Biochar reduced the mineralization of native and added soil organic carbon: evidence of negative priming and enhanced microbial carbon use efficiency

Biochar has been widely recognized for its potential to increase carbon (C) sequestration and mitigate climate change. This potential is affected by how biochar interacts with native soil organic carbon (SOC) and fresh organic substrates added to soil. However, only a few studies have been conducted...

Full description

Saved in:
Bibliographic Details
Published inBiochar (Online) Vol. 6; no. 1; pp. 1 - 14
Main Authors Kalu, Subin, Seppänen, Aino, Mganga, Kevin Z., Sietiö, Outi-Maaria, Glaser, Bruno, Karhu, Kristiina
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 15.01.2024
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biochar has been widely recognized for its potential to increase carbon (C) sequestration and mitigate climate change. This potential is affected by how biochar interacts with native soil organic carbon (SOC) and fresh organic substrates added to soil. However, only a few studies have been conducted to understand this interaction. To fill this knowledge gap, we conducted a 13 C-glucose labelling soil incubation for 6 months using fine-textured agricultural soil (Stagnosol) with two different biochar amounts. Biochar addition reduced the mineralization of SOC and 13 C-glucose and increased soil microbial biomass carbon (MBC) and microbial carbon use efficiency (CUE). The effects were found to be additive i.e., higher biochar application rate resulted in lower mineralization of SOC and 13 C-glucose. Additionally, soil density fractionation after 6 months revealed that most of the added biochar particles were recovered in free particulate organic matter (POM) fraction. Biochar also increased the retention of 13 C in free POM fraction, indicating that added 13 C-glucose was preserved within the biochar particles. The measurement of 13 C from the total amino sugar fraction extracted from the biochar particles suggested that biochar increased the microbial uptake of added 13 C-glucose and after they died, the dead microbial residues (necromass) accumulated inside biochar pores. Biochar also increased the proportion of occluded POM, demonstrating that increased soil occlusion following biochar addition reduced SOC mineralization. Overall, the study demonstrates the additional C sequestering potential of biochar by inducing negative priming of native SOC as well as increasing CUE, resulting in the formation and stabilization of microbial necromass. Graphical Abstract Highlights Biochar showed additional C storage ability by preserving SOC from mineralization (negative priming) and stabilizing added labile organic substrate Biochar (30 Mg ha −1 ) significantly increased microbial carbon use efficiency Biochar increased the formation of stable microbial residues (necromass) from a labile substrate (glucose) added to soil, as indicated by 13 C recovery in amino sugars
AbstractList Biochar has been widely recognized for its potential to increase carbon (C) sequestration and mitigate climate change. This potential is affected by how biochar interacts with native soil organic carbon (SOC) and fresh organic substrates added to soil. However, only a few studies have been conducted to understand this interaction. To fill this knowledge gap, we conducted a 13 C-glucose labelling soil incubation for 6 months using fine-textured agricultural soil (Stagnosol) with two different biochar amounts. Biochar addition reduced the mineralization of SOC and 13 C-glucose and increased soil microbial biomass carbon (MBC) and microbial carbon use efficiency (CUE). The effects were found to be additive i.e., higher biochar application rate resulted in lower mineralization of SOC and 13 C-glucose. Additionally, soil density fractionation after 6 months revealed that most of the added biochar particles were recovered in free particulate organic matter (POM) fraction. Biochar also increased the retention of 13 C in free POM fraction, indicating that added 13 C-glucose was preserved within the biochar particles. The measurement of 13 C from the total amino sugar fraction extracted from the biochar particles suggested that biochar increased the microbial uptake of added 13 C-glucose and after they died, the dead microbial residues (necromass) accumulated inside biochar pores. Biochar also increased the proportion of occluded POM, demonstrating that increased soil occlusion following biochar addition reduced SOC mineralization. Overall, the study demonstrates the additional C sequestering potential of biochar by inducing negative priming of native SOC as well as increasing CUE, resulting in the formation and stabilization of microbial necromass. Graphical Abstract Highlights Biochar showed additional C storage ability by preserving SOC from mineralization (negative priming) and stabilizing added labile organic substrate Biochar (30 Mg ha −1 ) significantly increased microbial carbon use efficiency Biochar increased the formation of stable microbial residues (necromass) from a labile substrate (glucose) added to soil, as indicated by 13 C recovery in amino sugars
Biochar has been widely recognized for its potential to increase carbon (C) sequestration and mitigate climate change. This potential is affected by how biochar interacts with native soil organic carbon (SOC) and fresh organic substrates added to soil. However, only a few studies have been conducted to understand this interaction. To fill this knowledge gap, we conducted a 13 C-glucose labelling soil incubation for 6 months using fine-textured agricultural soil (Stagnosol) with two different biochar amounts. Biochar addition reduced the mineralization of SOC and 13 C-glucose and increased soil microbial biomass carbon (MBC) and microbial carbon use efficiency (CUE). The effects were found to be additive i.e., higher biochar application rate resulted in lower mineralization of SOC and 13 C-glucose. Additionally, soil density fractionation after 6 months revealed that most of the added biochar particles were recovered in free particulate organic matter (POM) fraction. Biochar also increased the retention of 13 C in free POM fraction, indicating that added 13 C-glucose was preserved within the biochar particles. The measurement of 13 C from the total amino sugar fraction extracted from the biochar particles suggested that biochar increased the microbial uptake of added 13 C-glucose and after they died, the dead microbial residues (necromass) accumulated inside biochar pores. Biochar also increased the proportion of occluded POM, demonstrating that increased soil occlusion following biochar addition reduced SOC mineralization. Overall, the study demonstrates the additional C sequestering potential of biochar by inducing negative priming of native SOC as well as increasing CUE, resulting in the formation and stabilization of microbial necromass. Graphical Abstract
Abstract Biochar has been widely recognized for its potential to increase carbon (C) sequestration and mitigate climate change. This potential is affected by how biochar interacts with native soil organic carbon (SOC) and fresh organic substrates added to soil. However, only a few studies have been conducted to understand this interaction. To fill this knowledge gap, we conducted a 13C-glucose labelling soil incubation for 6 months using fine-textured agricultural soil (Stagnosol) with two different biochar amounts. Biochar addition reduced the mineralization of SOC and 13C-glucose and increased soil microbial biomass carbon (MBC) and microbial carbon use efficiency (CUE). The effects were found to be additive i.e., higher biochar application rate resulted in lower mineralization of SOC and 13C-glucose. Additionally, soil density fractionation after 6 months revealed that most of the added biochar particles were recovered in free particulate organic matter (POM) fraction. Biochar also increased the retention of 13C in free POM fraction, indicating that added 13C-glucose was preserved within the biochar particles. The measurement of 13C from the total amino sugar fraction extracted from the biochar particles suggested that biochar increased the microbial uptake of added 13C-glucose and after they died, the dead microbial residues (necromass) accumulated inside biochar pores. Biochar also increased the proportion of occluded POM, demonstrating that increased soil occlusion following biochar addition reduced SOC mineralization. Overall, the study demonstrates the additional C sequestering potential of biochar by inducing negative priming of native SOC as well as increasing CUE, resulting in the formation and stabilization of microbial necromass. Graphical Abstract
ArticleNumber 7
Author Kalu, Subin
Karhu, Kristiina
Sietiö, Outi-Maaria
Glaser, Bruno
Seppänen, Aino
Mganga, Kevin Z.
