Biochar for the removal of contaminants from soil and water: a review

Biochar shows significant potential to serve as a globally applicable material to remediate water and soil owing to the extensive availability of feedstocks and conducive physio-chemical surface characteristics. This review aims to highlight biochar production technologies, characteristics of biocha...

Full description

Saved in:
Bibliographic Details
Published inBiochar (Online) Vol. 4; no. 1
Main Authors Qiu, Muqing, Liu, Lijie, Ling, Qian, Cai, Yawen, Yu, Shujun, Wang, Shuqin, Fu, Dong, Hu, Baowei, Wang, Xiangke
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biochar shows significant potential to serve as a globally applicable material to remediate water and soil owing to the extensive availability of feedstocks and conducive physio-chemical surface characteristics. This review aims to highlight biochar production technologies, characteristics of biochar, and the latest advancements in immobilizing and eliminating heavy metal ions and organic pollutants in soil and water. Pyrolysis temperature, heat transfer rate, residence time, and type of feedstock are critical influential parameters. Biochar’s efficacy in managing contaminants relies on the pore size distribution, surface groups, and ion-exchange capacity. The molecular composition and physical architecture of biochar may be crucial when practically applied to water and soil. In general, biochar produced at relatively high pyrolysis temperatures can effectively manage organic pollutants via increasing surface area, hydrophobicity and microporosity. Biochar generated at lower temperatures is deemed to be more suitable for removing polar organic and inorganic pollutants through oxygen-containing functional groups, precipitation and electrostatic attraction. This review also presents the existing obstacles and future research direction related to biochar-based materials in immobilizing organic contaminants and heavy metal ions in effluents and soil. Graphical Abstract Highlights The synthesis strategies and characteristics of biochar are introduced. The removal of contaminants from soil and water is explicated emphatically. The removal behaviors of heavy metal ions and organics are determined. Mechanisms and influencing factors of pollutant removal by biochar are discussed. Prospects of biochar-based materials for contaminant removal are proposed.
AbstractList Biochar shows significant potential to serve as a globally applicable material to remediate water and soil owing to the extensive availability of feedstocks and conducive physio-chemical surface characteristics. This review aims to highlight biochar production technologies, characteristics of biochar, and the latest advancements in immobilizing and eliminating heavy metal ions and organic pollutants in soil and water. Pyrolysis temperature, heat transfer rate, residence time, and type of feedstock are critical influential parameters. Biochar’s efficacy in managing contaminants relies on the pore size distribution, surface groups, and ion-exchange capacity. The molecular composition and physical architecture of biochar may be crucial when practically applied to water and soil. In general, biochar produced at relatively high pyrolysis temperatures can effectively manage organic pollutants via increasing surface area, hydrophobicity and microporosity. Biochar generated at lower temperatures is deemed to be more suitable for removing polar organic and inorganic pollutants through oxygen-containing functional groups, precipitation and electrostatic attraction. This review also presents the existing obstacles and future research direction related to biochar-based materials in immobilizing organic contaminants and heavy metal ions in effluents and soil. Graphical Abstract Highlights The synthesis strategies and characteristics of biochar are introduced. The removal of contaminants from soil and water is explicated emphatically. The removal behaviors of heavy metal ions and organics are determined. Mechanisms and influencing factors of pollutant removal by biochar are discussed. Prospects of biochar-based materials for contaminant removal are proposed.
Biochar shows significant potential to serve as a globally applicable material to remediate water and soil owing to the extensive availability of feedstocks and conducive physio-chemical surface characteristics. This review aims to highlight biochar production technologies, characteristics of biochar, and the latest advancements in immobilizing and eliminating heavy metal ions and organic pollutants in soil and water. Pyrolysis temperature, heat transfer rate, residence time, and type of feedstock are critical influential parameters. Biochar’s efficacy in managing contaminants relies on the pore size distribution, surface groups, and ion-exchange capacity. The molecular composition and physical architecture of biochar may be crucial when practically applied to water and soil. In general, biochar produced at relatively high pyrolysis temperatures can effectively manage organic pollutants via increasing surface area, hydrophobicity and microporosity. Biochar generated at lower temperatures is deemed to be more suitable for removing polar organic and inorganic pollutants through oxygen-containing functional groups, precipitation and electrostatic attraction. This review also presents the existing obstacles and future research direction related to biochar-based materials in immobilizing organic contaminants and heavy metal ions in effluents and soil. Graphical Abstract
ArticleNumber 19
Author Wang, Xiangke
Qiu, Muqing
Fu, Dong
Wang, Shuqin
Hu, Baowei
Cai, Yawen
Liu, Lijie
Ling, Qian
Yu, Shujun
Author_xml – sequence: 1
  givenname: Muqing
  surname: Qiu
  fullname: Qiu, Muqing
  organization: School of Life Science, Shaoxing University
– sequence: 2
  givenname: Lijie
  surname: Liu
  fullname: Liu, Lijie
  organization: College of Environmental Science and Engineering, North China Electric Power University
– sequence: 3
  givenname: Qian
  surname: Ling
  fullname: Ling, Qian
  organization: School of Life Science, Shaoxing University
– sequence: 4
  givenname: Yawen
  surname: Cai
  fullname: Cai, Yawen
  organization: School of Life Science, Shaoxing University
– sequence: 5
  givenname: Shujun
  surname: Yu
  fullname: Yu, Shujun
  email: sjyu@ncepu.edu.cn
  organization: School of Life Science, Shaoxing University, College of Environmental Science and Engineering, North China Electric Power University
– sequence: 6
  givenname: Shuqin
  surname: Wang
  fullname: Wang, Shuqin
  organization: School of Life Science, Shaoxing University
– sequence: 7
  givenname: Dong
  surname: Fu
  fullname: Fu, Dong
  organization: Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University
– sequence: 8
  givenname: Baowei
  surname: Hu
  fullname: Hu, Baowei
  email: hbw@usx.edu.cn
  organization: School of Life Science, Shaoxing University
– sequence: 9
  givenname: Xiangke
  surname: Wang
  fullname: Wang, Xiangke
  email: xkwang@ncepu.edu.cn
  organization: School of Life Science, Shaoxing University, College of Environmental Science and Engineering, North China Electric Power University
BookMark eNp9kLtOAzEQRS0UJELID1D5Bwx-7XqXDqLwkCLRQG1NvDZxtGsj2yTi71kINBSpZop7rmbOOZqEGCxCl4xeMUrVdZZcKUEo54RSJmvCTtCUV1wS1dRq8re3ip-hec5bSimvGKtFO0XLOx_NBhJ2MeGysTjZIe6gx9FhE0OBwQcIJWOX4oBz9D2G0OE9FJtuMIzxnbf7C3TqoM92_jtn6PV--bJ4JKvnh6fF7YoYSVkh1rUgXOdqS2vHTSUYt26tGlgLp5TqeKd4DU42jJo1s1JVsjWgmOtM1bqqEzPUHHpNijkn67TxBYofD03ge82o_jaiD0b0aET_GNFsRPk_9D35AdLncUgcoDyGw5tNehs_UhhfPEZ9AaXPddM
CitedBy_id crossref_primary_10_3389_fpls_2023_1224583
crossref_primary_10_1007_s42773_025_00439_1
crossref_primary_10_1016_j_cej_2023_141584
crossref_primary_10_1016_j_chemosphere_2024_143202
crossref_primary_10_1016_j_rser_2023_113193
crossref_primary_10_1007_s11356_023_31281_2
crossref_primary_10_1016_j_jpcs_2022_110934
crossref_primary_10_1007_s42773_023_00238_6
crossref_primary_10_1080_25765299_2023_2207407
crossref_primary_10_1016_j_foodchem_2023_137946
crossref_primary_10_1002_slct_202402313
crossref_primary_10_5004_dwt_2023_30079
crossref_primary_10_1016_j_scitotenv_2023_169755
crossref_primary_10_1007_s42773_024_00387_2
crossref_primary_10_1016_j_jece_2024_114507
crossref_primary_10_1016_j_scitotenv_2023_168548
crossref_primary_10_1016_j_jenvman_2024_121802
crossref_primary_10_12944_CWE_19_1_7
crossref_primary_10_1007_s11356_024_31935_9
crossref_primary_10_1016_j_cej_2024_149470
crossref_primary_10_3390_su16124961
crossref_primary_10_1016_j_colsurfa_2024_133942
crossref_primary_10_58626_menba_1569118
crossref_primary_10_1016_j_jes_2023_06_027
crossref_primary_10_1016_j_mtcomm_2022_104020
crossref_primary_10_1016_j_scenv_2023_100040
crossref_primary_10_1016_j_sajce_2023_04_006
crossref_primary_10_3390_en16041829
crossref_primary_10_1007_s10311_023_01582_6
crossref_primary_10_1016_j_seppur_2022_122862
crossref_primary_10_3390_soilsystems7040110
crossref_primary_10_1016_j_enmm_2022_100720
crossref_primary_10_1002_adsu_202400722
crossref_primary_10_1016_j_eti_2024_103835
crossref_primary_10_1007_s11356_022_22858_4
crossref_primary_10_1016_j_ccr_2022_214825
crossref_primary_10_1016_j_scitotenv_2022_159346
crossref_primary_10_1016_j_scitotenv_2023_163088
crossref_primary_10_1007_s42773_023_00237_7
crossref_primary_10_1177_0958305X231219787
crossref_primary_10_1016_j_rineng_2024_102757
crossref_primary_10_1080_00032719_2024_2343366
crossref_primary_10_1007_s13399_024_05465_w
crossref_primary_10_1016_j_eti_2023_103301
crossref_primary_10_3390_w15132480
crossref_primary_10_1016_j_ccr_2024_216120
crossref_primary_10_1016_j_ijbiomac_2022_06_136
crossref_primary_10_1016_j_chemosphere_2022_137434
crossref_primary_10_1016_j_cej_2022_138921
crossref_primary_10_1016_j_envres_2022_114248
crossref_primary_10_1016_j_envres_2024_120284
crossref_primary_10_1016_j_hybadv_2023_100091
crossref_primary_10_1016_j_ese_2024_100420
crossref_primary_10_1007_s12649_025_02959_0
crossref_primary_10_1016_j_seppur_2022_122644
crossref_primary_10_1016_j_seppur_2022_121671
crossref_primary_10_1016_j_aej_2022_07_055
crossref_primary_10_1016_j_chemosphere_2023_139819
crossref_primary_10_1016_j_cej_2022_137722
crossref_primary_10_1007_s42773_022_00188_5
crossref_primary_10_1007_s11356_023_30351_9
crossref_primary_10_1007_s42773_024_00345_y
crossref_primary_10_1016_j_jhazmat_2022_130022
crossref_primary_10_1007_s10876_022_02379_3
crossref_primary_10_1021_acsapm_2c00642
crossref_primary_10_1016_j_seppur_2022_122632
crossref_primary_10_1016_j_inoche_2024_113196
crossref_primary_10_1016_j_seppur_2022_122631
crossref_primary_10_1016_j_jiec_2022_11_026
crossref_primary_10_1016_j_scitotenv_2024_177359
crossref_primary_10_1016_j_apsusc_2024_161277
crossref_primary_10_1103_PhysRevFluids_8_024502
crossref_primary_10_3390_ma16062185
crossref_primary_10_1016_j_biortech_2022_127819
crossref_primary_10_1016_j_inoche_2022_109588
crossref_primary_10_1016_j_cjche_2022_12_014
crossref_primary_10_1007_s11356_024_33270_5
crossref_primary_10_1016_j_jclepro_2022_132980
crossref_primary_10_1016_j_jwpe_2022_103281
crossref_primary_10_3389_fenvs_2023_1277240
crossref_primary_10_1080_10934529_2023_2243193
crossref_primary_10_1177_02636174241256854
crossref_primary_10_1016_j_fuel_2024_133448
crossref_primary_10_1016_j_jwpe_2023_104216
crossref_primary_10_1007_s10653_024_02092_2
crossref_primary_10_1016_j_apsusc_2024_162212
crossref_primary_10_1016_j_heliyon_2024_e25785
crossref_primary_10_1016_j_apcata_2022_118733
crossref_primary_10_1016_j_seppur_2025_131468
crossref_primary_10_1007_s13399_024_05507_3
crossref_primary_10_1016_j_molliq_2022_119745
crossref_primary_10_1016_j_jhazmat_2022_129244
crossref_primary_10_1016_j_apsusc_2022_154027
