_CR79 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2021.125255 – volume: 767 start-page: 145305 year: 2021 ident: 146_CR145 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.145305 – volume: 8 start-page: 16451 issue: 44 year: 2020 ident: 146_CR136 publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.0c05070 – volume: 763 start-page: 144218 year: 2021 ident: 146_CR80 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.144218 – volume: 41 start-page: 101993 year: 2021 ident: 146_CR5 publication-title: J Water Process Eng doi: 10.1016/j.jwpe.2021.101993 – volume: 113 start-page: 231 year: 2022 ident: 146_CR84 publication-title: J Environ Sci doi: 10.1016/j.jes.2021.06.014 – volume: 64 start-page: 1323 year: 2021 ident: 146_CR59 publication-title: Sci China Chem doi: 10.1007/s11426-021-9987-1 – volume: 244 start-page: 118841 year: 2020 ident: 146_CR69 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.118841 – volume: 209 start-page: 106146 year: 2021 ident: 146_CR70 publication-title: Appl Clay Sci doi: 10.1016/j.clay.2021.106146 – volume: 425 start-page: 130585 year: 2021 ident: 146_CR99 publication-title: Chem Eng J doi: 10.1016/j.cej.2021.130585 – volume: 711 start-page: 134645 year: 2020 ident: 146_CR52 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.134645 – volume: 662 start-page: 873 year: 2019 ident: 146_CR93 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.01.202 – volume: 102 start-page: 884 year: 2020 ident: 146_CR38 publication-title: Waste Manag doi: 10.1016/j.wasman.2019.12.003 – volume: 385 start-page: 121595 year: 2020 ident: 146_CR10 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2019.121595 – volume: 277 start-page: 116800 year: 2021 ident: 146_CR8 publication-title: Environ Pollut doi: 10.1016/j.envpol.2021.116800 – volume: 247 start-page: 119579 year: 2020 ident: 146_CR154 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.119579 – volume: 416 start-page: 125822 year: 2021 ident: 146_CR13 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2021.125822 – volume: 322 start-page: 124539 year: 2021 ident: 146_CR112 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2020.124539 – volume: 21 start-page: 101242 year: 2021 ident: 146_CR123 publication-title: Environ Technol Inno doi: 10.1016/j.eti.2020.101242 – volume: 242 start-page: 106798 year: 2022 ident: 146_CR108 publication-title: J Environ Radioactiv doi: 10.1016/j.jenvrad.2021.106798 – volume: 401 start-page: 123292 year: 2021 ident: 146_CR89 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.123292 – volume: 194 start-page: 110656 year: 2021 ident: 146_CR37 publication-title: Environ Res doi: 10.1016/j.envres.2020.110656 – volume: 314 start-page: 128074 year: 2021 ident: 146_CR18 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2021.128074 – volume: 286 start-page: 131666 year: 2022 ident: 146_CR49 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.131666 – volume: 414 start-page: 125483 year: 2021 ident: 146_CR117 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2021.125483 – volume: 287 start-page: 132313 year: 2022 ident: 146_CR109 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.132313 – volume: 404 start-page: 124162 year: 2021 ident: 146_CR147 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.124162 – volume: 389 start-page: 124471 year: 2020 ident: 146_CR85 publication-title: Chem Eng J doi: 10.1016/j.cej.2020.124471 – volume: 287 start-page: 117303 year: 2021 ident: 146_CR143 publication-title: Environ Pollut doi: 10.1016/j.envpol.2021.117303 – volume: 187 start-page: 109763 year: 2020 ident: 146_CR31 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2019.109763 – volume: 420 start-page: 126655 year: 2021 ident: 146_CR57 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2021.126655 – volume: 811 start-page: 152280 year: 2022 ident: 146_CR129 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.152280 – volume: 330 start-page: 124947 year: 