Author_xml – sequence: 1
  givenname: Subin
  orcidid: 0000-0003-4221-3701
  surname: Kalu
  fullname: Kalu, Subin
  email: subin.kalu@helsinki.fi
  organization: Faculty of Agriculture and Forestry, University of Helsinki, Helsinki Institute of Sustainability Science (HELSUS), Department of Crop and Soil Sciences, North Carolina State University
– sequence: 2
  givenname: Aino
  surname: Seppänen
  fullname: Seppänen, Aino
  organization: Faculty of Agriculture and Forestry, University of Helsinki
– sequence: 3
  givenname: Kevin Z.
  orcidid: 0000-0002-7908-7561
  surname: Mganga
  fullname: Mganga, Kevin Z.
  organization: Faculty of Agriculture and Forestry, University of Helsinki, Copernicus Institute of Sustainable Development, Utrecht University
– sequence: 4
  givenname: Outi-Maaria
  orcidid: 0000-0003-0127-9368
  surname: Sietiö
  fullname: Sietiö, Outi-Maaria
  organization: Faculty of Agriculture and Forestry, University of Helsinki, HAMK Bio Research Unit, Häme University of Applied Sciences
– sequence: 5
  givenname: Bruno
  orcidid: 0000-0002-3057-3868
  surname: Glaser
  fullname: Glaser, Bruno
  organization: Institute of Agricultural and Nutritional Sciences, Department of Soil Biogeochemistry, Martin Luther University Halle-Wittenberg
– sequence: 6
  givenname: Kristiina
  orcidid: 0000-0003-3101-4141
  surname: Karhu
  fullname: Karhu, Kristiina
  organization: Faculty of Agriculture and Forestry, University of Helsinki, Helsinki Institute of Life Science (HiLIFE)
BookMark eNp9kc9q3DAQxkVJoWmSF-hJL-BW_2zZvbUhSQOBXJKzGEujXS2OVCRvYPseed9o7RRKDzkIDeL7fZqZ7zM5iSkiIV84-8oZ09-KElrLhol6mBhUc_hATkUrVKP7Tp_8U38iF6XsWFW1nHdyOCUvP0OyW8g0o9tbdHTeIn0KETNM4Q_MIUWaPI21ekYK0VFwrspKChNNeQMxWGohjyl-p_gcHEaLC4GblfmdQ_XbLCzGLcTjL0_B5jQGmN5Yui9I0ftgQzU4nJOPHqaCF2_3GXm8vnq4_NXc3d_cXv64a6xifG4QhBqtBS2xFaMF38oeBMjWCbQc3Ai8lVZ0SmtEPehukKC0c6z3Q9_6UZ6R29XXJdiZY6eQDyZBMMtDnc9AnoOd0DjRgfaeSaW44pr3Q2875blT1qsRXPXqV686WSkZvbFhXhY4ZwiT4cwc0zJrWqamZZa0zKGi4j_0byvvQnKFShXHDWazS_sc67reo14BCqyt9Q
CitedBy_id crossref_primary_10_1016_j_agee_2024_109467
crossref_primary_10_1016_j_earscirev_2024_104860
crossref_primary_10_1016_j_trac_2024_118082
crossref_primary_10_1016_j_eja_2024_127168
crossref_primary_10_3390_agriculture14122222
crossref_primary_10_1007_s42773_024_00396_1
crossref_primary_10_1016_j_still_2024_106365
crossref_primary_10_1016_j_scitotenv_2024_176283
crossref_primary_10_3390_plants14050682
crossref_primary_10_1016_j_fcr_2024_109547
crossref_primary_10_1007_s42729_024_02179_w
crossref_primary_10_1016_j_crsust_2024_100267
crossref_primary_10_1016_j_jenvman_2025_125056
crossref_primary_10_3389_fpls_2024_1517917
crossref_primary_10_1016_j_pedsph_2025_01_009
crossref_primary_10_1007_s42773_024_00411_5
crossref_primary_10_3390_su16229967
crossref_primary_10_1016_j_scitotenv_2024_173606
crossref_primary_10_1038_s41598_024_81232_1
Cites_doi 10.1016/j.agee.2015.03.015
10.1034/j.1600-0706.2000.890203.x
10.1111/j.1469-8137.2012.04225.x
10.1038/s41467-022-32819-7
10.1016/j.geoderma.2017.01.002
10.1038/nclimate3276
10.1007/s11368-023-03546-3
10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-%23
10.1126/science.aam9726
10.1111/gcbb.12885
10.1002/rcm.6814
10.1111/gcbb.12194
10.1016/S1002-0160(17)60421-1
10.1016/j.soilbio.2014.10.006
10.1016/j.soilbio.2011.04.022
10.1016/j.geoderma.2020.114710
10.1038/srep03687
10.1038/ncomms1053
10.1038/s41467-017-01123-0
10.1007/s10533-016-0191-y
10.1016/0038-0717(87)90051-4
10.1038/ncomms13160
10.1007/s11104-011-1067-5
10.1016/j.scitotenv.2020.141984
10.1016/j.scitotenv.2013.03.090
10.3390/environments9110138
10.1007/s001140000193
10.1016/j.soilbio.2009.10.004
10.1007/s00374-022-01643-y
10.1016/j.soilbio.2023.108955
10.1038/nclimate2580
10.1038/s41561-021-00852-8
10.1016/j.jenvman.2023.117864
10.1111/ele.12113
10.1038/nature16069
10.5194/bg-15-5929-2018
10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2
10.1016/j.gca.2010.11.029
10.3390/agronomy11122474
10.1111/gcbb.12266
10.3389/fenvs.2022.914766
10.3390/su13105612
10.1016/j.soilbio.2020.107929
10.1038/nmicrobiol.2017.105
10.1080/10643389.2021.2024484
10.1111/gcbb.12763
10.1016/j.soilbio.2014.02.009
10.1007/s11104-021-05288-y
10.1038/s41586-023-06042-3
10.1016/j.tim.2015.01.011
10.1016/j.soilbio.2017.10.042
10.1111/gcbb.12984
10.1016/j.soilbio.2012.10.033
10.1016/j.soilbio.2015.08.005
10.1016/j.soilbio.2011.02.005
10.1016/j.soilbio.2022.108799
10.1016/j.geoderma.2013.12.022
10.1016/j.jenvman.2023.118092
10.1111/j.1365-2389.2010.01234.x
ContentType Journal Article
Copyright The Author(s) 2024
Copyright_xml – notice: The Author(s) 2024
DBID C6C
AAYXX
CITATION
DOA
DOI 10.1007/s42773-023-00294-y
DatabaseName Springer Nature OA Free Journals
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2524-7867
EndPage 14
ExternalDocumentID oai_doaj_org_article_d26a7ff034414171898c64f1d4cf4bad
10_1007_s42773_023_00294_y
GrantInformation_xml – fundername: Academy of Finland
  grantid: 316401
  funderid: http://dx.doi.org/10.13039/501100002341
– fundername: Helsinki Institute of Life Science, Helsingin Yliopisto
  funderid: http://dx.doi.org/10.13039/100015735
– fundername: Helsingin Yliopisto
  grantid: HY/66/05.01.07/2017
  funderid: http://dx.doi.org/10.13039/100007797
GroupedDBID 0R~
AAHBH
AAHNG
AAJSJ
AAKKN
AAYZJ
ABDBF
ABECU
ABEEZ
ABFTV
ABKCH
ABMQK
ABTEG
ABTMW
ACACY
ACOKC
ACULB
ACZOJ
ADKNI
ADURQ
ADYFF
AFGXO
AFQWF
AGDGC
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AXYYD
C24
C6C
EBLON
EBS
FNLPD
GROUPED_DOAJ
M~E
NQJWS
OK1
RSV
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
AASML
AAYXX
CITATION
ID FETCH-LOGICAL-c401t-ea24bcca73e52bcaf538a2a35d2ec1adba153c26477ee797693a47dd08f985fb3
IEDL.DBID C24
ISSN 2524-7867
IngestDate Wed Aug 27 01:32:53 EDT 2025