crossref_primary_10_1002_slct_202200840
crossref_primary_10_1016_j_biombioe_2025_107671
crossref_primary_10_3390_agronomy14051046
crossref_primary_10_1016_j_seppur_2023_123926
crossref_primary_10_3389_fenvs_2022_1035865
crossref_primary_10_1016_j_chemosphere_2023_139719
crossref_primary_10_1016_j_scitotenv_2024_174180
crossref_primary_10_1007_s44246_024_00176_3
crossref_primary_10_1016_j_ccr_2022_214694
crossref_primary_10_1016_j_jece_2024_115201
crossref_primary_10_1016_j_envres_2023_116217
crossref_primary_10_3390_land12122163
crossref_primary_10_1038_s41598_024_61270_5
crossref_primary_10_1016_j_geoderma_2023_116591
crossref_primary_10_1016_j_envres_2023_116690
crossref_primary_10_1080_26395940_2024_2387680
crossref_primary_10_3390_su16166891
crossref_primary_10_1016_j_seppur_2024_130861
crossref_primary_10_1007_s42773_024_00301_w
crossref_primary_10_1007_s10661_023_12194_6
crossref_primary_10_1016_j_jclepro_2023_136737
crossref_primary_10_1016_j_jhazmat_2023_130744
crossref_primary_10_1016_j_jclepro_2025_144808
crossref_primary_10_1016_j_jhazmat_2023_130867
crossref_primary_10_1016_j_biortech_2024_131746
crossref_primary_10_1016_j_chemosphere_2024_141796
crossref_primary_10_5004_dwt_2022_29054
crossref_primary_10_1007_s42729_024_01937_0
crossref_primary_10_1016_j_mtchem_2022_101081
crossref_primary_10_1007_s11164_022_04789_4
crossref_primary_10_1007_s42773_022_00172_z
crossref_primary_10_1016_j_jhazmat_2022_129352
crossref_primary_10_1016_j_scenv_2024_100140
crossref_primary_10_1016_j_biteb_2023_101470
crossref_primary_10_1016_j_ecoenv_2023_115285
crossref_primary_10_1515_ract_2024_0273
crossref_primary_10_1016_j_jenvrad_2022_106909
crossref_primary_10_3390_su16208838
crossref_primary_10_1016_j_envpol_2024_124309
crossref_primary_10_3390_su17051980
crossref_primary_10_1016_j_envpol_2022_120826
crossref_primary_10_1016_j_jhazmat_2023_130723
crossref_primary_10_1007_s11157_024_09711_5
crossref_primary_10_1016_j_chemosphere_2023_139088
crossref_primary_10_1039_D3TA03890D
crossref_primary_10_3390_plants13141934
crossref_primary_10_3390_polym14142911
crossref_primary_10_1080_15320383_2022_2101613
crossref_primary_10_1016_j_jece_2024_114007
crossref_primary_10_1007_s40098_023_00788_3
crossref_primary_10_3390_ma17163899
crossref_primary_10_3390_bios12060377
crossref_primary_10_3390_polym16233434
crossref_primary_10_3390_su152215978
crossref_primary_10_1007_s42773_022_00173_y
crossref_primary_10_1016_j_jclepro_2023_135857
crossref_primary_10_3390_plants12071524
crossref_primary_10_1016_j_seppur_2024_128519
crossref_primary_10_1007_s13399_022_03029_4
crossref_primary_10_3390_su14137824
crossref_primary_10_1016_j_bcab_2024_103077
crossref_primary_10_1007_s11356_023_29264_4
crossref_primary_10_1038_s41598_024_70932_3
crossref_primary_10_1016_j_envpol_2022_119546
crossref_primary_10_1177_00405175241311960
crossref_primary_10_1007_s42773_024_00348_9
crossref_primary_10_1007_s10311_023_01631_0
crossref_primary_10_1007_s42773_023_00293_z
crossref_primary_10_1016_j_colsurfa_2022_130748
crossref_primary_10_1016_j_biortech_2023_129225
crossref_primary_10_1080_03601234_2024_2404324
crossref_primary_10_1038_s41598_024_66323_3
crossref_primary_10_1039_D4CS00338A
crossref_primary_10_36320_ajb_v15_i2_12531
crossref_primary_10_1002_slct_202202976
crossref_primary_10_3390_ma16196413
crossref_primary_10_3390_pr11010053
crossref_primary_10_1007_s13399_022_03183_9
crossref_primary_10_1007_s11356_024_35412_1
crossref_primary_10_1007_s42773_023_00207_z
crossref_primary_10_1016_j_molliq_2025_127192
crossref_primary_10_1016_j_chemosphere_2022_135590
crossref_primary_10_1016_j_matchemphys_2025_130376
crossref_primary_10_3389_fenvs_2023_1212355
crossref_primary_10_1016_j_mtsust_2023_100540
crossref_primary_10_1016_j_envres_2023_116998
crossref_primary_10_1002_jccs_202200218
crossref_primary_10_1007_s44246_022_00007_3
crossref_primary_10_2174_0115734080313745240802110504
crossref_primary_10_1038_s41598_024_70515_2
crossref_primary_10_1021_acs_iecr_2c00924
crossref_primary_10_1016_j_apradiso_2022_110606
crossref_primary_10_1016_j_inoche_2024_112838
crossref_primary_10_1021_acsomega_2c02508
crossref_primary_10_3390_en16104175
crossref_primary_10_1016_j_envpol_2022_120508
crossref_primary_10_1007_s42773_024_00421_3
crossref_primary_10_1016_j_chemosphere_2024_142584
crossref_primary_10_1016_j_apsusc_2022_155199
crossref_primary_10_1016_j_rineng_2024_102433
crossref_primary_10_32604_phyton_2025_058970
crossref_primary_10_1016_j_envint_2022_107459
crossref_primary_10_1039_D3RA06910A
crossref_primary_10_1016_j_matchemphys_2022_127206
crossref_primary_10_1007_s42247_023_00603_y
crossref_primary_10_1016_j_chemosphere_2022_135456
crossref_primary_10_1007_s42452_023_05543_0
crossref_primary_10_1007_s42773_022_00197_4
crossref_primary_10_1007_s44169_023_00043_z
crossref_primary_10_1016_j_jwpe_2025_106937
crossref_primary_10_1016_j_biortech_2023_130105
crossref_primary_10_1016_j_heliyon_2022_e12388
crossref_primary_10_1016_j_scitotenv_2024_173501
crossref_primary_10_1016_j_jwpe_2024_106215
crossref_primary_10_1016_j_jenvman_2024_123558
crossref_primary_10_1021_acs_iecr_2c01431
crossref_primary_10_1016_j_enmm_2023_100788
crossref_primary_10_1016_j_jclepro_2022_135405
crossref_primary_10_1007_s42773_024_00304_7
crossref_primary_10_1016_j_biteb_2025_102034
crossref_primary_10_1016_j_envres_2024_118747
crossref_primary_10_1007_s42773_023_00298_8
crossref_primary_10_1016_j_seppur_2022_121187
crossref_primary_10_1016_j_inoche_2022_109705
crossref_primary_10_3390_su17052214
crossref_primary_10_1039_D3CE01058A
crossref_primary_10_1007_s42773_022_00191_w
crossref_primary_10_1007_s44246_023_00066_0
crossref_primary_10_1016_j_jenvman_2024_120280
crossref_primary_10_1016_j_scitotenv_2024_172899
crossref_primary_10_1016_j_jcis_2022_09_052
crossref_primary_10_1360_SSC_2024_0043
crossref_primary_10_1016_j_ecoenv_2025_117700
crossref_primary_10_1016_j_scitotenv_2024_170571
crossref_primary_10_1039_D4RA03421J
crossref_primary_10_3390_polym14183889
crossref_primary_10_3390_land12081580
crossref_primary_10_1007_s44246_022_00012_6
crossref_primary_10_1039_D2EW00339B
crossref_primary_10_1016_j_arabjc_2023_105303
crossref_primary_10_3390_nano15010026
crossref_primary_10_1016_j_jenvman_2024_123585
crossref_primary_10_1016_j_cej_2025_161178
crossref_primary_10_1007_s42773_024_00401_7
crossref_primary_10_1016_j_jclepro_2022_134456
crossref_primary_10_1016_j_jenvman_2024_121160
crossref_primary_10_3390_en18051027
crossref_primary_10_1007_s13201_022_01821_1
crossref_primary_10_1016_j_biortech_2022_128056
crossref_primary_10_1016_j_heliyon_2023_e17250
crossref_primary_10_1016_j_envres_2024_118645
crossref_primary_10_1016_j_cclet_2024_109960
crossref_primary_10_3389_fbioe_2022_1067869
crossref_primary_10_1002_slct_202400959
crossref_primary_10_3390_w16223224
crossref_primary_10_1016_j_seppur_2024_127264
crossref_primary_10_1007_s42773_025_00455_1
crossref_primary_10_1007_s11270_025_07876_5
crossref_primary_10_3390_separations10100533
crossref_primary_10_1016_j_rser_2025_115458
crossref_primary_10_3390_w17020207
crossref_primary_10_1007_s42729_024_01699_9
crossref_primary_10_1021_acsanm_2c04492
crossref_primary_10_1016_j_dwt_2024_100563
crossref_primary_10_1016_j_isci_2025_112113
crossref_primary_10_1021_acs_iecr_3c04314
crossref_primary_10_1016_j_microc_2024_112518
crossref_primary_10_1007_s42773_022_00181_y
crossref_primary_10_1016_j_fuel_2023_130679
crossref_primary_10_3389_fenvs_2023_1114752
crossref_primary_10_1016_j_desal_2024_117725
crossref_primary_10_1016_j_scitotenv_2024_173679
crossref_primary_10_3103_S0361521923010123
crossref_primary_10_3390_nano13081298
crossref_primary_10_1016_j_jclepro_2022_133040
crossref_primary_10_1002_wer_10967
crossref_primary_10_1016_j_chemosphere_2022_135869
crossref_primary_10_1039_D2DT01270G
crossref_primary_10_3390_ma17091946
crossref_primary_10_1016_j_jhazmat_2024_133881
crossref_primary_10_1016_j_jece_2022_109113
crossref_primary_10_3390_toxics12050356
crossref_primary_10_1016_j_chemosphere_2024_141745
crossref_primary_10_3390_land13101638
crossref_primary_10_1016_j_jclepro_2022_133277
crossref_primary_10_1016_j_jclepro_2023_139353
crossref_primary_10_1016_j_jhazmat_2022_129802
crossref_primary_10_3390_agronomy14050886
crossref_primary_10_1016_j_cej_2022_139486
crossref_primary_10_1007_s11356_024_35416_x
crossref_primary_10_1016_j_arabjc_2022_104252
crossref_primary_10_3390_agriculture13030512
crossref_primary_10_3390_agronomy12071596
crossref_primary_10_1016_j_dib_2022_108410
crossref_primary_10_1016_j_jhazmat_2024_135738
crossref_primary_10_1007_s11356_024_34732_6
crossref_primary_10_1016_j_jece_2025_115555
crossref_primary_10_3390_nano12091443
crossref_primary_10_3390_f13122080
crossref_primary_10_1016_j_biteb_2022_101238
crossref_primary_10_1039_D3RE00540B
crossref_primary_10_1038_s41598_023_50623_1
crossref_primary_10_1016_j_enmm_2024_100977
crossref_primary_10_1007_s10653_024_01939_y
crossref_primary_10_1016_j_seppur_2024_126378
crossref_primary_10_1007_s11356_024_35318_y
crossref_primary_10_1007_s11706_023_0661_9
crossref_primary_10_1016_j_heliyon_2024_e38159
crossref_primary_10_1016_j_gsd_2023_100945
crossref_primary_10_1088_2515_7620_ad79bf
crossref_primary_10_1021_acsomega_2c03260
crossref_primary_10_1016_j_seppur_2022_121471
crossref_primary_10_1016_j_jenvman_2022_115530
crossref_primary_10_1080_15226514_2025_2457510
crossref_primary_10_1002_poc_4411
crossref_primary_10_1016_j_jenvman_2022_115771
crossref_primary_10_1016_j_jwpe_2022_103458
crossref_primary_10_1016_j_jenvman_2022_115403
crossref_primary_10_3390_molecules29225251
crossref_primary_10_1007_s42773_024_00308_3
crossref_primary_10_1007_s13399_024_05989_1
crossref_primary_10_1016_j_scitotenv_2023_168385
crossref_primary_10_3390_ma17112646
crossref_primary_10_3390_en16145403
crossref_primary_10_1039_D2CE00892K
crossref_primary_10_3390_ma16237342
crossref_primary_10_1021_acsomega_2c02063
crossref_primary_10_1016_j_ces_2024_119796
crossref_primary_10_1007_s13399_024_06126_8
crossref_primary_10_1016_j_jece_2022_108903
crossref_primary_10_1016_j_cj_2024_09_010
crossref_primary_10_1016_j_jenvman_2024_123974
crossref_primary_10_1016_j_jcis_2022_08_193
crossref_primary_10_1007_s11356_023_28549_y
crossref_primary_10_1016_j_jhazmat_2023_131491
crossref_primary_10_1016_j_enceco_2025_01_004
crossref_primary_10_1016_j_jwpe_2022_103001
crossref_primary_10_3390_min14070732
crossref_primary_10_3390_molecules27217418
crossref_primary_10_5004_dwt_2022_28617
crossref_primary_10_1002_gch2_202200154
crossref_primary_10_1016_j_jenvman_2022_116831
crossref_primary_10_1016_j_seppur_2022_121241
crossref_primary_10_1007_s11270_023_06079_0
crossref_primary_10_1016_j_jmst_2024_02_062
crossref_primary_10_1016_j_cej_2025_160928
crossref_primary_10_1007_s13201_022_01739_8
crossref_primary_10_1016_j_biortech_2023_129603
crossref_primary_10_1002_tqem_22353
crossref_primary_10_1016_j_jhazmat_2024_133502
crossref_primary_10_1016_j_jclepro_2023_136149
crossref_primary_10_1007_s44246_024_00174_5
crossref_primary_10_1007_s42773_023_00223_z
crossref_primary_10_15541_jim20220432
crossref_primary_10_1016_j_rsurfi_2025_100438
crossref_primary_10_1007_s11756_023_01590_5
crossref_primary_10_1016_j_apsusc_2024_159466
crossref_primary_10_1016_j_jenvman_2024_121333
crossref_primary_10_1016_j_seppur_2024_129161
crossref_primary_10_1016_j_jece_2024_112812
crossref_primary_10_1016_j_eti_2024_103659
crossref_primary_10_1071_FP23257
crossref_primary_10_1016_j_jece_2023_110115
crossref_primary_10_1007_s42773_024_00397_0
crossref_primary_10_1016_j_biteb_2023_101705
crossref_primary_10_1016_j_eti_2023_103381
crossref_primary_10_3390_su142114539
crossref_primary_10_3390_su15010394
crossref_primary_10_1007_s10653_023_01606_8
crossref_primary_10_1007_s12221_023_00100_3
