Biochar reduced the mineralization of native and added soil organic carbon: evidence of negative priming and enhanced microbial carbon use efficiency
Biochar has been widely recognized for its potential to increase carbon (C) sequestration and mitigate climate change. This potential is affected by how biochar interacts with native soil organic carbon (SOC) and fresh organic substrates added to soil. However, only a few studies have been conducted...
Saved in:
Published in | Biochar (Online) Vol. 6; no. 1; pp. 1 - 14 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
15.01.2024
Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biochar has been widely recognized for its potential to increase carbon (C) sequestration and mitigate climate change. This potential is affected by how biochar interacts with native soil organic carbon (SOC) and fresh organic substrates added to soil. However, only a few studies have been conducted to understand this interaction. To fill this knowledge gap, we conducted a
13
C-glucose labelling soil incubation for 6 months using fine-textured agricultural soil (Stagnosol) with two different biochar amounts. Biochar addition reduced the mineralization of SOC and
13
C-glucose and increased soil microbial biomass carbon (MBC) and microbial carbon use efficiency (CUE). The effects were found to be additive i.e., higher biochar application rate resulted in lower mineralization of SOC and
13
C-glucose. Additionally, soil density fractionation after 6 months revealed that most of the added biochar particles were recovered in free particulate organic matter (POM) fraction. Biochar also increased the retention of
13
C in free POM fraction, indicating that added
13
C-glucose was preserved within the biochar particles. The measurement of
13
C from the total amino sugar fraction extracted from the biochar particles suggested that biochar increased the microbial uptake of added
13
C-glucose and after they died, the dead microbial residues (necromass) accumulated inside biochar pores. Biochar also increased the proportion of occluded POM, demonstrating that increased soil occlusion following biochar addition reduced SOC mineralization. Overall, the study demonstrates the additional C sequestering potential of biochar by inducing negative priming of native SOC as well as increasing CUE, resulting in the formation and stabilization of microbial necromass.
Graphical Abstract
Highlights
Biochar showed additional C storage ability by preserving SOC from mineralization (negative priming) and stabilizing added labile organic substrate
Biochar (30 Mg ha
−1
) significantly increased microbial carbon use efficiency
Biochar increased the formation of stable microbial residues (necromass) from a labile substrate (glucose) added to soil, as indicated by
13
C recovery in amino sugars |
---|---|
AbstractList | Biochar has been widely recognized for its potential to increase carbon (C) sequestration and mitigate climate change. This potential is affected by how biochar interacts with native soil organic carbon (SOC) and fresh organic substrates added to soil. However, only a few studies have been conducted to understand this interaction. To fill this knowledge gap, we conducted a
13
C-glucose labelling soil incubation for 6 months using fine-textured agricultural soil (Stagnosol) with two different biochar amounts. Biochar addition reduced the mineralization of SOC and
13
C-glucose and increased soil microbial biomass carbon (MBC) and microbial carbon use efficiency (CUE). The effects were found to be additive i.e., higher biochar application rate resulted in lower mineralization of SOC and
13
C-glucose. Additionally, soil density fractionation after 6 months revealed that most of the added biochar particles were recovered in free particulate organic matter (POM) fraction. Biochar also increased the retention of
13
C in free POM fraction, indicating that added
13
C-glucose was preserved within the biochar particles. The measurement of
13
C from the total amino sugar fraction extracted from the biochar particles suggested that biochar increased the microbial uptake of added
13
C-glucose and after they died, the dead microbial residues (necromass) accumulated inside biochar pores. Biochar also increased the proportion of occluded POM, demonstrating that increased soil occlusion following biochar addition reduced SOC mineralization. Overall, the study demonstrates the additional C sequestering potential of biochar by inducing negative priming of native SOC as well as increasing CUE, resulting in the formation and stabilization of microbial necromass.
Graphical Abstract
Highlights
Biochar showed additional C storage ability by preserving SOC from mineralization (negative priming) and stabilizing added labile organic substrate
Biochar (30 Mg ha
−1
) significantly increased microbial carbon use efficiency
Biochar increased the formation of stable microbial residues (necromass) from a labile substrate (glucose) added to soil, as indicated by
13