Tue Jul 01 03:16:38 EDT 2025
Thu Apr 24 22:55:05 EDT 2025
Fri Feb 21 02:41:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Carbon use efficiency
Biochar
C-labelling
Carbon sequestration
Priming effect
Soil microbial necromass
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-ea24bcca73e52bcaf538a2a35d2ec1adba153c26477ee797693a47dd08f985fb3
ORCID 0000-0003-3101-4141
0000-0003-0127-9368
0000-0003-4221-3701
0000-0002-7908-7561
0000-0002-3057-3868
OpenAccessLink https://link.springer.com/10.1007/s42773-023-00294-y
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_d26a7ff034414171898c64f1d4cf4bad
crossref_citationtrail_10_1007_s42773_023_00294_y
crossref_primary_10_1007_s42773_023_00294_y
springer_journals_10_1007_s42773_023_00294_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-15
PublicationDateYYYYMMDD 2024-01-15
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-15
  day: 15
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Biochar (Online)
PublicationTitleAbbrev Biochar
PublicationYear 2024
Publisher Springer Nature Singapore
Springer
Publisher_xml – name: Springer Nature Singapore
– name: Springer
References Giannetta, Plaza, Cassetta, Mariotto, Benavente-Ferraces, García-Gil, Panettieri, Zaccone (CR13) 2023; 341
Dempster, Gleeson, Solaiman, Jones, Murphy (CR3) 2012; 354
Glaser, Birk (CR14) 2012; 82
Manzoni, Taylor, Richter, Porporato, Ågren (CR37) 2012; 196
Liu, Wu, Liu, Bian, Ge, Zhang, Zheng, Drosos, Liu, Zhang, Cheng, Li, Pan (CR34) 2020; 12
Fang, Singh, Luo, Boersma, Van Zwieten (CR7) 2018; 116
Pei, Li, Mia, Singh, Wu, Dijkstra (CR43) 2021; 382
Zhang, Sun, Wang, Xie, Jiang, Chen, Wei, Bao, Song, Bai (CR59) 2022; 14
Liang, Schimel, Jastrow (CR33) 2017; 2
Glaser, Haumaier, Guggenberger, Zech (CR15) 2001; 88
Weng, Van Zwieten, Singh, Tavakkoli, Joseph, Macdonald, Rose, Rose, Kimber, Morris, Cozzolino, Araujo, Archanjo, Cowie (CR53) 2017; 7
Kuzyakov (CR28) 2002; 165
Dippold, Boesel, Gunina, Kuzyakov, Glaser (CR4) 2014; 28
Kalu, Kulmala, Zrim, Peltokangas, Tammeorg, Rasa, Kitzler, Pihlatie, Karhu (CR24) 2022; 10
Giagnoni, Renella (CR12) 2022; 9
Manzoni, Čapek, Porada, Thurner, Winterdahl, Beer, Brüchert, Frouz, Herrmann, Lindahl, Lyon, Šantrůčková, Vico, Way (CR38) 2018; 15
Lehmann (CR29) 2007; 5
Kopittke, Berhe, Carrillo, Cavagnaro, Chen, Chen, Román Dobarco, Dijkstra, Field, Grundy, He, Hoyle, Kögel-Knabner, Lam, Marschner, Martinez, McBratney, McDonald-Madden, Menzies, Mosley, Mueller, Murphy, Nielsen, O’Donnell, Pendall, Pett-Ridge, Rumpel, Young, Minasny (CR27) 2022; 52
Geyer, Kyker-Snowman, Grandy, Frey (CR11) 2016; 127
Lehmann, Kleber (CR30) 2015; 528
CR45
Pietikäinen, Kiikkilä, Fritze (CR44) 2000; 89
Yan, Yin, Dijkstra, Wang, Cheng (CR58) 2023; 178
Maestrini, Nannipieri, Abiven (CR36) 2015; 7
Woolf, Lehmann, Lee (CR57) 2016; 7
Whitman, Enders, Lehmann (CR55) 2014; 73
Akpinar, Tian, Shepherd, Imhoff (CR1) 2023; 339
Tao, Huang, Hungate, Manzoni, Frey, Schmidt, Reichstein, Carvalhais, Ciais, Jiang, Lehmann, Wang, Houlton, Ahrens, Mishra, Hugelius, Hocking, Lu, Shi, Viatkin, Vargas, Yigini, Omuto, Malik, Guillermo, Cuevas-Corona, Di Paolo, Luotto, Liao, Liang, Saynes, Huang, Luo (CR49) 2023; 618
Field, Mach (CR9) 2017; 356
Gross, Bromm, Glaser (CR16) 2021; 11
Zimmerman, Gao, Ahn (CR62) 2011; 43
Fu, Luo, Auwal, Singh, Van Zwieten, Xu (CR10) 2022; 58
Minasny, Malone, McBratney, Angers, Arrouays, Chambers, Chaplot, Chen, Cheng, Das, Field, Gimona, Hedley, Hong, Mandal, Marchant, Martin, McConkey, Mulder, O'Rourke, Richer-de-Forges, Odeh, Padarian, Paustian, Pan, Poggio, Savin, Stolbovoy, Stockmann, Sulaeman, Tsui, Vågen, van Wesemael, Winowiecki (CR41) 2017; 292
Keiluweit, Bougoure, Nico, Pett-Ridge, Weber, Kleber (CR25) 2015; 5
Vance, Brookes, Jenkinson (CR50) 1987; 19
Zhou, Lin, Wang, Zhu, Zhu (CR61) 2022
Luo, Durenkamp, De Nobili, Lin, Devonshire, Brookes (CR35) 2013; 57
Fang, Singh, Singh (CR6) 2015; 80
Guenet, Leloup, Raynaud, Bardoux, Abbadie (CR17) 2010; 61
Joseph, Cowie, Van Zwieten, Bolan, Budai, Buss, Cayuela, Graber, Ippolito, Kuzyakov, Luo, Ok, Palansooriya, Shepherd, Stephens, Weng, Lehmann (CR23) 2021; 13
Lehmann, Cowie, Masiello, Kammann, Woolf, Amonette, Cayuela, Camps-Arbestain, Whitman (CR32) 2021; 14
Hagemann, Joseph, Schmidt, Kammann, Harter, Borch, Young, Varga, Taherymoosavi, Elliott, McKenna, Albu, Mayrhofer, Obst, Conte, Dieguez-Alonso, Orsetti, Subdiaga, Behrens, Kappler (CR19) 2017; 8
Lehmann, Rillig, Thies, Masiello, Hockaday, Crowley (CR31) 2011; 43
Mganga, Sietiö, Meyer, Poeplau, Adamczyk, Biasi, Kalu, Räsänen, Ambus, Fritze, Pellikka, Karhu (CR40) 2022; 173
Weng, Van Zwieten, Singh, Kimber, Morris, Cowie, Macdonald (CR52) 2015; 90
Kiani, Raave, Simojoki, Tammeorg, Tammeorg (CR26) 2021; 753
Farrell, Kuhn, Macdonald, Maddern, Murphy, Hall, Singh, Baumann, Krull, Baldock (CR8) 2013; 465
Woolf, Amonette, Street-Perrott, Lehmann, Joseph (CR56) 2010; 1
Buckeridge, La Rosa, Mason, Whitaker, McNamara, Grant, Ostle (CR2) 2020; 149
Melas, Ortiz, Alacañiz (CR39) 2017; 27
Zhang, Wang, Fang, Sun, Tavakkoli, Li, Wu, Du (CR60) 2023; 23
CR22
CR21
Hartley, Hopkins, Sommerkorn, Wookey (CR20) 2010; 42
Singh, Cowie (CR46) 2014; 4
Weng, Van Zwieten, Tavakkoli, Rose, Singh, Joseph, Macdonald, Kimber, Morris, Rose, Archanjo, Tang, Franks, Diao, Schweizer, Tobin, Klein, Vongsvivut, Chang, Kopittke, Cowie (CR54) 2022; 13
Soinne, Hovi, Tammeorg, Turtola (CR48) 2014; 219–220
Pan, Dong, Su, Wang, Chen, Chang, Kim, Huang, Hung (CR42) 2021; 13
Dufrêne (CR5) 2015; 23
Sinsabaugh, Manzoni, Moorhead, Richter (CR47) 2013; 16
Wang, Xiong, Kuzyakov (CR51) 2016; 8
Gul, Whalen, Thomas, Sachdeva, Deng (CR18) 2015; 206
H Soinne (294_CR48) 2014; 219–220
B Glaser (294_CR15) 2001; 88
D Akpinar (294_CR1) 2023; 339
Y Fang (294_CR7) 2018; 116
