Maritime Traffic Monitoring Based on Vessel Detection, Tracking, State Estimation, and Trajectory Prediction
Maneuvering vessel detection and tracking (VDT), incorporated with state estimation and trajectory prediction, are important tasks for vessel navigational systems (VNSs), as well as vessel traffic monitoring and information systems (VTMISs) to improve maritime safety and security in ocean navigation...
Saved in:
Published in | IEEE transactions on intelligent transportation systems Vol. 13; no. 3; pp. 1188 - 1200 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.09.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Maneuvering vessel detection and tracking (VDT), incorporated with state estimation and trajectory prediction, are important tasks for vessel navigational systems (VNSs), as well as vessel traffic monitoring and information systems (VTMISs) to improve maritime safety and security in ocean navigation. Although conventional VNSs and VTMISs are equipped with maritime surveillance systems for the same purpose, intelligent capabilities for vessel detection, tracking, state estimation, and navigational trajectory prediction are underdeveloped. Therefore, the integration of intelligent features into VTMISs is proposed in this paper. The first part of this paper is focused on detecting and tracking of a multiple-vessel situation. An artificial neural network (ANN) is proposed as the mechanism for detecting and tracking multiple vessels. In the second part of this paper, vessel state estimation and navigational trajectory prediction of a single-vessel situation are considered. An extended Kalman filter (EKF) is proposed for the estimation of vessel states and further used for the prediction of vessel trajectories. Finally, the proposed VTMIS is simulated, and successful simulation results are presented in this paper. |
---|---|
AbstractList | Maneuvering vessel detection and tracking (VDT), incorporated with state estimation and trajectory prediction, are important tasks for vessel navigational systems (VNSs), as well as vessel traffic monitoring and information systems (VTMISs) to improve maritime safety and security in ocean navigation. Although conventional VNSs and VTMISs are equipped with maritime surveillance systems for the same purpose, intelligent capabilities for vessel detection, tracking, state estimation, and navigational trajectory prediction are underdeveloped. Therefore, the integration of intelligent features into VTMISs is proposed in this paper. The first part of this paper is focused on detecting and tracking of a multiple-vessel situation. An artificial neural network (ANN) is proposed as the mechanism for detecting and tracking multiple vessels. In the second part of this paper, vessel state estimation and navigational trajectory prediction of a single-vessel situation are considered. An extended Kalman filter (EKF) is proposed for the estimation of vessel states and further used for the prediction of vessel trajectories. Finally, the proposed VTMIS is simulated, and successful simulation results are presented in this paper. |
Author | Oliveira, Paulo Guedes Soares, C. Perera, Lokukaluge P. |