crossref_primary_10_1016_j_cscee_2023_100495
crossref_primary_10_1016_j_molliq_2022_119564
crossref_primary_10_1016_j_btre_2024_e00860
crossref_primary_10_1016_j_gsd_2023_101066
crossref_primary_10_1016_j_gsd_2024_101243
crossref_primary_10_1016_j_scitotenv_2023_163968
crossref_primary_10_1016_j_eti_2024_103671
crossref_primary_10_1016_j_heliyon_2022_e10305
crossref_primary_10_1039_D2QM00431C
crossref_primary_10_3390_agronomy13102647
crossref_primary_10_3390_en17092099
crossref_primary_10_1007_s42773_023_00265_3
crossref_primary_10_1007_s13762_023_05161_8
crossref_primary_10_1016_j_chemosphere_2023_138321
crossref_primary_10_1016_j_seppur_2022_121179
crossref_primary_10_1016_j_jconhyd_2024_104412
crossref_primary_10_1016_j_aej_2022_11_019
crossref_primary_10_1016_j_colsuc_2023_100026
crossref_primary_10_1016_j_cej_2022_140749
crossref_primary_10_1016_j_envres_2023_116074
crossref_primary_10_1016_j_inoche_2022_109651
crossref_primary_10_1016_j_watcyc_2025_01_001
crossref_primary_10_1007_s42773_023_00255_5
crossref_primary_10_1016_j_eti_2024_103649
crossref_primary_10_3390_biomass4020012
crossref_primary_10_1007_s42773_024_00373_8
crossref_primary_10_1007_s10661_024_12680_5
crossref_primary_10_1007_s13762_024_06111_8
crossref_primary_10_1016_j_seppur_2023_123644
crossref_primary_10_1002_ldr_5000
Cites_doi 10.1016/j.scitotenv.2021.151554
10.1016/j.scitotenv.2021.146617
10.1016/j.scitotenv.2020.141492
10.1016/j.jes.2021.05.044
10.1016/j.carbpol.2020.117003
10.1080/09593330.2020.1733101
10.1016/j.jenvman.2021.112047
10.1016/j.ces.2021.116739
10.1080/09593330.2021.1883743
10.1016/j.scitotenv.2021.148098
10.1016/j.jes.2017.08.004
10.1016/j.jenvman.2021.113104
10.1016/j.cej.2020.124611
10.1016/j.jhazmat.2020.124488
10.1016/j.scitotenv.2021.149662
10.1016/j.envpol.2021.117094
10.1016/j.biombioe.2017.06.024
10.1016/j.jes.2021.05.023
10.1007/s42773-021-00101-6
10.1016/j.jhazmat.2021.125930
10.1016/j.geoderma.2020.114497
10.1016/j.cej.2021.128502
10.1016/j.jhazmat.2021.125255
10.1016/j.scitotenv.2021.145305
10.1021/acssuschemeng.0c05070
10.1016/j.scitotenv.2020.144218
10.1016/j.jwpe.2021.101993
10.1016/j.jes.2021.06.014
10.1007/s11426-021-9987-1
10.1016/j.jclepro.2019.118841
10.1016/j.clay.2021.106146
10.1016/j.cej.2021.130585
10.1016/j.scitotenv.2019.134645
10.1016/j.scitotenv.2019.01.202
10.1016/j.wasman.2019.12.003
10.1016/j.jhazmat.2019.121595
10.1016/j.envpol.2021.116800
10.1016/j.jclepro.2019.119579
10.1016/j.jhazmat.2021.125822
10.1016/j.biortech.2020.124539
10.1016/j.eti.2020.101242
10.1016/j.jenvrad.2021.106798
10.1016/j.jhazmat.2020.123292
10.1016/j.envres.2020.110656
10.1016/j.jclepro.2021.128074
10.1016/j.chemosphere.2021.131666
10.1016/j.jhazmat.2021.125483
10.1016/j.chemosphere.2021.132313
10.1016/j.jhazmat.2020.124162
10.1016/j.cej.2020.124471
10.1016/j.envpol.2021.117303
10.1016/j.ecoenv.2019.109763
10.1016/j.jhazmat.2021.126655
10.1016/j.scitotenv.2021.152280
10.1016/j.biortech.2021.124947
10.1016/j.jece.2021.105104
10.1016/j.jhazmat.2021.125415
10.1016/j.scitotenv.2021.145447
10.1016/j.jclepro.2019.119390
10.1016/j.jclepro.2021.130023
10.1016/j.chemosphere.2020.125847
10.1016/j.biombioe.2020.105772
10.1016/j.jece.2019.103064
10.1016/j.jclepro.2020.125390
10.1007/s42773-020-00060-4
10.1016/j.chemosphere.2021.131470
10.1016/j.scitotenv.2019.06.287
10.1016/j.scitotenv.2020.142150
10.34133/2021/9794329
10.1016/j.cej.2019.04.097
10.1016/j.chemosphere.2019.125152
10.1016/j.chemosphere.2021.132184
10.1016/j.cej.2021.129405
10.1016/j.jhazmat.2021.125252
10.1016/j.scitotenv.2021.149295
10.1016/j.cej.2021.129946
10.1016/j.wasman.2020.02.035
10.1016/j.scitotenv.2019.134575
10.1016/j.chemosphere.2021.131918
10.1016/j.biortech.2021.124877
10.1016/j.jclepro.2020.123009
10.1016/j.envpol.2020.115986
10.1016/j.scitotenv.2020.136957
10.1016/j.jclepro.2021.128641
10.1016/j.scitotenv.2018.12.400
10.1016/j.envpol.2020.116197
10.1016/j.chemosphere.2020.128409
10.1016/j.envpol.2021.116448
10.1016/j.jclepro.2020.125686
10.1016/j.cej.2021.132143
10.1016/j.chemosphere.2021.129812
10.1016/j.jece.2021.105585
10.1016/j.jhazmat.2020.124226
10.1016/j.jclepro.2021.126005
10.1016/j.cej.2021.131489
10.1016/j.scitotenv.2021.148546
10.1016/j.envres.2021.111518
10.1016/j.jenvman.2021.112569
10.1007/s11356-019-04315-x
10.1002/adma.202106621
10.1016/j.jhazmat.2021.125385
10.1007/s42773-021-00098-y
10.1016/j.biortech.2020.124264
10.1016/j.jhazmat.2019.121349
10.1016/j.envpol.2021.118076
10.1016/j.jclepro.2019.04.282
10.1007/s11368-018-2000-9
10.1016/j.scitotenv.2020.138892
10.1016/j.chemosphere.2021.131009
10.1016/j.chemosphere.2018.07.133
10.1080/26395940.2021.1916407
10.1016/j.chemosphere.2021.132087
10.1016/j.chemosphere.2020.128805
10.1016/j.jclepro.2021.127548
10.1016/j.jmrt.2021.03.076
10.1007/s42773-020-00044-4
10.1016/j.jhazmat.2020.123859
10.1016/j.jhazmat.2020.124850
10.1016/j.chemosphere.2021.131016
10.1021/acs.langmuir.1c01468
10.1016/j.jhazmat.2019.121749
10.1016/j.cej.2021.129027
10.1007/s11270-021-05030-5
10.1016/j.chemosphere.2021.131531
10.1016/j.eti.2021.101388
10.1016/j.rser.2021.111133
10.1016/j.scitotenv.2020.143452
10.1016/j.chemosphere.2021.130990
10.1007/s42773-021-00117-y
10.1016/j.chemosphere.2021.130273
10.1016/j.ecoenv.2020.111294
10.1016/j.jaap.2021.105081
10.1016/j.cej.2020.127707
10.1016/j.chemosphere.2020.128031
10.3390/molecules25143167
10.1016/j.jhazmat.2021.126047
10.1016/j.scitotenv.2021.146240
10.1016/j.cej.2021.128829
10.1016/j.jhazmat.2021.126487
10.1016/j.chemosphere.2018.12.099
10.1016/j.cej.2020.126021
10.1016/j.jclepro.2020.124964
10.1016/j.jhazmat.2020.124777
10.1016/j.chemosphere.2021.129700
10.1016/j.scitotenv.2021.144955
10.1016/j.cej.2021.129183
10.1016/j.jece.2021.106238
10.1007/s42773-021-00108-z
10.1016/j.scitotenv.2021.148031
10.1016/j.jhazmat.2019.121692
10.1016/j.jhazmat.2020.124860
10.1016/j.jes.2021.07.015
10.1016/j.jhazmat.2021.126421
10.1016/j.scitotenv.2020.137299
10.3390/en14051297
ContentType Journal Article
Copyright The Author(s) 2022
Copyright_xml – notice: The Author(s) 2022
DBID C6C
AAYXX
CITATION
DOI 10.1007/s42773-022-00146-1
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2524-7867
ExternalDocumentID 10_1007_s42773_022_00146_1
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 21906052; U2067215
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Basic Research Program of China (973 Program)
  grantid: 2017YFA0207002
  funderid: http://dx.doi.org/10.13039/501100012166
GroupedDBID 0R~
AAHBH
AAHNG
AAJSJ
AAKKN
AAYZJ
ABDBF
ABECU
ABEEZ
ABFTV
ABKCH
ABMQK
ABTEG
ABTMW
ACACY
ACOKC
ACULB
ACZOJ
ADKNI
ADURQ
ADYFF
AFGXO
AFQWF
AGDGC
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AXYYD
C24
C6C
EBLON
EBS
EJD
FNLPD
GROUPED_DOAJ
H13
M~E
NQJWS
OK1
RSV
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
AASML
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
ID FETCH-LOGICAL-c401t-ef9a3fdf6e06f2c5312efb78ab3f777d2d726af4810cb1e47549ca71fdc59f5d3
IEDL.DBID C24
ISSN 2524-7972
IngestDate Tue Jul 01 03:16:37 EDT 2025
Thu Apr 24 23:07:08 EDT 2025
Fri Feb 21 02:47:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Water
Soil
Heavy metal ions
Organic pollutants
Biochar
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-ef9a3fdf6e06f2c5312efb78ab3f777d2d726af4810cb1e47549ca71fdc59f5d3
OpenAccessLink https://link.springer.com/10.1007/s42773-022-00146-1
ParticipantIDs crossref_citationtrail_10_1007_s42773_022_00146_1
crossref_primary_10_1007_s42773_022_00146_1
springer_journals_10_1007_s42773_022_00146_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Biochar (Online)
PublicationTitleAbbrev Biochar
PublicationYear 2022
Publisher Springer Singapore
Publisher_xml – name: Springer Singapore
References Li, Hu, Shen, Cai, Ji, Tan, Liu, Zhao, Hu, Wang (CR59) 2021; 64
Wang, Zhu, Cheng, Andserson, Zhao, Wang, Ding (CR102) 2018; 63
Kamali, Appels, Kwon, Aminabhavi, Dewil (CR50) 2021; 420
Nazari, Rahimi, Khademi Jolgeh Nezhad (CR77) 2019; 7
Arif, Liu, Yousaf, Ahmed, Irshad, Ashraf, Zia-ur-Rehman, Rashid (CR6) 2021; 310
Gholami, Rahimi (CR34) 2021; 42
Ma, Du, Chen, Du, Ye, Zhang (CR74) 2022; 287
Zou, Hu, Shen, Yao, Tang, Zhang, Wang, Hu, Zhao, Wang (CR156) 2022; 115
Cheng, Zhang, Zhao, Chai, Hu, Han, Ai, Wang (CR19) 2021; 66
Zhang, Wang, Xue, Huang, Hao, Tang, Maletić, Rončević, Sun (CR139) 2021; 411
Cheng, Chen, Xu, Huang, Jiang, Yan (CR15) 2020; 25
Fu, Ma, Xu, Duan, Cheng, Zhao (CR32) 2021; 281
Yu, Xu, Xu, Zhao, Qiu, Cao (CR128) 2021; 417
Zhang, Zhang, Hu, He, Yan, Xue (CR138) 2021; 408
Boskovic, Bilkova, Sudoma, Bielska, Skulcova, Ribitsch, Soja, Hofman (CR11) 2021; 274
Ma, Wu, Li, Yang, He, Chen, Yang, Gao, Qi, Zhang (CR73) 2021; 407
Mandal, Kumar, Singh (CR75) 2021; 295
Zhang, Min, Tang, Rafiq, Sun (CR137) 2020; 2
Zhang, Li, Wu, Pang, Hao, Hu, Qiu, Chen (CR141) 2021; 320
Liu, Zhao, Liu, Bai, Lin, Wang (CR64) 2021; 277
Zhang, He, Guo, Han, Ji, He, Han, Sun (CR134) 2020; 375
Li, Yu, Liu, Yu (CR57) 2021; 420
Wu, Ifthikar, Oyekunle, Jawad, Chen, Chen, Sellaoui, Bouzid (CR111) 2021; 789
Chen, Dai, Fan, Xu, Cao (CR14) 2021; 405
CR48
Zeng, Zeng, Zhang, Shahab, Zhang, Lu, Nabi, Naseem, Ullah (CR132) 2021; 286
Bai, Zhu, Jin, Sun, Wang, Wen, Ma (CR9) 2021; 268
Li, Chen, Wang, Yang, Wen, Wang, Hu, Wang (CR58) 2021; 792
You, Suo, Yin, Wang, Zheng, Fang, Zhang, Li, Li (CR125) 2021; 417
Zou, Zhao, He, Zhong, Huang, Zheng, Zhang, Yang, Yu, Bashir, Gao (CR155) 2021; 413
Wang, Feng, Cai, Fang, Kong, Alsaedi, Hayat, Tan (CR104) 2020; 708
Qu, Dong, Wei, Meng, Hu, Hu, Wang, Han, Zhang (CR88) 2020; 250
Qiu, Tao, Wang, Li, Ding, Chu (CR86) 2021; 155
Cuong Nguyen, Thanh Huyen Nguyen, Hong Chuong Nguyen, Van Le, Yen Binh Vo, Cuc Phuong Tran, Duong La, Kumar, Khanh Nguyen, Chang, Jin Chung, Duc Nguyen (CR22) 2021; 282
Hao, Wang, Yan, Jiang (CR40) 2021; 401
Zhao, Zhao, Tsang, Liu, Zhu, Zhang, Zhang, Tang, Qiu (CR147) 2021; 404
Zhang, Wang, Zhang, Ma, Huang, Yu, Chen, Song, Qiu, Wang (CR140) 2021; 291
Islam, Kwak, Nzediegwu, Wang, Palansuriya, Kwon, Naeth, El-Din, Ok, Chang (CR47) 2021; 281
Liu, Rao, Zou, Teng, Yu (CR65) 2021; 767
Wu, Chen, Hu, Wang, Deng, Mi (CR112) 2021; 322
Silvani, Hjartardottir, Bielska, Skulcova, Cornelissen, Nizzetto, Hale (CR93) 2019; 662
Yu, Pang, Huang, Tang, Wang, Qiu, Chen, Yang, Song, Fu, Hu, Wang (CR127) 2021; 800
Li, Xiong, Wei, Qin, Lin (CR56) 2021; 3
Zhou, Zhu, Niu, Zeng, Lai, Liu, Huang, Qin, Liu, Li, Yi, Fu, Li, Zhang, Zhou, Liu (CR150) 2021; 416
Azeem, Ali, Arockiam Jeyasundar, Bashir, Hussain, Wahid, Ali, Abdelrahman, Li, Antoniadis, Rinklebe, Shaheen, Li, Zhang (CR7) 2021; 282
Song, Zhang, Li, Du, Yang (CR95) 2020; 391
Amusat, Kebede, Dube, Nindi (CR5) 2021; 41
Peter, Chabot, Loranger (CR82) 2021; 290
Su, Wen, Yang, Zhang, Xia, Zhou, Xiong, Zhou (CR96) 2021; 330
Zhao, Wang, Theng, Wu, Liu, Lee, Chen, Sun (CR148) 2021; 799
Zhao, Hu, Zhang, Wang, Wang, Huo (CR143) 2021; 287
Hemavathy, Kumar, Kanmani, Jahnavi (CR41) 2020; 249
Cheng, Liu, Xing, Qin, Zhang, Xia (CR18) 2021; 314
Liu, Li, Singh (CR67) 2021; 12
Zhang, Chen, Gray, Boyd (CR133) 2017; 105
Lee, Shin, Kwak, Kim, Son, Cho, Chon (CR54) 2021; 14
Ma, Qi, Yang, Wu, Li, Gao, Qi, Zhang (CR72) 2021; 292
Wang, Zhang, Cao, Ma, Huang, Yu, Ma, Song, Qiu, Wang (CR107) 2022; 331
Wang, Shi, Yu, Pang, Qiu, Song, Fu, Hu, Wang (CR108) 2022; 242
Zama, Reid, Arp, Sun, Yuan, Zhu (CR131) 2018; 18
Liu, Xie, Zhu, Zhu, Jiang, Wang, Gao (CR66) 2021; 22
Fu, Zhang, Xia, Lei, Wang (CR31) 2020; 187
Hou, Liang, Hu, Tao, Zhou, Cai (CR43) 2021; 329
Qian, Liang, Zhang, Huang, Diao (CR84) 2022; 113
Yang, Zhu, Dong, Fan, Wang (CR118) 2021; 37
Cai, Liu, Zhang, Tie, Lei, Wei, Peng, Du (CR12) 2021; 281
Wang, Chen, Zhu, Cen, Sun (CR103) 2019; 26
Wen, Xue, Yin, Wang (CR110) 2022; 286
Azeem, Ali, Arockiam Jeyasundar, Li, Abdelrahman, Latif, Li, Basta, Li, Shaheen, Rinklebe, Zhang (CR8) 2021; 277