GB Melas (294_CR39) 2017; 27
S Yan (294_CR58) 2023; 178
C Liang (294_CR33) 2017; 2
B Glaser (294_CR14) 2012; 82
M Keiluweit (294_CR25) 2015; 5
J Pietikäinen (294_CR44) 2000; 89
J Lehmann (294_CR29) 2007; 5
KM Geyer (294_CR11) 2016; 127
BP Singh (294_CR46) 2014; 4
Y Zhang (294_CR59) 2022; 14
RL Sinsabaugh (294_CR47) 2013; 16
Z Weng (294_CR52) 2015; 90
J Wang (294_CR51) 2016; 8
A Zhang (294_CR60) 2023; 23
Y Fu (294_CR10) 2022; 58
J Lehmann (294_CR30) 2015; 528
AR Zimmerman (294_CR62) 2011; 43
KM Buckeridge (294_CR2) 2020; 149
S Joseph (294_CR23) 2021; 13
B Maestrini (294_CR36) 2015; 7
ED Vance (294_CR50) 1987; 19
F Tao (294_CR49) 2023; 618
294_CR45
M Farrell (294_CR8) 2013; 465
KZ Mganga (294_CR40) 2022; 173
D Woolf (294_CR57) 2016; 7
YF Dufrêne (294_CR5) 2015; 23
B Giannetta (294_CR13) 2023; 341
S Kalu (294_CR24) 2022; 10
T Whitman (294_CR55) 2014; 73
SY Pan (294_CR42) 2021; 13
L Giagnoni (294_CR12) 2022; 9
B Guenet (294_CR17) 2010; 61
Y Luo (294_CR35) 2013; 57
Z Weng (294_CR54) 2022; 13
S Gul (294_CR18) 2015; 206
IP Hartley (294_CR20) 2010; 42
J Lehmann (294_CR32) 2021; 14
S Manzoni (294_CR37) 2012; 196
DN Dempster (294_CR3) 2012; 354
Y Kuzyakov (294_CR28) 2002; 165
MA Dippold (294_CR4) 2014; 28
PM Kopittke (294_CR27) 2022; 52
S Zhou (294_CR61) 2022
D Woolf (294_CR56) 2010; 1
Z Liu (294_CR34) 2020; 12
S Manzoni (294_CR38) 2018; 15
294_CR21
294_CR22
Z Weng (294_CR53) 2017; 7
N Hagemann (294_CR19) 2017; 8
B Minasny (294_CR41) 2017; 292
CB Field (294_CR9) 2017; 356
A Gross (294_CR16) 2021; 11
M Kiani (294_CR26) 2021; 753
J Lehmann (294_CR31) 2011; 43
Y Fang (294_CR6) 2015; 80
J Pei (294_CR43) 2021; 382
References_xml – volume: 206
  start-page: 46
  year: 2015
  end-page: 59
  ident: CR18
  article-title: Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions
  publication-title: Agri Ecosyst Environ
  doi: 10.1016/j.agee.2015.03.015
– ident: CR45
– ident: CR22
– volume: 89
  start-page: 231
  issue: 2
  year: 2000
  end-page: 242
  ident: CR44
  article-title: Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus
  publication-title: Oikos
  doi: 10.1034/j.1600-0706.2000.890203.x
– volume: 196
  start-page: 79
  year: 2012
  end-page: 91
  ident: CR37
  article-title: Environmental and stoichiometric controls on microbial carbon-use efficiency in soils
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2012.04225.x
– volume: 13
  start-page: 5177
  year: 2022
  ident: CR54
  article-title: Microspectroscopic visualization of how biochar lifts the soil organic carbon ceiling
  publication-title: Nat Comm
  doi: 10.1038/s41467-022-32819-7
– volume: 292
  start-page: 59
  year: 2017
  end-page: 86
  ident: CR41
  article-title: Soil carbon 4 per mille
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.01.002
– volume: 7
  start-page: 371
  year: 2017
  end-page: 376
  ident: CR53
  article-title: Biochar built soil carbon over a decade by stabilizing rhizodeposits
  publication-title: Nat Clim Change
  doi: 10.1038/nclimate3276
– volume: 23
  start-page: 3018
  year: 2023
  end-page: 3028
  ident: CR60
  article-title: Biochar more than stubble management affected carbon allocation and persistence in soil matrix: a 9-year temperate cropland trial
  publication-title: J Soil Sediment
  doi: 10.1007/s11368-023-03546-3
– volume: 165
  start-page: 382
  year: 2002
  end-page: 396
  ident: CR28
  article-title: Factors affecting rhizosphere priming effects
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-%23
– volume: 356
  start-page: 706
  year: 2017
  end-page: 707
  ident: CR9
  article-title: Rightsizing carbon dioxide removal
  publication-title: Science
  doi: 10.1126/science.aam9726
– volume: 13
  start-page: 1731
  year: 2021
  end-page: 1764
  ident: CR23
  article-title: How biochar works, and when it doesn’t: a review of mechanisms controlling soil and plant responses to biochar
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12885
– volume: 28
  start-page: 569
  year: 2014
  end-page: 576
  ident: CR4
  article-title: Improved δ C analysis of amino sugars in soil by ion chromatography–oxidation–isotope ratio mass spectrometry
  publication-title: Rapid Commun Mass Spectrom
  doi: 10.1002/rcm.6814
– volume: 7
  start-page: 577
  year: 2015
  end-page: 590
  ident: CR36
  article-title: A meta-analysis on pyrogenic organic matter induced priming effect
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12194
– volume: 27
  start-page: 822
  year: 2017
  end-page: 831
  ident: CR39
  article-title: Can biochar protect labile organic matter against mineralization in soil?
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(17)60421-1
– volume: 80
  start-page: 136
  year: 2015
  end-page: 145
  ident: CR6
  article-title: Effect of temperature on biochar priming effects and its stability in soils
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2014.10.006
– volume: 43
  start-page: 1812
  issue: 9
  year: 2011
  end-page: 1836
  ident: CR31
  article-title: Biochar effects on soil biota—a review
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2011.04.022
– volume: 382
  year: 2021
  ident: CR43
  article-title: Biochar aging increased microbial carbon use efficiency but decreased biomass turnover time
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114710
– volume: 4
  start-page: 3687
  year: 2014
  ident: CR46
  article-title: Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil
  publication-title: Sci Rep
  doi: 10.1038/srep03687
– volume: 1
  start-page: 56
  year: 2010
  ident: CR56
  article-title: Sustainable biochar to mitigate global climate change
  publication-title: Nat Commun
  doi: 10.1038/ncomms1053
– volume: 8
  start-page: 1089
  year: 2017
  ident: CR19