Author_xml | – sequence: 1 givenname: Lokukaluge P. surname: Perera fullname: Perera, Lokukaluge P. email: prasad.perera@mar.ist.utl.pt organization: Centre for Marine Technol. & Eng., Tech. Univ. of Lisbon, Lisbon, Portugal – sequence: 2 givenname: Paulo surname: Oliveira fullname: Oliveira, Paulo email: pjcro@isr.ist.utl.pt organization: Inst. for Syst. & Robot., Tech. Univ. of Lisbon, Lisbon, Portugal – sequence: 3 givenname: C. surname: Guedes Soares fullname: Guedes Soares, C. email: guedess@mar.ist.utl.pt organization: Centre for Marine Technol. & Eng., Tech. Univ. of Lisbon, Lisbon, Portugal |
BookMark | eNp9kM1KAzEUhYNUsFUfQNzkATo1v5OZpdaqhRaFDm6HNHMjqeOMJNn07c20xYUL4UIuuec7NzkTNOr6DhC6oWRGKSnvqmW1mTFC2YzRQrGCnaExlbLICKH5aOiZyEoiyQWahLBLt0JSOkbtWnsX3RfgymtrncHrvnOx9677wA86QIP7Dr9DCNDiR4hgouu76aA2n0kzxZuoI-BFSCb6ONNdM8x3Sdv7PX7z0LgDdoXOrW4DXJ_OS1Q9Lar5S7Z6fV7O71eZEYTGDBpWai0sL5XgyjDGtAYKwJUsLFeWEKIaqS1vrN0KmytVbq2g0hgBSnJ-iejR1vg-BA-2_vbpcX5fU1IPadVDWvWQVn1KKzHqD2NcPPwneu3af8nbI-kA4HdTTnPJU_0A4Y57ZQ |
CODEN | ITISFG |
CitedBy_id | crossref_primary_10_1016_j_oceaneng_2022_110691 crossref_primary_10_1109_TITS_2021_3095547 crossref_primary_10_3390_jmse12060958 crossref_primary_10_1016_j_joes_2018_04_002 crossref_primary_10_1108_JSIT_10_2019_0212 crossref_primary_10_1111_mice_12757 crossref_primary_10_1109_TITS_2017_2700209 crossref_primary_10_1016_j_apor_2024_104348 crossref_primary_10_1109_TIP_2022_3148876 crossref_primary_10_3390_s21144741 crossref_primary_10_1109_TITS_2022_3219998 crossref_primary_10_3390_app14209359 crossref_primary_10_1109_TAES_2017_2762438 crossref_primary_10_1109_ACCESS_2021_3066463 crossref_primary_10_32604_cmc_2024_056222 crossref_primary_10_1109_TITS_2023_3315222 crossref_primary_10_3390_app11052429 crossref_primary_10_1007_s11802_018_3717_1 crossref_primary_10_1016_j_engappai_2023_107062 crossref_primary_10_1016_j_oceaneng_2017_09_020 crossref_primary_10_1109_TITS_2022_3192574 crossref_primary_10_3390_rs15174354 crossref_primary_10_1016_j_apor_2024_104194 crossref_primary_10_1016_j_ifacol_2015_10_249 crossref_primary_10_1016_j_engappai_2023_106776 crossref_primary_10_29252_ijcoe_3_3_47 crossref_primary_10_1007_s00500_021_05625_4 crossref_primary_10_1007_s11802_019_3717_9 crossref_primary_10_1016_j_tre_2022_102617 crossref_primary_10_1177_03611981241275551 crossref_primary_10_3390_jmse12050769 crossref_primary_10_1109_JSTARS_2021_3125834 crossref_primary_10_1109_TNSE_2022_3140529 crossref_primary_10_1109_TITS_2022_3190834 crossref_primary_10_1016_j_apor_2016_08_006 crossref_primary_10_1016_j_tre_2024_103770 crossref_primary_10_3390_su151813384 crossref_primary_10_1007_s10707_021_00451_0 crossref_primary_10_1016_j_tre_2023_103367 crossref_primary_10_1109_TITS_2023_3346649 crossref_primary_10_1109_TCST_2015_2496585 crossref_primary_10_3390_electronics8070723 crossref_primary_10_1061__ASCE_CO_1943_7862_0001420 crossref_primary_10_1109_JAS_2024_124536 crossref_primary_10_1109_TITS_2021_3086033 crossref_primary_10_1016_j_oceaneng_2024_119808 crossref_primary_10_1016_j_oceaneng_2024_117704 crossref_primary_10_1016_j_oceaneng_2018_12_075 crossref_primary_10_3390_jmse10081130 crossref_primary_10_1016_j_ress_2024_110463 crossref_primary_10_1016_j_oceaneng_2022_112851 crossref_primary_10_1016_j_oceaneng_2023_114198 crossref_primary_10_1016_j_ress_2022_108936 crossref_primary_10_1017_S0373463322000182 crossref_primary_10_3390_rs16050776 crossref_primary_10_1109_JOE_2015_2460871 crossref_primary_10_1007_s12524_020_01148_x