2021 ident: 146_CR96 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2021.124947 – volume: 9 start-page: 105104 year: 2021 ident: 146_CR3 publication-title: J Environ Chem Eng doi: 10.1016/j.jece.2021.105104 – volume: 413 start-page: 125415 year: 2021 ident: 146_CR98 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2021.125415 – volume: 767 start-page: 145447 year: 2021 ident: 146_CR65 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.145447 – volume: 249 start-page: 119390 year: 2020 ident: 146_CR41 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.119390 – volume: 331 start-page: 130023 year: 2022 ident: 146_CR107 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2021.130023 – volume: 247 start-page: 125847 year: 2020 ident: 146_CR152 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.125847 – volume: 142 start-page: 105772 year: 2020 ident: 146_CR122 publication-title: Biomass Bioenerg doi: 10.1016/j.biombioe.2020.105772 – volume: 7 start-page: 103064 issue: 3 year: 2019 ident: 146_CR77 publication-title: J Environ Chemi Eng doi: 10.1016/j.jece.2019.103064 – volume: 281 start-page: 125390 year: 2021 ident: 146_CR12 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.125390 – volume: 2 start-page: 329 issue: 3 year: 2020 ident: 146_CR137 publication-title: Biochar doi: 10.1007/s42773-020-00060-4 – volume: 286 start-page: 131470 year: 2022 ident: 146_CR60 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.131470 – volume: 688 start-page: 1205 year: 2019 ident: 146_CR142 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.06.287 – volume: 754 start-page: 142150 year: 2021 ident: 146_CR113 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.142150 – volume: 2021 start-page: 9794329 year: 2021 ident: 146_CR28 publication-title: Research doi: 10.34133/2021/9794329 – volume: 372 start-page: 536 year: 2019 ident: 146_CR83 publication-title: Chem Eng J doi: 10.1016/j.cej.2019.04.097 – volume: 242 start-page: 125152 year: 2020 ident: 146_CR51 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125152 – volume: 287 start-page: 132184 year: 2022 ident: 146_CR74 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.132184 – volume: 418 start-page: 129405 year: 2021 ident: 146_CR94 publication-title: Chem Eng J doi: 10.1016/j.cej.2021.129405 – volume: 413 start-page: 125252 year: 2021 ident: 146_CR155 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2021.125252 – volume: 799 start-page: 149295 year: 2021 ident: 146_CR148 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.149295 – volume: 420 start-page: 129946 year: 2021 ident: 146_CR50 publication-title: Chem Eng J doi: 10.1016/j.cej.2021.129946 – volume: 105 start-page: 511 year: 2020 ident: 146_CR115 publication-title: Waste Manag doi: 10.1016/j.wasman.2020.02.035 – volume: 708 start-page: 134575 year: 2020 ident: 146_CR104 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.134575 – volume: 286 start-page: 131918 year: 2022 ident: 146_CR110 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.131918 – volume: 329 start-page: 124877 year: 2021 ident: 146_CR43 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2021.124877 – volume: 276 start-page: 123009 year: 2020 ident: 146_CR153 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.123009 – volume: 272 start-page: 115986 year: 2021 ident: 146_CR126 publication-title: Environ Pollut doi: 10.1016/j.envpol.2020.115986 – volume: 715 start-page: 136957 year: 2020 ident: 146_CR46 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.136957 – volume: 319 start-page: 128641 year: 2021 ident: 146_CR97 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2021.128641 – volume: 659 start-page: 473 year: 2019 ident: 146_CR130 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.12.400 – volume: 269 start-page: 116197 year: 2021 ident: 146_CR53 publication-title: Environ Pollut doi: 10.1016/j.envpol.2020.116197 – volume: 269 start-page: 128409 year: 2021 ident: 