Field activities of the “Snow Impurity and Glacial Microbe effects on abrupt warming in the Arctic” (SIGMA) Project in Greenland in 2011-2013

Field activities of the “Snow Impurity and Glacial Microbe effects on abrupt warming in the Arctic” (SIGMA) Project in Greenland in the summer season of 2011-2013 are reported;this consists of (1) glaciological and meteorological observations and (2) biological observations. In 2011, we conducted a...

Full description

Saved in:
Bibliographic Details
Published inBulletin of Glaciological Research Vol. 32; pp. 3 - 20
Main Authors AOKI, Teruo, MATOBA, Sumito, UETAKE, Jun, TAKEUCHI, Nozomu, MOTOYAMA, Hideaki
Format Journal Article
LanguageEnglish
Published THE JAPANESE SOCIETY OF SNOW AND ICE 01.01.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Field activities of the “Snow Impurity and Glacial Microbe effects on abrupt warming in the Arctic” (SIGMA) Project in Greenland in the summer season of 2011-2013 are reported;this consists of (1) glaciological and meteorological observations and (2) biological observations. In 2011, we conducted a field reconnaissance in the Qaanaaq, Ilulissat and Kangerlussuaq areas to enable continuous meteorological observations with automatic weather stations (AWS), campaign observations for glaciology, meteorology and Biology and shallow ice core drilling, which were planned for 2012-2014. Based on the results, we chose the Qaanaaq area in northwest Greenland as our main activity area and the Kangerlussuaq area in mid-west Greenland partly for biological observations. In 2012, we conducted field observations for (1) and (2) mentioned above together with installations of two AWSs at site SIGMA-A on The Greenland ice sheet (GrIS) and at site SIGMA-B on the Qaanaaq ice cap (QIC) from June to August. Surface snow and ice over all of the QIC melted in July and August 2012, and most of the Glacier surface appeared to be dark-colored, probably due to mineral dust and glacial microbial products. In 2013, we carried out similar observations in the Qaanaaq area. However, the weather and Glacier surface conditions were considerably different from those in 2012. Snow cover over the summer of 2013 remained over large areas with elevations higher than about 700 m on QIC. Biological activity on the Glacier surface appears to be substantially lower as compared to that in 2012.
AbstractList Field activities of the “Snow Impurity and Glacial Microbe effects on abrupt warming in the Arctic” (SIGMA) Project in Greenland in the summer season of 2011-2013 are reported;this consists of (1) glaciological and meteorological observations and (2) biological observations. In 2011, we conducted a field reconnaissance in the Qaanaaq, Ilulissat and Kangerlussuaq areas to enable continuous meteorological observations with automatic weather stations (AWS), campaign observations for glaciology, meteorology and Biology and shallow ice core drilling, which were planned for 2012-2014. Based on the results, we chose the Qaanaaq area in northwest Greenland as our main activity area and the Kangerlussuaq area in mid-west Greenland partly for biological observations. In 2012, we conducted field observations for (1) and (2) mentioned above together with installations of two AWSs at site SIGMA-A on The Greenland ice sheet (GrIS) and at site SIGMA-B on the Qaanaaq ice cap (QIC) from June to August. Surface snow and ice over all of the QIC melted in July and August 2012, and most of the Glacier surface appeared to be dark-colored, probably due to mineral dust and glacial microbial products. In 2013, we carried out similar observations in the Qaanaaq area. However, the weather and Glacier surface conditions were considerably different from those in 2012. Snow cover over the summer of 2013 remained over large areas with elevations higher than about 700 m on QIC. Biological activity on the Glacier surface appears to be substantially lower as compared to that in 2012.