  article-title: Organic coating on biochar explains its nutrient retention and stimulation of soil fertility
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01123-0
– ident: CR21
– volume: 127
  start-page: 173
  year: 2016
  end-page: 188
  ident: CR11
  article-title: Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-016-0191-y
– volume: 19
  start-page: 697
  year: 1987
  end-page: 702
  ident: CR50
  article-title: Microbial biomass measurements in forest soils: the use of the chloroform fumigation-incubation method in strongly acid soils
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(87)90051-4
– volume: 7
  start-page: 13160
  year: 2016
  ident: CR57
  article-title: Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration
  publication-title: Nat Commun
  doi: 10.1038/ncomms13160
– volume: 354
  start-page: 311
  year: 2012
  end-page: 324
  ident: CR3
  article-title: Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-1067-5
– volume: 753
  year: 2021
  ident: CR26
  article-title: Recycling lake sediment to agriculture: effects on plant growth, nutrient availability, and leaching
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.141984
– volume: 465
  start-page: 288
  year: 2013
  end-page: 297
  ident: CR8
  article-title: Microbial utilisation of biochar-derived carbon
  publication-title: Sci Tot Environ
  doi: 10.1016/j.scitotenv.2013.03.090
– volume: 9
  start-page: 138
  year: 2022
  ident: CR12
  article-title: Effects of biochar on the C use efficiency of soil microbial communities: components and mechanisms
  publication-title: Environments
  doi: 10.3390/environments9110138
– volume: 88
  start-page: 37
  year: 2001
  end-page: 41
  ident: CR15
  article-title: The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics
  publication-title: Naturwissenschaften
  doi: 10.1007/s001140000193
– volume: 42
  start-page: 92
  year: 2010
  end-page: 100
  ident: CR20
  article-title: The response of organic matter mineralisation to nutrient and substrate additions in sub-arctic soils
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2009.10.004
– volume: 58
  start-page: 565
  year: 2022
  end-page: 577
  ident: CR10
  article-title: Biochar accelerates soil organic carbon mineralization via rhizodeposit-activated Actinobacteria
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-022-01643-y
– volume: 178
  year: 2023
  ident: CR58
  article-title: Priming effect on soil carbon decomposition by root exudate surrogates: a meta-analysis
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2023.108955
– volume: 5
  start-page: 588
  year: 2015
  end-page: 595
  ident: CR25
  article-title: Mineral protection of soil carbon counteracted by root exudates
  publication-title: Nat Clim Change
  doi: 10.1038/nclimate2580
– volume: 14
  start-page: 883
  year: 2021
  end-page: 892
  ident: CR32
  article-title: Biochar in climate change mitigation
  publication-title: Nat Geosci
  doi: 10.1038/s41561-021-00852-8
– volume: 339
  year: 2023
  ident: CR1
  article-title: Impact of wood-derived biochar on the hydrologic performance of bioretention media: effects on aggregation, root growth, and water retention
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2023.117864
– volume: 16
  start-page: 930
  year: 2013
  end-page: 939
  ident: CR47
  article-title: Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling
  publication-title: Ecol Lett
  doi: 10.1111/ele.12113
– volume: 528
  start-page: 60
  year: 2015
  end-page: 68
  ident: CR30
  article-title: The contentious nature of soil organic matter
  publication-title: Nature
  doi: 10.1038/nature16069
– volume: 15
  start-page: 5929
  year: 2018
  end-page: 5949
  ident: CR38
  article-title: Reviews and syntheses: Carbon use efficiency from organisms to ecosystems—definitions, theories, and empirical evidence
  publication-title: Biogeosciences
  doi: 10.5194/bg-15-5929-2018
– volume: 5
  start-page: 381
  year: 2007
  end-page: 387
  ident: CR29
  article-title: Bio-energy in the black
  publication-title: Front Ecol Environ
  doi: 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2
– volume: 82
  start-page: 39
  year: 2012
  end-page: 51
  ident: CR14
  article-title: State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de índio)
  publication-title: Geochim Cosmochim Acta
  doi: 10.1016/j.gca.2010.11.029
– volume: 11
  start-page: 2474
  year: 2021
  ident: CR16
  article-title: Soil organic carbon sequestration after biochar application: a global meta-analysis
  publication-title: Agronomy
  doi: 10.3390/agronomy11122474
– volume: 8
  start-page: 512
  year: 2016
  end-page: 523
  ident: CR51
  article-title: Biochar stability in soil: meta-analysis of decomposition and priming effects
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12266
– volume: 10
  year: 2022
  ident: CR24
  article-title: Potential of biochar to reduce greenhouse gas emissions and increase nitrogen use efficiency in boreal arable soils in the long-term
  publication-title: Front Environ Sci
  doi: 10.3389/fenvs.2022.914766
– volume: 13
  start-page: 5612
  issue: 10
  year: 2021
  ident: CR42
  article-title: The role of biochar in regulating the carbon, phosphorus, and nitrogen cycles exemplified by soil systems
  publication-title: Sustainability
  doi: 10.3390/su13105612
– volume: 149
  year: 2020
  ident: CR2
  article-title: Sticky dead microbes: rapid abiotic retention of microbial necromass in soil
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2020.107929
– volume: 2
  start-page: 17105
  year: 2017
  ident: CR33
  article-title: The importance of anabolism in microbial control over soil carbon storage
  publication-title: Nat Microbiol