Tian, Dong, Chen, Li, Xie, Li, Li, Jin, Xiao, Xiao (CR99) 2021; 425
Wang, Zhang, Zhang, Lu, Chen, Wang, Hu, Wang (CR109) 2022; 287
Zhu, Wang, Yang, Tufail, Chen, Wang, Shang (CR153) 2020; 276
Wu, Fu, Li, Liu, Wan (CR114) 2022
Wan, Qiu, Li, Sun, Gao, He, Wan (CR100) 2020; 402
Ahmed, Mehmood, Qaswar, Ali, Khan, Ying, Chen, Núñez-Delgado (CR3) 2021; 9
Fang, Gao, Bolan, Shaheen, Xu, Wu, Xu, Hu, Lin, Zhang, Li, Rinklebe, Wang (CR27) 2020; 390
Qiu, Xu, Xu, Liang, Yu, Cao (CR85) 2020; 389
Pan, Yang, Chen, Sarkar, Bolan, Shaheen, Wu, Che, Ma, Rinklebe, Wang (CR80) 2021; 763
Zhou, Ye, Zhao, Baig, Huang, Ma (CR151) 2022; 115
Ma, Yang, Wu, Li, Qi, He, Cui, Ding, Zhang (CR71) 2020; 718
Khalid, Shahid, Murtaza, Bibi, Naeem, Niazi (CR52) 2020; 711
Ahmed, Nunez-Delgado, Mehmood, Ali, Qaswar, Shakoor, Chen (CR4) 2021; 201
Zhao, Wang, Theng, Wu, Liu, Wang, Lee, Chen, Li, Zhang (CR145) 2021; 767
Liu, Zhang, Hu, Wang (CR68) 2022; 287
Hu, Ai, Jin, Hayat, Alsaedi, Zhuang, Wang (CR44) 2020; 2
Liu, Xu, Li (CR62) 2020; 747
Zhao, Shao, Yan, Liu, Liang, He, Wu, Liu, Pan, Huang, Wang, Liang, Tang (CR144) 2021; 416
Lonappan, Liu, Rouissi, Brar, Surampalli (CR69) 2020; 244
Zhao, Liang, Zhang, Cai, Li, Xie, Wang (CR142) 2019; 688
You, Jiang, Zhao, Suo, Zhang, Zheng, Sun, Zhang, Li, Li (CR124) 2020; 390
Nzediegwu, Naeth, Chang (CR79) 2021; 412
Cui, Li, Bian, Ippolito, Yan, Quan (CR21) 2021; 3
Ri, Tang, Liu, Lyu, Li (CR91) 2022; 113
Shakoor, Ye, Chen (CR92) 2021; 779
Zhu, Chen, Yang, Wang, Wang, Zhang, Chen (CR152) 2020; 247
Yu, Tang, Zhang, Wang, Qiu, Song, Fu, Hu, Wang (CR129) 2022; 811
Fang, Tan, Liu, Hu, Wang (CR28) 2021; 2021
Wang, Zhang, Xu, Li (CR105) 2021; 413
Yoon, Kim, Song, Oh, Jo, Yang, Lee, Kang, Kim, Choi (CR123) 2021; 21
Zhang, Shao, Zhang, Zhang, Chen (CR135) 2020; 390
Ahmed, Mehmood, Nunez-Delgado, Qaswar, Ali, Ying, Liu, Mahmood, Chen (CR2) 2021; 780
Gholami, Rahimi (CR35) 2021; 16
Dong, Yan, Zhou, Huang, Liang, Zhang, Guo, Guo, Qian, Kong, Chu, Diao (CR24) 2021; 416
Tang, Zhao, Lyu, Li (CR98) 2021; 413
Xu, Wan, Sun, Cao, Hou, Alessi, Ok, Tsang (CR116) 2021; 425
Yang, Wang, Shi, Li, Li, Mao, Liao, Zhang, Wu (CR119) 2021; 33
Qu, Wang, Tian, Jiang, Deng, Tao, Jiang, Wang, Zhang (CR89) 2021; 401
Rahman, Lamb, Rahman, Bahar, Sanderson, Abbasi, Bari, Naidu (CR90) 2021; 409
Guo, Liu, Zhang (CR38) 2020; 102
Zhao, Gao, Sun, Fang, Li, Dai (CR146) 2021; 9
Zubair, Adnan Ramzani, Rasool, Khan, Ur-Rahman, Akhtar, Turan, Tauqeer, Farhad, Khan, Iqbal, Iqbal (CR157) 2021; 284
Bao, Wang, Zhang, Li, Li, Wu (CR10) 2020; 385
Feng, Guo, Zhang, Sun, Zhao, Shang, Sun, Wu, Tan (CR29) 2021; 410
Gayathri, Gopinath, Kumar (CR33) 2021; 262
Gopinath, Divyapriya, Srivastava, Laiju, Nidheesh, Kumar (CR37) 2021; 194
Li, Shao, Huang, Sang, Zheng, Jiang, Gao (CR60) 2022; 286
Huang, Gao, Deng, Khan, Liu, Song, Qiu (CR46) 2020; 715
Yin, Tao, Chen, Bolan, Sarkar, Lin, Wang (CR121) 2021; 420
Chen, Wei, Yang, Liu (CR13) 2021; 416
Huang, Bao, Shan, Qin, Wang, Yu, Chen, Xu (CR45) 2018; 211
Wu, Wang, Wang, Zhang, Pan (CR113) 2021; 754
Yang, Liu, Hao, Xie, Wang, Tian, Waterhouse, Kruge, Telfer, Ma (CR120) 2021; 33
Jiang, Yan, Wang, Li, Rao, Ju, Jian, Guo, Che (CR49) 2022; 286
Singh, Khandelwal, Ganie, Tiwari, Darbha (CR94) 2021; 418
El-Naggar, Ahmed, Mosa, Niazi, Yousaf, Sharma, Sarkar, Cai, Chang (CR25) 2021; 419
Czech, Kończak, Rakowska, Oleszczuk (CR23) 2021; 288
Fernandes, Bernardino, Mahler, Santelli, Braz, Borges, da Cunha Veloso, Romeiro, Cincotto (CR30) 2021; 232
Qiu, Hu, Chen, Yang, Wang (CR87) 2021; 3
Patra, Nanda, Dalai, Meda (CR81) 2021; 285
Zhong, Li, Tan, Gao, Qiu, Wei, Hao, Xia, Zhang (CR149) 2021; 793
Wang, Zheng, Zhan, Huang, Liu, Li, Yang, Liao, Chen, Zhang, Wang (CR106) 2021; 207
Ying, Hong, Jiali, Qinqin, Yuhui, Youqun, Zhibin, Xiaohong, Yunhai (CR122) 2020; 142
Ahmed, Mehmood, Nunez-Delgado, Ali, Qaswar, Khan, Ying, Chen (CR1) 2021; 771
Godlewska, Oleszczuk (CR36) 2022; 429
Herath, Layne, Perez, Hassan, Pittman, Mlsna (CR42) 2021; 269
Wang, Wang (CR101) 2019; 227
Yu, Lee, Ong, Chen, Chang, Lin, Show, Ling (CR126) 2021; 272
Cheng, Ji, Liu, Mu, Zhu (CR16) 2021; 242
Zhang, Tang, Guan (CR136) 2020; 8
Lyu, Wang, Wang, Yin, Li, Deng (CR70) 2021; 209
Cui, Xu, Wang, Tan, Cui, Wang, Li, She, Zheng (CR20) 2020; 729
Liu, Fang, Yuan, Li, Wang, Dai (CR63) 2021; 9
Xu, Bai, Yan, Ma (CR115) 2020; 105
Lawal, Hassan, Ahmad Farid, Tengku Yasim-Anuar, Samsudin, Mohd Yusoff, Zakaria, Mokhtar, Shirai (CR53) 2021; 269
Yuan, Wang, Pan, Shen, Wu (CR130) 2019; 659
Tang, Wang, Zhang, Pang, Wang, Chen, Li, Song, Qiu, Yu (CR97) 2021; 319
Miao, Li (CR76) 2021; 759
Nie, Yang, Chen, Muller, Shaheen, Rinklebe, Song, Xu, Wu, Wang (CR78) 2021; 408
Zhu, Zhao, Zhao, Yang, Chen, Shang (CR154) 2020; 247
Han, Sun, Sun, Yang, Fang, Xing (CR39) 2021; 145
Li, Li (CR55) 2019; 220
Kashif Irshad, Chen, Noman, Ibrahim, Adeel, Shang (CR51) 2020; 242
Liang, Xi, Tan, Meng, Hu, Wang (CR61) 2021; 3
Esfandiar, Suri, McKenzie (CR26) 2021; 274
Xu, Xu, Yu, Yao, Tsang, Cao (CR117) 2021; 414
Premarathna, Rajapaksha, Sarkar, Kwon, Bhatnagar, Ok, Vithanage (CR83) 2019; 372
Cheng, Wang, Wu, Lee, Xing, Chen, Gao (CR17) 2021; 273
J Wang (146_CR107) 2022; 331
CX Yang (146_CR118) 2021; 37
B Czech (146_CR23) 2021; 288
Q Li (146_CR58) 2021; 792
L Liu (146_CR64) 2021; 277
N Esfandiar (146_CR26) 2021; 274
H Zhang (146_CR135) 2020; 390
C Zhao (146_CR145) 2021; 767
P Zhang (146_CR139) 2021; 411
C Wu (146_CR114) 2022
J Zhao (146_CR146) 2021; 9
M Zhong (146_CR149) 2021; 793
J Wen (146_CR110) 2022; 286
S Nazari (146_CR77) 2019; 7
J Qu (146_CR89) 2021; 401
N Boskovic (146_CR11) 2021; 274
S Wang (146_CR108) 2022; 242
S Zhang (146_CR140) 2021; 291
X You (146_CR125) 2021; 417
D Zhang (146_CR138) 2021; 408
L Gholami (146_CR34) 2021; 42
S Yu (146_CR127) 2021; 800
L Cheng (146_CR16) 2021; 242
Y Su (146_CR96) 2021; 330
F Wu (146_CR112) 2021; 322
J Song (146_CR95) 2020; 391
146_CR48
J Wang (146_CR101) 2019; 227
H Zhang (146_CR133) 2017; 105
Y Li (146_CR60) 2022; 286
Q Wang (146_CR105) 2021; 413
M Wang (146_CR102) 2018; 63
P Zhang (146_CR137) 2020; 2
C Fu (146_CR31) 2020; 187
R Gayathri (146_CR33) 2021; 262
X Zhou (146_CR150) 2021; 416
H Liu (146_CR62) 2020; 747
G Zhang (146_CR134) 2020; 375
A El-Naggar (146_CR25) 2021; 419
X Chen (146_CR14) 2021; 405
SO Amusat (146_CR5) 2021; 41
W Ahmed (146_CR3) 2021; 9
M Fang (146_CR28) 2021; 2021
M Azeem (146_CR8) 2021; 277
G Yin (146_CR121) 2021; 420
S Cheng (146_CR15) 2020; 25
MB Shakoor (146_CR92) 2021; 779
T Chen (146_CR13) 2021; 416
T Nie (146_CR78) 2021; 408
C Nzediegwu (146_CR79) 2021; 412
L Silvani (146_CR93) 2019; 662
FX Dong (146_CR24) 2021; 416
D Zhu (146_CR152) 2020; 247
M Azeem (146_CR7) 2021; 282
J Tang (146_CR98) 2021; 413
Y Xu (146_CR115) 2020; 105
M Zubair (146_CR157) 2021; 284
W Ahmed (146_CR2) 2021; 780
HY Wang (146_CR103) 2019; 26
Z Xu (146_CR117) 2021; 414
S Zhu (146_CR154) 2020; 247
P Godlewska (146_CR36) 2022; 429
L Liu (146_CR63) 2021; 9
Y-G Lee (146_CR54) 2021; 14
S Wan (146_CR100) 2020; 402
W Ahmed (146_CR1) 2021; 771
H Pan (146_CR80) 2021; 763
Z Xu (146_CR116) 2021; 425
X Wang (146_CR104) 2020; 708
N Cheng (146_CR17) 2021; 273
B Li (146_CR55) 2019; 220
Z Fang (146_CR27) 2020; 390
L Gholami (146_CR35) 2021; 16
C Zhao (146_CR143) 2021; 287
Y Ma (146_CR72) 2021; 292
S Huang (146_CR45) 2018; 211
H Zou (146_CR155) 2021; 413
R Zhao (146_CR148) 2021; 799
JO Fernandes (146_CR30) 2021; 232
S Cheng (146_CR18) 2021; 314
RV Hemavathy (146_CR41) 2020; 249
Q Miao (146_CR76) 2021; 759
H Tang (146_CR97) 2021; 319
A Herath (146_CR42) 2021; 269
MS Islam (146_CR47) 2021; 281
S Jiang (146_CR49) 2022; 286
J Wu (146_CR113) 2021; 754
Y Li (146_CR56) 2021; 3
A Mandal (146_CR75) 2021; 295
P Lyu (146_CR70) 2021; 209
L Ma (146_CR74) 2022; 287
Y Qiu (146_CR85) 2020; 389
Y Yu (146_CR128) 2021; 417
H Zeng (146_CR132) 2021; 286
L Zhang (146_CR136) 2020; 8
T Cai (146_CR12) 2021; 281
X-J Liu (146_CR67) 2021; 12
J-Y Yoon (146_CR123) 2021; 21
AA Lawal (146_CR53) 2021; 269
X You (146_CR124) 2020; 390
L Liang (146_CR61) 2021; 3
KL Yu (146_CR126) 2021; 272
C Zhao (146_CR144) 2021; 416
A Gopinath (146_CR37) 2021; 194
S Zhu (146_CR153) 2020; 276
G Cheng (146_CR19) 2021; 66
R Tian (146_CR99) 2021; 425
J Qu (146_CR88) 2020; 250
KSD Premarathna (146_CR83) 2019; 372
Y Wang (146_CR106) 2021; 207
YT Zou (146_CR156) 2022; 115
H Yang (146_CR120) 2021; 33
S Liu (146_CR66) 2021; 22
L Han (146_CR39) 2021; 145
R Liu (146_CR68) 2022; 287
MA Rahman (146_CR90) 2021; 409
X Zhang (146_CR141) 2021; 320
N Zhao (146_CR147) 2021; 404
P Liu (146_CR65) 2021; 767
Q Cui (146_CR20) 2020; 729
H Fu (146_CR32) 2021; 281
N Singh (146_CR94) 2021; 418
D Feng (146_CR29) 2021; 410
W Qian (146_CR84) 2022; 113
C Ri (146_CR91) 2022; 113
H Bao (146_CR10) 2020; 385
BR Patra (146_CR81) 2021; 285
A Peter (146_CR82) 2021; 290
SJ Li (146_CR59) 2021; 64
X-X Guo (146_CR38) 2020; 102
EF Zama (146_CR131) 2018; 18
Y Li (146_CR57) 2021; 420
H Zhou (146_CR151) 2022; 115
M Kashif Irshad (146_CR51) 2020; 242
J Zhao (146_CR142) 2019; 688
F Yang (146_CR119) 2021; 33
L Cui (146_CR21) 2021; 3
M Kamali (146_CR50) 2021; 420
M Qiu (146_CR87) 2021; 3
Z Hao (146_CR40) 2021; 401
P Yuan (146_CR130) 2019; 659
S Bai (146_CR9) 2021; 268
X Cuong Nguyen (146_CR22) 2021; 282
D Ying (146_CR122) 2020; 142
B Wu (146_CR111) 2021; 789
Z Wang (146_CR109) 2022; 287
M Arif (146_CR6) 2021; 310
Y Huang (146_CR46) 2020; 715
Y Ma (146_CR71) 2020; 718
S Yu (146_CR129) 2022; 811
Y Ma (146_CR73) 2021; 407
S Khalid (146_CR52) 2020; 711
B Qiu (146_CR86) 2021; 155
W Ahmed (146_CR4) 2021; 201
Y Hou (146_CR43) 2021; 329
L Lonappan (146_CR69) 2020; 244
B Hu (146_CR44) 2020; 2
References_xml – volume: 3
  start-page: 511
  year: 2021
  end-page: 518
  ident: CR21
  article-title: Physicochemical disintegration of biochar: a potentially important process for long-term cadmium and lead sorption
  publication-title: Biochar
– volume: 407
  start-page: 124777
  year: 2021
  ident: CR73
  article-title: A novel, efficient and sustainable magnetic sludge biochar modified by graphene oxide for environmental concentration imidacloprid removal
  publication-title: J Hazard Mater
– volume: 12
  start-page: 1434
  year: 2021
  end-page: 1445
  ident: CR67
  article-title: Manganese-modified lignin biochar as adsorbent for removal of methylene blue
  publication-title: J Mater Res Technol
– volume: 319
  start-page: 128641
  year: 2021
  ident: CR97
  article-title: Recent advances in nanoscale zero-valent iron-based materials: characteristics, environmental remediation and challenges
  publication-title: J Clean Prod
– volume: 314
  start-page: 128074
  year: 2021
  ident: CR18
  article-title: Lead and cadmium clean removal from wastewater by sustainable biochar derived from poplar saw dust
  publication-title: J Clean Prod
– volume: 288
  start-page: 125686
  year: 2021
  ident: CR23
  article-title: Engineered biochars from organic wastes for the adsorption of diclofenac, naproxen and triclosan from water systems
  publication-title: J Clean Prod
– volume: 391
  start-page: 121692
  year: 2020
  ident: CR95
  article-title: Preparation of montmorillonite modified biochar with various temperatures and their mechanism for Zn ion removal
  publication-title: J Hazard Mater
– volume: 771
  start-page: 144955
  year: 2021
  ident: CR1
  article-title: Utilization of L. seeds to synthesize a novel MnFe2O4-biochar adsorbent for the removal of U(VI) from wastewater: insights and comparison between modified and raw biochar
  publication-title: Sci Total Environ
– volume: 115
  start-page: 190
  year: 2022
  end-page: 214
  ident: CR156
  article-title: Application of aluminosilicate clay mineral-based composites in photocatalysis
  publication-title: J Environ Sci
– volume: 145
  start-page: 111133
  year: 2021
  ident: CR39