C recovery in amino sugars Biochar has been widely recognized for its potential to increase carbon (C) sequestration and mitigate climate change. This potential is affected by how biochar interacts with native soil organic carbon (SOC) and fresh organic substrates added to soil. However, only a few studies have been conducted to understand this interaction. To fill this knowledge gap, we conducted a 13 C-glucose labelling soil incubation for 6 months using fine-textured agricultural soil (Stagnosol) with two different biochar amounts. Biochar addition reduced the mineralization of SOC and 13 C-glucose and increased soil microbial biomass carbon (MBC) and microbial carbon use efficiency (CUE). The effects were found to be additive i.e., higher biochar application rate resulted in lower mineralization of SOC and 13 C-glucose. Additionally, soil density fractionation after 6 months revealed that most of the added biochar particles were recovered in free particulate organic matter (POM) fraction. Biochar also increased the retention of 13 C in free POM fraction, indicating that added 13 C-glucose was preserved within the biochar particles. The measurement of 13 C from the total amino sugar fraction extracted from the biochar particles suggested that biochar increased the microbial uptake of added 13 C-glucose and after they died, the dead microbial residues (necromass) accumulated inside biochar pores. Biochar also increased the proportion of occluded POM, demonstrating that increased soil occlusion following biochar addition reduced SOC mineralization. Overall, the study demonstrates the additional C sequestering potential of biochar by inducing negative priming of native SOC as well as increasing CUE, resulting in the formation and stabilization of microbial necromass. Graphical Abstract Abstract Biochar has been widely recognized for its potential to increase carbon (C) sequestration and mitigate climate change. This potential is affected by how biochar interacts with native soil organic carbon (SOC) and fresh organic substrates added to soil. However, only a few studies have been conducted to understand this interaction. To fill this knowledge gap, we conducted a 13C-glucose labelling soil incubation for 6 months using fine-textured agricultural soil (Stagnosol) with two different biochar amounts. Biochar addition reduced the mineralization of SOC and 13C-glucose and increased soil microbial biomass carbon (MBC) and microbial carbon use efficiency (CUE). The effects were found to be additive i.e., higher biochar application rate resulted in lower mineralization of SOC and 13C-glucose. Additionally, soil density fractionation after 6 months revealed that most of the added biochar particles were recovered in free particulate organic matter (POM) fraction. Biochar also increased the retention of 13C in free POM fraction, indicating that added 13C-glucose was preserved within the biochar particles. The measurement of 13C from the total amino sugar fraction extracted from the biochar particles suggested that biochar increased the microbial uptake of added 13C-glucose and after they died, the dead microbial residues (necromass) accumulated inside biochar pores. Biochar also increased the proportion of occluded POM, demonstrating that increased soil occlusion following biochar addition reduced SOC mineralization. Overall, the study demonstrates the additional C sequestering potential of biochar by inducing negative priming of native SOC as well as increasing CUE, resulting in the formation and stabilization of microbial necromass. Graphical Abstract |
ArticleNumber | 7 |
Author | Kalu, Subin Karhu, Kristiina Sietiö, Outi-Maaria Glaser, Bruno Seppänen, Aino Mganga, Kevin Z. |
Author_xml | – sequence: 1 givenname: Subin orcidid: 0000-0003-4221-3701 surname: Kalu fullname: Kalu, Subin email: subin.kalu@helsinki.fi organization: Faculty of Agriculture and Forestry, University of Helsinki, Helsinki Institute of Sustainability Science (HELSUS), Department of Crop and Soil Sciences, North Carolina State University – sequence: 2 givenname: Aino surname: Seppänen fullname: Seppänen, Aino organization: Faculty of Agriculture and Forestry, University of Helsinki – sequence: 3 givenname: Kevin Z. orcidid: 0000-0002-7908-7561 surname: Mganga fullname: Mganga, Kevin Z. organization: Faculty of Agriculture and Forestry, University of Helsinki, Copernicus Institute of Sustainable Development, Utrecht University – sequence: 4 givenname: Outi-Maaria orcidid: 0000-0003-0127-9368 surname: Sietiö fullname: Sietiö, Outi-Maaria organization: Faculty of Agriculture and Forestry, University of Helsinki, HAMK Bio Research Unit, Häme University of Applied Sciences – sequence: 5 givenname: Bruno orcidid: 0000-0002-3057-3868 surname: Glaser fullname: Glaser, Bruno organization: Institute of Agricultural and Nutritional Sciences, Department of Soil Biogeochemistry, Martin Luther University Halle-Wittenberg – sequence: 6 givenname: Kristiina orcidid: 0000-0003-3101-4141 surname: Karhu fullname: Karhu, Kristiina organization: Faculty of Agriculture and Forestry, University of Helsinki, Helsinki Institute of Life Science (HiLIFE) |
BookMark | eNp9kc9q3DAQxkVJoWmSF-hJL-BW_2zZvbUhSQOBXJKzGEujXS2OVCRvYPseed9o7RRKDzkIDeL7fZqZ7zM5iSkiIV84-8oZ09-KElrLhol6mBhUc_hATkUrVKP7Tp_8U38iF6XsWFW1nHdyOCUvP0OyW8g0o9tbdHTeIn0KETNM4Q_MIUWaPI21ekYK0VFwrspKChNNeQMxWGohjyl-p_gcHEaLC4GblfmdQ_XbLCzGLcTjL0_B5jQGmN5Yui9I0ftgQzU4nJOPHqaCF2_3GXm8vnq4_NXc3d_cXv64a6xifG4QhBqtBS2xFaMF38oeBMjWCbQc3Ai8lVZ0SmtEPehukKC0c6z3Q9_6UZ6R29XXJdiZY6eQDyZBMMtDnc9AnoOd0DjRgfaeSaW44pr3Q2875blT1qsRXPXqV686WSkZvbFhXhY4ZwiT4cwc0zJrWqamZZa0zKGi4j_0byvvQnKFShXHDWazS_sc67reo14BCqyt9Q |
CitedBy_id | crossref_primary_10_1016_j_agee_2024_109467 crossref_primary_10_1016_j_earscirev_2024_104860 crossref_primary_10_1016_j_trac_2024_118082 crossref_primary_10_1016_j_eja_2024_127168 crossref_primary_10_3390_agriculture14122222 crossref_primary_10_1007_s42773_024_00396_1 crossref_primary_10_1016_j_still_2024_106365 crossref_primary_10_1016_j_scitotenv_2024_176283 crossref_primary_10_3390_plants14050682 crossref_primary_10_1016_j_fcr_2024_109547 crossref_primary_10_1007_s42729_024_02179_w crossref_primary_10_1016_j_crsust_2024_100267 crossref_primary_10_1016_j_jenvman_2025_125056 crossref_primary_10_3389_fpls_2024_1517917 crossref_primary_10_1016_j_pedsph_2025_01_009 crossref_primary_10_1007_s42773_024_00411_5 crossref_primary_10_3390_su16229967 crossref_primary_10_1016_j_scitotenv_2024_173606 crossref_primary_10_1038_s41598_024_81232_1 |