crossref_primary_10_1016_j_oceaneng_2024_118560 crossref_primary_10_1109_TSMC_2024_3458469 crossref_primary_10_1016_j_oceaneng_2021_108956 crossref_primary_10_1016_j_oceaneng_2020_108436 crossref_primary_10_3390_jmse12081351 crossref_primary_10_1016_j_ipm_2020_102268 crossref_primary_10_1016_j_oceaneng_2021_109004 crossref_primary_10_1049_iet_its_2020_0301 crossref_primary_10_1016_j_ress_2024_110228 crossref_primary_10_3390_ijgi9020116 crossref_primary_10_3390_jmse8050300 crossref_primary_10_1016_j_eswa_2023_120561 crossref_primary_10_1109_ACCESS_2024_3349957 crossref_primary_10_1016_j_joes_2021_03_001 crossref_primary_10_1016_j_isci_2023_106383 crossref_primary_10_1016_j_jai_2022_100003 crossref_primary_10_1016_j_oceaneng_2019_04_024 crossref_primary_10_1109_TASE_2021_3069779 crossref_primary_10_3390_s20185133 crossref_primary_10_1016_j_oceaneng_2023_113673 crossref_primary_10_3390_jmse12030513 crossref_primary_10_1109_TITS_2020_3040268 crossref_primary_10_3390_s19204365 crossref_primary_10_1007_s12530_015_9133_5 crossref_primary_10_1016_j_oceaneng_2015_08_016 crossref_primary_10_3390_s22166063 crossref_primary_10_1080_01441647_2019_1649315 crossref_primary_10_1016_j_jag_2022_103115 crossref_primary_10_1016_j_ress_2021_107819 crossref_primary_10_1109_TGRS_2024_3445414 crossref_primary_10_1016_j_techfore_2022_121852 crossref_primary_10_1109_TAES_2023_3269729 crossref_primary_10_1109_TITS_2017_2724551 crossref_primary_10_3390_rs16030557 crossref_primary_10_1016_j_oceaneng_2025_120432 crossref_primary_10_1016_j_martra_2023_100086 crossref_primary_10_1016_j_oceaneng_2023_114916 crossref_primary_10_1016_j_knosys_2023_111202 crossref_primary_10_1080_03088839_2021_1894364 crossref_primary_10_1016_j_oceaneng_2022_111507 crossref_primary_10_1109_TITS_2023_3256094 crossref_primary_10_1109_TVT_2013_2288306 crossref_primary_10_1109_TITS_2020_3023957 crossref_primary_10_1016_j_oceaneng_2024_116879 crossref_primary_10_1109_ACCESS_2024_3515657 crossref_primary_10_1016_j_physa_2023_128588 crossref_primary_10_1109_ACCESS_2020_2980322 crossref_primary_10_1016_j_eswa_2024_125715 crossref_primary_10_1088_1361_6501_acd6ad crossref_primary_10_1007_s12555_023_0524_2 crossref_primary_10_1016_j_joes_2024_01_002 crossref_primary_10_1109_TITS_2019_2908191 crossref_primary_10_1016_j_oceaneng_2023_115020 crossref_primary_10_1016_j_oceaneng_2019_04_098 crossref_primary_10_1016_j_oceaneng_2024_119351 crossref_primary_10_1049_iet_rsn_2019_0508 crossref_primary_10_1109_ACCESS_2020_2982904 crossref_primary_10_1109_TITS_2021_3057907 crossref_primary_10_1016_j_oceaneng_2024_119511 crossref_primary_10_1016_j_oceaneng_2017_04_017 crossref_primary_10_3390_jmse11081484 crossref_primary_10_1016_j_joes_2018_11_001 crossref_primary_10_1016_j_oceaneng_2024_118701 crossref_primary_10_3390_jmse10121939 crossref_primary_10_3390_jmse12111913 crossref_primary_10_3390_app13084907 crossref_primary_10_3390_jmse10101529 crossref_primary_10_3390_jmse7070202 crossref_primary_10_1109_JOE_2014_2304793 crossref_primary_10_1016_j_oceaneng_2024_117711 crossref_primary_10_1109_TMC_2022_3193499 crossref_primary_10_3390_jmse10010084 crossref_primary_10_3390_s18124211 crossref_primary_10_1109_TITS_2017_2681810 crossref_primary_10_1109_TASE_2023_3329041 crossref_primary_10_3390_jmse12112050 crossref_primary_10_3390_s20216262 