  article-title: Effect of Fe and Al ions on the production of biochar from agricultural biomass: properties, stability and adsorption efficiency of biochar
  publication-title: Renew Sustain Energy Rev
– volume: 287
  start-page: 132313
  year: 2022
  ident: CR109
  article-title: Application of carbon dots and their composite materials for the detection and removal of radioactive ions: a review
  publication-title: Chemosphere
– volume: 105
  start-page: 511
  year: 2020
  end-page: 519
  ident: CR115
  article-title: Influence of sodium hydroxide addition on characteristics and environmental risk of heavy metals in biochars derived from swine manure
  publication-title: Waste Manag
– volume: 425
  start-page: 131489
  year: 2021
  ident: CR116
  article-title: Unraveling iron speciation on Fe-biochar with distinct arsenic removal mechanisms and depth distributions of As and Fe
  publication-title: Chem Eng J
– volume: 273
  start-page: 116448
  year: 2021
  ident: CR17
  article-title: Adsorption of emerging contaminants from water and wastewater by modified biochar: a review
  publication-title: Environ Pollut
– volume: 729
  start-page: 138892
  year: 2020
  ident: CR20
  article-title: Phosphorus recovery by core-shell γ-Al O /Fe O biochar composite from aqueous phosphate solutions
  publication-title: Sci Total Environ
– volume: 232
  start-page: 67
  year: 2021
  ident: CR30
  article-title: Biochar generated from agro-Industry sugarcane residue by low temperature pyrolysis utilized as an adsorption agent for the removal of thiamethoxam pesticide in wastewater
  publication-title: Water Air Soil Poll
– volume: 247
  start-page: 125847
  year: 2020
  ident: CR152
  article-title: Synthesis and characterization of magnesium oxide nanoparticle-containing biochar composites for efficient phosphorus removal from aqueous solution
  publication-title: Chemosphere
– volume: 763
  start-page: 144218
  year: 2021
  ident: CR80
  article-title: Pristine and iron-engineered animal- and plant-derived biochars enhanced bacterial abundance and immobilized arsenic and lead in a contaminated soil
  publication-title: Sci Total Environ
– volume: 416
  start-page: 125822
  year: 2021
  ident: CR13
  article-title: Highly efficient As(III) removal in water using millimeter-sized porous granular MgO-biochar with high adsorption capacity
  publication-title: J Hazard Mater
– volume: 413
  start-page: 125252
  year: 2021
  ident: CR155
  article-title: Ball milling biochar iron oxide composites for the removal of chromium (Cr(VI)) from water: performance and mechanisms
  publication-title: J Hazard Mater
– volume: 401
  start-page: 123859
  year: 2021
  ident: CR40
  article-title: Novel magnetic loofah sponge biochar enhancing microbial responses for the remediation of polycyclic aromatic hydrocarbons-contaminated sediment
  publication-title: J Hazard Mater
– volume: 789
  start-page: 148031
  year: 2021
  ident: CR111
  article-title: Interpret the elimination behaviors of lead and vanadium from the water by employing functionalized biochars in diverse environmental conditions
  publication-title: Sci Total Environ
– volume: 413
  start-page: 125385
  year: 2021
  ident: CR105
  article-title: Pyrolysis of penicillin fermentation residue and sludge to produce biochar: antibiotic resistance genes destruction and biochar application in the adsorption of penicillin in water
  publication-title: J Hazard Mater
– volume: 25
  start-page: 3167
  year: 2020
  ident: CR15
  article-title: Application research of biochar for the remediation of soil heavy metals contamination: a review
  publication-title: Molecules
– volume: 286
  start-page: 124964
  year: 2021
  ident: CR132
  article-title: Efficient adsorption of Cr(VI) from aqueous environments by phosphoric acid activated eucalyptus biochar
  publication-title: J Clean Prod
– volume: 402
  start-page: 126021
  year: 2020
  ident: CR100
  article-title: Accelerated antimony and copper removal by manganese oxide embedded in biochar with enlarged pore structure
  publication-title: Chem Eng J
– volume: 329
  start-page: 124877
  year: 2021
  ident: CR43
  article-title: Facile preparation of multi-porous biochar from lotus biomass for methyl orange removal: kinetics, isotherms, and regeneration studies
  publication-title: Bioresour Technol
– volume: 244
  start-page: 118841
  year: 2020
  ident: CR69
  article-title: Development of biochar-based green functional materials using organic acids for environmental applications
  publication-title: J Clean Prod
– volume: 33
  start-page: 55
  year: 2021
  end-page: 65
  ident: CR119
  article-title: Immobilization of heavy metals (Cd, Zn, and Pb) in different contaminated soils with swine manure biochar
  publication-title: Env Pollut Bioavail
– volume: 250
  start-page: 117003
  year: 2020
  ident: CR88
  article-title: Microwave-assisted one pot synthesis of beta-cyclodextrin modified biochar for concurrent removal of Pb(II) and bisphenol a in water
  publication-title: Carbohydr Polym
– volume: 247
  start-page: 119579
  year: 2020
  ident: CR154
  article-title: Goethite modified biochar as a multifunctional amendment for cationic Cd(II), anionic As(III), roxarsone, and phosphorus in soil and water
  publication-title: J Clean Prod
– volume: 201
  start-page: 111518
  year: 2021
  ident: CR4
  article-title: Highly efficient uranium (VI) capture from aqueous solution by means of a hydroxyapatite-biochar nanocomposite: adsorption behavior and mechanism
  publication-title: Environ Res
– volume: 718
  start-page: 137299
  year: 2020
  ident: CR71
  article-title: Carbon nanotube supported sludge biochar as an efficient adsorbent for low concentrations of sulfamethoxazole removal
  publication-title: Sci Total Environ
– volume: 411
  start-page: 128502
  year: 2021
  ident: CR139
  article-title: Preparation of graphite-like biochars derived from straw and newspaper based on ball-milling and TEMPO-mediated oxidation and their supersorption performances to imidacloprid and sulfadiazine
  publication-title: Chem Eng J
– volume: 417
  start-page: 129183
  year: 2021
  ident: CR128
  article-title: Synergistic role of bulk carbon and iron minerals inherent in the sludge-derived biochar for As(V) immobilization
  publication-title: Chem Eng J
– volume: 416
  start-page: 129027
  year: 2021
  ident: CR150
  article-title: New notion of biochar: a review on the mechanism of biochar applications in advanced oxidation processes
  publication-title: Chem Eng J
– volume: 64
  start-page: 1323
  year: 2021
  end-page: 1331
  ident: CR59
  article-title: Rapid and selective uranium extraction from aqueous solution under visible light in the absence of solid photocatalyst
  publication-title: Sci China Chem
– volume: 330
  start-page: 124947
  year: 2021
  ident: CR96
  article-title: The mechanism transformation of ramie biochar’s cadmium adsorption by aging
  publication-title: Bioresour Technol
– volume: 418
  start-page: 129405
  year: 2021
  ident: CR94
  article-title: Eco-friendly magnetic biochar: an effective trap for nanoplastics of varying surface functionality and size in the aqueous environment
  publication-title: Chem Eng J
– volume: 242
  start-page: 116739
  year: 2021
  ident: CR16
  article-title: Sorption mechanism of organic dyes on a novel self-nitrogen-doped porous graphite biochar: coupling DFT calculations with experiments
  publication-title: Chem Eng Sci
– volume: 268
  start-page: 128805
  year: 2021
  ident: CR9
  article-title: Sorption mechanisms of antibiotic sulfamethazine (SMT) on magnetite-coated biochar: pH-dependence and redox transformation
  publication-title: Chemosphere
– volume: 14
  start-page: 1297
  year: 2021
  ident: CR54
  article-title: Effects of NaOH activation on adsorptive removal of herbicides by biochars prepared from ground coffee residues
  publication-title: Energies
– volume: 413
  start-page: 125415
  year: 2021
  ident: CR98
  article-title: Development of a novel pyrite/biochar composite (BM-FeS @BC) by ball milling for aqueous Cr(VI) removal and its mechanisms
  publication-title: J Hazard Mater
– volume: 26
  start-page: 8575
  issue: 9
  year: 2019
  end-page: 8584
  ident: CR103
  article-title: Simultaneous adsorption and immobilization of As and Cd by birnessite-loaded biochar in water and soil
  publication-title: Environ Sci Pollut Res
– volume: 242
  start-page: 106798
  year: 2022
  ident: CR108
  article-title: Effect of Shewanella oneidensis MR-1 on U(VI) sequestration by montmorillonite
  publication-title: J Environ Radioactiv
– volume: 187
  start-page: 109763
  year: 2020
  ident: CR31
  article-title: The single/co-adsorption characteristics and microscopic adsorption mechanism of biochar-montmorillonite composite adsorbent for pharmaceutical emerging organic contaminant atenolol and lead ions
  publication-title: Ecotoxicol Environ Saf
– volume: 287
  start-page: 117303
  year: 2021
  ident: CR143
  article-title: Preparation of biochar-interpenetrated iron-alginate hydrogel as a pH-independent sorbent for removal of Cr(VI) and Pb(II)
  publication-title: Environ Pollut
– volume: 194
  start-page: 110656
  year: 2021
  ident: CR37
  article-title: Conversion of sewage sludge into biochar: a potential resource in water and wastewater treatment
  publication-title: Environ Res
– volume: 113
  start-page: 12
  year: 2022
  end-page: 25
  ident: CR91
  article-title: Enhanced microbial reduction of aqueous hexavalent chromium by Shewanella oneidensis MR-1 with biochar as electron shuttle
  publication-title: J Environ Sci
– volume: 420
  start-page: 126655
  year: 2021
  ident: CR57
  article-title: Application of co-pyrolysis biochar for the adsorption and immobilization of heavy metals in contaminated environmental substrates
  publication-title: J Hazard Mater
– volume: 220
  start-page: 28
  year: 2019
  end-page: 39
  ident: CR55
  article-title: Effect of nitric acid pre-oxidation concentration on pore structure and nitrogen/oxygen active decoration sites of ethylenediamine-modified biochar for mercury(II) adsorption and the possible mechanism
  publication-title: Chemosphere
– volume: 18
  start-page: 2433
  year: 2018
  end-page: 2450
  ident: CR131
  article-title: Advances in research on the use of biochar in soil for remediation: a review
  publication-title: J Soil Sediment
– volume: 286
  start-page: 131470
  year: 2022
  ident: CR60
  article-title: Enhanced remediation of heavy metals contaminated soils with EK-PRB using β-CD/hydrothermal biochar by waste cotton as reactive barrier
  publication-title: Chemosphere
– volume: 779
  start-page: 146240
  year: 2021
  ident: CR92
  article-title: Engineered biochars for recovering phosphate and ammonium from wastewater: a review
  publication-title: Sci Total Environ
– volume: 22
  start-page: 101388
  year: 2021
  ident: CR66
  article-title: Adsorption characteristics of modified rice straw biochar for Zn and in-situ remediation of Zn contaminated soil
  publication-title: Environ Technol Inno
– volume: 412
  start-page: 125255
  year: 2021
  ident: CR79
  article-title: Lead(II) adsorption on microwave-pyrolyzed biochars and hydrochars depends on feedstock type and production temperature
  publication-title: J Hazard Mater
– volume: 9
  start-page: 105104
  year: 2021
  ident: CR3
  article-title: Oxidized biochar obtained from rice straw as adsorbent to remove uranium (VI) from aqueous solutions
  publication-title: J Environ Chem Eng
– volume: 662
  start-page: 873
  year: 2019
  end-page: 880
  ident: CR93
  article-title: Can polyethylene passive samplers predict polychlorinated biphenyls (PCBs) uptake by earthworms and turnips in a biochar amended soil?