Cites_doi | 10.1016/j.agee.2015.03.015 10.1034/j.1600-0706.2000.890203.x 10.1111/j.1469-8137.2012.04225.x 10.1038/s41467-022-32819-7 10.1016/j.geoderma.2017.01.002 10.1038/nclimate3276 10.1007/s11368-023-03546-3 10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-%23 10.1126/science.aam9726 10.1111/gcbb.12885 10.1002/rcm.6814 10.1111/gcbb.12194 10.1016/S1002-0160(17)60421-1 10.1016/j.soilbio.2014.10.006 10.1016/j.soilbio.2011.04.022 10.1016/j.geoderma.2020.114710 10.1038/srep03687 10.1038/ncomms1053 10.1038/s41467-017-01123-0 10.1007/s10533-016-0191-y 10.1016/0038-0717(87)90051-4 10.1038/ncomms13160 10.1007/s11104-011-1067-5 10.1016/j.scitotenv.2020.141984 10.1016/j.scitotenv.2013.03.090 10.3390/environments9110138 10.1007/s001140000193 10.1016/j.soilbio.2009.10.004 10.1007/s00374-022-01643-y 10.1016/j.soilbio.2023.108955 10.1038/nclimate2580 10.1038/s41561-021-00852-8 10.1016/j.jenvman.2023.117864 10.1111/ele.12113 10.1038/nature16069 10.5194/bg-15-5929-2018 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2 10.1016/j.gca.2010.11.029 10.3390/agronomy11122474 10.1111/gcbb.12266 10.3389/fenvs.2022.914766 10.3390/su13105612 10.1016/j.soilbio.2020.107929 10.1038/nmicrobiol.2017.105 10.1080/10643389.2021.2024484 10.1111/gcbb.12763 10.1016/j.soilbio.2014.02.009 10.1007/s11104-021-05288-y 10.1038/s41586-023-06042-3 10.1016/j.tim.2015.01.011 10.1016/j.soilbio.2017.10.042 10.1111/gcbb.12984 10.1016/j.soilbio.2012.10.033 10.1016/j.soilbio.2015.08.005 10.1016/j.soilbio.2011.02.005 10.1016/j.soilbio.2022.108799 10.1016/j.geoderma.2013.12.022 10.1016/j.jenvman.2023.118092 10.1111/j.1365-2389.2010.01234.x |
ContentType | Journal Article |
Copyright | The Author(s) 2024 |
Copyright_xml | – notice: The Author(s) 2024 |
DBID | C6C AAYXX CITATION DOA |
DOI | 10.1007/s42773-023-00294-y |
DatabaseName | Springer Nature OA Free Journals CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2524-7867 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_d26a7ff034414171898c64f1d4cf4bad 10_1007_s42773_023_00294_y |
GrantInformation_xml | – fundername: Academy of Finland grantid: 316401 funderid: http://dx.doi.org/10.13039/501100002341 – fundername: Helsinki Institute of Life Science, Helsingin Yliopisto funderid: http://dx.doi.org/10.13039/100015735 – fundername: Helsingin Yliopisto grantid: HY/66/05.01.07/2017 funderid: http://dx.doi.org/10.13039/100007797 |
GroupedDBID | 0R~ AAHBH AAHNG AAJSJ AAKKN AAYZJ ABDBF ABECU ABEEZ ABFTV ABKCH ABMQK ABTEG ABTMW ACACY ACOKC ACULB ACZOJ ADKNI ADURQ ADYFF AFGXO AFQWF AGDGC AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AXYYD C24 C6C EBLON EBS FNLPD GROUPED_DOAJ M~E NQJWS OK1 RSV SNPRN SOHCF SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR AASML AAYXX CITATION |
ID | FETCH-LOGICAL-c401t-ea24bcca73e52bcaf538a2a35d2ec1adba153c26477ee797693a47dd08f985fb3 |
IEDL.DBID | C24 |
ISSN | 2524-7867 |
IngestDate | Wed Aug 27 01:32:53 EDT 2025 Tue Jul 01 03:16:38 EDT 2025 Thu Apr 24 22:55:05 EDT 2025 Fri Feb 21 02:41:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Carbon use efficiency Biochar C-labelling Carbon sequestration Priming effect Soil microbial necromass |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-ea24bcca73e52bcaf538a2a35d2ec1adba153c26477ee797693a47dd08f985fb3 |
ORCID | 0000-0003-3101-4141 0000-0003-0127-9368 0000-0003-4221-3701 0000-0002-7908-7561 0000-0002-3057-3868 |
OpenAccessLink | https://link.springer.com/10.1007/s42773-023-00294-y |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d26a7ff034414171898c64f1d4cf4bad crossref_citationtrail_10_1007_s42773_023_00294_y crossref_primary_10_1007_s42773_023_00294_y springer_journals_10_1007_s42773_023_00294_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-15 |
PublicationDateYYYYMMDD | 2024-01-15 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Biochar (Online) |
PublicationTitleAbbrev | Biochar |
PublicationYear | 2024 |
Publisher | Springer Nature Singapore Springer |
Publisher_xml | – name: Springer Nature Singapore – name: Springer |
References | Giannetta, Plaza, Cassetta, Mariotto, Benavente-Ferraces, García-Gil, Panettieri, Zaccone (CR13) 2023; 341 Dempster, Gleeson, Solaiman, Jones, Murphy (CR3) 2012; 354 Glaser, Birk (CR14) 2012; 82 Manzoni, Taylor, Richter, Porporato, Ågren (CR37) 2012; 196 Liu, Wu, Liu, Bian, Ge, Zhang, Zheng, Drosos, Liu, Zhang, Cheng, Li, Pan (CR34) 2020; 12 Fang, Singh, Luo, Boersma, Van Zwieten (CR7) 2018; 116 Pei, Li, Mia, Singh, Wu, Dijkstra (CR43) 2021; 382 Zhang, Sun, Wang, Xie, Jiang, Chen, Wei, Bao, Song, Bai (CR59) 2022; 14 Liang, Schimel, Jastrow (CR33) 2017; 2 Glaser, Haumaier, Guggenberger, Zech (CR15) 2001; 88 Weng, Van Zwieten, Singh, Tavakkoli, Joseph, Macdonald, Rose, Rose, Kimber, Morris, Cozzolino, Araujo, Archanjo, Cowie (CR53) 2017; 7 Kuzyakov (CR28) 2002; 165 Dippold, Boesel, Gunina, Kuzyakov, Glaser (CR4) 2014; 28 Kalu, Kulmala, Zrim, Peltokangas, Tammeorg, Rasa, Kitzler, Pihlatie, Karhu (CR24) 2022; 10 Giagnoni, Renella (CR12) 2022; 9 Manzoni, Čapek, Porada, Thurner, Winterdahl, Beer, Brüchert, Frouz, Herrmann, Lindahl, Lyon, Šantrůčková, Vico, Way (CR38) 2018; 15 Lehmann (CR29) 2007; 5 Kopittke, Berhe, Carrillo, Cavagnaro, Chen, Chen, Román Dobarco, Dijkstra, Field, Grundy, He, Hoyle, Kögel-Knabner, Lam, Marschner, Martinez, McBratney, McDonald-Madden, Menzies, Mosley, Mueller, Murphy, Nielsen, O’Donnell, Pendall, Pett-Ridge, Rumpel, Young, Minasny (CR27) 2022; 52 Geyer, Kyker-Snowman, Grandy, Frey (CR11) 2016; 127 Lehmann, Kleber (CR30) 2015; 528 CR45 Pietikäinen, Kiikkilä, Fritze (CR44) 2000; 89 Yan, Yin, Dijkstra, Wang, Cheng (CR58) 2023; 178 Maestrini, Nannipieri, Abiven (CR36) 2015; 7 Woolf, Lehmann, Lee (CR57) 2016; 7 Whitman, Enders, Lehmann (CR55) 2014; 73 Akpinar, Tian, Shepherd, Imhoff (CR1) 2023; 339 Tao, Huang, Hungate, Manzoni, Frey, Schmidt, Reichstein, Carvalhais, Ciais, Jiang, Lehmann, Wang, Houlton, Ahrens, Mishra, Hugelius, Hocking, Lu, Shi, Viatkin, Vargas, Yigini, Omuto, Malik, Guillermo, Cuevas-Corona, Di