  doi: 10.1038/nmicrobiol.2017.105
– volume: 52
  start-page: 4308
  year: 2022
  end-page: 4324
  ident: CR27
  article-title: Ensuring planetary survival: the centrality of organic carbon in balancing the multifunctional nature of soils
  publication-title: Crit Rev Environ Sci Technol
  doi: 10.1080/10643389.2021.2024484
– volume: 12
  start-page: 1092
  year: 2020
  end-page: 1103
  ident: CR34
  article-title: Greater microbial carbon use efficiency and carbon sequestration in soils: amendment of biochar versus crop straws
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12763
– volume: 73
  start-page: 33
  year: 2014
  end-page: 41
  ident: CR55
  article-title: Pyrogenic carbon additions to soil counteract positive priming of soil carbon mineralization by plants
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2014.02.009
– year: 2022
  ident: CR61
  article-title: Resistant soil organic carbon is more vulnerable to priming by root exudate fractions than relatively active soil organic carbon
  publication-title: Plant Soil
  doi: 10.1007/s11104-021-05288-y
– volume: 618
  start-page: 981
  year: 2023
  end-page: 985
  ident: CR49
  article-title: Microbial carbon use efficiency promotes global soil carbon storage
  publication-title: Nature
  doi: 10.1038/s41586-023-06042-3
– volume: 23
  start-page: 376
  year: 2015
  end-page: 382
  ident: CR5
  article-title: Sticky microbes: forces in microbial cell adhesion
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2015.01.011
– volume: 116
  start-page: 399
  year: 2018
  end-page: 409
  ident: CR7
  article-title: Biochar carbon dynamics in physically separated fractions and microbial use efficiency in contrasting soils under temperate pastures
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2017.10.042
– volume: 14
  start-page: 1082
  issue: 10
  year: 2022
  end-page: 1096
  ident: CR59
  article-title: Stover and biochar can improve soil microbial necromass carbon, and enzymatic transformation at the genetic level
  publication-title: GC Bioenergy
  doi: 10.1111/gcbb.12984
– volume: 57
  start-page: 513
  year: 2013
  end-page: 523
  ident: CR35
  article-title: Microbial biomass growth, following incorporation of biochars produced at 350 °C or 700 °C, in a silty-clay loam soil of high and low pH
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2012.10.033
– volume: 90
  start-page: 111
  year: 2015
  end-page: 121
  ident: CR52
  article-title: Plant-biochar interactions drive the negative priming of soil organic carbon in an annual ryegrass field system
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2015.08.005
– volume: 43
  start-page: 1169
  year: 2011
  end-page: 1179
  ident: CR62
  article-title: Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2011.02.005
– volume: 173
  year: 2022
  ident: CR40
  article-title: Microbial carbon use efficiency along an altitudinal gradient
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2022.108799
– volume: 219–220
  start-page: 162
  year: 2014
  end-page: 167
  ident: CR48
  article-title: Effect of biochar on phosphorus sorption and clay soil aggregate stability
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.12.022
– volume: 341
  year: 2023
  ident: CR13
  article-title: The effects of biochar on soil organic matter pools are not influenced by climate change
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2023.118092
– volume: 61
  start-page: 384
  year: 2010
  end-page: 391
  ident: CR17
  article-title: Negative priming effect on mineralization in a soil free of vegetation for 80 years
  publication-title: Eur J Soil Sci
  doi: 10.1111/j.1365-2389.2010.01234.x
– volume: 618
  start-page: 981
  year: 2023
  ident: 294_CR49
  publication-title: Nature
  doi: 10.1038/s41586-023-06042-3
– volume: 339
  year: 2023
  ident: 294_CR1
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2023.117864
– volume: 42
  start-page: 92
  year: 2010
  ident: 294_CR20
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2009.10.004
– volume: 9
  start-page: 138
  year: 2022
  ident: 294_CR12
  publication-title: Environments
  doi: 10.3390/environments9110138
– volume: 165
  start-page: 382
  year: 2002
  ident: 294_CR28
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-%23
– volume: 2
  start-page: 17105
  year: 2017
  ident: 294_CR33
  publication-title: Nat Microbiol
  doi: 10.1038/nmicrobiol.2017.105
– volume: 58
  start-page: 565
  year: 2022
  ident: 294_CR10
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-022-01643-y
– volume: 57
  start-page: 513
  year: 2013
  ident: 294_CR35
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2012.10.033
– volume: 8
  start-page: 512
  year: 2016
  ident: 294_CR51
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12266
– volume: 14
  start-page: 883
  year: 2021
  ident: 294_CR32
  publication-title: Nat Geosci
  doi: 10.1038/s41561-021-00852-8
– volume: 14
  start-page: 1082
  issue: 10
  year: 2022
  ident: 294_CR59
  publication-title: GC Bioenergy
  doi: 10.1111/gcbb.12984
– volume: 173
  year: 2022
  ident: 294_CR40
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2022.108799
– volume: 7
  start-page: 371
  year: 2017
  ident: 294_CR53
  publication-title: Nat Clim Change
  doi: 10.1038/nclimate3276
– ident: 294_CR22
– volume: 61
  start-page: 384
  year: 2010
  ident: 294_CR17
  publication-title: Eur J Soil Sci
  doi: 10.1111/j.1365-2389.2010.01234.x
– volume: 4
  start-page: 3687
  year: 2014
  ident: 294_CR46
  publication-title: Sci Rep
  doi: 10.1038/srep03687
– volume: 178
  year: 2023
  ident: 294_CR58
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2023.108955
– volume: 11
  start-page: 2474
  year: 2021
  ident: 294_CR16