Author AOKI, Teruo
UETAKE, Jun
MOTOYAMA, Hideaki
TAKEUCHI, Nozomu
MATOBA, Sumito
Author_xml – sequence: 1
  fullname: AOKI, Teruo
  organization: Meteorological Research Institute
– sequence: 2
  fullname: MATOBA, Sumito
  organization: Institute of Low Temperature Science, Hokkaido University
– sequence: 3
  fullname: UETAKE, Jun
  organization: National Institute of Polar Research
– sequence: 4
  fullname: TAKEUCHI, Nozomu
  organization: Department of Earth Sciences, Graduate School of Science, Chiba University
– sequence: 5
  fullname: MOTOYAMA, Hideaki
  organization: National Institute of Polar Research
BookMark eNo9kMtOAjEUhhuDiYAmPkKXuBjsZW7EFSEykkA0QdeTtpyBkqFDOkXCjldwry_Hk1hA2ZxbvvMn_99CDVMZQOiekm7EOX2Uc9vlrMuvUJOmaRikJAwbfuZhFPCUJDeoVddLQuIoZlETfQ01lDMslNOf2mmocVVgtwB82H9PTbXFo9V6Y7XbYWFmOCuF0qLEE61sJQFDUYBy_sdgIe1m7fBW2JU2c6zNSaVvvbA67H9wZzrKJv0H_Garpf85ApkFMOVR1y-MUBr4wm_RdSHKGu7-eht9DJ_fBy_B-DUbDfrjQIWEugBkCoqEsXfSU5EomORxL6KQSpkkikmWsKQAohhjBVGcqITOGEQCVOITiShvo85Z11upawtFvrZ6JewupyQ_Rpn7KHPOcu7RpzO6rJ2YwwUU1psr4R8kJ_pyVQthczD8F7qwf3A
CitedBy_id crossref_primary_10_5331_seppyo_83_1_27
crossref_primary_10_1029_2020EA001590
crossref_primary_10_1002_2014JD022325
crossref_primary_10_5331_seppyo_83_1_67
crossref_primary_10_5194_tc_12_2147_2018
crossref_primary_10_5194_tc_14_2087_2020
crossref_primary_10_3390_rs9060523
crossref_primary_10_5194_tc_11_2393_2017
crossref_primary_10_1016_j_polar_2020_100597
crossref_primary_10_5331_seppyo_83_2_169
crossref_primary_10_1016_j_polar_2020_100557
crossref_primary_10_5331_seppyo_83_2_143
crossref_primary_10_1016_j_polar_2020_100632
crossref_primary_10_5194_tc_17_3309_2023
crossref_primary_10_1017_jog_2022_101
crossref_primary_10_3389_feart_2020_542557
crossref_primary_10_1016_j_polar_2016_05_002
crossref_primary_10_1017_jog_2021_3
crossref_primary_10_5331_bgr_15R03
crossref_primary_10_5194_essd_15_5467_2023
crossref_primary_10_1002_asl_1231
crossref_primary_10_1017_jog_2022_76
crossref_primary_10_1093_femsec_fiz075
crossref_primary_10_5331_bgr_32_21
crossref_primary_10_5331_seppyo_83_2_193
crossref_primary_10_1029_2020JF006038
crossref_primary_10_5331_bgr_18R01
crossref_primary_10_5194_essd_15_5207_2023
crossref_primary_10_5194_essd_13_3819_2021
crossref_primary_10_1093_femsec_fiw127
crossref_primary_10_1371_journal_pclm_0000379
crossref_primary_10_1017_aog_2018_19
crossref_primary_10_5331_bgr_33_7
crossref_primary_10_1029_2019JD031668
crossref_primary_10_5331_seppyo_78_4_205
crossref_primary_10_5194_tc_12_635_2018
crossref_primary_10_1080_01431161_2023_2291000
crossref_primary_10_5194_tc_9_971_2015
crossref_primary_10_5331_bgr_32_95
Cites_doi 10.5194/tc-7-1139-2013
10.1029/2011GL046583
10.1016/j.rse.2007.02.035
10.5331/bgr.32.21
10.1007/s00382-005-0037-0
10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2
10.1029/2006JD008003
10.1016/j.rse.2007.01.025
10.1029/2011JF002239
10.5194/tc-6-1275-2012
10.1029/94GL02841
10.1016/0004-6981(85)90113-1
10.1029/2001JD900161
10.1029/JD092iD08p09801
10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO;2
10.1029/2003JD003506
10.5194/tc-5-377-2011
10.1016/j.rse.2007.03.023
10.3189/2012JoG11J165
10.5194/tc-5-589-2011
10.5194/tc-5-173-2011
10.1126/science.1178176