Paolo, Luotto, Liao, Liang, Saynes, Huang, Luo (CR49) 2023; 618 Field, Mach (CR9) 2017; 356 Gross, Bromm, Glaser (CR16) 2021; 11 Zimmerman, Gao, Ahn (CR62) 2011; 43 Fu, Luo, Auwal, Singh, Van Zwieten, Xu (CR10) 2022; 58 Minasny, Malone, McBratney, Angers, Arrouays, Chambers, Chaplot, Chen, Cheng, Das, Field, Gimona, Hedley, Hong, Mandal, Marchant, Martin, McConkey, Mulder, O'Rourke, Richer-de-Forges, Odeh, Padarian, Paustian, Pan, Poggio, Savin, Stolbovoy, Stockmann, Sulaeman, Tsui, Vågen, van Wesemael, Winowiecki (CR41) 2017; 292 Keiluweit, Bougoure, Nico, Pett-Ridge, Weber, Kleber (CR25) 2015; 5 Vance, Brookes, Jenkinson (CR50) 1987; 19 Zhou, Lin, Wang, Zhu, Zhu (CR61) 2022 Luo, Durenkamp, De Nobili, Lin, Devonshire, Brookes (CR35) 2013; 57 Fang, Singh, Singh (CR6) 2015; 80 Guenet, Leloup, Raynaud, Bardoux, Abbadie (CR17) 2010; 61 Joseph, Cowie, Van Zwieten, Bolan, Budai, Buss, Cayuela, Graber, Ippolito, Kuzyakov, Luo, Ok, Palansooriya, Shepherd, Stephens, Weng, Lehmann (CR23) 2021; 13 Lehmann, Cowie, Masiello, Kammann, Woolf, Amonette, Cayuela, Camps-Arbestain, Whitman (CR32) 2021; 14 Hagemann, Joseph, Schmidt, Kammann, Harter, Borch, Young, Varga, Taherymoosavi, Elliott, McKenna, Albu, Mayrhofer, Obst, Conte, Dieguez-Alonso, Orsetti, Subdiaga, Behrens, Kappler (CR19) 2017; 8 Lehmann, Rillig, Thies, Masiello, Hockaday, Crowley (CR31) 2011; 43 Mganga, Sietiö, Meyer, Poeplau, Adamczyk, Biasi, Kalu, Räsänen, Ambus, Fritze, Pellikka, Karhu (CR40) 2022; 173 Weng, Van Zwieten, Singh, Kimber, Morris, Cowie, Macdonald (CR52) 2015; 90 Kiani, Raave, Simojoki, Tammeorg, Tammeorg (CR26) 2021; 753 Farrell, Kuhn, Macdonald, Maddern, Murphy, Hall, Singh, Baumann, Krull, Baldock (CR8) 2013; 465 Woolf, Amonette, Street-Perrott, Lehmann, Joseph (CR56) 2010; 1 Buckeridge, La Rosa, Mason, Whitaker, McNamara, Grant, Ostle (CR2) 2020; 149 Melas, Ortiz, Alacañiz (CR39) 2017; 27 Zhang, Wang, Fang, Sun, Tavakkoli, Li, Wu, Du (CR60) 2023; 23 CR22 CR21 Hartley, Hopkins, Sommerkorn, Wookey (CR20) 2010; 42 Singh, Cowie (CR46) 2014; 4 Weng, Van Zwieten, Tavakkoli, Rose, Singh, Joseph, Macdonald, Kimber, Morris, Rose, Archanjo, Tang, Franks, Diao, Schweizer, Tobin, Klein, Vongsvivut, Chang, Kopittke, Cowie (CR54) 2022; 13 Soinne, Hovi, Tammeorg, Turtola (CR48) 2014; 219–220 Pan, Dong, Su, Wang, Chen, Chang, Kim, Huang, Hung (CR42) 2021; 13 Dufrêne (CR5) 2015; 23 Sinsabaugh, Manzoni, Moorhead, Richter (CR47) 2013; 16 Wang, Xiong, Kuzyakov (CR51) 2016; 8 Gul, Whalen, Thomas, Sachdeva, Deng (CR18) 2015; 206 H Soinne (294_CR48) 2014; 219–220 B Glaser (294_CR15) 2001; 88 D Akpinar (294_CR1) 2023; 339 Y Fang (294_CR7) 2018; 116 GB Melas (294_CR39) 2017; 27 S Yan (294_CR58) 2023; 178 C Liang (294_CR33) 2017; 2 B Glaser (294_CR14) 2012; 82 M Keiluweit (294_CR25) 2015; 5 J Pietikäinen (294_CR44) 2000; 89 J Lehmann (294_CR29) 2007; 5 KM Geyer (294_CR11) 2016; 127 BP Singh (294_CR46) 2014; 4 Y Zhang (294_CR59) 2022; 14 RL Sinsabaugh (294_CR47) 2013; 16 Z Weng (294_CR52) 2015; 90 J Wang (294_CR51) 2016; 8 A Zhang (294_CR60) 2023; 23 Y Fu (294_CR10) 2022; 58 J Lehmann (294_CR30) 2015; 528 AR Zimmerman (294_CR62) 2011; 43 KM Buckeridge (294_CR2) 2020; 149 S Joseph (294_CR23) 2021; 13 B Maestrini (294_CR36) 2015; 7 ED Vance (294_CR50) 1987; 19 F Tao (294_CR49) 2023; 618 294_CR45 M Farrell (294_CR8) 2013; 465 KZ Mganga (294_CR40) 2022; 173 D Woolf (294_CR57) 2016; 7 YF Dufrêne (294_CR5) 2015; 23 B Giannetta (294_CR13) 2023; 341 S Kalu (294_CR24) 2022; 10 T Whitman (294_CR55) 2014; 73 SY Pan (294_CR42) 2021; 13 L Giagnoni (294_CR12) 2022; 9 B Guenet (294_CR17) 2010; 61 Y Luo (294_CR35) 2013; 57 Z Weng (294_CR54) 2022; 13 S Gul (294_CR18) 2015; 206 IP Hartley (294_CR20) 2010; 42 J Lehmann (294_CR32) 2021; 14 S Manzoni (294_CR37) 2012; 196 DN Dempster (294_CR3) 2012; 354 Y Kuzyakov (294_CR28) 2002; 165 MA Dippold (294_CR4) 2014; 28 PM Kopittke (294_CR27) 2022; 52 S Zhou (294_CR61) 2022 D Woolf (294_CR56) 2010; 1 Z Liu (294_CR34) 2020; 12 S Manzoni (294_CR38) 2018; 15 294_CR21 294_CR22 Z Weng (294_CR53) 2017; 7 N Hagemann (294_CR19) 2017; 8 B Minasny (294_CR41) 2017; 292 CB Field (294_CR9) 2017; 356 A Gross (294_CR16) 2021; 11 M Kiani (294_CR26) 2021; 753 J Lehmann (294_CR31) 2011; 43 Y Fang (294_CR6) 2015; 80 J Pei (294_CR43) 2021; 382 |
References_xml | – volume: 206 start-page: 46 year: 2015 end-page: 59 ident: CR18 article-title: Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions publication-title: Agri Ecosyst Environ doi: 10.1016/j.agee.2015.03.015 – ident: CR45 – ident: CR22 – volume: 89 start-page: 231 issue: 2 year: 2000 end-page: 242 ident: CR44 article-title: Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus publication-title: Oikos doi: 10.1034/j.1600-0706.2000.890203.x – volume: 196 start-page: 79 year: 2012 end-page: 91 ident: CR37 article-title: Environmental and stoichiometric controls on microbial carbon-use efficiency in soils publication-title: New Phytol doi: 10.1111/j.1469-8137.2012.04225.x – volume: 13 start-page: 5177 year: 2022 ident: CR54 article-title: Microspectroscopic visualization of how biochar lifts the soil organic carbon ceiling publication-title: Nat Comm doi: 10.1038/s41467-022-32819-7 – volume: 292 start-page: 59 year: 2017 end-page: 86 ident: CR41 article-title: Soil carbon 4 per mille publication-title: Geoderma doi: 10.1016/j.geoderma.2017.01.002 – volume: 7 start-page: 371 year: 2017 end-page: 376 ident: CR53 article-title: Biochar built soil carbon over a decade by stabilizing rhizodeposits publication-title: Nat Clim Change doi: 10.1038/nclimate3276 – volume: 23 start-page: 3018 year: 2023 end-page: 3028 ident: CR60 article-title: Biochar more than stubble management affected carbon allocation and persistence in soil matrix: a 9-year temperate cropland trial