  publication-title: Sci Total Environ
– volume: 274
  start-page: 129700
  year: 2021
  ident: CR11
  article-title: Conazole fungicides epoxiconazole and tebuconazole in biochar amended soils: degradation and bioaccumulation in earthworms
  publication-title: Chemosphere
– volume: 390
  start-page: 124611
  year: 2020
  ident: CR27
  article-title: Conversion of biological solid waste to graphene-containing biochar for water remediation: a critical review
  publication-title: Chem Eng J
– volume: 793
  start-page: 148098
  year: 2021
  ident: CR149
  article-title: Investigations of Cr(VI) removal by millet bran biochar modified with inorganic compounds: momentous role of additional lactate
  publication-title: Sci Total Environ
– volume: 41
  start-page: 101993
  year: 2021
  ident: CR5
  article-title: Ball-milling synthesis of biochar and biochar-based nanocomposites and prospects for removal of emerging contaminants: a review
  publication-title: J Water Process Eng
– volume: 287
  start-page: 132087
  year: 2022
  ident: CR68
  article-title: Improved Pb(II) removal in aqueous solution by sulfide@biochar and polysaccharose-FeS@ biochar composites: efficiencies and mechanisms
  publication-title: Chemosphere
– volume: 16
  start-page: 100468
  year: 2021
  ident: CR35
  article-title: Efficiency of CH N S-modified biochar derived from potato peel on the adsorption and fractionation of cadmium, zinc and copper in contaminated acidic soil
  publication-title: Environ Nanotechnol Monit Manag
– year: 2022
  ident: CR114
  article-title: Using biochar to strengthen the removal of antibiotic resistance genes: performance and mechanism
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.151554
– volume: 295
  start-page: 113104
  year: 2021
  ident: CR75
  article-title: Sorption mechanisms of pesticides removal from effluent matrix using biochar: conclusions from molecular modelling studies validated by single-, binary and ternary solute experiments
  publication-title: J Environ Manage
– volume: 262
  start-page: 128031
  year: 2021
  ident: CR33
  article-title: Adsorptive separation of toxic metals from aquatic environment using agro waste biochar: application in electroplating industrial wastewater
  publication-title: Chemosphere
– volume: 767
  start-page: 145305
  year: 2021
  ident: CR145
  article-title: Formation and mechanisms of nano-metal oxide-biochar composites for pollutants removal: a review
  publication-title: Sci Total Environ
– volume: 9
  start-page: 105585
  year: 2021
  ident: CR146
  article-title: New use for biochar derived from bovine manure for tetracycline removal
  publication-title: J Environ Chem Eng
– volume: 277
  start-page: 130273
  year: 2021
  ident: CR64
  article-title: Reduction and removal of As(V) in aqueous solution by biochar derived from nano zero-valent-iron (nZVI) and sewage sludge
  publication-title: Chemosphere
– volume: 42
  start-page: 3523
  year: 2021
  end-page: 3532
  ident: CR34
  article-title: Chemical fractionation of copper and zinc after addition of carrot pulp biochar and thiourea-modified biochar to a contaminated soil
  publication-title: Environ Technol
– volume: 290
  start-page: 112569
  year: 2021
  ident: CR82
  article-title: Enhanced activation of ultrasonic pre-treated softwood biochar for efficient heavy metal removal from water
  publication-title: J Environ Manag
– volume: 416
  start-page: 125930
  year: 2021
  ident: CR24
  article-title: Simultaneous adsorption of Cr(VI) and phenol by biochar-based iron oxide composites in water: performance, kinetics and mechanism
  publication-title: J Hazard Mater
– volume: 792
  start-page: 148546
  year: 2021
  ident: CR58
  article-title: Removal of organic compounds by nanoscale zero-valent iron and its composites
  publication-title: Sci Total Environ
– volume: 429
  start-page: 132143
  year: 2022
  ident: CR36
  article-title: Effect of biomass addition before sewage sludge pyrolysis on the persistence and bioavailability of polycyclic aromatic hydrocarbons in biochar-amended soil
  publication-title: Chem Eng J
– volume: 282
  start-page: 131016
  year: 2021
  ident: CR7
  article-title: Effects of sheep bone biochar on soil quality, maize growth, and fractionation and phytoavailability of Cd and Zn in a mining-contaminated soil
  publication-title: Chemosphere
– volume: 209
  start-page: 106146
  year: 2021
  ident: CR70
  article-title: Adsorption and interaction mechanism of uranium (VI) from aqueous solutions on phosphate-impregnation biochar cross-linked Mg Al layered double-hydroxide composite
  publication-title: Appl Clay Sci
– volume: 401
  start-page: 123292
  year: 2021
  ident: CR89
  article-title: KOH-activated porous biochar with high specific surface area for adsorptive removal of chromium (VI) and naphthalene from water: affecting factors, mechanisms and reusability exploration
  publication-title: J Hazard Mater
– volume: 331
  start-page: 130023
  year: 2022
  ident: CR107
  article-title: Water purification and environmental remediation applications of carbonaceous nanofiber-based materials
  publication-title: J Clean Prod
– volume: 375
  start-page: 114497
  year: 2020
  ident: CR134
  article-title: Mechanism of biochar as a biostimulation strategy to remove polycyclic aromatic hydrocarbons from heavily contaminated soil in a coking plant
  publication-title: Geoderma
– volume: 409
  start-page: 124488
  year: 2021
  ident: CR90
  article-title: Removal of arsenate from contaminated waters by novel zirconium and zirconium-iron modified biochar
  publication-title: J Hazard Mater
– volume: 389
  start-page: 124471
  year: 2020
  ident: CR85
  article-title: Contribution of different iron species in the iron-biochar composites to sorption and degradation of two dyes with varying properties
  publication-title: Chem Eng J
– volume: 269
  start-page: 116197
  year: 2021
  ident: CR53
  article-title: Adsorption mechanism and effectiveness of phenol and tannic acid removal by biochar produced from oil palm frond using steam pyrolysis
  publication-title: Environ Pollut
– volume: 9
  start-page: 106238
  issue: 5
  year: 2021
  ident: CR63
  article-title: Metolachlor-adsorption on the walnut shell biochar modified by the fulvic acid and citric acid in water
  publication-title: J Environ Chemi Eng
– volume: 272
  start-page: 115986
  year: 2021
  ident: CR126
  article-title: Adsorptive removal of cationic methylene blue and anionic Congo red dyes using wet-torrefied microalgal biochar: equilibrium, kinetic and mechanism modeling
  publication-title: Environ Pollut
– volume: 105
  start-page: 136
  year: 2017
  end-page: 146
  ident: CR133
  article-title: Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy
  publication-title: Biomass Bioenerg
– volume: 292
  start-page: 126005
  year: 2021
  ident: CR72
  article-title: Adsorptive removal of imidacloprid by potassium hydroxide activated magnetic sugarcane bagasse biochar: adsorption efficiency, mechanism and regeneration
  publication-title: J Clean Prod
– volume: 425
  start-page: 130585
  year: 2021
  ident: CR99
  article-title: Electrochemical behaviors of biochar materials during pollutant removal in wastewater: a review
  publication-title: Chem Eng J
– volume: 21
  start-page: 101242
  year: 2021
  ident: CR123
  article-title: Assessment of adsorptive behaviors and properties of grape pomace-derived biochar as adsorbent for removal of cymoxanil pesticide
  publication-title: Environ Technol Inno
– volume: 408
  start-page: 124850
  year: 2021
  ident: CR78
  article-title: Effect of biochar aging and co-existence of diethyl phthalate on the mono-sorption of cadmium and zinc to biochar-treated soils
  publication-title: J Hazard Mater
– volume: 142
  start-page: 105772
  year: 2020
  ident: CR122
  article-title: Removal of uranium using MnO /orange peel biochar composite prepared by activation and in-situ deposit in a single step
  publication-title: Biomass Bioenerg
– volume: 33
  start-page: 2106621
  year: 2021
  ident: CR120
  article-title: Functionalized iron−nitrogen−carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater
  publication-title: Adv Mater
– volume: 800
  start-page: 149662
  year: 2021
  ident: CR127
  article-title: Recent advances in metal-organic framework membranes for water treatment: a review
  publication-title: Sci Total Environ
– volume: 410
  start-page: 127707
  year: 2021
  ident: CR29
  article-title: Functionalized construction of biochar with hierarchical pore structures and surface O-/N-containing groups for phenol adsorption
  publication-title: Chem Eng J
– volume: 211
  start-page: 120
  year: 2018
  end-page: 127
  ident: CR45
  article-title: Dynamic changes of polychlorinated biphenyls (PCBs) degradation and adsorption to biochar as affected by soil organic carbon content
  publication-title: Chemosphere
– volume: 767
  start-page: 145447
  year: 2021
  ident: CR65
  article-title: Capacity and potential mechanisms of Cd(II) adsorption from aqueous solution by blue algae-derived biochars
  publication-title: Sci Total Environ
– volume: 419
  start-page: 126421
  year: 2021
  ident: CR25
  article-title: Nickel in soil and water: sources, biogeochemistry, and remediation using biochar
  publication-title: J Hazard Mater
– volume: 417
  start-page: 126047
  year: 2021
  ident: CR125
  article-title: Biochar decreased enantioselective uptake of chiral pesticide metalaxyl by lettuce and shifted bacterial community in agricultural soil
  publication-title: J Hazard Mater
– volume: 715
  start-page: 136957
  year: 2020
  ident: CR46
  article-title: Efficient oxidation and adsorption of As(III) and As(V) in water using a Fenton-like reagent, (ferrihydrite)-loaded biochar
  publication-title: Sci Total Environ
– volume: 408
  start-page: 124860
  year: 2021
  ident: CR138
  article-title: Cadmium removal by MgCl modified biochar derived from crayfish shell waste: Batch adsorption, response surface analysis and fixed bed filtration
  publication-title: J Hazard Mater
– volume: 113
  start-page: 231
  year: 2022
  end-page: 241
  ident: CR84
  article-title: A porous biochar supported nanoscale zero-valent iron material highly efficient for the simultaneous remediation of cadmium and lead contaminated soil
  publication-title: J Environ Sci
– volume: 281
  start-page: 125390
  year: 2021
  ident: CR12
  article-title: Silicate-modified oiltea camellia shell-derived biochar: a novel and cost-effective sorbent for cadmium removal
  publication-title: J Clean Prod
– volume: 711
  start-page: 134645
  year: 2020
  ident: CR52
  article-title: A critical review of different factors governing the fate of pesticides in soil under biochar application
  publication-title: Sci Total Environ
– volume: 320
  start-page: 124264
  issue: Pt A
  year: 2021
  ident: CR141
  article-title: Enhanced adsorption of tetracycline by an iron and manganese oxides loaded biochar: kinetics, mechanism and column adsorption
  publication-title: Bioresour Technol
– volume: 3
  start-page: 535
  year: 2021
  end-page: 543
  ident: CR56
  article-title: Transformation and immobilization of hexavalent chromium in the co-presence of biochar and organic acids: effects of biochar dose and reaction time
  publication-title: Biochar
– volume: 249
  start-page: 119390
  year: 2020
  ident: CR41
  article-title: Adsorptive separation of Cu(II) ions from aqueous medium using thermally/chemically treated Cassia fistula based biochar
  publication-title: J Clean Prod
– volume: 281
  start-page: 130990
  year: 2021
  ident: CR32
  article-title: Hierarchically porous magnetic biochar as an efficient amendment for cadmium in water and soil: performance and mechanism
  publication-title: Chemosphere
– volume: 286
  start-page: 131666
  year: 2022
  ident: CR49
  article-title: Recyclable nitrogen-doped biochar via low-temperature pyrolysis for enhanced lead(II) removal
  publication-title: Chemosphere
– volume: 287
  start-page: 132184
  year: 2022
  ident: CR74
  article-title: Highly efficient removal of Cr(VI) from aqueous solution by pinecone biochar supported nanoscale zero-valent iron coupling with Shewanella oneidensis MR-1
  publication-title: Chemosphere
– volume: 420
  start-page: 129946
  year: 2021
  ident: CR50
  article-title: Biochar in water and wastewater treatment—a sustainability assessment
  publication-title: Chem Eng J
– volume: 242
  start-page: 125152
  year: 2020
  ident: CR51
  article-title: Goethite-modified biochar restricts the mobility and transfer of cadmium in soil-rice system
  publication-title: Chemosphere
– volume: 322
  start-page: 124539
  year: 2021
  ident: CR112
  article-title: Industrial alkali lignin-derived biochar as highly efficient and low-cost adsorption material for Pb(II) from aquatic environment
  publication-title: Bioresour Technol
– volume: 227
  start-page: 1002
  year: 2019
  end-page: 1022
  ident: CR101
  article-title: Preparation, modification and environmental application of biochar: a review
  publication-title: J Clean Prod
– volume: 405
  start-page: 124226
  year: 2021
  ident: CR14
  article-title: Application of iron-biochar composite in topsoil for simultaneous remediation of chromium-contaminated soil and groundwater: immobilization mechanism and long-term stability
  publication-title: J Hazard Mater
– volume: 372
  start-page: 536
  year: 2019
  end-page: 550
  ident: CR83
  article-title: Biochar-based engineered composites for sorptive decontamination of water: a review
  publication-title: Chem Eng J
– volume: 63
  start-page: 156
  year: 2018
  end-page: 173
  ident: CR102
  article-title: Review on utilization of biochar for metal-contaminated soil and sediment remediation
  publication-title: J Environ Sci
– volume: 310
  start-page: 127548
  year: 2021
  ident: CR6
  article-title: Synthesis, characteristics and mechanistic insight into the clays and clay minerals-biochar surface interactions for contaminants removal-a review
  publication-title: J Clean Prod
– volume: 282
  start-page: 131009
  year: 2021
  ident: CR22
  article-title: Sustainable carbonaceous biochar adsorbents derived from agro-wastes and invasive plants for cation dye adsorption from water
  publication-title: Chemosphere
– volume: 2
  start-page: 47
  issue: 1
  year: 2020
  end-page: 64
  ident: CR44
  article-title: Efficient elimination of organic and inorganic pollutants by biochar and biochar-based materials
  publication-title: Biochar
– volume: 416
  start-page: 128829
  year: 2021
  ident: CR144
  article-title: Activation of peroxymonosulfate by biochar-based catalysts and applications in the degradation of organic contaminants: a review
  publication-title: Chem Eng J
– volume: 2021
  start-page: 9794329
  year: 2021
  ident: CR28
  article-title: Recent progress on metal-enhanced photocatalysis: a review on the mechanism
  publication-title: Research
– volume: 747
  start-page: 141492
  year: 2020
  ident: CR62
  article-title: The characteristics of pharmaceutical sludge-derived biochar and its application for the adsorption of tetracycline
  publication-title: Sci Total Environ
– volume: 390
  start-page: 121749
  year: 2020
  ident: CR124
  article-title: Biochar reduced Chinese chive ( ) uptake and dissipation of thiamethoxam in an agricultural soil
  publication-title: J Hazard Mater
– volume: 155
  start-page: 105081
  year: 2021
  ident: CR86