  publication-title: Agronomy
  doi: 10.3390/agronomy11122474
– volume: 10
  year: 2022
  ident: 294_CR24
  publication-title: Front Environ Sci
  doi: 10.3389/fenvs.2022.914766
– volume: 23
  start-page: 376
  year: 2015
  ident: 294_CR5
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2015.01.011
– volume: 116
  start-page: 399
  year: 2018
  ident: 294_CR7
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2017.10.042
– volume: 127
  start-page: 173
  year: 2016
  ident: 294_CR11
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-016-0191-y
– volume: 1
  start-page: 56
  year: 2010
  ident: 294_CR56
  publication-title: Nat Commun
  doi: 10.1038/ncomms1053
– volume: 80
  start-page: 136
  year: 2015
  ident: 294_CR6
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2014.10.006
– volume: 88
  start-page: 37
  year: 2001
  ident: 294_CR15
  publication-title: Naturwissenschaften
  doi: 10.1007/s001140000193
– volume: 341
  year: 2023
  ident: 294_CR13
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2023.118092
– volume: 23
  start-page: 3018
  year: 2023
  ident: 294_CR60
  publication-title: J Soil Sediment
  doi: 10.1007/s11368-023-03546-3
– volume: 753
  year: 2021
  ident: 294_CR26
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.141984
– volume: 12
  start-page: 1092
  year: 2020
  ident: 294_CR34
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12763
– volume: 89
  start-page: 231
  issue: 2
  year: 2000
  ident: 294_CR44
  publication-title: Oikos
  doi: 10.1034/j.1600-0706.2000.890203.x
– volume: 13
  start-page: 5177
  year: 2022
  ident: 294_CR54
  publication-title: Nat Comm
  doi: 10.1038/s41467-022-32819-7
– volume: 382
  year: 2021
  ident: 294_CR43
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114710
– ident: 294_CR21
– volume: 206
  start-page: 46
  year: 2015
  ident: 294_CR18
  publication-title: Agri Ecosyst Environ
  doi: 10.1016/j.agee.2015.03.015
– volume: 354
  start-page: 311
  year: 2012
  ident: 294_CR3
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-1067-5
– volume: 73
  start-page: 33
  year: 2014
  ident: 294_CR55
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2014.02.009
– volume: 13
  start-page: 1731
  year: 2021
  ident: 294_CR23
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12885
– volume: 356
  start-page: 706
  year: 2017
  ident: 294_CR9
  publication-title: Science
  doi: 10.1126/science.aam9726
– volume: 27
  start-page: 822
  year: 2017
  ident: 294_CR39
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(17)60421-1
– volume: 8
  start-page: 1089
  year: 2017
  ident: 294_CR19
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01123-0
– ident: 294_CR45
– volume: 15
  start-page: 5929
  year: 2018
  ident: 294_CR38
  publication-title: Biogeosciences
  doi: 10.5194/bg-15-5929-2018
– volume: 219–220
  start-page: 162
  year: 2014
  ident: 294_CR48
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.12.022
– volume: 292
  start-page: 59
  year: 2017
  ident: 294_CR41
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.01.002
– year: 2022
  ident: 294_CR61
  publication-title: Plant Soil
  doi: 10.1007/s11104-021-05288-y
– volume: 5
  start-page: 381
  year: 2007
  ident: 294_CR29
  publication-title: Front Ecol Environ
  doi: 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2
– volume: 7
  start-page: 577
  year: 2015
  ident: 294_CR36
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12194
– volume: 28
  start-page: 569
  year: 2014
  ident: 294_CR4
  publication-title: Rapid Commun Mass Spectrom
  doi: 10.1002/rcm.6814
– volume: 13
  start-page: 5612
  issue: 10
  year: 2021
  ident: 294_CR42
  publication-title: Sustainability
  doi: 10.3390/su13105612
– volume: 149
  year: 2020
  ident: 294_CR2
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2020.107929
– volume: 43
  start-page: 1169
  year: 2011
  ident: 294_CR62
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2011.02.005
– volume: 196
  start-page: 79
  year: 2012
  ident: 294_CR37
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2012.04225.x
– volume: 19
  start-page: 697
  year: 1987
  ident: 294_CR50
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(87)90051-4
– volume: 16
  start-page: 930
  year: 2013
  ident: 294_CR47
  publication-title: Ecol Lett
  doi: 10.1111/ele.12113
– volume: 5
  start-page: 588
  year: 2015
  ident: 294_CR25
  publication-title: Nat Clim Change
  doi: 10.1038/nclimate2580
– volume: 43
  start-page: 1812
  issue: 9
  year: 2011
  ident: 294_CR31
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2011.04.022
– volume: 528
  start-page: 60
  year: 2015
  ident: 294_CR30
  publication-title: Nature
  doi: 10.1038/nature16069
– volume: 465
  start-page: 288
  year: 2013
  ident: 294_CR8
  publication-title: Sci Tot Environ
  doi: 10.1016/j.scitotenv.2013.03.090
– volume: 90
  start-page: 111
  year: 2015
  ident: 294_CR52
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2015.08.005
– volume: 7
  start-page: 13160
  year: 2016
  ident: 294_CR57
  publication-title: Nat Commun
  doi: 10.1038/ncomms13160
– volume: 82
  start-page: 39
  year: 2012
  ident: 294_CR14
  publication-title: Geochim Cosmochim Acta
  doi: 10.1016/j.gca.2010.11.029
– volume: 52
  start-page: 4308
  year: 2022
  ident: 294_CR27
  publication-title: Crit Rev Environ Sci Technol
  doi: 10.1080/10643389.2021.2024484
SSID ssj0002511639
Score 2.3957748
Snippet Biochar has been widely recognized for its potential to increase carbon (C) sequestration and mitigate climate change. This potential is affected by how...
Abstract Biochar has been widely recognized for its potential to increase carbon (C) sequestration and mitigate climate change. This potential is affected by...