146_CR42 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.128409 – volume: 273 start-page: 116448 year: 2021 ident: 146_CR17 publication-title: Environ Pollut doi: 10.1016/j.envpol.2021.116448 – volume: 288 start-page: 125686 year: 2021 ident: 146_CR23 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.125686 – volume: 429 start-page: 132143 year: 2022 ident: 146_CR36 publication-title: Chem Eng J doi: 10.1016/j.cej.2021.132143 – volume: 274 start-page: 129812 year: 2021 ident: 146_CR26 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.129812 – volume: 9 start-page: 105585 year: 2021 ident: 146_CR146 publication-title: J Environ Chem Eng doi: 10.1016/j.jece.2021.105585 – volume: 405 start-page: 124226 year: 2021 ident: 146_CR14 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.124226 – volume: 292 start-page: 126005 year: 2021 ident: 146_CR72 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2021.126005 – volume: 425 start-page: 131489 year: 2021 ident: 146_CR116 publication-title: Chem Eng J doi: 10.1016/j.cej.2021.131489 – volume: 792 start-page: 148546 year: 2021 ident: 146_CR58 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.148546 – volume: 201 start-page: 111518 year: 2021 ident: 146_CR4 publication-title: Environ Res doi: 10.1016/j.envres.2021.111518 – volume: 290 start-page: 112569 year: 2021 ident: 146_CR82 publication-title: J Environ Manag doi: 10.1016/j.jenvman.2021.112569 – volume: 26 start-page: 8575 issue: 9 year: 2019 ident: 146_CR103 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-019-04315-x – volume: 16 start-page: 100468 year: 2021 ident: 146_CR35 publication-title: Environ Nanotechnol Monit Manag – volume: 33 start-page: 2106621 year: 2021 ident: 146_CR120 publication-title: Adv Mater doi: 10.1002/adma.202106621 – volume: 413 start-page: 125385 year: 2021 ident: 146_CR105 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2021.125385 – volume: 3 start-page: 117 year: 2021 ident: 146_CR87 publication-title: Biochar doi: 10.1007/s42773-021-00098-y – volume: 320 start-page: 124264 issue: Pt A year: 2021 ident: 146_CR141 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2020.124264 – volume: 390 start-page: 121349 year: 2020 ident: 146_CR135 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2019.121349 – volume: 291 start-page: 118076 year: 2021 ident: 146_CR140 publication-title: Environ Pollut doi: 10.1016/j.envpol.2021.118076 – volume: 227 start-page: 1002 year: 2019 ident: 146_CR101 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.04.282 – volume: 18 start-page: 2433 year: 2018 ident: 146_CR131 publication-title: J Soil Sediment doi: 10.1007/s11368-018-2000-9 – volume: 729 start-page: 138892 year: 2020 ident: 146_CR20 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.138892 – volume: 282 start-page: 131009 year: 2021 ident: 146_CR22 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.131009 – volume: 211 start-page: 120 year: 2018 ident: 146_CR45 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.07.133 – volume: 33 start-page: 55 year: 2021 ident: 146_CR119 publication-title: Env Pollut Bioavail doi: 10.1080/26395940.2021.1916407 – volume: 287 start-page: 132087 year: 2022 ident: 146_CR68 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.132087 – volume: 268 start-page: 128805 year: 2021 ident: 146_CR9 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.128805 – volume: 310 start-page: 127548 year: 2021 ident: 146_CR6 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2021.127548 – year: 2022 ident: 146_CR114 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.151554 – volume: 12 start-page: 1434 year: 2021 ident: 146_CR67 publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2021.03.076 – volume: 2 start-page: 47 issue: 1 year: 2020 ident: 146_CR44 publication-title: Biochar doi: 10.1007/s42773-020-00044-4 – volume: 401 start-page: 123859 year: 2021 ident: 146_CR40 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.123859 – volume: 408 start-page: 124850 year: 2021 ident: 146_CR78 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.124850 – volume: 282 start-page: 131016 year: 2021 ident: 146_CR7 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.131016 – volume: 37 start-page: 9253 issue: 30 year: 2021 ident: 146_CR118 publication-title: Langmuir doi: 10.1021/acs.langmuir.1c01468 – volume: 390 start-page: 121749 year: 2020 ident: 146_CR124 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2019.121749 – volume: 416 start-page: 129027 year: 2021 ident: 146_CR150 publication-title: Chem Eng J doi: 10.1016/j.cej.2021.129027 – volume: 232 start-page: 67 year: 2021 ident: 146_CR30 publication-title: Water Air Soil Poll doi: 10.1007/s11270-021-05030-5 – volume: 285 start-page: 131531 year: 2021 ident: 146_CR81 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.131531 – volume: 22 start-page: 101388 year: 2021 ident: 146_CR66 publication-title: Environ Technol Inno doi: 10.1016/j.eti.2021.101388 – volume: 145 start-page: 111133 year: 2021 ident: 146_CR39 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2021.111133 – volume: 759 start-page: 143452 year: 2021 ident: 146_CR76 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.143452 – volume: 281 start-page: 130990 year: 2021 ident: 146_CR32 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130990 – volume: 3 start-page: 535 year: 2021 ident: 146_CR56 publication-title: Biochar doi: 10.1007/s42773-021-00117-y – volume: 277 start-page: 130273 year: 2021 ident: 146_CR64 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130273 – volume: 207 start-page: 111294 year: 2021 ident: 146_CR106 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2020.111294 – volume: 155 start-page: 105081 year: 2021 ident: 146_CR86 publication-title: J Anal Appl Pyrol doi: 10.1016/j.jaap.2021.105081 – volume: 410 start-page: 127707 year: 2021 ident: 146_CR29 publication-title: Chem Eng J doi: 10.1016/j.cej.2020.127707 – volume: 262 start-page: 128031 year: 2021 ident: 146_CR33 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.128031 – volume: 25 start-page: 3167 year: 2020 ident: 146_CR15 publication-title: Molecules doi: 10.3390/molecules25143167 – volume: 417 start-page: 126047 year: 2021 ident: 146_CR125 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2021.126047 – volume: 779 start-page: 146240 year: 2021 ident: 146_CR92 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.146240 – volume: 416 start-page: 128829 year: 2021 ident: 146_CR144 publication-title: Chem Eng J doi: 10.1016/j.cej.2021.128829 – volume: 420 start-page: 126487 year: 2021 ident: 146_CR121 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2021.126487 – volume: 220 start-page: 28 year: 2019 ident: 146_CR55 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.12.099 – volume: 66 start-page: 1996 year: 2021 ident: 146_CR19 publication-title: Sci Bull – volume: 402 start-page: 126021 year: 2020 ident: 146_CR100 publication-title: Chem Eng J doi: 10.1016/j.cej.2020.126021 – volume: 286 start-page: 124964 year: 2021 ident: 146_CR132 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.124964 – volume: 407 start-page: 124777 year: 2021 ident: 146_CR73 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.124777 – volume: 274 start-page: 129700 year: 2021 ident: 146_CR11 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.129700 – volume: 771 start-page: 144955 year: 2021 ident: 146_CR1 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.144955 – volume: 417 start-page: 129183 year: 2021 ident: 146_CR128 publication-title: Chem Eng J doi: 10.1016/j.cej.2021.129183 – volume: 9 start-page: 106238 issue: 5 year: 2021 ident: 146_CR63 publication-title: J Environ Chemi Eng doi: 10.1016/j.jece.2021.106238 – volume: 3 start-page: 511 year: 2021 ident: 146_CR21 publication-title: Biochar doi: 10.1007/s42773-021-00108-z – volume: 789 start-page: 148031 year: 2021 