  article-title: Biochar as a low-cost adsorbent for aqueous heavy metal removal: a review
  publication-title: J Anal Appl Pyrol
– volume: 277
  start-page: 116800
  year: 2021
  ident: CR8
  article-title: Bone-derived biochar improved soil quality and reduced Cd and Zn phytoavailability in a multi-metal contaminated mining soil
  publication-title: Environ Pollut
– volume: 281
  start-page: 117094
  year: 2021
  ident: CR47
  article-title: Biochar heavy metal removal in aqueous solution depends on feedstock type and pyrolysis purging gas
  publication-title: Environ Pollut
– volume: 115
  start-page: 227
  year: 2022
  end-page: 239
  ident: CR151
  article-title: Sodium citrate and biochar synergistic improvement of nanoscale zero-valent iron composite for the removal of chromium (VI) in aqueous solutions
  publication-title: J Environ Sci
– volume: 207
  start-page: 111294
  year: 2021
  ident: CR106
  article-title: Highly effiective stabilization of Cd and Cu in two different soils and improvement of soil properties by multiple-modified biochar
  publication-title: Ecotoxicol Environ Saf
– volume: 390
  start-page: 121349
  year: 2020
  ident: CR135
  article-title: Effect of phosphorus-modified biochars on immobilization of Cu (II), Cd (II), and As (V) in paddy soil
  publication-title: J Hazard Mater
– volume: 404
  start-page: 124162
  year: 2021
  ident: CR147
  article-title: Microscopic mechanism about the selective adsorption of Cr(VI) from salt solution on O-rich and N-rich biochars
  publication-title: J Hazard Mater
– volume: 3
  start-page: 255
  issue: 3
  year: 2021
  end-page: 281
  ident: CR61
  article-title: Review of organic and inorganic pollutants removal by biochar and biochar-based composites
  publication-title: Biochar
– volume: 276
  start-page: 123009
  year: 2020
  ident: CR153
  article-title: Green sustainable and highly efficient hematite nanoparticles modified biochar-clay granular composite for Cr(VI) removal and related mechanism
  publication-title: J Clean Prod
– volume: 759
  start-page: 143452
  year: 2021
  ident: CR76
  article-title: Potassium phosphate/magnesium oxide modified biochars: interfacial chemical behaviours and Pb binding performance
  publication-title: Sci Total Environ
– ident: CR48
– volume: 102
  start-page: 884
  year: 2020
  end-page: 899
  ident: CR38
  article-title: The role of biochar in organic waste composting and soil improvement: a review
  publication-title: Waste Manag
– volume: 285
  start-page: 131531
  year: 2021
  ident: CR81
  article-title: Taguchi-based process optimization for activation of agro-food waste biochar and performance test for dye adsorption
  publication-title: Chemosphere
– volume: 286
  start-page: 131918
  year: 2022
  ident: CR110
  article-title: Insights into aqueous reduction of Cr(VI) by biochar and its iron-modified counterpart in the presence of organic acids
  publication-title: Chemosphere
– volume: 37
  start-page: 9253
  issue: 30
  year: 2021
  end-page: 9263
  ident: CR118
  article-title: Preparation and characterization of phosphoric acid-modified biochar nanomaterials with highly efficient adsorption and photodegradation ability
  publication-title: Langmuir
– volume: 3
  start-page: 117
  year: 2021
  end-page: 123
  ident: CR87
  article-title: Challenges of organic pollutant photocatalysis by biochar-based catalysts
  publication-title: Biochar
– volume: 7
  start-page: 103064
  issue: 3
  year: 2019
  ident: CR77
  article-title: Effectiveness of native and citric acid-enriched biochar of Chickpea straw in Cd and Pb sorption in an acidic soil
  publication-title: J Environ Chemi Eng
– volume: 291
  start-page: 118076
  year: 2021
  ident: CR140
  article-title: Applications of water-stable metal-organic frameworks in the removal of water pollutants: a review
  publication-title: Environ Pollut
– volume: 780
  start-page: 146617
  year: 2021
  ident: CR2
  article-title: Fabrication, characterization and U(VI) sorption properties of a novel biochar derived from Tribulus terrestris via two different approaches
  publication-title: Sci Total Environ
– volume: 385
  start-page: 121595
  year: 2020
  ident: CR10
  article-title: Effects of biochar and organic substrates on biodegradation of polycyclic aromatic hydrocarbons and microbial community structure in PAHs-contaminated soils
  publication-title: J Hazard Mater
– volume: 66
  start-page: 1996
  year: 2021
  end-page: 2001
  ident: CR19
  article-title: Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity
  publication-title: Sci Bull
– volume: 811
  start-page: 152280
  year: 2022
  ident: CR129
  article-title: MXenes as emerging nanomaterials in water purification and environmental remediation
  publication-title: Sci Total Environ
– volume: 708
  start-page: 134575
  year: 2020
  ident: CR104
  article-title: Porous biochar modified with polyethyleneimine (PEI) for effective enrichment of U(VI) in aqueous solution
  publication-title: Sci Total Environ
– volume: 420
  start-page: 126487
  year: 2021
  ident: CR121
  article-title: Quantitative analysis on the mechanism of Cd removal by MgCl -modified biochar in aqueous solutions
  publication-title: J Hazard Mater
– volume: 659
  start-page: 473
  year: 2019
  end-page: 490
  ident: CR130
  article-title: Review of biochar for the management of contaminated soil: preparation, application and prospect
  publication-title: Sci Total Environ
– volume: 8
  start-page: 16451
  issue: 44
  year: 2020
  end-page: 16462
  ident: CR136
  article-title: Excellent adsorption–desorption of ammonium by a poly(acrylic acid)-grafted chitosan and biochar composite for sustainable agricultural development
  publication-title: ACS Sustain Chem Eng
– volume: 284
  start-page: 112047
  year: 2021
  ident: CR157
  article-title: Efficacy of chitosan-coated textile waste biochar applied to Cd-polluted soil for reducing Cd mobility in soil and its distribution in moringa ( L.)
  publication-title: J Environ Manage
– volume: 274
  start-page: 129812
  year: 2021
  ident: CR26
  article-title: Simultaneous removal of multiple polycyclic aromatic hydrocarbons (PAHs) from urban stormwater using low-cost agricultural/industrial byproducts as sorbents
  publication-title: Chemosphere
– volume: 414
  start-page: 125483
  year: 2021
  ident: CR117
  article-title: Evolution of redox activity of biochar during interaction with soil minerals: effect on the electron donating and mediating capacities for Cr(VI) reduction
  publication-title: J Hazard Mater
– volume: 2
  start-page: 329
  issue: 3
  year: 2020
  end-page: 341
  ident: CR137
  article-title: Sorption and degradation of imidacloprid and clothianidin in Chinese paddy soil and red soil amended with biochars
  publication-title: Biochar
– volume: 269
  start-page: 128409
  year: 2021
  ident: CR42
  article-title: KOH-activated high surface area Douglas Fir biochar for adsorbing aqueous Cr(VI), Pb(II) and Cd(II)
  publication-title: Chemosphere
– volume: 688
  start-page: 1205
  year: 2019
  end-page: 1215
  ident: CR142
  article-title: Coating magnetic biochar with humic acid for high efficient removal of fluoroquinolone antibiotics in water
  publication-title: Sci Total Environ
– volume: 754
  start-page: 142150
  year: 2021
  ident: CR113
  article-title: A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: enhanced the ion exchange and precipitation capacity
  publication-title: Sci Total Environ
– volume: 799
  start-page: 149295
  year: 2021
  ident: CR148
  article-title: Fabrication and environmental applications of metal-containing solid waste/biochar composites: a review
  publication-title: Sci Total Environ
– volume: 780
  start-page: 146617
  year: 2021
  ident: 146_CR2
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.146617
– volume: 747
  start-page: 141492
  year: 2020
  ident: 146_CR62
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.141492
– volume: 115
  start-page: 227
  year: 2022
  ident: 146_CR151
  publication-title: J Environ Sci
  doi: 10.1016/j.jes.2021.05.044
– volume: 250
  start-page: 117003
  year: 2020
  ident: 146_CR88
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2020.117003
– volume: 42
  start-page: 3523
  year: 2021
  ident: 146_CR34
  publication-title: Environ Technol
  doi: 10.1080/09593330.2020.1733101
– volume: 284
  start-page: 112047
  year: 2021
  ident: 146_CR157
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2021.112047
– volume: 242
  start-page: 116739
  year: 2021
  ident: 146_CR16
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2021.116739
– ident: 146_CR48
  doi: 10.1080/09593330.2021.1883743
– volume: 793
  start-page: 148098
  year: 2021
  ident: 146_CR149
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.148098
– volume: 63
  start-page: 156
  year: 2018
  ident: 146_CR102
  publication-title: J Environ Sci
  doi: 10.1016/j.jes.2017.08.004
– volume: 295
  start-page: 113104
  year: 2021
  ident: 146_CR75
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2021.113104
– volume: 390
  start-page: 124611
  year: 2020
  ident: 146_CR27
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.124611
– volume: 409
  start-page: 124488
  year: 2021
  ident: 146_CR90
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.124488
– volume: 800
  start-page: 149662
  year: 2021
  ident: 146_CR127
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.149662
– volume: 281
  start-page: 117094
  year: 2021
  ident: 146_CR47
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2021.117094
– volume: 105
  start-page: 136
  year: 2017
  ident: 146_CR133
  publication-title: Biomass Bioenerg
  doi: 10.1016/j.biombioe.2017.06.024
– volume: 113
  start-page: 12
  year: 2022
  ident: 146_CR91
  publication-title: J Environ Sci
  doi: 10.1016/j.jes.2021.05.023
– volume: 3
  start-page: 255
  issue: 3
  year: 2021
  ident: 146_CR61
  publication-title: Biochar
  doi: 10.1007/s42773-021-00101-6
– volume: 416
  start-page: 125930
  year: 2021
  ident: 146_CR24
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2021.125930
– volume: 375
  start-page: 114497
  year: 2020
  ident: 146_CR134
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114497
– volume: 411
  start-page: 128502
  year: 2021
  ident: 146_CR139
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.128502
– volume: 412
  start-page: 125255
  year: 2021
  ident: 146_CR79
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2021.125255
– volume: 767
  start-page: 145305
  year: 2021
  ident: 146_CR145
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.145305
– volume: 8
  start-page: 16451
  issue: 44
  year: 2020
  ident: 146_CR136
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.0c05070
– volume: 763
  start-page: 144218
  year: 2021
  ident: 146_CR80
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.144218
– volume: 41
  start-page: 101993
  year: 2021
  ident: 146_CR5
  publication-title: J Water Process Eng
  doi: 10.1016/j.jwpe.2021.101993
– volume: 113
  start-page: 231
  year: 2022
  ident: 146_CR84
  publication-title: J Environ Sci
  doi: 10.1016/j.jes.2021.06.014
– volume: 64
  start-page: 1323
  year: 2021
  ident: 146_CR59
  publication-title: Sci China Chem
  doi: 10.1007/s11426-021-9987-1
– volume: 244
  start-page: 118841
  year: 2020
  ident: 146_CR69
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.118841
– volume: 209
  start-page: 106146
  year: 2021
  ident: 146_CR70
  publication-title: Appl Clay Sci
  doi: 10.1016/j.clay.2021.106146
– volume: 425
  start-page: 130585
  year: 2021
  ident: 146_CR99
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.130585
– volume: 711
  start-page: 134645
  year: 2020
  ident: 146_CR52
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.134645
– volume: 662
  start-page: 873
  year: 2019
  ident: 146_CR93
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.01.202
– volume: 102
  start-page: 884
  year: 2020
  ident: 146_CR38
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2019.12.003
– volume: 385
  start-page: 121595
  year: 2020
  ident: 146_CR10
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2019.121595
– volume: 277
  start-page: 116800
  year: 2021
  ident: 146_CR8
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2021.116800
– volume: 247
  start-page: 119579
  year: 2020
  ident: 146_CR154
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.119579
– volume: 416
  start-page: 125822
  year: 2021
  ident: 146_CR13
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2021.125822
– volume: 322
  start-page: 124539
  year: 2021
  ident: 146_CR112
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2020.124539
– volume: 21
  start-page: 101242
  year: 2021
  ident: 146_CR123
  publication-title: Environ Technol Inno
  doi: 10.1016/j.eti.2020.101242
– volume: 242
  start-page: 106798
  year: 2022
  ident: 146_CR108
  publication-title: J Environ Radioactiv
  doi: 10.1016/j.jenvrad.2021.106798
– volume: 401
  start-page: 123292
  year: 2021
  ident: 146_CR89
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.123292
– volume: 194
  start-page: 110656
  year: 2021
  ident: 146_CR37
  publication-title: Environ Res
  doi: 10.1016/j.envres.2020.110656
– volume: 314
  start-page: 128074
  year: 2021
  ident: 146_CR18
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2021.128074
– volume: 286
  start-page: 131666
  year: 2022
  ident: 146_CR49
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.131666
– volume: 414
  start-page: 125483
  year: 2021
  ident: 146_CR117
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2021.125483
– volume: 287
  start-page: 132313
  year: 2022
  ident: 146_CR109
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.132313
– volume: 404
  start-page: 124162
  year: 2021
  ident: 146_CR147
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.124162
– volume: 389
  start-page: 124471
  year: 2020
  ident: 146_CR85
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.124471
– volume: 287
  start-page: 117303
  year: 2021
  ident: 146_CR143
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2021.117303
– volume: 187
  start-page: 109763
  year: 2020
  ident: 146_CR31
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2019.109763
– volume: 420
  start-page: 126655
  year: 2021
  ident: 146_CR57
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2021.126655
– volume: 811
  start-page: 152280
  year: 2022
  ident: 146_CR129
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.152280
– volume: 330
  start-page: 124947
  year: 2021
  ident: 146_CR96
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2021.124947
– volume: 9
  start-page: 105104
  year: 2021
  ident: 146_CR3
  publication-title: J Environ Chem Eng
  doi: 10.1016/j.jece.2021.105104
– volume: 413
  start-page: 125415
  year: 2021
  ident: 146_CR98
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2021.125415
– volume: 767
  start-page: 145447
  year: 2021
  ident: 146_CR65
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.145447
– volume: 249
  start-page: 119390
  year: 2020
  ident: 146_CR41
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.119390
– volume: 331
  start-page: 130023
  year: 2022
  ident: 146_CR107
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2021.130023
– volume: 247
  start-page: 125847
  year: 2020
  ident: 146_CR152
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.125847
– volume: 142
  start-page: 105772
  year: 2020
  ident: 146_CR122
  publication-title: Biomass Bioenerg