SourceID doaj
crossref
springer
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 13C-labelling
Agriculture
Biochar
Carbon sequestration
Carbon use efficiency
Ceramics
Composites
Earth and Environmental Science
Environment
Environmental Engineering/Biotechnology
Fossil Fuels (incl. Carbon Capture)
Glass
Natural Materials
Original Research
Priming effect
Renewable and Green Energy
Soil microbial necromass
Soil Science & Conservation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsoKq4vcvCmxTZNmsabiiIePLmwt5LHRBe0lX0c_CH-XzNpdlkR9OKhl5JhQmY6M2ky30fIqXLCeu7qLAcuMw5KZsaUNuOFzS2UXOUuon0-VvdD_jASoxWqL7wT1sMD9wt34VilpfeITFfwIkRSVduK-8LxoMNoh9E35LyVzRTGYCycQ-5NXTKxV44zKfHIMjw5Uzz7-JaJImD_j9PQmGTutshmqg7pVT-rbbIG7Q75vB532BxFJwizCo6Gmo2-jSNcdOqipJ2nbYTwprp1FKOJo9Nu_Ep71iZLrZ6Yrr2kkFhEowQ89zLvkdvrOcpC-xIvBQQNEaMpTKeXpfMpUIiIE9iuuUuGd7dPN_dZYlPIbNhDzTLQjJtgL1mCYMZqH0KdZroUjoEttDM6BD_LsDEVQCrkSNRcOpfXXtXCm3KPrLddC_uECgFQG9CiMhV3hVfMKgT60lXpSsvlgBSLlW1sghpHxovXZgmSHK3RBGs00RrNx4CcLWXee6CNX0dfo8GWIxEkO74Iq9ok12n-cp0BOV-Yu0lf7vQXnQf_ofOQbLBQFuFPnEIckfXZZA7HoayZmZPowV9aF_Yb
  priority: 102
  providerName: Directory of Open Access Journals
Title Biochar reduced the mineralization of native and added soil organic carbon: evidence of negative priming and enhanced microbial carbon use efficiency
URI https://link.springer.com/article/10.1007/s42773-023-00294-y
https://doaj.org/article/d26a7ff034414171898c64f1d4cf4bad
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZNemkOpU1bun0EHXJLBLYsWVZvSUgIhfbUQG5Gj9F2IbXD7uaQS_5F_m81Y-1CaQn0YB2MBhmNNDPy6PuGsUMbdUgqdqICZYQCa4T3TRCqDlWARtkqEtvn9_bySn291tcFFLba3HbfpCTJUm_BbkoagznH_FTSKnG_w55rPLtjirZgHND-YtCc_W5ByPxb9A8vRGT9f2VCycFcvGIvS2TITyZVvmbPYNhneyfzZWHHgDfs8XQxIkyKL5FwFSLP0Rv_tSDi6IKn5GPiA5F5czdEjnYl8tW4uOFT_abAg1v6cfjCodQTJQmYTzK3VOVrTrIw_KTrAXkEYmvKHzfJ8rsVcCDuCQRuvmVXF-c_zi5FqasgQj5NrQU4qXzWnGlASx9cykbPSdfoKCHULnqXzWCQCFEFMBarJTplYqy6ZDudfPOO7Q7jAO8Z1xqg8-B061sV62RlsEj55domNkGZGas389yHQjqOtS9u-i1dMummz7rpSTf9_YwdbWVuJ8qNJ3ufovq2PZEum17kWe3L7uujbJ1JCekNa1Vnd2y70KpUR5UXqndxxo43yu_LHl49MeaH_-v-kb3IyxQv-4haf2K76-UdfM6hzNof0MrFtj07oN8Buf32cP4boBbyZQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL0q0wWwQDzF8PQCVhApcewkRmIxBarptHRDK3Vn_LgeRipJNTMVmg_hD_hQbMcTCYEqsegim8g3tnx97Rvb5xyAV8Jy45htshxZnTEUdaZ1aTJWmNxgyURuI9vncTU9ZbMzfrYDv7ZYmHjbfXskGWfqAezGaF2HM0f_5FSwbJOuUh7i5of_UVu9P_jovfqa0v1PJx-mWdISyIz_g1hnqCjTvrV1iZxqo5wPdEVVyS1FUyirlQ99QwMsE7EWQSFQsdravHGi4U6X_rs3YLfhVcNHsDuZzL7Mhr2ckKb7lT5hcv7d2D_WvSgP8NfZa1zS9u_CnZSLkkk_eO7BDrb34fZkvkx8HPgAfu4tugDMIstA8YqW-HyRfF9EquqE4CSdI22kDyeqtSTMZJasusU56RWjDDFqqbv2HcGkYBotcN7bXERdsXm0xfZbvJDga4j8UL5xvS25XCHByHYRoKIP4fRaev8RjNquxcdAOEdsNCpe6YrZwglqRCAZU1VpS8PqMRTbfpYm0ZwHtY1zORA0R99I7xsZfSM3Y3gz2Fz0JB9Xlt4L7htKBoLu-ML3qkzxLi2tVO1cIFQsWOETANGYirnCMh8aWtkxvN06X6ZZY3VFnU_-r_hLuDk9-Xwkjw6OD5_CLeoTsbBtVPBnMFovL_G5T6TW-kUaxwS-Xnfo_AaAfC-V
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiqCy34ACeImjjOC6mHLWXVblGFBJV6C36Ml5VKstrdCu0P4X_wEzt2vJEQqBKHHnKJPLHl8dgT29_3AbyuTKatMGUUoygigVURKZXqSCQ61piKKjae7fMsPz4Xk4vsYgt-b7Aw_rb75kiywzQ4lqZmtT83dr8HvgleFO78kZ6YVyJah2uVp7j-ST9ty4OTI_LwG87HH79-OI6CrkCk6W9iFaHkQlHLixQzrrS0FPSSyzQzHHUijZI0DWjuIJqIReXUAqUojIlLW5WZVSl99w5slzlF6AC2R6PJl0m_r-NSdlr1Az7n3439Yw30UgF_ncP65W38EB6EvJSNuoH0CLaweQz3R9NF4ObAJ_DrcNY6kBZbOLpXNIxyR_Zj5mmrA5qTtZY1nkqcycYwN6sZtmxnl6xTj9JMy4Vqm_cMg5qpt8BpZzP3GmNTb4vNd385gWrwXFHUuM6WXS2RoWe-cLDRp3B-K73_DAZN2-AOsCxDLBXKLFe5MImtuK4c4ZjMU5NqUQwh2fRzrQPluVPeuKx7smbvm5p8U3vf1OshvO1t5h3hx42lD537-pKOrNu_oF6tQ-zXhueysNaRKyYioWSgKnUubGIEhYmSZgjvNs6vwwyyvKHO5_9X_BXc_Xw0rj-dnJ2-gHuccjK3g5RkuzBYLa5wj3KqlXoZhjGDb7cdOdfZEDPW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biochar+reduced+the+mineralization+of+native+and+added+soil+organic+carbon%3A+evidence+of+negative+priming+and+enhanced+microbial+carbon+use+efficiency&rft.jtitle=Biochar+%28Online%29&rft.au=Kalu%2C+Subin&rft.au=Sepp%C3%A4nen%2C+Aino&rft.au=Mganga%2C+Kevin+Z.&rft.au=Sieti%C3%B6%2C+Outi-Maaria&rft.date=2024-01-15&rft.pub=Springer+Nature+Singapore&rft.eissn=2524-7867&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1007%2Fs42773-023-00294-y&rft.externalDocID=10_1007_s42773_023_00294_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2524-7867&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2524-7867&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2524-7867&client=summon