crossref_primary_10_1109_ACCESS_2023_3280420 crossref_primary_10_3390_su16229820 crossref_primary_10_1016_j_oceaneng_2013_04_002 crossref_primary_10_3390_jmse11091724 crossref_primary_10_3390_jmse10020203 crossref_primary_10_1016_j_oceaneng_2020_107478 crossref_primary_10_3390_jmse11081530 crossref_primary_10_1016_j_oceaneng_2022_112898 crossref_primary_10_1016_j_oceaneng_2016_09_007 crossref_primary_10_1109_ACCESS_2020_3018749 crossref_primary_10_1109_JSEN_2019_2894323 crossref_primary_10_1016_j_ast_2023_108681 crossref_primary_10_1109_TITS_2016_2551780 crossref_primary_10_1016_j_oceaneng_2023_115886 crossref_primary_10_1016_j_knosys_2023_110799 crossref_primary_10_1016_j_oceaneng_2023_114670 crossref_primary_10_3390_ijgi13110400 crossref_primary_10_1109_ACCESS_2020_3041762 crossref_primary_10_3390_jmse12071070 crossref_primary_10_3390_ijgi13030085 crossref_primary_10_1109_TMTT_2023_3314115 crossref_primary_10_1109_TITS_2016_2560131 crossref_primary_10_3389_fams_2023_1124091 crossref_primary_10_1016_j_oceaneng_2025_120368 crossref_primary_10_1016_j_tre_2023_103152 crossref_primary_10_18178_ijfcc_2017_6_1_480 crossref_primary_10_1109_ACCESS_2019_2962210 crossref_primary_10_3390_s18093172 crossref_primary_10_3390_s21217169 crossref_primary_10_1016_j_oceaneng_2015_07_001 crossref_primary_10_1109_ACCESS_2020_3031722 crossref_primary_10_1016_j_eswa_2024_125685 crossref_primary_10_3390_rs16122203 crossref_primary_10_1016_j_engfailanal_2019_01_011 crossref_primary_10_3390_jmse10060804 crossref_primary_10_1017_S0373463313000519 crossref_primary_10_3390_s23146400 crossref_primary_10_1016_j_omega_2022_102746 crossref_primary_10_1109_ACCESS_2020_3002173 crossref_primary_10_1109_TSMC_2019_2906381 crossref_primary_10_1155_2020_3281368 crossref_primary_10_1177_14750902221109718 crossref_primary_10_3390_rs13112164 crossref_primary_10_1016_j_oceaneng_2023_115890 crossref_primary_10_1007_s40903_017_0074_0 crossref_primary_10_3390_su17031159 crossref_primary_10_1016_j_jss_2016_06_016 crossref_primary_10_3390_s17061432 crossref_primary_10_1016_j_oceaneng_2025_120902 crossref_primary_10_1109_TIM_2020_3018568 crossref_primary_10_3182_20120919_3_IT_2046_00079 crossref_primary_10_1016_j_jpdc_2018_07_008 crossref_primary_10_1016_j_apor_2023_103592 crossref_primary_10_1016_j_oceaneng_2022_111666 crossref_primary_10_1109_TAES_2022_3216823 crossref_primary_10_3390_app9152983 crossref_primary_10_3934_mbe_2023932 |
Cites_doi | 10.1109/5326.897072 10.1109/TAES.2003.1261132 10.1007/BFb0041172 10.1016/S0167-8655(00)00034-9 10.1109/5.554205 10.1109/TAES.1978.308628 10.1175/JTECH1766.1 10.1016/j.neunet.2009.08.007 10.1109/TAES.1984.310438 10.1109/ROBOT.2008.4543447 10.1109/TSMCB.2003.810953 10.1109/ROBOT.2009.5152863 10.1109/IVS.2004.1336486 10.1109/ROBOT.2005.1570721 10.1115/OMAE2011-50248 10.1109/ROBOT.2002.1013675 10.1109/TITS.2008.2011698 10.1109/TITS.2011.2113175 10.1109/IJCNN.2008.4634398 10.1109/7.624345 10.1016/j.dsp.2005.04.007 10.1093/oso/9780198538493.001.0001 10.1016/S0045-7906(00)00013-6 10.1109/IROS.2001.977171 10.1109/TAES.1997.599329 10.21236/ADA028510 10.1109/TITS.2002.802934 10.1109/72.363430 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TITS.2012.2187282 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0016 |
EndPage | 1200 |