10.1038/ismej.2012.10
10.5194/tc-6-821-2012
10.1029/2007GL030110
10.1029/2012GL053611
10.1016/j.polar.2010.03.002
10.1126/science.1144856
10.5194/tc-7-615-2013
10.1029/2010JD015507
10.1029/1999JD901122
10.5194/acp-10-11647-2010
10.1073/pnas.2237157100
10.5194/tc-2-179-2008
10.5194/tc-7-469-2013
10.1063/1.4804735
10.5194/acp-9-2481-2009
10.1002/jgrd.50235
ContentType Journal Article
Copyright 2014 Japanese Society of Snow and Ice
Copyright_xml – notice: 2014 Japanese Society of Snow and Ice
DBID AAYXX
CITATION
DOI 10.5331/bgr.32.3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1884-8044
EndPage 20
ExternalDocumentID 10_5331_bgr_32_3
article_bgr_32_0_32_3_article_char_en
GroupedDBID ABTAH
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BBORY
FRP
JSF
JSH
KQ8
OK1
RJT
RZJ
ZBA
ZY4
~02
AAYXX
CITATION
ID FETCH-LOGICAL-c401t-eb8ec0460069c5af2b36951e8bb77c2b2727fe0c222f0c30c71d2e5aec7044513
ISSN 1345-3807
IngestDate Fri Aug 23 04:38:29 EDT 2024
Wed Apr 05 06:51:10 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c401t-eb8ec0460069c5af2b36951e8bb77c2b2727fe0c222f0c30c71d2e5aec7044513
OpenAccessLink https://www.jstage.jst.go.jp/article/bgr/32/0/32_3/_article/-char/en
PageCount 18
ParticipantIDs crossref_primary_10_5331_bgr_32_3
jstage_primary_article_bgr_32_0_32_3_article_char_en
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Bulletin of Glaciological Research
PublicationTitleAlternate BGR
PublicationYear 2014
Publisher THE JAPANESE SOCIETY OF SNOW AND ICE
Publisher_xml – name: THE JAPANESE SOCIETY OF SNOW AND ICE
References Aoki, T., Kuchiki, K., Niwano, M., Matoba, S., Uetake, J., Masuda K. and Ishimoto, H. (2013):Numerical Simulation of Spectral Albedos of Glacier Surfaces Covered with Glacial Microbes in Northwestern Greenland, RADIATION PROCESSES IN THE ATMOSPHERE AND OCEAN (IRS2012), Robert Cahalan and Jürgen Fischer (Eds), AIP Conf. Proc. 1531, 176 (2013);doi:10.1063/1.4804735.
Wientjes, I. G. M., De Van Wal, R. S. W., Schwikowski, M., Zapf, A., Fahrni, S. and Wacker, L. (2012). Carbonaceous particles reveal that Late Holocene dust causes the dark region in the western ablation zone of The Greenland ice sheet. J. Glaciol., 58, 787-794, doi:10.3189/2012JoG11J165.
Takeuchi, N. (2002):The surface albedo and characteristics of cryoconite (biogenic surface dust) on the Gulkana Glacier in Alaska. Bull. Glaciol. Res., 19, 63-70.
Fettweis, X., Franco, B., Tedesco, M., van Angelen, J. H., Lenaerts, J. T. M., van den Broeke, M. R. and Gallee, H. (2013):Estimating Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric model MAR. The Cryosphere, 7, 469-489, doi:10.5194/tc-7-469-2013.
Flanner, M. G., Zender, C. S., Hess, P. G., Mahowald, N. M., Painter, T. H., Ramanathan V. and Rasch, P. J. (2009):Springtime warming and reduced snow cover from carbonaceous particles. Atmos. Chem. Phys., 9, 2481-2497.
van As, D., Fausto, R. S. and the PROMICE project team (2011):Programme for Monitoring of The Greenland Ice Sheet (PROMICE):first temperature and ablation records. Geological Survey of Denmark and Greenland Bulletin, 23, 73-76.
Hansen, J. and Nazarenko, L. (2004):Soot Climate forcing via snow and ice albedos. Proc. Natl. Acad. Sci. U.S.A., 101, 423-428.