publication-title: J Soil Sediment doi: 10.1007/s11368-023-03546-3 – volume: 165 start-page: 382 year: 2002 end-page: 396 ident: CR28 article-title: Factors affecting rhizosphere priming effects publication-title: J Plant Nutr Soil Sci doi: 10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-%23 – volume: 356 start-page: 706 year: 2017 end-page: 707 ident: CR9 article-title: Rightsizing carbon dioxide removal publication-title: Science doi: 10.1126/science.aam9726 – volume: 13 start-page: 1731 year: 2021 end-page: 1764 ident: CR23 article-title: How biochar works, and when it doesn’t: a review of mechanisms controlling soil and plant responses to biochar publication-title: GCB Bioenergy doi: 10.1111/gcbb.12885 – volume: 28 start-page: 569 year: 2014 end-page: 576 ident: CR4 article-title: Improved δ C analysis of amino sugars in soil by ion chromatography–oxidation–isotope ratio mass spectrometry publication-title: Rapid Commun Mass Spectrom doi: 10.1002/rcm.6814 – volume: 7 start-page: 577 year: 2015 end-page: 590 ident: CR36 article-title: A meta-analysis on pyrogenic organic matter induced priming effect publication-title: GCB Bioenergy doi: 10.1111/gcbb.12194 – volume: 27 start-page: 822 year: 2017 end-page: 831 ident: CR39 article-title: Can biochar protect labile organic matter against mineralization in soil? publication-title: Pedosphere doi: 10.1016/S1002-0160(17)60421-1 – volume: 80 start-page: 136 year: 2015 end-page: 145 ident: CR6 article-title: Effect of temperature on biochar priming effects and its stability in soils publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2014.10.006 – volume: 43 start-page: 1812 issue: 9 year: 2011 end-page: 1836 ident: CR31 article-title: Biochar effects on soil biota—a review publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2011.04.022 – volume: 382 year: 2021 ident: CR43 article-title: Biochar aging increased microbial carbon use efficiency but decreased biomass turnover time publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114710 – volume: 4 start-page: 3687 year: 2014 ident: CR46 article-title: Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil publication-title: Sci Rep doi: 10.1038/srep03687 – volume: 1 start-page: 56 year: 2010 ident: CR56 article-title: Sustainable biochar to mitigate global climate change publication-title: Nat Commun doi: 10.1038/ncomms1053 – volume: 8 start-page: 1089 year: 2017 ident: CR19 article-title: Organic coating on biochar explains its nutrient retention and stimulation of soil fertility publication-title: Nat Commun doi: 10.1038/s41467-017-01123-0 – ident: CR21 – volume: 127 start-page: 173 year: 2016 end-page: 188 ident: CR11 article-title: Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter publication-title: Biogeochemistry doi: 10.1007/s10533-016-0191-y – volume: 19 start-page: 697 year: 1987 end-page: 702 ident: CR50 article-title: Microbial biomass measurements in forest soils: the use of the chloroform fumigation-incubation method in strongly acid soils publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(87)90051-4 – volume: 7 start-page: 13160 year: 2016 ident: CR57 article-title: Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration publication-title: Nat Commun doi: 10.1038/ncomms13160 – volume: 354 start-page: 311 year: 2012 end-page: 324 ident: CR3 article-title: Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil publication-title: Plant Soil doi: 10.1007/s11104-011-1067-5 – volume: 753 year: 2021 ident: CR26 article-title: Recycling lake sediment to agriculture: effects on plant growth, nutrient availability, and leaching publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.141984 – volume: 465 start-page: 288 year: 2013 end-page: 297 ident: CR8 article-title: Microbial utilisation of biochar-derived carbon publication-title: Sci Tot Environ doi: 10.1016/j.scitotenv.2013.03.090 – volume: 9 start-page: 138 year: 2022 ident: CR12 article-title: Effects of biochar on the C use efficiency of soil microbial communities: components and mechanisms publication-title: Environments doi: 10.3390/environments9110138 – volume: 88 start-page: 37 year: 2001 end-page: 41 ident: CR15 article-title: The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics publication-title: Naturwissenschaften doi: 10.1007/s001140000193 – volume: 42 start-page: 92 year: 2010 end-page: 100 ident: CR20 article-title: The response of organic matter mineralisation to nutrient and substrate additions in sub-arctic soils publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2009.10.004 – volume: 58 start-page: 565 year: 2022 end-page: 577 ident: CR10 article-title: Biochar accelerates soil organic carbon mineralization via rhizodeposit-activated Actinobacteria publication-title: Biol Fertil Soils doi: 10.1007/s00374-022-01643-y – volume: 178 year: 2023 ident: CR58 article-title: Priming effect on soil carbon decomposition by root exudate surrogates: a meta-analysis publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2023.108955 – volume: 5 start-page: 588 year: 2015 end-page: 595 ident: CR25 article-title: Mineral protection of soil carbon counteracted by root exudates publication-title: Nat Clim Change doi: 10.1038/nclimate2580 – volume: 14 start-page: 883 year: 2021 end-page: 892 ident: CR32 article-title: Biochar in climate change mitigation publication-title: Nat Geosci doi: 10.1038/s41561-021-00852-8 – volume: 339 year: 2023 ident: CR1 article-title: Impact of wood-derived biochar on the hydrologic performance of bioretention media: effects on aggregation, root growth, and water retention publication-title: J Environ Manage doi: 10.1016/j.jenvman.2023.117864 – volume: 16 start-page: 930 year: 2013 end-page: 939 ident: CR47 article-title: Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling publication-title: Ecol