ExternalDocumentID | 10_1109_TITS_2012_2187282 6165365 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c401t-ed29aa4f397437c222aae1ee3758f37f0007d5af3dffb4f6779bf415cc4e7533 |
IEDL.DBID | RIE |
ISSN | 1524-9050 |
IngestDate | Tue Jul 01 04:28:57 EDT 2025 Thu Apr 24 23:00:06 EDT 2025 Tue Aug 26 17:19:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-ed29aa4f397437c222aae1ee3758f37f0007d5af3dffb4f6779bf415cc4e7533 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1109_TITS_2012_2187282 crossref_citationtrail_10_1109_TITS_2012_2187282 ieee_primary_6165365 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-09-01 |
PublicationDateYYYYMMDD | 2012-09-01 |
PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | IEEE transactions on intelligent transportation systems |
PublicationTitleAbbrev | TITS |
PublicationYear | 2012 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 athans (ref32) 1976 kalta (ref41) 1984; aes 20 ref15 ref52 ref10 perera (ref12) 2010 araujo (ref28) 2008; 4 (ref1) 2009 ref19 ref18 kim (ref33) 2004; 2 (ref3) 0 brown (ref53) 1997 ref46 lourenco (ref45) 2002 berker (ref37) 2009; 31 gelb (ref54) 2000 ref47 ref43 granger (ref27) 2000 stubberud (ref39) 2005 maybeck (ref34) 1985 ref8 song (ref49) 2008; 3 ref9 (ref51) 1996 ref4 bishop (ref25) 1995 ref6 ref5 li (ref30) 2002 ref40 luber (ref48) 2008 ref35 zhao (ref16) 2001; 12 jie-yu (ref24) 2001; 12 ref31 perera (ref17) 2010 ref38 farina (ref7) 2004 (ref2) 2002 blair (ref42) 2009 ref23 ref26 ref20 ref22 ref21 naranjo (ref11) 0 hasegawa (ref14) 2009 almeida (ref44) 2005; 46 (ref50) 2002 ref29 li (ref36) 2001; 4473 |
References_xml | – ident: ref23 doi: 10.1109/5326.897072 – year: 2000 ident: ref54 publication-title: Applied Optimal Estimation – year: 2000 ident: ref27 publication-title: A what-and-where fusion neural network for recognition and tracking of multiple Radar emitters – start-page: 842 year: 2009 ident: ref42 article-title: Two-stage alpha-beta-gamma estimator for tracking maneuvering targets publication-title: Proc Amer Control Conf – year: 2005 ident: ref39 article-title: Kinematic prediction for intercept using a neural Kalman filter publication-title: Proc IFAC World Congr – ident: ref31 doi: 10.1109/TAES.2003.1261132 – start-page: 284 year: 1985 ident: ref34 publication-title: Lecture Notes in Control and Information Science doi: 10.1007/BFb0041172 – ident: ref15 doi: 10.1016/S0167-8655(00)00034-9 – year: 1996 ident: ref51 publication-title: Neural Network Design – ident: ref6 doi: 10.1109/5.554205 – start-page: 301 year: 2010 ident: ref17 article-title: Bayesian network based sequential collision avoidance action execution for an ocean navigational system publication-title: Proc 8th IFAC Conf Control Appl Mar Syst – ident: ref9 doi: 10.1109/TAES.1978.308628 – ident: ref10 doi: 10.1175/JTECH1766.1 – ident: ref21 doi: 10.1016/j.neunet.2009.08.007 – volume: 12 start-page: 1128 year: 2001 ident: ref16 article-title: A novel recurrent neural network for face recognition publication-title: J Softw – start-page: 4728 year: 2002 ident: ref30 article-title: A survey of maneuvering target tracking-Part IV: Decision-based methods publication-title: Proc SPIE Conf Signal Data Process Small Targets – volume: 3 start-page: 1 year: 2008 ident: ref49 article-title: A Bayesian approach: Fusion of laser and vision for multiple pedestrians tracking publication-title: Int J Adv Comput Eng – start-page: 