  doi: 10.1016/j.biombioe.2020.105772
– volume: 7
  start-page: 103064
  issue: 3
  year: 2019
  ident: 146_CR77
  publication-title: J Environ Chemi Eng
  doi: 10.1016/j.jece.2019.103064
– volume: 281
  start-page: 125390
  year: 2021
  ident: 146_CR12
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.125390
– volume: 2
  start-page: 329
  issue: 3
  year: 2020
  ident: 146_CR137
  publication-title: Biochar
  doi: 10.1007/s42773-020-00060-4
– volume: 286
  start-page: 131470
  year: 2022
  ident: 146_CR60
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.131470
– volume: 688
  start-page: 1205
  year: 2019
  ident: 146_CR142
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.06.287
– volume: 754
  start-page: 142150
  year: 2021
  ident: 146_CR113
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.142150
– volume: 2021
  start-page: 9794329
  year: 2021
  ident: 146_CR28
  publication-title: Research
  doi: 10.34133/2021/9794329
– volume: 372
  start-page: 536
  year: 2019
  ident: 146_CR83
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2019.04.097
– volume: 242
  start-page: 125152
  year: 2020
  ident: 146_CR51
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.125152
– volume: 287
  start-page: 132184
  year: 2022
  ident: 146_CR74
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.132184
– volume: 418
  start-page: 129405
  year: 2021
  ident: 146_CR94
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.129405
– volume: 413
  start-page: 125252
  year: 2021
  ident: 146_CR155
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2021.125252
– volume: 799
  start-page: 149295
  year: 2021
  ident: 146_CR148
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.149295
– volume: 420
  start-page: 129946
  year: 2021
  ident: 146_CR50
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.129946
– volume: 105
  start-page: 511
  year: 2020
  ident: 146_CR115
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2020.02.035
– volume: 708
  start-page: 134575
  year: 2020
  ident: 146_CR104
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.134575
– volume: 286
  start-page: 131918
  year: 2022
  ident: 146_CR110
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.131918
– volume: 329
  start-page: 124877
  year: 2021
  ident: 146_CR43
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2021.124877
– volume: 276
  start-page: 123009
  year: 2020
  ident: 146_CR153
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.123009
– volume: 272
  start-page: 115986
  year: 2021
  ident: 146_CR126
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2020.115986
– volume: 715
  start-page: 136957
  year: 2020
  ident: 146_CR46
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.136957
– volume: 319
  start-page: 128641
  year: 2021
  ident: 146_CR97
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2021.128641
– volume: 659
  start-page: 473
  year: 2019
  ident: 146_CR130
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.12.400
– volume: 269
  start-page: 116197
  year: 2021
  ident: 146_CR53
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2020.116197
– volume: 269
  start-page: 128409
  year: 2021
  ident: 146_CR42
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.128409
– volume: 273
  start-page: 116448
  year: 2021
  ident: 146_CR17
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2021.116448
– volume: 288
  start-page: 125686
  year: 2021
  ident: 146_CR23
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.125686
– volume: 429
  start-page: 132143
  year: 2022
  ident: 146_CR36
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.132143
– volume: 274
  start-page: 129812
  year: 2021
  ident: 146_CR26
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.129812
– volume: 9
  start-page: 105585
  year: 2021
  ident: 146_CR146
  publication-title: J Environ Chem Eng
  doi: 10.1016/j.jece.2021.105585
– volume: 405
  start-page: 124226
  year: 2021
  ident: 146_CR14
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.124226
– volume: 292
  start-page: 126005
  year: 2021
  ident: 146_CR72
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2021.126005
– volume: 425
  start-page: 131489
  year: 2021
  ident: 146_CR116
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.131489
– volume: 792
  start-page: 148546
  year: 2021
  ident: 146_CR58
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.148546
– volume: 201
  start-page: 111518
  year: 2021
  ident: 146_CR4
  publication-title: Environ Res
  doi: 10.1016/j.envres.2021.111518
– volume: 290
  start-page: 112569
  year: 2021
  ident: 146_CR82
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2021.112569
– volume: 26
  start-page: 8575
  issue: 9
  year: 2019
  ident: 146_CR103
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-019-04315-x
– volume: 16
  start-page: 100468
  year: 2021
  ident: 146_CR35
  publication-title: Environ Nanotechnol Monit Manag
– volume: 33
  start-page: 2106621
  year: 2021
  ident: 146_CR120
  publication-title: Adv Mater
  doi: 10.1002/adma.202106621
– volume: 413
  start-page: 125385
  year: 2021
  ident: 146_CR105
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2021.125385
– volume: 3
  start-page: 117
  year: 2021
  ident: 146_CR87
  publication-title: Biochar
  doi: 10.1007/s42773-021-00098-y
– volume: 320
  start-page: 124264
  issue: Pt A
  year: 2021
  ident: 146_CR141
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2020.124264
– volume: 390
  start-page: 121349
  year: 2020
  ident: 146_CR135
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2019.121349
– volume: 291
  start-page: 118076
  year: 2021
  ident: 146_CR140
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2021.118076
– volume: 227
  start-page: 1002
  year: 2019
  ident: 146_CR101
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.04.282
– volume: 18
  start-page: 2433
  year: 2018
  ident: 146_CR131
  publication-title: J Soil Sediment
  doi: 10.1007/s11368-018-2000-9
– volume: 729
  start-page: 138892
  year: 2020
  ident: 146_CR20
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.138892
– volume: 282
  start-page: 131009
  year: 2021
  ident: 146_CR22
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.131009
– volume: 211
  start-page: 120
  year: 2018
  ident: 146_CR45
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.07.133
– volume: 33
  start-page: 55
  year: 2021
  ident: 146_CR119
  publication-title: Env Pollut Bioavail
  doi: 10.1080/26395940.2021.1916407
– volume: 287
  start-page: 132087
  year: 2022
  ident: 146_CR68
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.132087
– volume: 268
  start-page: 128805
  year: 2021
  ident: 146_CR9
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.128805
– volume: 310
  start-page: 127548
  year: 2021
  ident: 146_CR6
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2021.127548
– year: 2022
  ident: 146_CR114
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.151554
– volume: 12
  start-page: 1434
  year: 2021
  ident: 146_CR67
  publication-title: J Mater Res Technol
  doi: 10.1016/j.jmrt.2021.03.076
– volume: 2
  start-page: 47
  issue: 1
  year: 2020
  ident: 146_CR44
  publication-title: Biochar
  doi: 10.1007/s42773-020-00044-4
– volume: 401
  start-page: 123859
  year: 2021
  ident: 146_CR40
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.123859
– volume: 408
  start-page: 124850
  year: 2021
  ident: 146_CR78
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.124850
– volume: 282
  start-page: 131016
  year: 2021
  ident: 146_CR7
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.131016
– volume: 37
  start-page: 9253
  issue: 30
  year: 2021
  ident: 146_CR118
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.1c01468
– volume: 390
  start-page: 121749
  year: 2020
  ident: 146_CR124
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2019.121749
– volume: 416
  start-page: 129027
  year: 2021
  ident: 146_CR150
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.129027
– volume: 232
  start-page: 67
  year: 2021
  ident: 146_CR30
  publication-title: Water Air Soil Poll
  doi: 10.1007/s11270-021-05030-5
– volume: 285
  start-page: 131531
  year: 2021
  ident: 146_CR81
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.131531
– volume: 22
  start-page: 101388
  year: 2021
  ident: 146_CR66
  publication-title: Environ Technol Inno
  doi: 10.1016/j.eti.2021.101388
– volume: 145
  start-page: 111133
  year: 2021
  ident: 146_CR39
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2021.111133
– volume: 759
  start-page: 143452
  year: 2021
  ident: 146_CR76
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.143452
– volume: 281
  start-page: 130990
  year: 2021
  ident: 146_CR32
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.130990
– volume: 3
  start-page: 535
  year: 2021
  ident: 146_CR56
  publication-title: Biochar
  doi: 10.1007/s42773-021-00117-y
– volume: 277
  start-page: 130273
  year: 2021
  ident: 146_CR64
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.130273
– volume: 207
  start-page: 111294
  year: 2021
  ident: 146_CR106
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2020.111294
– volume: 155
  start-page: 105081
  year: 2021
  ident: 146_CR86
  publication-title: J Anal Appl Pyrol
  doi: 10.1016/j.jaap.2021.105081
– volume: 410
  start-page: 127707
  year: 2021
  ident: 146_CR29
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.127707
– volume: 262
  start-page: 128031
  year: 2021
  ident: 146_CR33
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.128031
– volume: 25
  start-page: 3167
  year: 2020
  ident: 146_CR15
  publication-title: Molecules
  doi: 10.3390/molecules25143167
– volume: 417
  start-page: 126047
  year: 2021
  ident: 146_CR125
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2021.126047
– volume: 779
  start-page: 146240
  year: 2021
  ident: 146_CR92
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.146240
– volume: 416
  start-page: 128829
  year: 2021
  ident: 146_CR144
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.128829
– volume: 420
  start-page: 126487
  year: 2021
  ident: 146_CR121
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2021.126487
– volume: 220
  start-page: 28
  year: 2019
  ident: 146_CR55
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.12.099
– volume: 66
  start-page: 1996
  year: 2021
  ident: 146_CR19
  publication-title: Sci Bull
– volume: 402
  start-page: 126021
  year: 2020
  ident: 146_CR100
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.126021
– volume: 286
  start-page: 124964
  year: 2021
  ident: 146_CR132
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.124964
– volume: 407
  start-page: 124777
  year: 2021
  ident: 146_CR73
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.124777
– volume: 274
  start-page: 129700
  year: 2021
  ident: 146_CR11
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.129700
– volume: 771
  start-page: 144955
  year: 2021
  ident: 146_CR1
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.144955
– volume: 417
  start-page: 129183
  year: 2021
  ident: 146_CR128
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.129183
– volume: 9
  start-page: 106238
  issue: 5
  year: 2021
  ident: 146_CR63
  publication-title: J Environ Chemi Eng
  doi: 10.1016/j.jece.2021.106238
– volume: 3
  start-page: 511
  year: 2021
  ident: 146_CR21
  publication-title: Biochar
  doi: 10.1007/s42773-021-00108-z
– volume: 789
  start-page: 148031
  year: 2021
  ident: 146_CR111
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.148031
– volume: 391
  start-page: 121692
  year: 2020
  ident: 146_CR95
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2019.121692
– volume: 408
  start-page: 124860
  year: 2021
  ident: 146_CR138
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.124860
– volume: 115
  start-page: 190
  year: 2022
  ident: 146_CR156
  publication-title: J Environ Sci
  doi: 10.1016/j.jes.2021.07.015
– volume: 419
  start-page: 126421
  year: 2021
  ident: 146_CR25
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2021.126421
– volume: 718
  start-page: 137299
  year: 2020
  ident: 146_CR71
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.137299
– volume: 14
  start-page: 1297
  year: 2021
  ident: 146_CR54
  publication-title: Energies
  doi: 10.3390/en14051297
SSID ssj0002511639
ssib053820432
ssib046561560
Score 2.6475475
SecondaryResourceType review_article
Snippet Biochar shows significant potential to serve as a globally applicable material to remediate water and soil owing to the extensive availability of feedstocks...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Agriculture
Ceramics
Composites
Earth and Environmental Science
Environment
Environmental Engineering/Biotechnology
Fossil Fuels (incl. Carbon Capture)
Glass
Natural Materials
Renewable and Green Energy
Review
Soil Science & Conservation
Title Biochar for the removal of contaminants from soil and water: a review
URI https://link.springer.com/article/10.1007/s42773-022-00146-1
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yL3oQP3F-jBy8aaBJm6T1NsfGEObJwW4lzYcMZivbxJt_uy9ZWx2I4CWnVwrv5fX9XvN-vyB0owxNeKwkiYwSJFEuIUpIS6xTxupMCxUkhSZPYjxNHmd8VpPCVs20e3MkGb7ULdktYVL6M0dGPK4XBHqeXQ69u9_Xg2_NcS8ARn-Afshoz_9k7Z8XD6pFuGKMcZYQmUlWs2l-f812xdo-Lg1VaHSIDmr4iPubeB-hHVseo_3-y7KW0LAnaPgwrzyXCgMcxQDv8NK-VrCfcOWwH0xX9fAL9swSvKrmC6xKgz8AdC7vscIbMsspmo6Gz4MxqS9LIBpapDU4N1OxM07YSDimIbWYdYVMVRE7KaVhRjIBoUhppAtqEwmNoVaSOqN55riJz1CnrEp7jjBlReo0h8YIin-hVUY1gB6VahFHymreRbRxSK5rJXF_ocUibzWQgxNzcGIenJjTLrptn3nb6Gj8aX3X-Dmvc2r1h_nF_8wv0R7z8Q1DKVeos16-22uAFuuiF3aSX8WgF9pzWCefwy8J_8Ng
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kHtSD-MT63IM3XexuNruJt1paqrY9tdBb2OxDCjWRtOLfdzZNixUpeJ8QmAfzzc7MNwjdKkN5GChJGkYJwpXjRAlpiXXKWB1roUpKof5AdEf8ZRyOK5ocvwvzq3__MONMSt9pZMSjeUGg0tnmUCn78b2WaC19x9N-0R9QH-LYb32y1XuLh9KiPCzGQsaJjCWrdmj-_s16nlpvkpa5p3OA9ivQiJsLKx-iLZsdob3mW1ERZ9hj1H6a5H6DCgMIxQDqcGHfc_AinDvsx9FVNfKC_T4JnuWTKVaZwV8ANYtHrPBiheUEjTrtYatLqhMJRENhNAeVxipwxgnbEI5pCChmXSojlQZOSmmYkUyAASLa0Cm1XEI5qJWkzugwdqEJTlEtyzN7hjBlaeR0COUQpPxUq5hqgDoq0iJoKKvDOqJLhSS64g_3ZyymyYr5uFRiAkpMSiUmtI7uVt98LNgzNkrfL_WcVJE02yB-_j_xG7TTHfZ7Se958HqBdpm3dTmWcolq8-LTXgG4mKfXpVd9A-2Jv24
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kguhBfGJ97sGbLu1ukt3EW62W-ioeLPQWNvuQQk1KW_HvO7tJSwtS8D4hZB7sN5n9vkHoWmoaRoEUpKklJ6G0IZFcGGKs1EYliksvKfTW491--DyIBkssfn_bfT6SLDkNTqUpnzXG2jYWxLeQCeHmj4w4jM8J9D-b0Kn4QW2bt-cZ5cTA6FIDANXtuKBs8RfGAWzu142xiIVEJIJVzJq_X7N6eq2OTv2J1NlDuxWUxK0y9vtow-QHaKf1OankNMwherwfFo5XhQGaYoB6eGK-CsgtXFjsvlhWF2GwY5ngaTEcYZlr_AMAdHKHJS6JLUeo33n8aHdJtTiBKGiXZuDoRAZWW26a3DIFZcaMzUQss8AKITTTgnEIS0ybKqMmFNAkKimo1SpKbKSDY1TLi9ycIExZFlsVQZMEQCBTMqEKAJCMFQ-a0qiojujcIamqVMXdcotRutBD9k5MwYmpd2JK6-hm8cy41NRYa30793Na1dd0jfnp_8yv0Nb7Qyd9feq9nKFt5kLt76qco9ps8m0uAHHMskufVL-71Me1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biochar+for+the+removal+of+contaminants+from+soil+and+water%3A+a+review&rft.jtitle=Biochar+%28Online%29&rft.au=Qiu%2C+Muqing&rft.au=Liu%2C+Lijie&rft.au=Ling%2C+Qian&rft.au=Cai%2C+Yawen&rft.date=2022-12-01&rft.issn=2524-7972&rft.eissn=2524-7867&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1007%2Fs42773-022-00146-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42773_022_00146_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2524-7972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2524-7972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2524-7972&client=summon