ident: 146_CR111 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.148031 – volume: 391 start-page: 121692 year: 2020 ident: 146_CR95 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2019.121692 – volume: 408 start-page: 124860 year: 2021 ident: 146_CR138 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.124860 – volume: 115 start-page: 190 year: 2022 ident: 146_CR156 publication-title: J Environ Sci doi: 10.1016/j.jes.2021.07.015 – volume: 419 start-page: 126421 year: 2021 ident: 146_CR25 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2021.126421 – volume: 718 start-page: 137299 year: 2020 ident: 146_CR71 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.137299 – volume: 14 start-page: 1297 year: 2021 ident: 146_CR54 publication-title: Energies doi: 10.3390/en14051297 |
SSID | ssj0002511639 ssib053820432 ssib046561560 |
Score | 2.6475475 |
SecondaryResourceType | review_article |
Snippet | Biochar shows significant potential to serve as a globally applicable material to remediate water and soil owing to the extensive availability of feedstocks... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | Agriculture Ceramics Composites Earth and Environmental Science Environment Environmental Engineering/Biotechnology Fossil Fuels (incl. Carbon Capture) Glass Natural Materials Renewable and Green Energy Review Soil Science & Conservation |
Title | Biochar for the removal of contaminants from soil and water: a review |
URI | https://link.springer.com/article/10.1007/s42773-022-00146-1 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yL3oQP3F-jBy8aaBJm6T1NsfGEObJwW4lzYcMZivbxJt_uy9ZWx2I4CWnVwrv5fX9XvN-vyB0owxNeKwkiYwSJFEuIUpIS6xTxupMCxUkhSZPYjxNHmd8VpPCVs20e3MkGb7ULdktYVL6M0dGPK4XBHqeXQ69u9_Xg2_NcS8ARn-Afshoz_9k7Z8XD6pFuGKMcZYQmUlWs2l-f812xdo-Lg1VaHSIDmr4iPubeB-hHVseo_3-y7KW0LAnaPgwrzyXCgMcxQDv8NK-VrCfcOWwH0xX9fAL9swSvKrmC6xKgz8AdC7vscIbMsspmo6Gz4MxqS9LIBpapDU4N1OxM07YSDimIbWYdYVMVRE7KaVhRjIBoUhppAtqEwmNoVaSOqN55riJz1CnrEp7jjBlReo0h8YIin-hVUY1gB6VahFHymreRbRxSK5rJXF_ocUibzWQgxNzcGIenJjTLrptn3nb6Gj8aX3X-Dmvc2r1h_nF_8wv0R7z8Q1DKVeos16-22uAFuuiF3aSX8WgF9pzWCefwy8J_8Ng |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kHtSD-MT63IM3XexuNruJt1paqrY9tdBb2OxDCjWRtOLfdzZNixUpeJ8QmAfzzc7MNwjdKkN5GChJGkYJwpXjRAlpiXXKWB1roUpKof5AdEf8ZRyOK5ocvwvzq3__MONMSt9pZMSjeUGg0tnmUCn78b2WaC19x9N-0R9QH-LYb32y1XuLh9KiPCzGQsaJjCWrdmj-_s16nlpvkpa5p3OA9ivQiJsLKx-iLZsdob3mW1ERZ9hj1H6a5H6DCgMIxQDqcGHfc_AinDvsx9FVNfKC_T4JnuWTKVaZwV8ANYtHrPBiheUEjTrtYatLqhMJRENhNAeVxipwxgnbEI5pCChmXSojlQZOSmmYkUyAASLa0Cm1XEI5qJWkzugwdqEJTlEtyzN7hjBlaeR0COUQpPxUq5hqgDoq0iJoKKvDOqJLhSS64g_3ZyymyYr5uFRiAkpMSiUmtI7uVt98LNgzNkrfL_WcVJE02yB-_j_xG7TTHfZ7Se958HqBdpm3dTmWcolq8-LTXgG4mKfXpVd9A-2Jv24 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kguhBfGJ97sGbLu1ukt3EW62W-ioeLPQWNvuQQk1KW_HvO7tJSwtS8D4hZB7sN5n9vkHoWmoaRoEUpKklJ6G0IZFcGGKs1EYliksvKfTW491--DyIBkssfn_bfT6SLDkNTqUpnzXG2jYWxLeQCeHmj4w4jM8J9D-b0Kn4QW2bt-cZ5cTA6FIDANXtuKBs8RfGAWzu142xiIVEJIJVzJq_X7N6eq2OTv2J1NlDuxWUxK0y9vtow-QHaKf1OankNMwherwfFo5XhQGaYoB6eGK-CsgtXFjsvlhWF2GwY5ngaTEcYZlr_AMAdHKHJS6JLUeo33n8aHdJtTiBKGiXZuDoRAZWW26a3DIFZcaMzUQss8AKITTTgnEIS0ybKqMmFNAkKimo1SpKbKSDY1TLi9ycIExZFlsVQZMEQCBTMqEKAJCMFQ-a0qiojujcIamqVMXdcotRutBD9k5MwYmpd2JK6-hm8cy41NRYa30793Na1dd0jfnp_8yv0Nb7Qyd9feq9nKFt5kLt76qco9ps8m0uAHHMskufVL-71Me1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biochar+for+the+removal+of+contaminants+from+soil+and+water%3A+a+review&rft.jtitle=Biochar+%28Online%29&rft.au=Qiu%2C+Muqing&rft.au=Liu%2C+Lijie&rft.au=Ling%2C+Qian&rft.au=Cai%2C+Yawen&rft.date=2022-12-01&rft.issn=2524-7972&rft.eissn=2524-7867&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1007%2Fs42773-022-00146-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42773_022_00146_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2524-7972&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2524-7972&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2524-7972&client=summon |