10 year: 2002 ident: ref2 article-title: Establish a community vessel traffic monitoring and information system and repealing council directive 93/75/EEC publication-title: Official J Eur Commun – volume: aes 20 start-page: 174 year: 1984 ident: ref41 article-title: The tracking index: A generalized parameter of <tex Notation="TeX">$\alpha$</tex> -<tex Notation="TeX">$\beta$</tex> and <tex Notation="TeX">$\alpha$</tex>- <tex Notation="TeX">$\beta$</tex>-<tex Notation="TeX">$\gamma$</tex> target tracking publication-title: IEEE Trans Aerosp Electron Syst doi: 10.1109/TAES.1984.310438 – year: 1997 ident: ref53 publication-title: Introduction to Random Signals and Applied Kalman Filtering – ident: ref43 doi: 10.1109/ROBOT.2008.4543447 – ident: ref8 doi: 10.1109/TSMCB.2003.810953 – ident: ref46 doi: 10.1109/ROBOT.2009.5152863 – volume: 12 start-page: 1128 year: 2001 ident: ref24 article-title: A novel recurrent neural network for face recognition publication-title: J Softw – ident: ref20 doi: 10.1109/IVS.2004.1336486 – start-page: 84 year: 2010 ident: ref12 article-title: Laser measurement system based maneuvering target tracking formulated by adaptive competitive neural networks publication-title: Proc 2nd Int Conf Adapt Self-Adapt Syst Appl – volume: 46 start-page: 39 year: 2005 ident: ref44 article-title: Real-time tracking of multiple moving objects using particle filters and probabilistic data association publication-title: Automatika – volume: 4473 start-page: 423 year: 2001 ident: ref36 article-title: A survey of maneuvering target tracking-Part III: Measurement models publication-title: Proc SPIE Conf Signal Data Process Small Targets – ident: ref22 doi: 10.1109/ROBOT.2005.1570721 – ident: ref18 doi: 10.1115/OMAE2011-50248 – ident: ref19 doi: 10.1109/ROBOT.2002.1013675 – year: 2004 ident: ref7 publication-title: RTO SET Lecture Series on Knowledge-Based Radar Signal and Data Processing – year: 2009 ident: ref1 publication-title: Operational Activities European Maritime Safety Agency – ident: ref13 doi: 10.1109/TITS.2008.2011698 – start-page: 1 year: 2009 ident: ref14 article-title: Advanced marine traffic automation and management system for congested waterways and coastal areas publication-title: Proc ICOE – volume: 2 start-page: 310 year: 2004 ident: ref33 article-title: An IMM algorithm for tracking maneuvering vehicles in an adaptive cruise control environment publication-title: Int J Control Autom Syst – year: 2002 ident: ref50 publication-title: Neural and Fuzzy Logic Control of Drives and Power Systems – volume: 31 start-page: 83 year: 2009 ident: ref37 article-title: 2d Laser-based probabilistic motion tracking in urban-like environments publication-title: J Brazilian Soc Mech Sci Eng – ident: ref4 doi: 10.1109/TITS.2011.2113175 – ident: ref29 doi: 10.1109/IJCNN.2008.4634398 – volume: 4 start-page: 420 year: 2008 ident: ref28 article-title: Video target tracking by using competitive neural networks publication-title: WSEAS Trans Signal Process – ident: ref35 doi: 10.1109/7.624345 – year: 0 ident: ref3 – ident: ref38 doi: 10.1016/j.dsp.2005.04.007 – year: 0 ident: ref11 publication-title: Radar Revisited Ocean Navigator Online – year: 2002 ident: ref45 article-title: Detection and classification of 3D moving objects publication-title: Proc 10th IEEE Mediterranean Conf