Nghiem, S. V., Hall, D. K., Mote, T. L., Tedesco, M., Albert, M. R., Keegan, K., Shuman, C. A., DiGirolamo, N. E. and Neumann, G. (2012):The extreme melt across The Greenland ice sheet in 2012. Geophys. Res. Lett., 39, L20502, doi:10.1029/2012GL053611.
Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A. and Lenaerts, J. (2011):Acceleration of the contribution of The Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett., 38, L05503, doi:10.1029/2011GL046583.
Sørensen, L. S., Simonsen, S. B., Nielsen, K., Lucas-Picher, P., Spada, G., Adalgeirsdottir, G., Forsberg, R. and Hvidberg, C. S. (2011):Mass balance of The Greenland ice sheet (2003-2008) from ICESat data-the impact of interpolation, sampling and firn density, The Cryosphere, 5, 173-186, doi:10.5194/tc-5-173-2011.
Aoki, T., Matoba, S. Yamaguchi, S., Tanikawa, T., Niwano, M., Kuchiki, K., Adachi, K., Uetake J., Motoyama H. and Hori M. (2014):Light-absorbing snow impurity concentrations measured on Northwest Greenland ice sheet in 2011 and 2012. Bull. Glaciol. Res., 32, doi: 10.5331/bgr.32.21.
Chýlek, P., Srivastava, V., Cahenzli, L., Pinnick, R. G., Dod, R. L., Novakov, T., Cook, T. L. and Hinds, B. D. (1987):Aerosol and graphitic carbon content of snow. J. Geophys. Res., 92, 9801-9809.
Ministry of Education, Culture, Sports, Science and Technology-Japan (MEXT), (2012):“Green Network of Excellence” (GRENE) Program, Arctic Climate Change Research Project Rapid Change of the Arctic Climate System and its Global Influences 2011-2016, (available from http://www.nipr.ac.jp/grene/e/grene_E.pdf), 12 pp.
Wientjes, I. G. M., Van de Wal, R. S. W., Reichart, G. J., Sluijs, A. and Oerlemans, J. (2011):Dust from the dark region in the western ablation zone of The Greenland ice sheet. The Cryosphere, 5, 589-601, doi:10.5194/tc-5-589-2011.
Steffen, K. and Box. J. E. (2001):Surface climatology of The Greenland ice sheet:Greenland Climate network 1995-1999. J. Geophys. Res., 106 (D24), 33,951-33,964, doi:10.1029/2001JD900161.
Hori, M., Aoki, T., Stamnes, K. and Li, W. (2007):ADEOS-II/GLI snow/ice products part III:Retrieved results. Remote Sens. Environ., 111, 274-319, doi:10.1016/j.rse.2007.01.025.
Takeuchi, N., Matsuda, Y., Sakai, A. and Fujita, K. (2005). A large amount of biogenic surface dust (cryoconite) on a Glacier in the Qilian Mountains, China. Bull. Glaciol. Res., 22, 1-8.
Tedesco, M., Fettweis, X., Mote, T., Wahr, J., Alexander, P., Box, J. E. and Wouters, B. (2013):Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional Climate model and reanalysis data. The Cryosphere, 7, 615-630, doi:10.5194/tc-7-615-2013.
Wiscombe, W. J. and Warren, S. G. (1980):A model for the spectral albedo of snow, I:Pure snow. J. Atmos. Sci., 37, 2712-2733.
Chýlek, P., Johnson, B., Damiano, P. A., Taylor, K. C. and Clement, P. (1995):Biomass burning record and black carbon in the GISP2 Ice Core. Geophys. Res. Lett., 22, 89-92.
Doherty, S. J., Grenfell, T. C., Forsström, S., Hegg, D. L., Brandt, R. E. and Warren, S. G. (2013):Observed vertical redistribution of black carbon and other insoluble light-absorbing particles in melting snow. J. Geophys. Res., 118, 5553-5569, doi:10.1002/jgrd.50235.
Clarke, A. D. and Noone, K. J. (1985):Soot in the arctic snowpack:A cause for perturbations in radiative transfer. Atmos. Environ., 19, 2045-2053.
Fierz, C., Armstrong, R. L., Durand, Y., Etchevers, P., Greene, E., McClung, D. M., Nishimura, K., Satyawali P. K. and Sokratov, S. A. (2009):The international classification for seasonal snow on the ground. IHP-VII Technical Documents in Hydrology No. 83, IACS Contribution No.1, UNESCO-IHP, Paris, 90 pp.
Hagler, G. S. W., Bergin, M. H., Smith, E. A., Dibb, J. E., Anderson, C. and Steig, E. J. (2007):Particulate and water-soluble carbon measured in recent snow at Summit, Greenland. Geophys. Res. Lett., 34, L16505, doi:10.1029/2007GL030110.
Steffen, K., Clark, P. U., Cogley, J. G., Holland, D., Marshall, S., Rignot, E. and Thomas, R. (2008):Chapter 2. Rapid changes in Glaciers and ice sheets and their impacts on sea level in “Abrupt Climate Change Science Program and the Subcommittee on Global Change Research”, 60-142 (US Geological Survey).
Aoki, T., Kuchiki, K., Niwano, M., Kodama, Y., Hosaka, M. and Tanaka, T. (2011):Physically based snow albedo model for calculating broadband albedos and the solar heating profile in snowpack for general circulation models. J. Geophys. Res., 116, D11114, doi:10.1029/2010JD015507.
Warren, S. G. and Wiscombe, W. J. (1980):A model for the spectral albedo of snow, II:Snow containing atmospheric aerosols. J. Atmos. Sci., 37, 2734-2745.
Pedersen, C. A. and Winther, J. G. (2005):Intercomparison and validation of snow albedo parameterization schemes in Climate models. Climate Dyn., 25, 351-362.
Doherty, S. J., Warren, S. G., Grenfell T. C., Clarke, A. D. and Brandt, R. E. (2010):Light-absorbing impurities in Arctic snow. Atmos. Chem. Phys., 10, 18807-18878, doi:10.5194/acp-10-11647-2010, 11647-11680.
Sugiyama, S., Sakakibara, D., Matsuno, S., Yamaguchi, S., Matoba S. and Aoki, T. (2014):Initial field observations on Qaanaaq ice cap in northwestern Greenland. Ann. Glaciol., 55, 25-33, doi:10.3189/2013AoG66A102.
Box, J. E., Fettweis, X., Stroeve, J. C., Tedesco, M., Hall, D. K. and Steffen, K. (2012):Greenland ice sheet albedo feedback:thermodynamics and atmospheric drivers. The Cryosphere, 6, 821-839, doi:10.5194/tc-6-821-2012.
Aoki, T., Hori, M., Motoyohi, H., Tanikawa, T., Hachikubo, A., Sugiura, K., Yasunari, T. J., Storvold, R., Eide, H. A., Stamnes, K., Li, W., Nieke, J., Nakajima, Y. and Takahashi, F. (2007):ADEOS-II/GLI snow/ice products:Part II-Validation results using GLI and MODIS data. Remote Sens. Environ., 111, 274-290, doi:10.1016/j.rse.2007.02.035.
Rae, J. G. L., Aðalgeirsdóttir, G., Edwards, T. L., Fettweis, X., Gregory, J. M., Hewitt, H. T., Lowe, J. A., Lucas-Picher, P., Mottram, R. H., Payne, A. J., Ridley, J. K., Shannon, S. R., van de Berg,W. J., van de Wal, R. S. W., and van den Broeke, M. R. (2012):Greenland ice sheet surface mass balance:evaluating simulations and making projections with regional Climate models, The Cryosphere, 6, 1275-1294, doi:10.5194/tc-6-1275-2012.
van den Broeke, M., Bamber, J., Ettema, J., Rignot, E., Schrama, E., van de Berg, W. J., van Meijgaard, E., Velicogna, I. and Wouters., B. (2009):Partitioning recent Greenland mass loss, Science, 326, 984-986, doi:10.1126/science.1178176.
Brun, E., Yang, Z. L., Essery, R. and Cohen, J. (2008):Snow cover parameterization and modeling, in Snow and Climate, edited by Armstrong, R. L. and Brun, E., Cambridge Univ. Press, New York, pp. 125-180.
Carmagnola, C. M., Domine, F., Dumont, M., Wright, P., Strellis, B., Bergin, M., Dibb, J., Picard, G., Libois, Q., Arnaud, L. and Morin, S. (2013):Snow spectral albedo at Summit, Greenland:measurements and numerical simulations based on physical and chemical properties of the snowpack. The Cryosphere, 7, 1139-1160, doi:10.5194/tc-7-1139-2013.
van den Broeke, M. R., Smeets, C. J. P. P. and van de Wal, R. S.W. (2011):The seasonal cycle and interannual variability of surface energy balance and melt in the ablation zone of the west Greenland ice sheet. The Cryosphere, 5, 377-390, doi:10.5194/tc-5-377-2011.
McConnell, J. R., Edwards, R., Kok, G. L., Flanner, M. G., Zender, C. S., Saltzman, E. S., Banta, J. R., Pasteris, D. R., Carter, M. M. and Kahl, J. D. W. (2007):20th-century industrial black carbon emissions altered arctic Climate forcing. Science, 317, 1381, doi:10.1126/science.1144856.
Stibal, M., Telling, J., Cook, J., Mak, K. M., Hodson, A. and Anesio, A. M. (2012). Environmental controls on microbial abundance and activity on The Greenland ice sheet:a multivariate analysis approach. Microbialecology, 63 (1), 74-84.
Flanner, M. G., Zender, C. S., Randerson, J. T. and Rasch, P. J. (2007):Present-day Climate forcing and response from black carbon in snow. J. Geophys. Res., 112, D11202, doi:10.1029/2006JD008003.
Aoki, Te., Aoki, Ta., Fukabori, M., Hachikubo, A., Tachibana, Y. and Nishio, F. (2000):Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface. J. Geophys. Res., 105, 10,219-10,236, doi:10.1029/1999JD901122.
Palmer J. (2012):From ice to water-watching Green
22
44
23
45
24
46
25
47
26
48
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
40
41
20
42
21
43
References_xml – ident: 9
  doi: 10.5194/tc-7-1139-2013
– ident: 29
  doi: 10.1029/2011GL046583
– ident: 3
  doi: 10.1016/j.rse.2007.02.035
– ident: 6
  doi: 10.5331/bgr.32.21
– ident: 27
  doi: 10.1007/s00382-005-0037-0
– ident: 47
  doi: 10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2
– ident: 17
  doi: 10.1029/2006JD008003
– ident: 21
  doi: 10.1016/j.rse.2007.01.025
– ident: 25
  doi: 10.1029/2011JF002239
– ident: 28
  doi: 10.5194/tc-6-1275-2012
– ident: 35
– ident: 11
  doi: 10.1029/94GL02841
– ident: 37
– ident: 33
– ident: 16
– ident: 12
  doi: 10.1016/0004-6981(85)90113-1
– ident: 32
  doi: 10.1029/2001JD900161
– ident: 10
  doi: 10.1029/JD092iD08p09801
– ident: 44
  doi: 10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO;2
– ident: 26
– ident: 2
  doi: 10.1029/2003JD003506
– ident: 43
  doi: 10.5194/tc-5-377-2011
– ident: 31
  doi: 10.1016/j.rse.2007.03.023
– ident: 46
  doi: 10.3189/2012JoG11J165
– ident: 45
  doi: 10.5194/tc-5-589-2011
– ident: 30
  doi: 10.5194/tc-5-173-2011
– ident: 42
  doi: 10.1126/science.1178176
– ident: 48
  doi: 10.1038/ismej.2012.10
– ident: 36
– ident: 7
  doi: 10.5194/tc-6-821-2012
– ident: 19
  doi: 10.1029/2007GL030110
– ident: 24
  doi: 10.1029/2012GL053611
– ident: 39
  doi: 10.1016/j.polar.2010.03.002
– ident: 22
  doi: 10.1126/science.1144856
– ident: 34
– ident: 38
  doi: 10.5194/tc-7-615-2013
– ident: 4
  doi: 10.1029/2010JD015507
– ident: 1
  doi: 10.1029/1999JD901122
– ident: 13
  doi: 10.5194/acp-10-11647-2010
– ident: 20
  doi: 10.1073/pnas.2237157100
– ident: 41
  doi: 10.5194/tc-2-179-2008
– ident: 8
– ident: 15
  doi: 10.5194/tc-7-469-2013
– ident: 5
  doi: 10.1063/1.4804735
– ident: 18
  doi: 10.5194/acp-9-2481-2009
– ident: 14
  doi: 10.1002/jgrd.50235
– ident: 23
– ident: 40
SSID ssj0065625
Score 2.119815
Snippet Field activities of the “Snow Impurity and Glacial Microbe effects on abrupt warming in the Arctic” (SIGMA) Project in Greenland in the summer season of...
SourceID crossref
jstage
SourceType Aggregation Database
Publisher
StartPage 3
SubjectTerms glacial microbes
Greenland
Qaanaaq
SIGMA
snow impurities
Title Field activities of the “Snow Impurity and Glacial Microbe effects on abrupt warming in the Arctic” (SIGMA) Project in Greenland in 2011-2013
URI https://www.jstage.jst.go.jp/article/bgr/32/0/32_3/_article/-char/en
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Bulletin of Glaciological Research, 2014, Vol.32, pp.3-20
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB2FFgk2iKdaXhokFqDIwfGMH1k6IU1CVYJoIpVV5LHHEaixoygBqav-Anv4EH6nX8K983DcwqKwGSWjmbHjezL3MedeE_JSBoKHwuOO7ybM4UEuHMHywMkzkQjRzjhTtTuP3gfDKX934p80Gr9qrKXNWrTSs7_mlfyPVKEP5IpZsv8g2WpR6IDPIF9oQcLQXkvGB0g_U-UwvqrCqPbA3zIYeseY6TZaLNUr6tQ5weA00fm4SMQTNT5H0UzEarNcN78lSI-ZWwJkvMIsKrviW7RIj0eDoxjDCR90GAeHKv7OqS7l1FQRUWjYpSNjU-gbb3KOd1Ftu6bgUBWYjseHI4UjudqUFSLiybgbayLRArYh2z_tT-LDvk4w2ZKKoWvaG470ydRZudjUoxttXotu6A2Zcd_BovhaX-m-KOKgWXXdSLuLmyip3oZZTZ-rXLs_NAVYuagpxHzVYl6LbbWhZQBcUZIVdRGcJpw7g5kz5s3YDbLrhR0f_P7dbnf88ZM1AwL0LJW3b36ArnyMc9_Yq16yhW5-AXfAUgmVdTO5S-4Yt4TGGmP3SEMW98mtgTQFzR-Q7wprdIs1WuYU8EEvzn8gyqhFGQUMUIMyalBGDcpoWVCNMmpQRj8XahWNsovzn_SVQtdrarCFAyps4ZcKWw_J9KA_6Q0d8zoPJwUnfu1IEckUz-HdoJP6Se4JFoB9LyMhwjD1hAemdC7dFCzW3E2Zm4btzJN-ItPQxTJ67BHZKcpC7hGaR2BYcy8LYSQXvBOBAeYzMM0TlvFEBvvkhX2ws6Wu2jK7Krh9wvUTr0aY_7Ed4aphVS9mQcKm8_gaSz8ht7dYfkp21quNfAa261o8Nyj5DSpzmjc
link.rule.ids 315,786,790,27957,27958
linkProvider American Geosciences Institute
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Field+activities+of+the+%E2%80%9CSnow+Impurity+and+Glacial+Microbe+effects+on+abrupt+warming+in+the+Arctic%E2%80%9D+%28SIGMA%29+Project+in+Greenland+in+2011-2013&rft.jtitle=Bulletin+of+glaciological+research&rft.au=AOKI%2C+Teruo&rft.au=MATOBA%2C+Sumito&rft.au=UETAKE%2C+Jun&rft.au=TAKEUCHI%2C+Nozomu&rft.date=2014-01-01&rft.issn=1345-3807&rft.eissn=1884-8044&rft.volume=32&rft.spage=3&rft.epage=20&rft_id=info:doi/10.5331%2Fbgr.32.3&rft.externalDBID=n%2Fa&rft.externalDocID=10_5331_bgr_32_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1345-3807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1345-3807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1345-3807&client=summon