Lett doi: 10.1111/ele.12113 – volume: 528 start-page: 60 year: 2015 end-page: 68 ident: CR30 article-title: The contentious nature of soil organic matter publication-title: Nature doi: 10.1038/nature16069 – volume: 15 start-page: 5929 year: 2018 end-page: 5949 ident: CR38 article-title: Reviews and syntheses: Carbon use efficiency from organisms to ecosystems—definitions, theories, and empirical evidence publication-title: Biogeosciences doi: 10.5194/bg-15-5929-2018 – volume: 5 start-page: 381 year: 2007 end-page: 387 ident: CR29 article-title: Bio-energy in the black publication-title: Front Ecol Environ doi: 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2 – volume: 82 start-page: 39 year: 2012 end-page: 51 ident: CR14 article-title: State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de índio) publication-title: Geochim Cosmochim Acta doi: 10.1016/j.gca.2010.11.029 – volume: 11 start-page: 2474 year: 2021 ident: CR16 article-title: Soil organic carbon sequestration after biochar application: a global meta-analysis publication-title: Agronomy doi: 10.3390/agronomy11122474 – volume: 8 start-page: 512 year: 2016 end-page: 523 ident: CR51 article-title: Biochar stability in soil: meta-analysis of decomposition and priming effects publication-title: GCB Bioenergy doi: 10.1111/gcbb.12266 – volume: 10 year: 2022 ident: CR24 article-title: Potential of biochar to reduce greenhouse gas emissions and increase nitrogen use efficiency in boreal arable soils in the long-term publication-title: Front Environ Sci doi: 10.3389/fenvs.2022.914766 – volume: 13 start-page: 5612 issue: 10 year: 2021 ident: CR42 article-title: The role of biochar in regulating the carbon, phosphorus, and nitrogen cycles exemplified by soil systems publication-title: Sustainability doi: 10.3390/su13105612 – volume: 149 year: 2020 ident: CR2 article-title: Sticky dead microbes: rapid abiotic retention of microbial necromass in soil publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2020.107929 – volume: 2 start-page: 17105 year: 2017 ident: CR33 article-title: The importance of anabolism in microbial control over soil carbon storage publication-title: Nat Microbiol doi: 10.1038/nmicrobiol.2017.105 – volume: 52 start-page: 4308 year: 2022 end-page: 4324 ident: CR27 article-title: Ensuring planetary survival: the centrality of organic carbon in balancing the multifunctional nature of soils publication-title: Crit Rev Environ Sci Technol doi: 10.1080/10643389.2021.2024484 – volume: 12 start-page: 1092 year: 2020 end-page: 1103 ident: CR34 article-title: Greater microbial carbon use efficiency and carbon sequestration in soils: amendment of biochar versus crop straws publication-title: GCB Bioenergy doi: 10.1111/gcbb.12763 – volume: 73 start-page: 33 year: 2014 end-page: 41 ident: CR55 article-title: Pyrogenic carbon additions to soil counteract positive priming of soil carbon mineralization by plants publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2014.02.009 – year: 2022 ident: CR61 article-title: Resistant soil organic carbon is more vulnerable to priming by root exudate fractions than relatively active soil organic carbon publication-title: Plant Soil doi: 10.1007/s11104-021-05288-y – volume: 618 start-page: 981 year: 2023 end-page: 985 ident: CR49 article-title: Microbial carbon use efficiency promotes global soil carbon storage publication-title: Nature doi: 10.1038/s41586-023-06042-3 – volume: 23 start-page: 376 year: 2015 end-page: 382 ident: CR5 article-title: Sticky microbes: forces in microbial cell adhesion publication-title: Trends Microbiol doi: 10.1016/j.tim.2015.01.011 – volume: 116 start-page: 399 year: 2018 end-page: 409 ident: CR7 article-title: Biochar carbon dynamics in physically separated fractions and microbial use efficiency in contrasting soils under temperate pastures publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2017.10.042 – volume: 14 start-page: 1082 issue: 10 year: 2022 end-page: 1096 ident: CR59 article-title: Stover and biochar can improve soil microbial necromass carbon, and enzymatic transformation at the genetic level publication-title: GC Bioenergy doi: 10.1111/gcbb.12984 – volume: 57 start-page: 513 year: 2013 end-page: 523 ident: CR35 article-title: Microbial biomass growth, following incorporation of biochars produced at 350 °C or 700 °C, in a silty-clay loam soil of high and low pH publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2012.10.033 – volume: 90 start-page: 111 year: 2015 end-page: 121 ident: CR52 article-title: Plant-biochar interactions drive the negative priming of soil organic carbon in an annual ryegrass field system publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2015.08.005 – volume: 43 start-page: 1169 year: 2011 end-page: 1179 ident: CR62 article-title: Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2011.02.005 – volume: 173 year: 2022 ident: CR40 article-title: Microbial carbon use efficiency along an altitudinal gradient publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2022.108799 – volume: 219–220 start-page: 162 year: 2014 end-page: 167 ident: CR48 article-title: Effect of biochar on phosphorus sorption and clay soil aggregate stability publication-title: Geoderma doi: 10.1016/j.geoderma.2013.12.022 – volume: 341 year: 2023 ident: CR13 article-title: The effects of biochar on soil organic matter pools are not influenced by climate change publication-title: J Environ Manage doi: 10.1016/j.jenvman.2023.118092 – volume: 61 start-page: 384 year: 2010 end-page: 391 ident: CR17 article-title: Negative priming effect on mineralization in a soil free of vegetation for 80 years publication-title: Eur J Soil Sci doi: 10.1111/j.1365-2389.2010.01234.x – volume: 618 start-page: 981 year: 2023 ident: 294_CR49 publication-title: Nature doi: 10.1038/s41586-023-06042-3 – volume: 339 year: 2023 ident: 294_CR1 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2023.117864 – volume: 42 start-page: 92 year: 2010 ident: 294_CR20 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2009.10.004 – volume: 9 start-page: 138 year: 2022 ident: 294_CR12 publication-title: Environments doi: 10.3390/environments9110138 – volume: 165 start-page: 382 year: 2002 ident: 294_CR28 publication-title: J Plant Nutr Soil Sci doi: 10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-%23 – volume: 2 start-page: 17105 year: 2017 ident: 294_CR33 publication-title: Nat Microbiol doi: 10.1038/nmicrobiol.2017.105 – volume: 58 start-page: 565 year: 2022 ident: 294_CR10 publication-title: Biol Fertil Soils doi: 10.1007/s00374-022-01643-y – volume: 57 start-page: 513 year: 2013 ident: 294_CR35 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2012.10.033 – volume: 8 start-page: 512 year: 2016 ident: 294_CR51 publication-title: GCB Bioenergy doi: 10.1111/gcbb.12266 – volume: 14 start-page: 883 year: 2021 ident: 294_CR32 publication-title: Nat Geosci doi: 10.1038/s41561-021-00852-8 – volume: 14 start-page: 1082 issue: 10 year: 2022 ident: 294_CR59 publication-title: GC Bioenergy doi: 10.1111/gcbb.12984 – volume: 173 year: 2022 ident: 294_CR40 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2022.108799 – volume: 7 start-page: 371 year: 2017 ident: 294_CR53 publication-title: Nat Clim Change doi: 10.1038/nclimate3276 – ident: 294_CR22 – volume: 61 start-page: 384 year: 2010 ident: 294_CR17 publication-title: Eur J Soil Sci doi: 10.1111/j.1365-2389.2010.01234.x – volume: 4 start-page: 3687 year: 2014 ident: 294_CR46 publication-title: Sci Rep doi: 10.1038/srep03687 – volume: 178 year: 2023 ident: 294_CR58 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2023.108955 – volume: 11 start-page: 2474 year: 2021 ident: 294_CR16 publication-title: Agronomy doi: 10.3390/agronomy11122474 – volume: 10 year: 2022 ident: 294_CR24 publication-title: Front Environ Sci doi: 10.3389/fenvs.2022.914766 – volume: 23 start-page: 376 year: 2015 ident: 294_CR5 publication-title: Trends Microbiol doi: 10.1016/j.tim.2015.01.011 – volume: 116 start-page: 399 year: 2018 ident: 294_CR7 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2017.10.042 – volume: 127 start-page: 173 year: 2016 ident: 294_CR11 publication-title: Biogeochemistry doi: 10.1007/s10533-016-0191-y – volume: 1 start-page: 56 year: 2010 ident: 294_CR56 publication-title: Nat Commun doi: 10.1038/ncomms1053 – volume: 80 start-page: 136 year: 2015 ident: 294_CR6 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2014.10.006 – volume: 88 start-page: 37 year: 2001 ident: 294_CR15 publication-title: Naturwissenschaften doi: 10.1007/s001140000193 – volume: 341 year: 2023 ident: 294_CR13 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2023.118092 – volume: 23 start-page: 3018 year: 2023 ident: 294_CR60 publication-title: J Soil Sediment doi: 10.1007/s11368-023-03546-3 – volume: 753 year: 2021 ident: 294_CR26 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.141984 – volume: 12 start-page: 1092 year: 2020 ident: 294_CR34 publication-title: GCB Bioenergy doi: 10.1111/gcbb.12763 – volume: 89 start-page: 231 issue: 2 year: 2000 ident: 294_CR44 publication-title: Oikos doi: 10.1034/j.1600-0706.2000.890203.x – volume: 13 start-page: 5177 year: 2022 ident: 294_CR54 publication-title: Nat Comm doi: 10.1038/s41467-022-32819-7 – volume: 382 year: 2021 ident: 294_CR43 publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114710 – ident: 294_CR21 – volume: 206 start-page: 46 year: 2015 ident: 294_CR18 publication-title: Agri Ecosyst Environ doi: 10.1016/j.agee.2015.03.015 – volume: 354 start-page: 311 year: 2012 ident: 294_CR3 publication-title: Plant Soil doi: 10.1007/s11104-011-1067-5 – volume: 73 start-page: 33 year: 2014 ident: 294_CR55 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2014.02.009 – volume: 13 start-page: 1731 year: 2021 ident: 294_CR23 publication-title: GCB Bioenergy doi: 10.1111/gcbb.12885 – volume: 356 start-page: 706 year: 2017 ident: 294_CR9 publication-title: Science doi: 10.1126/science.aam9726 – volume: 27 start-page: 822 year: 2017 ident: 294_CR39 publication-title: Pedosphere doi: 10.1016/S1002-0160(17)60421-1 – volume: 8 start-page: 1089 year: 2017 ident: 294_CR19 publication-title: Nat Commun doi: 10.1038/s41467-017-01123-0 – ident: 294_CR45 – volume: 15 start-page: 5929 year: 2018 ident: 294_CR38 publication-title: Biogeosciences doi: 10.5194/bg-15-5929-2018 – volume: 219–220 start-page: 162 year: 2014 ident: 294_CR48 publication-title: Geoderma doi: 10.1016/j.geoderma.2013.12.022 – volume: 292 start-page: 59 year: 2017 ident: 294_CR41 publication-title: Geoderma doi: 10.1016/j.geoderma.2017.01.002 – year: 2022 ident: 294_CR61 publication-title: Plant Soil doi: 10.1007/s11104-021-05288-y – volume: 5 start-page: 381 year: 2007 ident: 294_CR29 publication-title: Front Ecol Environ doi: 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2 – volume: 7 start-page: 577 year: 2015 ident: 294_CR36 publication-title: GCB Bioenergy doi: 10.1111/gcbb.12194 – volume: 28 start-page: 569 year: 2014 ident: 294_CR4 publication-title: Rapid Commun Mass Spectrom doi: 10.1002/rcm.6814 – volume: 13 start-page: 5612 issue: 10 year: 2021 ident: 294_CR42 publication-title: Sustainability doi: 10.3390/su13105612 – volume: 149 year: 2020 ident: 294_CR2 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2020.107929 – volume: 43 start-page: 1169 year: 2011 ident: 294_CR62 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2011.02.005 – volume: 196 start-page: 79 year: 2012 ident: 294_CR37 publication-title: New Phytol doi: 10.1111/j.1469-8137.2012.04225.x – volume: 19 start-page: 697 year: 1987 ident: 294_CR50 publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(87)90051-4 – volume: 16 start-page: 930 year: 2013 ident: 294_CR47 publication-title: Ecol Lett doi: 10.1111/ele.12113 – volume: 5 start-page: 588 year: 2015 ident: 294_CR25 publication-title: Nat Clim Change doi: 10.1038/nclimate2580 – volume: 43 start-page: 1812 issue: 9 year: 2011 ident: 294_CR31 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2011.04.022 – volume: 528 start-page: 60 year: 2015 ident: 294_CR30 publication-title: Nature doi: 10.1038/nature16069 – volume: 465 start-page: 288 year: 2013 ident: 294_CR8 publication-title: Sci Tot Environ doi: 10.1016/j.scitotenv.2013.03.090 – volume: 90 start-page: 111 year: 2015 ident: 294_CR52 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2015.08.005 – volume: 7 start-page: 13160 year: 2016 ident: 294_CR57 publication-title: Nat Commun doi: 10.1038/ncomms13160 – volume: 82 start-page: 39 year: 2012 ident: 294_CR14 publication-title: Geochim Cosmochim Acta doi: 10.1016/j.gca.2010.11.029 – volume: 52 start-page: 4308 year: 2022 ident: 294_CR27 publication-title: Crit Rev Environ Sci Technol doi: 10.1080/10643389.2021.2024484 |
SSID | ssj0002511639 |
Score | 2.3957748 |
Snippet | Biochar has been widely recognized for its potential to increase carbon (C) sequestration and mitigate climate change. This potential is affected by how... Abstract Biochar has been widely recognized for its potential to increase carbon (C) sequestration and mitigate climate change. This potential is affected by... |
SourceID | doaj crossref springer |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | 13C-labelling Agriculture Biochar Carbon sequestration Carbon use efficiency Ceramics Composites Earth and Environmental Science Environment Environmental Engineering/Biotechnology Fossil Fuels (incl. Carbon Capture) Glass Natural Materials Original Research Priming effect Renewable and Green Energy Soil microbial necromass Soil Science & Conservation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsoKq4vcvCmxTZNmsabiiIePLmwt5LHRBe0lX0c_CH-XzNpdlkR9OKhl5JhQmY6M2ky30fIqXLCeu7qLAcuMw5KZsaUNuOFzS2UXOUuon0-VvdD_jASoxWqL7wT1sMD9wt34VilpfeITFfwIkRSVduK-8LxoMNoh9E35LyVzRTGYCycQ-5NXTKxV44zKfHIMjw5Uzz7-JaJImD_j9PQmGTutshmqg7pVT-rbbIG7Q75vB532BxFJwizCo6Gmo2-jSNcdOqipJ2nbYTwprp1FKOJo9Nu_Ep71iZLrZ6Yrr2kkFhEowQ89zLvkdvrOcpC-xIvBQQNEaMpTKeXpfMpUIiIE9iuuUuGd7dPN_dZYlPIbNhDzTLQjJtgL1mCYMZqH0KdZroUjoEttDM6BD_LsDEVQCrkSNRcOpfXXtXCm3KPrLddC_uECgFQG9CiMhV3hVfMKgT60lXpSsvlgBSLlW1sghpHxovXZgmSHK3RBGs00RrNx4CcLWXee6CNX0dfo8GWIxEkO74Iq9ok12n-cp0BOV-Yu0lf7vQXnQf_ofOQbLBQFuFPnEIckfXZZA7HoayZmZPowV9aF_Yb priority: 102 providerName: Directory of Open Access Journals |
Title | Biochar reduced the mineralization of native and added soil organic carbon: evidence of negative priming and enhanced microbial carbon use efficiency |
URI | https://link.springer.com/article/10.1007/s42773-023-00294-y https://doaj.org/article/d26a7ff034414171898c64f1d4cf4bad |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZNemkOpU1bun0EHXJLBLYsWVZvSUgIhfbUQG5Gj9F2IbXD7uaQS_5F_m81Y-1CaQn0YB2MBhmNNDPy6PuGsUMbdUgqdqICZYQCa4T3TRCqDlWARtkqEtvn9_bySn291tcFFLba3HbfpCTJUm_BbkoagznH_FTSKnG_w55rPLtjirZgHND-YtCc_W5ByPxb9A8vRGT9f2VCycFcvGIvS2TITyZVvmbPYNhneyfzZWHHgDfs8XQxIkyKL5FwFSLP0Rv_tSDi6IKn5GPiA5F5czdEjnYl8tW4uOFT_abAg1v6cfjCodQTJQmYTzK3VOVrTrIw_KTrAXkEYmvKHzfJ8rsVcCDuCQRuvmVXF-c_zi5FqasgQj5NrQU4qXzWnGlASx9cykbPSdfoKCHULnqXzWCQCFEFMBarJTplYqy6ZDudfPOO7Q7jAO8Z1xqg8-B061sV62RlsEj55domNkGZGas389yHQjqOtS9u-i1dMummz7rpSTf9_YwdbWVuJ8qNJ3ufovq2PZEum17kWe3L7uujbJ1JCekNa1Vnd2y70KpUR5UXqndxxo43yu_LHl49MeaH_-v-kb3IyxQv-4haf2K76-UdfM6hzNof0MrFtj07oN8Buf32cP4boBbyZQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL0q0wWwQDzF8PQCVhApcewkRmIxBarptHRDK3Vn_LgeRipJNTMVmg_hD_hQbMcTCYEqsegim8g3tnx97Rvb5xyAV8Jy45htshxZnTEUdaZ1aTJWmNxgyURuI9vncTU9ZbMzfrYDv7ZYmHjbfXskGWfqAezGaF2HM0f_5FSwbJOuUh7i5of_UVu9P_jovfqa0v1PJx-mWdISyIz_g1hnqCjTvrV1iZxqo5wPdEVVyS1FUyirlQ99QwMsE7EWQSFQsdravHGi4U6X_rs3YLfhVcNHsDuZzL7Mhr2ckKb7lT5hcv7d2D_WvSgP8NfZa1zS9u_CnZSLkkk_eO7BDrb34fZkvkx8HPgAfu4tugDMIstA8YqW-HyRfF9EquqE4CSdI22kDyeqtSTMZJasusU56RWjDDFqqbv2HcGkYBotcN7bXERdsXm0xfZbvJDga4j8UL5xvS25XCHByHYRoKIP4fRaev8RjNquxcdAOEdsNCpe6YrZwglqRCAZU1VpS8PqMRTbfpYm0ZwHtY1zORA0R99I7xsZfSM3Y3gz2Fz0JB9Xlt4L7htKBoLu-ML3qkzxLi2tVO1cIFQsWOETANGYirnCMh8aWtkxvN06X6ZZY3VFnU_-r_hLuDk9-Xwkjw6OD5_CLeoTsbBtVPBnMFovL_G5T6TW-kUaxwS-Xnfo_AaAfC-V |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiqCy34ACeImjjOC6mHLWXVblGFBJV6C36Ml5VKstrdCu0P4X_wEzt2vJEQqBKHHnKJPLHl8dgT29_3AbyuTKatMGUUoygigVURKZXqSCQ61piKKjae7fMsPz4Xk4vsYgt-b7Aw_rb75kiywzQ4lqZmtT83dr8HvgleFO78kZ6YVyJah2uVp7j-ST9ty4OTI_LwG87HH79-OI6CrkCk6W9iFaHkQlHLixQzrrS0FPSSyzQzHHUijZI0DWjuIJqIReXUAqUojIlLW5WZVSl99w5slzlF6AC2R6PJl0m_r-NSdlr1Az7n3439Yw30UgF_ncP65W38EB6EvJSNuoH0CLaweQz3R9NF4ObAJ_DrcNY6kBZbOLpXNIxyR_Zj5mmrA5qTtZY1nkqcycYwN6sZtmxnl6xTj9JMy4Vqm_cMg5qpt8BpZzP3GmNTb4vNd385gWrwXFHUuM6WXS2RoWe-cLDRp3B-K73_DAZN2-AOsCxDLBXKLFe5MImtuK4c4ZjMU5NqUQwh2fRzrQPluVPeuKx7smbvm5p8U3vf1OshvO1t5h3hx42lD537-pKOrNu_oF6tQ-zXhueysNaRKyYioWSgKnUubGIEhYmSZgjvNs6vwwyyvKHO5_9X_BXc_Xw0rj-dnJ2-gHuccjK3g5RkuzBYLa5wj3KqlXoZhjGDb7cdOdfZEDPW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biochar+reduced+the+mineralization+of+native+and+added+soil+organic+carbon%3A+evidence+of+negative+priming+and+enhanced+microbial+carbon+use+efficiency&rft.jtitle=Biochar+%28Online%29&rft.au=Kalu%2C+Subin&rft.au=Sepp%C3%A4nen%2C+Aino&rft.au=Mganga%2C+Kevin+Z.&rft.au=Sieti%C3%B6%2C+Outi-Maaria&rft.date=2024-01-15&rft.pub=Springer+Nature+Singapore&rft.eissn=2524-7867&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1007%2Fs42773-023-00294-y&rft.externalDocID=10_1007_s42773_023_00294_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2524-7867&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2524-7867&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2524-7867&client=summon |