Control Autom – year: 1995 ident: ref25 publication-title: Neural Networks for Pattern Recognition doi: 10.1093/oso/9780198538493.001.0001 – ident: ref40 doi: 10.1016/S0045-7906(00)00013-6 – ident: ref47 doi: 10.1109/IROS.2001.977171 – ident: ref52 doi: 10.1109/TAES.1997.599329 – year: 2008 ident: ref48 article-title: Classifying dynamic objects: An unsupervised learning approach publication-title: Proc Robot Sci Syst IV – year: 1976 ident: ref32 publication-title: Adaptive estimation and parameter identification using multiple model estimation algorithms doi: 10.21236/ADA028510 – ident: ref5 doi: 10.1109/TITS.2002.802934 – ident: ref26 doi: 10.1109/72.363430 |
SSID | ssj0014511 |
Score | 2.517501 |
Snippet | Maneuvering vessel detection and tracking (VDT), incorporated with state estimation and trajectory prediction, are important tasks for vessel navigational... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1188 |
SubjectTerms | Artificial neural networks Extended Kalman filter (EKF) Kalman filters Marine vehicles Monitoring neural networks Radar tracking Sensors ship detecting and tracking ship navigational trajectory prediction State estimation Trajectory vessel state estimation (VSE) vessel traffic monitoring and information system (VTMIS) |
Title | Maritime Traffic Monitoring Based on Vessel Detection, Tracking, State Estimation, and Trajectory Prediction |
URI | https://ieeexplore.ieee.org/document/6165365 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTjDwKojykgcmlKRpYsfJyKNVQSpCIqBukePHACVFVTrAr8fnpFFBCLFFsR1Z-hzfd767zwidK242AAnlZzqRLmEkcmPOQldSszziIMmphnPIyX00fiJ3UzptIaephVFK2eQz5cGjjeXLuVjCUVk_GkQ0jGgbtc13qlqtJmIAOltWGzUgbuLTVQRz4Cf99DZ9hCSuwDP2jAVx8M0GrV2qYm3KaBtNVrOpUklevWWZe-Lzh1Djf6e7g7Zqcokvq9Wwi1qq2EOba5KDXTSbcJAxelPYWCmQj8DVXw2t-MqYNInnBX4GRfEZvlGlzdQqHOgt4FTdwZae4qHZGqqqRwfzQkL7iw0AfOCHBQR_oGkfpaNhej126xsXXGH8rNJVMkg4J9qQFBIyYbgD52qgVGi8Ch0yDYxCUq5DqXVOdMRYkmtDAYQgyvg94QHqFPNCHSKcD6hksWACADEcJubS5zFNBOHakBrRQ_4KgkzUauRwKcYss16Jn2SAWgaoZTVqPXTRDHmvpDj-6twFQJqONRZHv78-RhswuModO0GdcrFUp4ZslPmZXWVfc_fRHw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9QwEB2VcoAeKFBQSyn4ABe02WYdO04OHPqpXdqtkAiot8jxx4Fus6hkVbV_pX-FH8eMk121CHGrxC2KHUvOjPyePTPPAO-cxgXAUvmZz20klEijTKskshLdI-N5JT2dQ45P0uFX8elUni7BzaIWxjkXks9cnx5DLN9OzYyOyrbTQSqTdJ5CeeSuLnGD9vPjaB-t-Z7zw4Nibxh1dwhEBncOTeQsz7UWHmFXJMogGmrtBs4lyJN9ojxhpJXaJ9b7SvhUqbzyCGrGCIdMPsFhH8BDpBmSt8VhixAFCXsFMVYuojyW85DpIM63i1HxhbLGeB8BVPGM3wG9W7e4BBA7XIVf8-m3uStn_VlT9c31H8qQ_-n_eQpPOvLMdlpvfwZLrn4OK7ckFddgMtYk03TuGKIwyWOwdtWiVraLkG3ZtGbfSDF9wvZdEzLR6h71NhQ16LFAv9kBLn1tVWeP6dpS-_cQ4Lhiny8ouEVNL6C4j9m-hOV6Wrt1YNVAWpUZZcj-yNEybWOdydwI7ZG0mQ2I5xYvTae2Tpd-TMqw64rzkpykJCcpOyfZgA-LT360UiP_6rxG9l907Ez_6u-v38KjYTE-Lo9HJ0eb8JgGavPkXsNyczFzW0ismupNcHAG5T07zG-bDC7m |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maritime+Traffic+Monitoring+Based+on+Vessel+Detection%2C+Tracking%2C+State+Estimation%2C+and+Trajectory+Prediction&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Perera%2C+Lokukaluge+P.&rft.au=Oliveira%2C+Paulo&rft.au=Guedes+Soares%2C+C.&rft.date=2012-09-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=13&rft.issue=3&rft.spage=1188&rft.epage=1200&rft_id=info:doi/10.1109%2FTITS.2012.2187282&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2012_2187282 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |